Analyzing Vectorized Hash Tables Across CPU Architectures

Maximilian Bother Lawrence Benson

ETH Zurich Hasso Plattner Institute
Zurich, Switzerland Potsdam, Germany
mboether@inf.ethz.ch lawrence.benson@hpi.de
ABSTRACT

Data processing systems often leverage vector instructions to achieve
higher performance. When applying vector instructions, an often

overlooked data structure is the hash table, even though it is funda-
mental in data processing systems for operations such as indexing,

aggregating, and joining. In this paper, we characterize and evaluate

three fundamental vectorized hashing schemes, vectorized linear

probing (VLP), vectorized fingerprinting (VFP), and bucket-based

comparison (BBC). We implement these hashing schemes on the

x86, ARM, and Power CPU architectures, as modern database sys-
tems must provide efficient implementations for multiple platforms

due to the continuously increasing hardware heterogeneity. We

present various implementation variants and platform-specific op-
timizations, which we evaluate for integer keys, string keys, large

payloads, skewed distributions, and multiple threads. Our extensive

evaluation and comparison to three scalar hashing schemes on four

servers shows that BBC outperforms scalar linear probing by a fac-
tor of more than 2x, while also scaling well to high load factors. We

find that vectorized hashing schemes come with caveats that need

to be considered, such as the increased engineering overhead, dif-
ferences between CPUs, and differences between vector ISAs, such

as AVX and AVX-512, which impact performance. We conclude

with key findings for vectorized hashing scheme implementations.

PVLDB Reference Format:

Maximilian Bother, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. An-
alyzing Vectorized Hash Tables Across CPU Architectures. PVLDB, 16(11):
2755 - 2768, 2023. d0i:10.14778/3611479.3611485

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hpides/vectorized-hash-tables.

1 INTRODUCTION

The heterogeneity of computing systems is steadily increasing.
While Intel and AMD x86 CPUs have been dominating the market
in the last decades, ARM-based CPUs are gaining traction and are
expected to reach 22 % in cloud deployments by 2025 [78]. Many
companies, e.g., Nvidia, Amazon, or Ampere, are building custom
ARM chips [2, 56, 79], and due to Apple M-series processors [3],
ARM already has 7 % market share in the customer segment [70].
Furthermore, IBM is continuously improving the Power architec-
ture and released Power10 in 2021 [67].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611485

2755

Ana Klimovic Tilmann Rabl

ETH Zurich Hasso Plattner Institute
Zurich, Switzerland Potsdam, Germany
aklimovic@ethz.ch tilmann.rabl@hpi.de

Intel x86 AMD x86 ARM Power
=24 o
oo °
<0 T T T T T T
0 50 1000 50 1000 50 1000 50 100
QR SQR SQR SQR

©—Bucket-Based Comparison —#—Robin Hood
Figure 1: Lookup performance of best scalar (RH) and vec-
torized (BBC) hashing schemes for load factor 90 %.

Computer scientists have built many systems to process the gi-
gantic volume of data produced steadily [53]. These systems are in-
creasingly designed with a focus on hardware efficiency [14, 30, 77,
83]. They leverage modern hardware capabilities, such as modern
storage tiering [43, 58], target-specific code generation [29, 58, 59],
or CPU-GPU co-processing [19] to achieve maximum performance.

A fundamental data structure used in data processing systems,
whose efficient implementation and performance depends on the
hardware platform, is the hash table. Hash tables are used in many
different operations, including indexing, aggregating, and joining.
In this paper, we focus on fixed-size hash tables, as their perfor-
mance is critical in, e.g., equi-joins [42]. The majority of previous
work on the join operator has focused on partitioning strategies
for parallelization [7-10, 16, 37, 42, 52]. However, hash table imple-
mentations have only received limited attention [66]. In particular,
unlike parallelization, the design and implementation strategies for
hash tables have not been characterized in the context of modern
CPU hardware. While some prior work discusses ideas on vector-
izing hash tables [13, 63, 65, 66], to the best of our knowledge, we
are the first to implement, compare, and benchmark a wide variety
of approaches and provide empirical insights to guide the design of
vectorized hash tables on modern CPUs. For example, some works
compare the hash table keys using vector instructions [63, 66],
while other works introduce fingerprints, i.e., short hashes of keys,
to compare more items at once [13], but these approaches have
never been compared in a coherent setup.

In this paper, we provide insights into vectorization for hash
table designs and how the underlying hardware influences the per-
formance. We investigate whether insights we obtain on x86 CPUs
also hold on ARM or Power CPUs, how to design vectorized hash-
ing schemes depending on the vector instruction set architectures,
and what impact the vector register size has on performance. In Fig-
ure 1, we show that our best performing vectorized implementation
(Bucket-Based Comparison) outperforms the best scalar hashing
scheme (Robin Hood) by 1.4x to 3x (2.1x on average) for high load
factors. In this paper, we perform a detailed step-by-step analysis
from scalar to fully vectorized hashing schemes, showing which
vectorization design choices impact performance on three common
CPU architectures. Overall, our contributions are as follows.

https://doi.org/10.14778/3611479.3611485
https://github.com/hpides/vectorized-hash-tables
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611485
https://www.acm.org/publications/policies/artifact-review-and-badging-current

We systematically characterize and discuss three approaches
to vectorized hashing from previous work that build on each
other increasingly adjusted to vectorization: vectorized linear
probing (VLP), vectorized fingerprinting (VFP), and bucket-based
comparison (BBC).

We implement these hashing schemes using six different vector
instruction set architectures (ISAs) on x86 (SSE, AVX2, AVX-
512), ARM (NEON and ARM), and Power (VSX). We discuss
implementation variants and platform-specific optimizations.
We conduct an extensive evaluation of insert and lookup perfor-
mance of scalar and vectorized hashing schemes on four servers.
We derive well-performing algorithmic variations for the hashing
schemes, discuss the impact of vector register size, and compare
our results across the systems.

We find that all platforms benefit from using vectorized hashing
schemes, but the relative performance speedups differ between plat-
forms. The naive vectorization of linear probing, does not perform
well, showing that vectorization requires careful consideration.

2 BACKGROUND

In this section, we present background on in-memory hash tables
(Section 2.1) and CPU architectures (Section 2.2).

2.1 Hash Tables

Hash tables are fundamental data structures that allow users to store
key-value pairs (k, v) and retrieve the value v for a key k in constant
lookup time O(1). In-memory hash tables use a hash function h that
maps a key k to an index or slot within an allocated block of memory.
In case of conflicts (collisions), the hashing scheme determines how
the the conflict is resolved. If the hash table can store n elements in
its memory block, and x elements are currently inserted, we refer
to I = x/n as the load factor of the hash table. We call n the capacity
and x the size of the hash table. Despite the asymptotic constant
lookup and insertion time, the real-world run time of the hash
tables operations depends on the number of collisions. A simple
way to reduce the number of collisions is increasing the size of the
allocated memory block, thereby decreasing the load factor . This
leads to fewer collisions and shorter conflict resolution probes.

2.1.1 Hash Functions. The hash function has a significant impact
on the performance of a hash table. It has to balance computational
cost and good hash randomization. To determine the slot for a key,
the hash function must perform two steps [39]. In the first step, it
maps the arbitrary key to a hash value x € 2". In the second step,
it applies a finalizer, which maps x to the range of the underlying
memory block, which is < 2". To efficiently finalize a hash value
without an expensive modulo operation, hash tables are commonly
sized as a power of two. This allows us to determine the n bits for
the slot via the cheap bitmask x & size-1.

2.1.2 Scalar Hashing Schemes. The hashing scheme describes how
the table deals with hash collisions, i.e., when two keys get mapped
to the same slot. We differentiate between chaining, i.e., all items
that map to the same slot are stored in a linked list, and open
addressing approaches, which iterate through the hash table until
the next free slot is found. For a key k and hash function h, we set
i = h(k) as the index or slot within the table that the key is assigned

2756

to. The displacement describes the number of steps needed to find
the slot holding the key. In the j-th probe iteration, we denote
the current probe index as i j,1.e., ig = i. Further schemes include
Hopscotch hashing [32] and Cuckoo hashing [62].

Linear Probing. Given a key k and a hash function h, linear
probing (LP) [38] determines the slot i = h(k). For inserts, if the slot
i is already occupied, we advance in the hash table, i.e., ij+1 = ij+1,
and check the next slot. We probe in a circular fashion, such that
if we reach the end of the hash table, we set i = 0. We probe until
we find the first free slot. Lookups follow a similar algorithm, but
instead of checking whether a slot is free, we check whether the
key in the current slot i equals the key k we are searching for.

Linear probing is commonly used because of its simplicity. It
allows for good cache locality and can be pipelined well by the CPU
due to its concise implementation. However, for higher load factors,
when many slots are full, we encounter long probing sequences.

Robin Hood. Robin hood (RH) hashing organizes the hash table
such that probing chains stay small [23]. During inserts, we probe
as in linear probing, but whenever the displacement of an element
is larger than the displacement we are currently inserting, we swap
the elements and continue. This avoids that the displacement of
the elements to insert continues to increase, and instead allows
the smaller displacement of the swapped elements to grow. RH
uses the fact that any key in the probing sequence just needs to be
somewhere along the sequence, not at its specific location assigned
by LP. The lookup algorithm is analogous to LP.

Chained Hashing. Chained hash tables consist of a directory
and buffer. The directory stores pointers, the buffer stores keys,
values, and a next pointer. For inserts, we add the key-value pair
to the buffer and set the pointer in the corresponding directory
slot, while updating the new next pointer to the old location, i.e.,
chaining the entries. For lookups, we obtain the directory index
and follow the pointers until we find the key or an invalid pointer.

2.2 SIMD Programming and CPU Architectures

In the following, we discuss CPU architectures used in this work.
x86-64. The x86 instruction set architecture (ISA) is the most
prominent architecture for consumer platforms and off-the-shelf
servers [36]. We differentiate between three major revisions of the
x86 SIMD ISA, SSE4, AVX2, and AVX-512. SSE provides 16 128-bit
vector registers and AVX2 has 16 256-bit vector registers. As x86
aims to be backward compatible, the lower 128 bits of the 256-bit
registers can be used as SSE registers, such that programs that use
SSE instructions still function on AVX2 CPUs without adaptation.
AVX-512 is the latest major SIMD extension. It features 32 512-bit
vector registers, from which the first 16 are backward compatible
with AVX2 and SSE. AVX-512 introduces opmask registers. The
opmask registers allow to control which elements take part in the
next instruction. The AVX-512 VL Extension allows users to operate
on 128-bit and 256-bit vector registers with support for opmasks.
For 128-bit registers (SSE), the data needs to be aligned to a
multiple of 16 Byte; for 256-bit registers (AVX2), to a multiple of
32 Byte; and for 512-bit registers (AVX-512), to a multiple of 64
Byte [35]. x86 also supports explicit unaligned loads and stores.
ARM. The ARM architecture is designed and developed by ARM
Limited. The ARM ISA can be licensed to develop CPUs. The most

recent ISA version is ARMv9. ARM is the market leader for mobile
devices [27] and powers the second fastest supercomputer [76].

Since ARMv8-A, the SIMD extension NEON is standard for all
ARM CPUs. NEON features 16 128-bit vector registers. In 2016, ARM
presented a new SIMD extension called Scalable Vector Extension
(SVE) [74]. SVE features a novel vector-length agnostic programming
model, meaning that the developer compiles applications once that
then can be run on CPUs with vector register sizes up to 2048-
bit [75]. SVE comes with 32 vector registers. The programmer and
compiler do not have access to the register size at compile time,
which reduces optimization potential. Similar to AVX-512, SVE
implements predicate registers, allowing to select individual bytes of
an SVE register (masking). As of 2022, SVE has been implemented
by the Fujitsu A64FX CPU and the ARM Neoverse N2 and V1 CPUs.
All chips implementing SVE are backward compatible with NEON.
ARMYv9 includes SVE2 as an addition to SVE [25, 68]. While SVE
was built for HPC and machine learning applications, SVE2 is a
functional general-purpose SIMD extension. ARM Limited expects
NEON to be deprecated when ARMv9 becomes mainstream [6].

The ARM NEON and SVE specifications does not enforce any
alignment on load and store operations. Processors implementing
NEON often give hints in their handbooks on how to align the data
for optimal performance [5], while SVE load and store operations
should generally be 16-byte aligned [4] for best performance.

Power. The Power architecture is a RISC architecture designed
and developed by IBM and the OpenPower Foundation. The ISA
was made publicly available in 2019 and completely license-free
in 2020 [17, 18]. The most recent Power CPU is the Power10 CPU,
which was released in 2021 [67]. Power CPUs focus more on scale-
up instead of scale-out [72], i.e., maximizing performance of indi-
vidual compute nodes. With the integration of both on-chip accel-
erators, such as matrix-math assist engines, and of cache-coherent
FPGAs using OpenCAPI, Power is an interesting alternative for
data processing. Power currently implements the Vector Scalar
Extensions (VSX) in version VSX-3. It supports 64 128-bit vector
registers. There are no masking registers. On current Power CPUs,
data should be 16 byte aligned for better performance [33]. Since
POWERY7, unaligned loads are supported as well.

3 HASHING SCHEME DESIGN

In this section, we describe implementation details of scalar hashing
schemes (Section 3.1), and discuss the vectorized hashing schemes
(Section 3.2). We follow the assumptions made for equi-joins in
some data processing systems, i.e., the hash table size is fixed and we
do not need to rehash [10, 42]. We briefly discuss how to implement
the schemes for different architectures (Section 3.3). All details of
our C++ implementation can be found in our GitHub repository.

3.1 Scalar Hashing Schemes

In this subsection, we discuss different memory layouts and imple-
mentation details for scalar hashing schemes. We evaluated manual
loop unrolling and prefetching during a probe sequence, but did
not find any performance improvements.

3.1.1 Memory Layout. For each hash table slot, both linear probing
and robin hood store a key, a value, and the validity information,
i.e., a field indicating whether a slot holds valid data. In previous

2757

a) AoS

0 Byte 17*n
<ke, vo, mo> | <ki, vi, mi> | ... | <kn, vn, mn>
8 16 17 34
8 9 b) SoA 9%n
<k@, mo> | <ki, m1> | ... | <kn, mn>
vo | vl | .o vn
[8*n

Figure 2: Memory layout of AoS and SoA. n entries with 1-
Byte validity metadata (m) and 8/8-Byte key (k)/value (v).

work, this is often represented as a zero key. However, this hinders
applicability of these approaches, because in real-world systems,
we cannot pre-define certain keys as invalid if we do not control
the user input key space. For linear probing and robin hood, we can
either use an array-of-structs (AoS) or struct-of-arrays (SoA) layout.
In an AoS layout, the hash table holds a single array of keys, values,
and the validity information. The validity information requires a
single bit, but due to struct padding, the memory usage of the hash
table increases significantly. We disable struct padding using the
compiler packed attribute, as it requires less memory and performs
better or similar in our experiments. In an SoA layout, the hash table
holds one array per field of an entry to avoid loading unnecessary
data while probing, i.e., all keys are in a separate array, all values in
a separate array, and all validity flags in a separate array. As an opti-
mization, we store the key and validity information in a single array,
as they are always needed together, avoiding two random memory
accesses per probe. AoS and optimized SoA are depicted in Figure 2.
We use huge pages, as our experiments show that they outperform
regular pages due to reduced TLB misses [46, 61]. Note that when
memory is unconstrained, the load factor can be arbitrarily chosen,
such that LP becomes the optimal hashing scheme. Hence, we want
to maximize performance while minimizing memory usage.

3.1.2 Robin Hood Details. During a lookup probe, RH aborts early
if our current displacement becomes larger than the displacement
of the current probe index (Section 2.1.2). This can be done either by
(1) storing displacement information (StoringRH) or by (2) recalcu-
lating the displacement information (RecalcRH). We investigate the
recalculating version since the memory overhead of storing is high.
In the worst case, the displacement can be as large as the capacity
of the hash table, meaning that a 64-bit integer is required to store
and use it correctly. We use a branchless displacement recalculation
that considers potential wrap-arounds during probing.

3.1.3 Chained Details. For chained hashing, given a memory bud-
get, we have to determine how to size the directory and the buffer.
Given the hash table size 2", we calculate the budget as 110 % of
the memory required for a linear probing table of the same size,
as in previous work [66]. We first determine how much memory
the buffer requires, i.e., how much memory is required to store the
entries that will be inserted. Then, we find the largest n” such that
the directory with o entries, together with the buffer, still fits
within in the budget, i.e., n’ can be larger, smaller, or equal to n.

3.2 Vectorized Hashing Schemes

We identify three vectorized hashing schemes, vectorized linear
probing (Section 3.2.1), vectorized fingerprinting (Section 3.2.2), and
bucket-based comparison (Section 3.2.3) that have been described

in previous work. They naturally extend and build upon each other,
increasingly adjusted to vectorization. While vectorization of other
hashing schemes such as Cuckoo and Hopscotch hashing has been
considered [31, 71], these works show that the benefit of vectoriza-
tion is low and they fall into a separate family of hashing schemes.
Previous work and open-source implementations often follow one
of the schemes discussed in the following.

3.2.1 Vectorized Linear Probing. The vectorized linear probing (VLP)
hashing scheme [66] is a vectorization of the scalar linear probing
hashing scheme. It only works for integer keys and requires an SoA
memory layout with three arrays for keys, values, and the validity
bits. We first determine the key’s slot. Then, we load as many keys
as can fit into a vector register and compare all of them at once
to the key we are searching for. If the key is among the keys we
compared, we obtain the index and return. Otherwise, we load the
validity information into a vector register and check whether we
have reached an invalid entry. If we have reached one, we terminate
the search. Otherwise, we continue with the next set of keys. To
terminate, we have to check the validity in each probe.

The first loads of keys and validity information might be un-
aligned because the first index is not guaranteed to lie at an aligned
address. However, when iterating forward, we can make sure that
we only perform aligned loads, by taking a smaller step in the first
iteration to the next aligned address.

We propose two variants of VLP that differ in how they perform
the comparison. In the first variant (TEST), we first test if there
is any match for the key we are searching for, and only if there
was a match, we extract the first matching index using further
instructions. In the second variant (NOTEST), we skip the check
whether there is any match, and just extract the first matching
index, which might be an invalid index in case there was no match.

3.2.2 Vectorized Fingerprinting. VLP is a direct vectorized exten-
sion of linear probing but it comes with several drawbacks. It works
only on integer keys, it has a low degree of parallelism, which
depends on the key size, and it requires access to three arrays. To
address these issues, previous work uses bucket-based comparison
(BBC) as described in Section 3.2.3. As the introduction of BBC
changes multiple dimensions of the hashing scheme at once, i.e.,
memory layout, fingerprinting, and key grouping, we present vec-
torized fingerprinting (VFP) as an intermediate step to isolate the
reasons for potential performance gains. Instead of loading and
comparing the keys directly in vector registers, we operate on fin-
gerprints, i.e., 8- or 16-bits key hashes, and only perform conflict
resolution in case of a match. VFP requires the SoA layout only for
fingerprints and can use AoS for higher cache locality on the other
fields (c.f. Figure 2). Fingerprints allow us to i) work independently
of the key data type, as everything is either an 8-bit or 16-bit inte-
ger fingerprint, ii) compare more information at once because the
fingerprints are smaller than 32-bit or 64-bit keys, iii) remove the
extra validity information array by defining a certain fingerprint
as invalid®, e.g., 0, and, iv) store keys and values in the same array.

The algorithm itself works similar to VLP, but uses fingerprints
instead. We maintain one array of fingerprints and another array

!This was not possible previously as the key range is user-defined, while the fingerprint
range is application-defined.

2758

0 Byte 16 18
fp0|fp1|...|fp15|meta|<k0, ve> | <ki, vi> | ...

| <k13, vi13> | <k14, vi4> | <k15, vi5>

274

Figure 3: Memory layout of Bucket-Based Comparison. 16
entries with 1-Byte fingerprints and 16-Byte key/value pairs.

of key-value pairs. To find a key, we first compute the fingerprint f
and the index into the table. We load the fingerprints starting at the
index and compare them against f. For each match, we compare
the actual keys. If we find a key match, we return. Otherwise, we
continue with the next fingerprints until we find a match or an
invalid slot. The first load might be unaligned.

We evaluate both 8-bit and 16-bit fingerprints. 8-bit fingerprints
allow for 256 unique values, and 16-bit fingerprints allow for 65 536
unique values. This lowers the chance of collisions exponentially.
However, we can compare twice as many fingerprints in the same
vector register when using 8-bit instead of 16-bit, and use half ad-
ditional memory. We use either the most significant bits (MSB) or
least significant bits (LSB) as the fingerprint. We do not investigate
larger fingerprints since the benefits diminish. The memory foot-
print of fingerprints is small, compared to, e.g., StoringRH, since
we only require 1-2 additional bytes per slot, leading to an increase
by ~6 % for 8-bit fingerprints with 8-byte keys/values. For larger
payloads, this expansion factor is even smaller.

3.2.3 Bucket-Based Comparison. The previous hashing schemes
assume a large, contiguous block of memory through which we
iterate. Bucket-based comparison (BBC) represents the hash table
as an array of buckets [21, 28, 48]. As shown in Figure 3, a bucket
holds fingerprints, metadata, and key-value pairs. BBC has three
main advantages over VFP. First, we avoid the additional latency
to obtain the key-value-pair, as the fingerprints and data are co-
located. Second, we store a flag that indicates whether a bucket has
overflowed, which offers opportunity for early termination. Third,
BBC separates the interfaces of the hash table and buckets, making
the implementation simpler and concise.

We maintain an array of as many buckets as we need to hold the
requested amount of key-value-pairs (capacity). A bucket stores the
next free index, a boolean flag whether the bucket has overflowed,
i.e., we tried to insert a key into the bucket, but the bucket was
already full, an array of fingerprints, and an array of key-value-
pairs. The operations on BBC are nearly identical to VFP. Based on
the key, its fingerprint and bucket index, we check if the bucket
contains the key by comparing the fingerprints and then the keys
when we find a match. If the bucket has overflowed, we continue
with the next bucket. The two main differences compared to VFP
are that the fingerprints are always aligned in a bucket, and that we
can terminate the lookup if a bucket has not overflowed compared
to scanning for validity information. We define the buckets to hold
as many fingerprints as fit the SIMD register. On platforms such as
x86 where we have SIMD registers of different sizes, it is unclear
whether we should always use the largest register available or not.
We evaluate all possible vector register/fingerprint combinations.

3.3 Building a SIMD Abstraction Layer

The hashing schemes perform common operations that need to be
implemented on multiple ISAs. Existing libraries, e.g., xSIMD [82]

Table 1: Num. of cores, base/turbo frequencies, cache, cache line, and maximum vector register sizes for our systems.

System CPU ‘ # Cores # Threads Freq.(GHz) ‘ L1 L2 L3 ‘ CL Size ‘ max. VR
Fujitsu RX2530 Xeon 5220S 18 36 2.7/3.9 | 576 KiB 18 MiB 24.75 MiB 64 B 512-bit
HPE XL225n EPYC 7742 64 128 2.3/3.4 2MiB 32 MiB 256 MiB 64B 256-bit
HPE Apollo 80 A64FX 48+4 48 1.8/1.8 3MiB 32 MiB = 256 B 512-bit
IBM 1C922 POWER9 16 32-128 3.4/4 | 512 KiB 8 MiB 120 MiB 128 B 128-bit

or TVL [80], abstract from ISAs. However, we use a custom abstrac-
tion because these libraries do not provide the required level of
abstraction, e.g., logical operations, such as extracting a matching
index. Determining a common abstraction is a trade-off, as higher
abstractions are easier to maintain, but lower abstractions allow
for more optimization to the hardware. Our evaluation shows that
these different abstractions have an impact on performance.

For example, in VLP, we are interested in extracting the first
match of the key in the register. For this, we compare two vectors
and get a result where each entry represents whether there has been
a match or not. In x86, we then create a movemask, i.e., an integer
representation of this vector, on which we use scalar operations to
determine the index. Compared to SSE/AVX2, AVX-512 does not
require an explicit movemask instruction.

On NEON, there is no movemask instruction. We test two alterna-
tives to extract the first match. Alternative 1 is using an emulation
of the SSE movemask instruction by the SSE2NEON library [73].
Alternative 2 is the UMINV approach based on the UMINV instruc-
tion, which returns the minimum value in a vector. We use the
comparison result as the input to a bitwise select operation on an
index vector containing indices and an invalid vector containing a
number representing an invalid entry. If we then extract the mini-
mum from the resulting vector, we obtain the first index within the
vector where there has been a match. On VSX, there is an intrinsic
that implements this entire operation. This shows that identifying
logical operators for the abstraction layer is important.

In VFP and BBC, we iterate over all matches. In the evaluation,
on Power and NEON, we compare implementing a scalar iterator
based on a (simulated) movemask to a vectorized iterator, which
operates on a register instead.

4 EVALUATION

In this section, we perform experiments to analyze the read and
write performance of the hash tables in various settings. We dis-
cuss the scalar hash tables in Section 4.2 and the vectorized hash-
ing schemes that are increasingly adjusted to vectorization in Sec-
tions 4.3 to 4.5. Our stepwise vectorization evaluation shows which
changes yield how much benefit, providing insights into which as-
pects developers should focus on when designing vectorized hash
tables. We focus on key implementation choices to guide develop-
ers when implementing vectorized hash tables. Once all schemes
are established, we evaluate various setups to cover a wide range
of hash table performance. We compare string and integer keys
(Section 4.6), discuss large payloads (Section 4.7), and show the
impact of skewed requests (Section 4.8). Last, we evaluate multiple
threads (Section 4.9). We use the four servers shown in Table 1.

x86. We use two x86 systems, Intel and AMD. Our Intel x86
server contains two 18-core Intel Xeon Gold 5220S Cascade Lake
CPUs that support AVX-512. Our AMD x86 server contains two 64
core AMD EPYC 7742 Zen2 CPUs that support AVX2.

2759

ARM. Our ARM node contains one Fujitsu A64FX CPU [54, 60].
The A64FX has 48 compute cores and 4 assistant cores at 1.8 GHz. It
supports SVE with a maximum register length of 512-bit.

Power. We run our Power experiments on an IBM Power System
1C922. The IC922 system is optimized for high-performance data
analytics and comes with two POWERY 16-core CPUs [34].

4.1 Setup

For the read throughput benchmarks, we fill up the hash table up
to a certain load factor (LF) I € [25 %, 50 %, 70 %, 90 %] with keys
and values generated uniformly at random. Then, we generate a
set of keys (queries) uniformly at random, some of which are in the
hash table and some of which are not. We are interested in the read
throughput of the hash table, i.e., the number of lookups per second,
for this set of keys. The fraction of keys we query that have been
inserted into the table is called successful query rate (SQR). Except
for Section 4.9, all experiments are run single-threadedly. Unless
stated otherwise, we choose our hash tables to hold 2%7 keys and
use 64 bit integers as keys and values as representatives of common
primitive data types. Below, we show the different tables’ memory
consumption for 16-Byte key-value pairs.

LpP
2.13GiB

RecalcRH VLP VFP (8/16-bit FPs)
2.13GiB 3GiB 2.13/2.23 GiB

BBC (8/16-bit FPs)
2.25/2.5 GiB

In our evaluation, we focus on high load factors, as those balance
memory consumption and performance. Given enough memory,
most hashing schemes converge towards perfect hashing, removing
the necessity for collision handling, i.e., most lookups are answered
directly from the first slot. In this case, simple schemes such as
linear probing or chaining perform best due to simpler lookup code.
However, this comes at a high memory cost, which most systems
try to avoid. In the design of hash tables, it is important to achieve
high performance while also consuming little memory.

For the write microbenchmarks, we start with an empty hash
table with a capacity of 227 keys. For the load factors [€ [25%,
50 %, 70 %, 90 %], we insert [- 227 keys and measure the number of
insert operations per second. We use 64-bit multiply-shift (MS) hash-
ing [24], as it was shown to have highest throughput [66]. We also
tested MurmurHash3 and xxHash on both uniform and dense key
distributions, but they did not bring performance improvements.
MS is a simple hash function that consists of a multiplication with a
constant and bit shifting. It does not require a finalizer, as the shift
operation already maps the value into the correct range. We fol-
low the SMHasher implementation [81]. We perform one warmup
measurement and report the average of three measurements. We
prefault each hash table before we benchmark, i.e., we write data
to each index to avoid measuring the initial page fault overhead.
The Intel and AMD x86 nodes run Ubuntu 20.04 LTS with Linux
kernel 5.4. The Power and the A64FX systems run RHEL 8.3 with
Linux kernel 4.18. We use gcc 11.2 with the -03 and native flags.

Insertions Lookups@LF 50 Lookups@LF 90
% %45
5630
=15 I
A= e
© 0
12
%230
2015 QW‘E
=
= 0 m,,@_ﬁ
{15 O
E oé‘ 10 :g/li.r/m
< — b Q ~§ 8
= B—e—8—9% ¢
0
n45 -
8 30
230 —
£5 g 4,,,53/2
g 215 —_—— 8
=
O T T 1 T T T T T T T
25 50 70 90 0 50 1000 50 100
LF SQR SQR
0-LP(AoS) —#-LP(SoA) —#RecalcRH —#—Chained

Figure 4: Performance of linear probing (LP) with AoS and
SoA layouts, robin hood (RecalcRH), and chained hashing.

4.2 Scalar Baseline

In our first experiment, we establish the performance of scalar hash-
ing schemes. Based on these results, we determine linear probing
as our baseline for further evaluation. In Figure 4, we show the
linear probing hash table with an AoS layout, with an SoA layout,
the robin hood hash table, and the chained hash table.

SoA vs AoS. The SoA memory layout is the layout we use for the
vectorized hashing schemes and requires one additional random
memory access when packing validity information and key, but has
higher information density during probing. In general, as discussed
by Richter et al. [66], the shorter the probe sequence, the better the
AoS layout performs. Longer probe sequences favor the SoA layout
because the longer the sequence, the more unnecessary values we
load in the AoS layout. For Intel, AMD, ARM, and Power, SoA has
1.05x, 1.29x, 1.11x, and 1.05x higher throughput than AoS.

We see that SoA performs good in low SQR/low LF scenarios
as well. At LF 25% and SQR 0 %, the SoA version has 1.19x the
performance of AoS across all systems. At 100 % SQR, however,
AoS has a 1.17x higher throughput. The reason for this is not only
the shorter probing sequence itself. We have to consider that for
unsuccessful queries in an SoA layout, we avoid the additional
random DRAM access. For example, for SQR 0%, we have the
same number of random DRAM accesses in SoA and AoS, but a
tighter loop and fewer unnecessary values loaded. To show this,
we measure the number of probes per lookup operation. At SQR
0 %, we measure 1.39 probes per lookup. At SQR 100 %, we measure
1.17 probes per lookup. This only makes a difference of 0.22 probes.
For LF 50 % and SQR 25 %, AoS is superior to SoA, and we measure
2.25 probes per lookup. These are more probes than at LF 25 % and
SQR 0 %, where SoA is superior. This shows that the probing length
itself is not the reason why SoA is superior to AoS for small SQRs.

However, the performance gains in SoA-favorable settings are
smaller than the performance penalties when using SoA in AoS-
favorable settings. Hence, in general purpose applications where
the SQR is not known before, the AoS memory layout is preferable.

2760

Robin Hood. For the recalculating robin hood hashing, the
memory layout is the same as for linear probing. We find that it per-
forms better than LP for high LF scenarios due to the shorter probe
sequences. For short probe sequences (LF < 50 %), the overhead of
the additional checks leads to worse performance than LP.

Chained. The chained hash table has a memory budget for the
directory and the buffer (c.f. Section 2.1). For LF 90 %, we exceed
the memory budget. For LF 70 %, the performance degrades as the
directory resizes to 223, leading to more collisions and pointer chas-
ing. Hence, the chained table can only be used with a comparable
memory footprint for LFs 25 % and 50 %. For LF 50 % and SQR 0 %,
it has a 1.47x/1.35x/1.01x/1.14x higher throughput than AoS LP
on Intel x86, AMD x86, A64FX, and Power. At SQR 100 %, LP per-
forms better than chaining. For inserts, chaining is consistently
outperformed by all other scalar hashing schemes.

4.3 Vectorized Linear Probing

Based on our scalar results, we show the performance of vectorized
linear probing (VLP) as the naive vectorized extension of LP, as
proposed in previous work [66]. Our results show that this direct
change does not yield good performance, which is why show im-
provements of VLP using fingerprints (Section 4.4) and buckets
(Section 4.5). Overall conclusions about the benefits of vectoriza-
tion should be drawn only after the improvements. VLP operates
on three arrays (keys, values, and validity information), and the
validity information is not packed into one byte but instead stored
in the key’s type to match the key layout.

4.3.1 Implementation Choices. We first investigate implementa-
tion choices to provide hands-on insights into the impact of possible
implementation variants, which can be directly applied by develop-
ers. The TEST variant of VLP checks if there is any match in the
key vector before extracting the first match. The NOTEST variant
always extracts the first match, which might be invalid. For all load
factors, the NOTEST performance is worse than the TEST perfor-
mance and drops even further for lower SQR. For example, for LF
50 % and SQR 0 %, the TEST variant has a 1.11x higher throughput
averaged across all servers. Lower SQRs imply a lower probability
for a match within a single key vector. Hence, testing for any match
in the vector improves performance if extracting the match costs
more than the check. As the NOTEST throughput is lower than
or equal to the TEST throughput, the check has no measurable
overhead. We always use the TEST variant in the following.

x86: AVX-512. On x86, we can address the 128-bit/256-bit regis-
ters either using SSE/AVX2 or using AVX-512. We find that AVX-512
performs slightly better, e.g., 1.02x higher read throughput com-
pared to SSE on LF 70 %. Hence, we use AVX-512 on Intel. The AMD
x86 system does not support AVX-512.

ARM: NEON and SVE. We can vary the NEON and SVE im-
plementations. For NEON, we describe the SSE2NEON and the
UMINV variant (Section 3.3). We find that UMINV provides a 1.06x
higher average read throughput. For VLP, it provides better perfor-
mance than porting the x86 approach, which shows that tuning the
implementation to the CPU can increase performance. For SVE, we
can perform the vector comparison against a scalar, or we broad-
cast the scalar into a vector and compare two vectors. We find no
performance difference.

Insertions Lookups@LF 50 Lookups@LF 90
%30 40
W g ~ - 8 o
2015 9 2
E S] B—=—5 H_M
© 0
n
%230 - o o
%;15 |.§.‘-'.—-2—I —t—al
< 0
H'\le -1 o O
- A -
Q:CC; 8 (@] O
<24 1Hﬂ\9| &H—g’! H—M
=
0 -7 T T T T T T T T
25 50 70 900 50 1000 50 100
LF SQR SQR
O LP(SoA) —=—128 —4#—256 —8—512

Figure 5: Performance of VLP, depending on the vector regis-
ter size in bit.

4.3.2 Impact of Register Size. As a main design decision, we evalu-
ate the impact of the vector register size to assist with the choice
when implementing a vectorized scheme. For Intel, AMD, and
ARM, the results are shown in Figure 5. For Power, VLP is always
outperformed by LP. Using 128-bit registers, VLP does not outper-
form SoA LP due to the overhead of the SIMD probing algorithm
and additional memory access for the validity information for both
inserts and lookups. VLP performs explicit loads, check for matches,
and extracts the match indices. We furthermore require additional
logic to handle memory boundaries and alignment. The low degree
of parallelism does not compensate for the overhead.

x86. For LF 25 %, the baseline consistently provides higher read
throughput, even when using 512-bit vector registers. This is be-
cause the probing sequences are too short to benefit from vectoriza-
tion. It is faster to check the first few keys in a scalar fashion than
to setup the SIMD routine in this case. At LF 50 % and above, in low
SOR settings, we measure higher throughput with larger registers
on both Intel and on AMD. For example, at load factor 50 % and
SOR 50 % on Intel, 256-bit VLP is 1.19x faster than LP. However, for
SQR 100 %, VLP achieves only 0.76x of LP’s throughput. This is due
to the short average probing length of 1.5 at SQR 100 %.

Doubling the vector register size does not double the perfor-
mance, but the AMD CPU benefits more from larger vector registers
than the Intel CPU. For example, at the high load factor 90 %, on
Intel, 128/256/512-bit VLP has 1.02x/1.16x/1.18x the performance of
SoA LP. On AMD, 128-bit VLP has 1.18x and 256-bit VLP has 1.84x
the performance of LP. For inserts, we find that on Intel, all vector
sizes perform similar, while on AMD, 256-bit VLP always outper-
forms 128-bit VLP, and 128-bit VLP outperforms LP. In general, we
advise to always use the largest supported register size.

ARM. On ARM SVE, which has 512-bit registers, we find simi-
lar behavior to Intel’s 512-bit registers. For load factor 70 %, SVE
outperforms linear probing for SQR 50 % and below. For load factor
90 %, linear probing is only better for SQR 100 %. At 0 % SQR and
SQR 25 %, we find performance gains of 1.74x and 1.59x respectively,
compared to the LP baseline. Averaged across all SQRs, SVE is 1.32x
and 1.5x faster than NEON for LFs 70 % and 90 %. For inserts, we
find that NEON performs better until LF 70 %, and SVE has higher
performance for inserts to LF 90 %.

2761

Similar to Intel, 512-bit SVE does not quadruple the performance
of 128-bit NEON. First, the SVE algorithm is slightly more compli-
cated. For example, we need to recreate the index vector required
to extract the match each time the find function is called. Second,
the A64FX is made for HPC operations, i.e., the SVE instructions
that we use, such as CMPEQ, INDEX, and BRKA, have a high latency
and low throughput [26].

Power. As Power only supports 128-bit vector registers, VLP
does not provide good performance for 64-bit keys.

Discussion. VLP with 128-bit registers on 64-bit keys does not
improve insert and lookup performance compared to regular linear
probing, due to the small degree of parallelism and the additional
algorithmic overhead. To improve VLP, (1) we need to reduce the
two random memory loads per probe, (2) we need to increase our
degree of parallelism to meaningfully use 128-bit registers and
compensate for the algorithmic overhead, and (3) we should become
independent of the key data type to not depend on, e.g., whether
we use 32-bit or 64-bit keys.

4.4 Vectorized Fingerprinting

As VLP does not achieve higher performance than its scalar coun-
terpart, we show the impact of adding vectorized fingerprints (VEP).
The VFP algorithm stores 8- or 16-bit fingerprints and compares
the fingerprints using vector instructions. This enables a higher
degree of parallelism independent of the key data type and allows
to define a fingerprint as invalid, such that we avoid unnecessary
random memory access.

4.4.1 Implementation Choices. Similar to VLP, we find that the
TEST variant of VFP always performs equivalent or better than the
NOTEST variant. Following Bronson and Shi [21], we use branching
hints, assuming that fingerprint clashes are unlikely.

x86. AVX-512 provides simpler masks than SSE/AVX2 when
resolving hash collision. For 8-bit fingerprints, using AVX-512 to
address 256-bit registers has 1.05x higher throughput on average.
For smaller load factors, this number increases, e.g., for LF 25 %,
there is a 1.09x speedup. We use AVX-512 on Intel for VFP.

ARM and Power. For ARM NEON and Power, we propose a
vectorized iterator and a scalar iterator, which operates on a simu-
lated movemask that x86 offers natively. The simulated movemask
is 1.17x and 1.11x faster on ARM and Power. This is different to VLP,
where UMINV was the best approach. This is because the overhead
of iterating is very small, as it just consists of bit manipulations.

4.4.2 Fingerprints. One approach to determine the fingerprint is
to take the LSBs of the hash for both the slot and the fingerprint,
meaning that fingerprints are correlated with the index (LSBLSB).
Another approach is to use the MSBs of the hash for the fingerprints
(LSBMSB). For hash functions such as MS that do not require a
finalizer, there are no additional bits we can use. For MS-style
hashing, before the final shift, we take the LSBs that get shifted
out. This gives us additional entropy for the fingerprint, while
maintaining a true MS hash function for the index itself. Using
these bits increases the throughput significantly. If we use 128-
bit registers, LF 70 %, and 8-bit fingerprints, we obtain an average
speedup of 1.34x across all systems. On all load factors, the speedup
peaks at SQR 0 %. At LF 70 and SQR 0 %, we measure a peak speedup
of 1.72x. For 16-bit fingerprints, we obtain similar speedups.

Insertions Lookups@QLF 50 Lookups@LF 90
B 530 1HE§Ei|
2 220 -
0
o a5
=& 34
< = 1.5
T T

25 50 70 900 50 1000 100
SQR

LF
v-8/128 < 16,/128 -0-8/256 4 16/256 W8 /512-%-16/512

50
SQR

Figure 6: Performance of VFP depending on fingerprint /
vector register size.

To understand why LSBMSB fingerprints are effective, consider
the probing length. For LF 70 % and with LSBLSB fingerprints, we
compare 17.23 fingerprints per find on average. During these probes,
we encounter 0.53 collisions per find operation. If we switch to LS-
BMSB, we encounter only 0.03 collisions per find operation on
average. This means we have to do less work, i.e., constructing an
iterator and iterating over all matches. The speedup grows with
lower SQRs, because lower SQRs imply longer probe sequences. In
longer probe sequences, there is more potential for fingerprint colli-
sion. We experimentally confirm this, as for SQR 0 %, the difference
in collisions between LSBLSB and LSBMSB is largest.

This also holds for 16-bit fingerprints. Even though the finger-
print itself is larger, it is correlated with the index. Hence 16-bit
fingerprints cannot provide any advantage over 8-bit fingerprints
without using LSBMSB fingerprints. When using LSBMSB finger-
prints instead, 16-bit fingerprints can utilize their larger number
space and thereby reduce the collisions per find to 0.00008, com-
pared to 0.03 for 8-bit fingerprints.

4.4.3 Vector Register/Fingerprint Size. Having optimized some as-
pects of the VFP algorithm, we now discuss the interdependencies
of vector register size and fingerprint size. In Figure 6, we show the
throughput of 8-bit and 16-bit fingerprints depending on the regis-
ter size on Intel and ARM. Other systems follow similar patterns.

Vector Register Size. Keeping the fingerprint size constant, on
Intel, we find that for the low load factor 25 %, the smaller vector
registers have higher read throughput than larger vector registers.
This is because the larger vector instructions are more expensive,
but not required, as the probe sequences are very short. For LFs 70 %
and 90 %, larger vector registers perform better than the smaller.
For LF 90 %, on Intel, 512-bit registers outperform 256-bit registers
for 8-bit/16-bit fingerprints by 1.02x/1.14x and 128-bit registers
by 1.16x/1.33x. On AMD, 256-bit registers outperform the 128-bit
registers by 1.14x/1.16x because they shorten the number of vector
probes. For inserts, we find that 128-bit registers performs best for
all LFs except 90 %, where 256-bit registers performs better. 512-bit
registers always have a lower insert throughput because the lookup
preceding the insert performs worse for short sequences.

For ARM, we find similar behavior to x86. NEON outperforms
SVE for low load factors and SVE is better for high load factors. For
inserts, NEON always performs better than SVE.

Fingerprint Size. Keeping the vector size fixed, for load factors
70 % and 90 %, 8-bit fingerprints outperform 16-bit fingerprints on

2762

all systems. At load factor 90 %, averaged across all SQRs, they
provide a 1.11x, 1.21x, 1.3x, and 1.19x higher throughput than 16-
bit fingerprints, on Intel (512-bit), AMD (256-bit), ARM (512-bit),
and Power, respectively. Increasing the fingerprint size to 16-bit
exponentially decreases the chance of collision, but also halves
our degree of parallelism. Let us consider load factor 90 % at SQR
0 %. Using 128-bit registers and 8-bit fingerprints, we perform 3.96
vectorized comparisons per find operation and resolve 0.24 conflicts
on average. Using 16-bit fingerprints, we perform 7.09 vector probes
per find, and resolve 0.0008 conflicts on average per find. We see
that (a) while 16-bit fingerprints reduce the number of collisions
per find to a very low number, even with 8-bit fingerprints, we have
a conflict only in every fourth find operation. With that in mind, (b)
as the number of collisions with 8-bit fingerprints is already low,
and as collision resolution is not very expensive, the doubled degree
of parallelism of 8-bit fingerprints and therefore the reduction of
7.09 probes per find to 3.96 probes per find explain why 16-bit
fingerprints perform worse than 8-bit fingerprints.

For the lower load factors 25 % and 50 %, on ARM, 8-bit finger-
prints always perform noticeably better than 16-bit fingerprints. On
x86, sometimes, 16-bit fingerprints outperform 8-bit fingerprints in
low load factor/low SQR scenarios, but only marginally.

For inserts, we find that on both x86 systems and Power, keeping
the vector register size fixed, 16-bit fingerprints perform slightly
better. On ARM, 8-bit fingerprints perform slightly better. However,
these differences are minor. Overall, we suggest using 8-bit finger-
prints for VFP, as it outperforms 16-bit fingerprints consistently for
high load factors on all systems, and is only rarely outperformed
by 16-bit fingerprints in read throughput.

Scalar Schemes. On x86 and Power, VFP consistently performs
better than all scalar hashing schemes for LFs 70 % and 90 %, except
for LF 70 % and SQR 100 %. While VLP was not able to outperform
LP in most cases, VFP outperforms scalar schemes even with 128-
bit registers (see Figure 8 for an overview). On ARM, we find that
VFP improves upon LP at LF 90 %, but performs on par with robin
hood hashing, even when using SVE. At LF 90 %, VFP has a 2.27x,
2.35x, 1.35x, and 2.18x higher throughput than the LP baseline, on
Intel, AMD, ARM, and Power, respectively. Power strongly benefits
from SIMD instructions. It only has a 128-bit vector register size
but reaches an average read throughput of 17.72 MOps/s, while
the Intel CPU, which has 512-bit registers, reaches 18.23 MOps/s.
For smaller load factors (50 % and below), scalar hashing schemes
are still superior. While VFP’s insert performance stays consistent
for all LFs, the insert performance of the scalar tables strongly
depends on the load factor. For LF 90 %, VFP’s insert performance
is higher than RH and LP, but for all other load factors, VFP’s insert
performance is lower on most systems.

Discussion. VFP outperforms scalar tables mostly in high load
factor settings. We emphasize that different systems benefit from
SIMD instructions differently. Although the vector registers of the
Power machine are four times smaller than those of the Intel ma-
chine, Power achieves a similar relative speedup and just slightly
lower absolute throughput. This shows that we cannot transfer x86-
specific insights to any CPU and just expect them to hold there. If
one were to evaluate the benefits of vectorized hashing with 128-bit
registers only on x86, the conclusion would be not to use vectoriza-
tion, while an evaluation on Power would lead to the conclusion to

Insertions Lookups@LF 50 Lookups@LF 90
© 260 >
X 240
o i
S22
0
218 |5\
= 63.
2o gy Ny
<Z 64 Wﬂ
=
0 T T T T T T T T T T
25 1000 100

50 70 90 0 50 50
LF SQR SQR
%—8/128 —8—8/512 % 16/128 —W—16/512
Figure 7: Performance of BBC depending on fingerprint /

vector register size.

use vectorization. We evaluate the bucket-based comparison (BBC)
hashing scheme next, which avoids unaligned loads, increases data
locality, and makes the implementation more compact.

4.5 Bucket-Based Comparison

For BBC, similar to VFP, we verify that the TEST variant performs
better than NOTEST. We always use LSBMSB fingerprinting, likely
hints, AVX-512 on Intel, and scalar iterators on Power and NEON.

4.5.1 Bucket Size/Fingerprint Size. We investigate which combi-
nation of vector register size (bucket size), and fingerprint size
performs best. For Intel and ARM, the results are shown in Figure 7.
Other systems follow similar patterns.

Vector Register Size. If we keep the fingerprint size constant,
we achieve similar results as for VFP, i.e., for lower load factors,
smaller registers are better, while larger registers perform better
with higher LFs. For LF 25 %, Intel x86, and 8-bit fingerprints, 128-bit
registers have higher read throughput than 256-bit (1.02x) and 512-
bit (1.19x). For load factor 70 %, 256-bit registers perform better than
128-bit (1.04x) and 128-bit perform better than 512-bit (1.11x). For
load factor 90 %, the 512-bit vector registers perform best. On ARM,
SVE performs better than NEON for LF 90 %, Regarding inserts,
on Intel, the 512-bit registers are only better for LF 90 %, while on
AMD, the 256-bit registers consistently outperform 128-bit.

Fingerprint Size. For a constant vector register size, the result
is not as clear as for VFP. For LF 90 % on x86, 8-bit fingerprints
are still preferable to 16-bit fingerprints. On average, on Intel x86
and 128-bit registers, 8-bit fingerprints are 1.25x faster than 16-bit
fingerprints. On AMD x86, they are 1.1x faster. This is because
at this load factor, 8-bit fingerprints reduce the average number
of probed buckets from 3.71 to 2.29, as the buckets contain more
fingerprints. While the number of collisions per find is nearly zero
for 16-bit, we find that for 8-bit, it is 0.12. However, fewer collisions
on 16-bit fingerprints are counterbalanced by the fact that the
number of followed overflows per find increases when switching
from 8-bit to 16-bit from 1.29 to 2.71. Overall, collision resolution is
cheaper than following overflows, because when accessing the next
bucket, we have to construct another iterator and perform another
load. Hence, the larger buckets we get from 8-bit fingerprints are
preferable over fewer collisions we get from 16-bit fingerprints.

For smaller LFs, we find that 16-bit fingerprints perform better
than 8-bit fingerprints. At these LFs, the buckets overflow less

2763

Insertions Lookups@LF 50 Lookups@LEF 90
© ®
G j
29054 o g—g—8—8
= B——@—Q—Q——Q]
0
O n
R S
o
B0O15 ;
& o p—a—8—0 gg
< =
0
_Za1s
= é‘«u o
AN .
= ~¥ &
0
{
E 240 >
£920
2
O T T T T T T T T T T
25 50 70 900 50 1000 50 100
LF SQR SQR

& LP-#RH-¥Chain(16) ® VFP(8) = BBC(8) --BBC(16)

Figure 8: Performance of BBC (8-bit and 16-bit fingerprints)
and VFP (8-bit FPs), linear probing (AoS), robin hood (recal-
culating), and chained hashing (16-bit FP budget). We show
the largest available register size.

frequently, even when using 16-bit fingerprints. This enables us to
benefit from fewer collisions. For example, at LF 50 %, with 128-bit
registers and 16-bit fingerprints, only 2.32 % of all buckets overflow.
The larger 16-bit fingerprints can thus improve performance by
reducing the number of collisions. For inserts, like VFP, 16-bit
fingerprints perform better on all systems.

Overall, there is no one-fits-all fingerprint. While 16-bit finger-
prints perform better for smaller LFs and for inserts, they also
require double the amount of memory for the fingerprints. In the
following, we either show both 8-bit and 16-bit BBC, or only 8-bit
BBC, as it is the memory-friendlier option.

4.5.2 Comparison to VFP and Scalar Tables. We compare BBC to
VFP, linear probing, chained hashing, and robin hood hashing on
all systems in Figure 8. For chained hashing, we include 16-bit
fingerprints in the budget calculation. BBC improves upon VFP
in almost all scenarios. For LF 70 %, BBC with 8-bit fingerprints
provides a 1.5x, 1.46x, 2.06x, and 1.26x higher read throughput than
VFP, for Intel x86, AMD x86, the A64FX, and Power, respectively.
For the very high LF 90 %, the performance gap between BBC and
VFP becomes smaller. BBC has a 1.29x, 1.19x, and 1.63x higher
throughput than VFP, on Intel, AMD, and the A64FX. On Power,
it achieves only 0.95x of VFP throughput. Power does not have a
movemask instruction, so the high number of mask-iterators that
are created impact performance. The BBC insert performance is
consistently higher than the VFP insert performance for all LFs.
Most notably, BBC significantly improves the read performance
of VFP for the smaller LFs 50 % and 25 %. At LF 50 %, BBC with 8-bit
fingerprints has a 1.59x, 1.5x, 2.13x, and 1.32x higher throughput
than VFP on Intel x86, AMD x86, the A64FX, and Power. For lower
SQRs, BBC has a better performance than scalar hashing schemes,
which VFP does not. Across all systems, for LF 50 %, 8-bit BBC is
1.39x faster than AoS LP and 1.37x faster than chaining. For LF
70 %, these numbers increase to 2.28x (AoS LP) and 3.88x (chaining),

Insertions Lookups@LF 50 Lookups@QLF 90

< [C.
%ilﬁ 10 B o) o) m
a] OE\ o— g o
80 s o E 0 o—o0—o0—0f)
=]
< &
0 T
240 4o
2 = o o §
£020 —‘\a\E O = o 9
Aa % Eﬁ:g E D!
=i T
0 =7 T T T T T
25 50 70 90 0 50 100 0 50 100
LF SQR

©-BBC(8)+Int 4#-BBC(8)+Str @ LP+Int #-LP+Str
Figure 9: 8-bit BBC and LP (AoS) with integer and string keys.

and for LF 90 %, the improvement is even higher. Similar to VFP,
Intel and Power have comparable speedups, despite Intel’s four
times larger registers. Also similar to VFP, we see that BBC’s insert
performance stays almost consistent across all LFs. The insert per-
formance of scalar tables is skewed towards low LFs due to shorter
sequences, which is why they exceed BBC for LF < 50 % but perform
worse with higher load factors.

BBC performs better than VFP because (a) BBC ensures that
the first load is aligned instead of unaligned, which is especially
noticeable in low LF scenarios where we often only perform a single
load, (b) we only have to perform a single comparison and not check
for any invalid fingerprints in BBC, and (c) because the overflow
logic allows us to terminate earlier than in VFP in some cases, if the
bucket is full, but did not overflow. Both in BBC and VFP, compared
to scalar hashing schemes, we can abort earlier due to the check
if there has been any match in the bucket with the TEST variant.
For low SQR scenarios, BBC performs only one comparison per
bucket, whereas VFP needs to check for invalid fingerprints, which
is unsuccessful for the first vectors. To summarize, BBC increases
VFP performance for both high and low load factors and therefore
provides a good general-purpose hashing scheme.

After establishing the baseline performance of the vectorized
and scalar hashing schemes, we focus on different setups to show
the performance variance and robustness of the individual designs.
To this end, we first compare integer with string keys, and then
investigate large payloads, skewed workloads, and multithreading.

4.6 String Keys

Storing strings and non-fixed sized values is an important feature
for hash tables. When using strings instead of integers, we face
two challenges. First, while we can store integer keys inline, strings
are represented as pointers to heap memory, due to their variable
length. This implies that looking up a string key requires a random
memory access. Second, there is no assembly string comparison
instruction. String comparison is usually implemented in standard-
library functions, such as std: : strcmp. For string keys, we use
the xxHash hash function instead of multiply-hashing because it
supports hashing of variable-length data.

We compare linear probing (AoS) and BBC for both integer and
string keys. The results for AMD and Power are shown in Figure 9.
Other systems have similar patterns. We show the results for integer
keys using xxHash as well, to isolate the effects of string keys. For
LP, in each probing step, we perform a string comparison, while for
BBC, we only do a string comparison if we have a fingerprint match.

2764

Insertions Lookups@LF 50 Lookups@QLF 90
%<(50 -8 d
% 240 S
$0 ._8»_§ V0§ @_5 o
S [Raaa e
. §12 -g o o . . E
2 8
~ H}—@»\ 5\&
<2 4 3 ° @7%‘8 o
= v |§} A
O T T T T T T T T T T
25 50 70 90 0 50 1000 50 100
LF SQR SQR

©-BBC+Inl-#-BBC+Ptr ¢ CH+Inl-+CH+Ptr @ LP+Inl<9-LP+Ptr

Figure 10: Performance of AoS LP, 8-bit BBC, and Chained
Hashing (8-bit fingerprint budget) for 32 B values, stored
inline (+Inl) or as pointers (+Ptr).

This means that for SQR 0 %, BBC performs a string comparison
only if there is a random fingerprint collision. Hence, the lower
the SQR, the more the BBC string performance approaches the
BBC integer performance. For load factor 70 %, AMD x86, and BBC,
integer keys have a 1.5x, 2.5x, and 3.02x higher throughput for
SQRs 0 %, 50 %, and 100 %. For LP we find that the gap between
integers and strings does not get smaller for lower SQRs. It even
increases for higher SQRs for both LP and BBC, because compared
to integer keys, we perform another random memory access to
lookup the string, which becomes the bottleneck in high SQRs
scenarios. This is also why BBC string performance approaches LP
string performance for SQR 100 %. For inserts, string performance
is lower than integer performance due to the string comparison
overhead, but the relative trend does not change.

For string keys, with the example of AMD x86 and load factor
70 %, BBC is 6.04x faster than LP for SQR 0 %, but only 1.07x faster
for SQR 100 %. Vectorized hashing schemes provide a much higher
throughput than scalar hashing schemes especially for lower SQRs.
For lower SQRs, BBC achieves almost integer key performance.
For very high SQRs, random memory access to the strings is the
bottleneck, i.e., BBC and LP performance converge.

4.7 Large Payloads

In the previous sections, we use 64-bit integer values. In join work-
loads, tuples are often larger than 8 B [10]. We benchmark the
hashing schemes using 32 B payloads. For larger values, it is impor-
tant to differentiate whether the hash table stores the values inline
(flat layout) or pointers to values (node layout). We compare both
approaches on Intel and ARM in Figure 10. Other systems follow
similar patterns. When considering larger payloads (e.g., 128 B), the
observed effects amplify for the inline setting, and node layout size
stays consistent, as the pointers are always of the same size.

4.7.1 Flat Layout. The open addressing schemes allocate memory
for all slots, even though not all slots will be filled. The chained
hash table is able to allocate a buffer with the exact required size,
and use the rest of the memory for the dictionary.

For load factors 25 % and 50 %, chained hashing has 1.48x and
1.38x higher performance than BBC, averaged over all systems.
However, with LF 70 %, chained hashing has similar performance
to BBC, which drops to around 20 % of BBC’s performance for
LF 90 %. This is because the lower the load factor, the higher the
over-allocation of open addressing. For higher load factors, chained

Lookups@QLF 50 Lookups@QLF 70 Lookups@QLF 90

22300
* Bo00
<O b~ b £
E = 100
0 -7 T T T T T T
0 50 1000 50 1000 50 100
SQR SQR SQR
——LP(AoS) —8—-VFP(8) ——BBC(8)

Figure 11: Lookup performance with Zipfian distribution.

hashing has to allocate more memory to the buffer, and hence
cannot utilize the larger directory. For LF 25 %, the chained table
increases the directory to hold 22° entries, which explains the high
performance at lower load factors. This is also noticeable for inserts,
where for all LFs except 90 %, chained hashing performs best and
then significantly drops below the others for 90 %.

When using 32 B payloads, we find a larger absolute performance
discrepancy between small and large values for lower load factors
than for high load factors. For example, on Intel, at LF 25 % using
linear probing, small values have an 1.23x higher throughput on
average than larger values, equal to a difference of 8.6 MOps/s. At
LF 90 %, they have a 1.24x higher average throughput, which is,
however, equivalent to only 1.6 MOps/s, as the bottleneck shifts
from memory to compute for probing. For BBC, similarly to string
keys, we observe that the lower the SQR, the closer the large value
performance gets to small value performance. This is because we
do not actually have to touch and load the large values for non-
matches in BBC, unlike AoS LP that iterates through the values, no
matter whether there is a match.

4.7.2 Node Layout. In a node layout, we avoid the over-allocation
of memory in open addressing schemes. The values may already
reside in a buffer, such that we can store pointers into this buffer.

The open addressing schemes outperform the chained hash table
for LFs 50 % and above. For LF 50 %, BBC is 1.23x faster than chained,
for LF 70 %, it achieves 5.81x. The chained table cannot fit all items
into the memory budget at LF 90 %.

We compare the node layout to the flat layout on BBC. For
lookups, BBC clearly prefers inline values on Intel. For the A64FX,
inline is not better as clearly as on Intel. We find that pointer insert
performance is always higher than inline insert performance. Point-
ers have a 1.98x and 1.36x higher insert throughput on Intel x86
and the A64FX, for inserts to LF 90 %. Furthermore, storing values
inline requires more memory and hence the node layout should be
considered for large values.

4.8 Skewed Workloads

In this experiment, the successful and unsuccessful keys are sam-
pled from a Zipfian distribution with & = 1.5 instead of uniformly at
random. This means that some keys are very frequently requested,
while others are only rarely. The results for Intel are shown in Fig-
ure 11. Other systems follow similar patterns.

Performance under the Zipfian distribution is higher than under
uniform distribution due to caching. On average, for BBC and LF
90 %, Zipfian performance is 5.84x higher. For SQR 100 %, LP is
the best scheme, but for lower SQRs, BBC is the best scheme on
all systems. Additionally, at SQR 0 %, BBC performance increases

2765

Insertions Lookups@LF 50 Lookups@LF 90
© ® | o
O;% 2240 = 0 - 5
50 160 - o B
;52 80 1 >
0
© gy T
§ 5000 1 a 4 2
o) 8*/100 - 5 B3
e Y
=
=< 0
_ 2240
= §160 - B 8 In
ol W
=
O -
} v\:.450 _ 3
2 2300 o i
o% © 150 - 3 -
Sl
0 T T T T T T (— T
1816 32 64 1816 32 64 1816 32 64
Threads Threads Threads
<&-LP(AoS) —#—RecalcRH ¢ VFP(8) -@-BBC(8)

Figure 12: Insert (LF 90 %) and lookup (SQR 50 %) performance
depending on the thread count.

more than with a uniform distribution. To ensure correct SQRs, we
sample from two distributions. This results in a slight bias towards
SQRs 0% and 100 %, as they sample from only one distribution.
Regardless of this, we see that caching benefits all load factors and
SQRs. Overall, for very high SQRs, under Zipfian distribution, LP
should be used; otherwise, BBC works well on all systems.

4.9 Multithreading

In our final experiment, we use n > 1 threads. Each thread operates
on a hash map of size 227 /n, fills it to the load factor, and queries it
with the respective SQR. We show the overall throughput for SQR
50 % in Figure 12 and mention other SQRs below.

For lookups, we find that on x86 and ARM, BBC almost always
performs best. On Intel, in the single-thread setting at LF 90 %, BBC
is 2.93x and 1.16x faster than LP and VFP. Averaged over all thread
counts, we obtain similar speedups of 3.02x and 1.08x. The relative
benefit of BBC is independent of the thread count. On Power, the
advantage of VFP over BBC at LF 90 % is amplified. With one thread,
VFP is 1.07x faster than BBC, but averaged over all threads, VFP
is 1.49x faster. We attribute this again to Power’s high overhead
of movemask creation in combination with the high increase in
bucket overflows at LF 90 %. For all thread counts, it holds that for
very low SQRs, the benefit of vectorization is higher, and for very
high SQRs, LP performance approaches BBC performance. Last, for
inserts to LF 90 %, BBC resp. VFP outperform scalar schemes, but
for inserts to smaller LFs, scalar schemes perform better. Different
SQRs shift the results in favor of vectorization (lower SQRs) or
scalar (higher SQRs) due to the shorter probing sequences. For SQR
100 %, on Intel and averaged over all thread counts, the speedup of
BBC over LP is 1.65x. For SQR 0 %, we obtain a speedup of 4.74x.

5 DISCUSSION

In this section, we present key takeaways from our benchmarks of
the scalar and vectorized hashing schemes.

Yi

es
No
SQR = 100%
and ARM N

Figure 13: Decision guide for hashing scheme selection.

(1) Vectorized Hashing > Scalar Hashing: For high LF scenarios,
platforms benefit from vectorized hashing with BBC, compared
to scalar hashing schemes. Naive vectorization such as VLP does
not perform well, which shows that vectorization requires care-
ful consideration and re-design of existing approaches. In Fig-
ure 13, we give a decision guide to decide which hashing scheme
to use based on the workload. We recommend BBC for most
high LF read scenarios, with exceptions for uniform distribution
on Power, and 100 % SQR on ARM. Throughput all experiments,
we observe that BBC is a very robust choice, while LP varies
more and should be chosen only if the workload characteristics
are known and suitable for LP.

Differences between Platforms: The relative performance
speedups of vectorization differ between platforms. For ex-
ample, for both VFP and BBC, Power has the same relative
performance improvement with 128-bit registers as Intel has
x86 with 512-bit registers, despite a four times lower degree of
parallelism. It is challenging to draw general conclusions about
the efficiency of vectorization by evaluating a single platform.
Memory Budget: The performance of hash tables must al-
ways be considered together with memory consumption, as
most hashing schemes converge towards perfect hashing given
enough memory. Our evaluation shows that vectorized schemes
outperform scalar ones for high load factors, striking a balance
between performance and memory consumption. But they of-
ten perform worse with low load factors due to more complex
lookup logic. Thus, vectorized schemes should only be chosen
given limited memory resources.

Engineering Overhead: The hashing schemes need to be
optimized for each platform at hand, and the algorithm design
varies between platforms. For example on SVE, creating the
index vector per probe instead of per find operation massively
degraded performance. This leads to a big engineering overhead
during initial development, where an in-depth understanding
of each platform is necessary. When developing for a single
system, the abstractions can be optimized towards that system.
Finding the best level of abstraction over multiple architectures
is difficult, as seen on the example on movemasks, which are
natively supported by x86, but very expensive on Power. Our
SIMD abstraction layer alone consists of over 2000 LOC with
many metaprogramming and preprocessor statements to check
for available hardware.

Vector Register Size: For VLP, larger registers lead to better
performance. For VFP and BBC, the largest register does not
always perform best, e.g., with low load factors, SSE performs
better than AVX-512. We still advise to use the largest available
register for better performance with high load factors.
Fingerprints: For VFP, using 8-bit fingerprints always per-
forms best. For BBC, 16-bit fingerprints perform a little better

2766

for low to medium load factors, but require more memory. It is
important to carefully think about how to obtain the fingerprint,
depending on the hash function, i.e., do not overlap the bits
that define the index with the bits that define the fingerprint.

Implementation Details: When extracting matches from a
movemask, it is beneficial to check whether there has been any
match (TEST). For iterating over multiple matches on ARM and
Power, which do not natively support movemasks, simulating a
movemask instead of working with a native vectorized iterator
performs better. Pre-initialization of re-used vector registers
(e.g., index vectors) is important, especially on the A64FX, as the
SVE instructions to generate these vectors are very expensive.

@)

6 RELATED WORK

We build upon previous research in the area of hash tables, hash
joins, and platform-aware computing.

Hash Tables. Richter et al. [66] conduct an analysis of scalar
hashing schemes and derive a decision guide that focuses on the
workload at hand. They implement a variant of VLP on AVX2. Poly-
chroniou et al. [65] differentiate horizontal and vertical vectoriza-
tion. Vertical vectorization looks up multiple keys in parallel, which
requires scatter/gather operations and bulk inserts/lookups. Hori-
zontal vectorization serves as a drop-in replacement for scalar hash
tables. Pietrzyk et al. [63] implement a conflict detection-aware ver-
sion of vertical VLP. Behrens et al. [13] use OpenCL to implement
vertical VFP. Meta’s F14 [20, 21] and Google’s Abseil containers [28]
are industry implementations of BBC using SSE/NEON.

Hash Joins. Hash joins have been researched intensively as
they outperform sort-merge joins [7, 37]. Most works discuss how
to parallelize the join [8-11, 40, 55, 64, 69]. As all strategies benefit
from a faster hash table, our work is orthogonal to this research.

Platform-Aware Computing. Several works have shown the
benefits of adapting applications to the underlying platform, e.g., by
using SIMD [41, 44, 45, 57]. IBM Power systems are used in previous
work, as they integrate well with various accelerators [49-51]. Bari
et al. [12] find that A64FX single-thread performance is low, in
line with our findings. The A64FX performs well on finely-tuned,
multi-threaded HPC workloads [1, 15, 22, 47].

7 CONCLUSION

In this paper, we compare three different approaches to vector-
ized hashing and implement them on three architectures with six
different vector ISAs. We perform an exhaustive benchmark set,
varying parameters such as load factor and successful query rate,
and show the impact of various algorithmic and system-specific
tuning knobs. We show that the BBC hashing scheme provides
a good general-purpose hashing scheme that outperforms scalar
linear probing often by over 2x, reaching over 6x for string keys.
We discuss our findings and make our implementation available to
improve the understanding of adapting key database components
to increasingly heterogeneous environments.

ACKNOWLEDGMENTS

This work was partially funded by the Swiss National Science
Foundation (200021_204620), the German Research Foundation
(414984028), and the European Union’s Horizon 2020 (957407).

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Christie Alappat, Nils Meyer, Jan Laukemann, Thomas Gruber, Georg Hager,
Gerhard Wellein, and Tilo Wettig. 2021. Execution-Cache-Memory modeling
and performance tuning of sparse matrix-vector multiplication and Lattice quan-
tum chromodynamics on A64FX. Concurrency and Computation: Practice and
Experience (2021). https://doi.org/10.1002/cpe.6512

Amazon Press Releases. 2022. AWS Announces General Availability of
Amazon EC2 C7g Instances Powered by AWS-designed Graviton3 Processors.
AWSAnnouncesGeneralAvailabilityofAmazonEC2C7glInstancesPoweredby AWS-
designedGraviton3Processors

Apple. 2020. Apple unleashes M1. https://www.apple.com/newsroom/2020/11/
apple-unleashes-m1/

ARM Limited. 2020. Arm Architecture Reference Manual Supplement - The Scalable
Vector Extension (SVE), for Armv8-A. https://developer.arm.com/documentation/
ddi0584/latest/

ARM Limited. 2022. Cortex-A57 Software Optimization Guide. https://developer.
arm.com/documentation/uan0015/b/

ARM Limited. 2022. Introducing SVE2.
documentation/102340/0001/Introducing-SVE2
Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Ozsu. 2013. Multi-
Core, Main-Memory Joins: Sort vs. Hash Revisited. Proceedings of the VLDB
Endowment 7,1 (2013). https://doi.org/10.14778/2732219.2732227

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
Proceedings of the International Conference on Data Engineering (ICDE). https:
//doi.org/10.1109/icde.2013.6544839

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2015. Main-
Memory Hash Joins on Modern Processor Architectures. IEEE Transactions on
Knowledge and Data Engineering 27, 7 (2015). https://doi.org/10.1109/tkde.2014.
2313874

Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That is the Join Question in a Real System. In Proceedings of the
International Conference on Management of Data (SIGMOD). https://doi.org/10.
1145/3448016.3452831

Ronald Barber, Guy M. Lohman, Ippokratis Pandis, Vijayshankar Raman, Richard
Sidle, Gopi K. Attaluri, Naresh Chainani, Sam Lightstone, and David Sharpe.
2014. Memory-Efficient Hash Joins. Proceedings of the VLDB Endowment 8, 4
(2014). https://doi.org/10.14778/2735496.2735499

Md Abdullah Shahneous Bari, Barbara Chapman, Anthony Curtis, Robert J. Harri-
son, Eva Siegmann, Nikolay A. Simakov, and Matthew D. Jones. 2021. A64FX per-
formance: experience on Ookami. In Proceedings of the International Conference on
Cluster Computing (CLUSTER). https://doi.org/10.1109/Cluster48925.2021.00106
Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Bref3, and Volker Markl.
2018. Efficient SIMD Vectorization for Hashing in OpenCL. In Proceedings of
the International Conference on Extending Database Technology (EDBT). https:
//doi.org/10.5441/002/EDBT.2018.54

Lawrence Benson and Tilmann Rabl. 2022. Darwin: Scale-In Stream Processing.
In Proceedings of Annual Conference on Innovative Data Systems Research (CIDR).
Robert Bird, Nigel Tan, Scott V. Luedtke, Stephen Lien Harrell, Michela Taufer,
and Brian Albright. 2022. VPIC 2.0: Next Generation Particle-in-Cell Simulations.
Transactions on Parallel and Distributed Systems 33, 4 (2022). https://doi.org/10.
1109/TPDS.2021.3084795

Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation
of main memory hash join algorithms for multi-core CPUs. In Proceedings of
International Conference on Management of Data (SIGMOD). https://doi.org/10.
1145/1989323.1989328

Hugh Blemings. 2019. The Next Step in the OpenPOWER Foundation Jour-
ney. https://openpower.foundation/blog/the-next- step-in-the-openpower-
foundation-journey/

Hugh Blemings. 2020. Final Draft of the Power ISA EULA Released. https:
//openpower.foundation/blog/final-draft- of-the-power-isa-eula-released/
Sebastian Bref$, Henning Funke, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2019. An Overview of Hawk: A Hardware-Tailored Code Generator for the
Heterogeneous Many Core Age. https://doi.org/10.18420/BTW2019-WS-07
Nathan Bronson and Xiao Shi. 2019. F14 Readme. https://github.com/facebook/
folly/blob/b634e420d75e72cc96762e1ecdfb90f44d59c464/folly/container/F14.
md

Nathan Bronson and Xiao Shi. 2019. Open-sourcing F14 for faster, more memory-
efficient hash tables. https://engineering.fb.com/2019/04/25/developer-tools/f14/
Andrew Burford, Alan Calder, David Carlson, Barbara Chapman, Firat Coskun,
Tony Curtis, Catherine Feldman, Robert Harrison, Yan Kang, Benjamin Michalow-
icz, Eric Raut, Eva Siegmann, Daniel Wood, Robert DeLeon, Mathew Jones, Niko-
lay Simakov, Joseph White, and Dossay Oryspayev. 2021. Ookami: Deployment
and Initial Experiences. In Proceedings of Practice and Experience in Advanced
Research Computing (PEARC). https://doi.org/10.1145/3437359.3465578

Pedro Celis, Per-Ake Larson, and J. lan Munro. 1985. Robin Hood Hashing. In

Proceedings of The Annual Symposium on Foundations of Computer Science (SFCS).
https://doi.org/10.1109/sfcs.1985.48

https://developer.arm.com/

2767

I
2

[30

(31]

(33]

[34

[35

[36]

[43

[44]

[45]

(48

Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.
1997. A Reliable Randomized Algorithm for the Closest-Pair Problem. Journal of
Algorithms 25,1 (1997). https://doi.org/10.1006/jagm.1997.0873

Andrei Frumusanu. 2021. Arm Announces Armv9 Architecture: SVE2, Security,
and the Next Decade. https://www.anandtech.com/show/16584/arm-announces-
armv9-architecture

Fujitsu. 2022. A64FX Microarchitecture Manual v1.7. https://github.com/fujitsu/
A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.7.pdf
William Gayde. 2020. How Arm Came to Dominate the Mobile Market. https:
/[www.techspot.com/article/1989-arm-inside/

Google Inc. 2022. Abseil Containers. https://abseil.io/docs/cpp/guides/container#
abseil-containers

Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann, and
Jana Giceva. 2023. Bringing Compiling Databases to RISC Architectures. Pro-
ceedings of the VLDB Endowment 16, 6 (2023). https://doi.org/10.14778/3583140.
3583142

Philipp M. Grulich, Sebastian Bref3, Steffen Zeuch, Jonas Traub, Janis von
Bleichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly:
Efficient Stream Processing Through Adaptive Query Compilation. In Pro-
ceedings of the International Conference on Management of Data (SIGMOD).
https://doi.org/10.1145/3318464.3389739

Bala Gurumurthy, David Broneske, Marcus Pinnecke, Gabriel Campero, and
Gunter Saake. 2018. SIMD Vectorized Hashing for Grouped Aggregation. In
Proceedings of Advances in Databases and Information Systems (ADBIS). https:
//doi.org/10.1007/978-3-319-98398-1_8

Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch Hashing. In
Proceedings of the International Symposium on Distributed Computing (DISC).
https://doi.org/10.1007/978-3-540-87779-0_24

IBM. 2019. POWERY Processor User’s Manual.
ibm.com/systems/power/openpower/posting.xhtml?postingld=
FC2A3168C5821FA78525803D00719802

IBM. 2020. IBM Power System IC922: Technical Overview and Introduction.
https://www.redbooks.ibm.com/redpapers/pdfs/redp5584.pdf

Intel Corporation. 2022. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

Dashveenjit Kaur. 2021. Intel and AMD reign supreme in record 2021 server
market. https://techhq.com/2021/08/intel-and-amd- reign- supreme-in-record-
2021-server-market/

Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009.
Sort vs. Hash revisited: fast join implementation on modern multi-core CPUs.
Proceedings of the VLDB Endowment 2, 2 (2009). https://doi.org/10.14778/1687553.
1687564

Donald Knuth. 1963. Notes On Open Addressing.

Donald Knuth. 1973. The Art Of Computer Programming, Volume 3: Sorting And
Searching. Addison-Wesley.

Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Alfons
Kemper. 2013. Massively Parallel NUMA-Aware Hash Joins. In Proceedings of the
International Workshop on In-Memory Data Management and Analytics (IMDM).
https://doi.org/10.1007/978-3-319-13960-9_1

Geoff Langdale and Daniel Lemire. 2019. Parsing gigabytes of JSON per second.
The VLDB Journal 28, 6 (2019). https://doi.org/10.1007/s00778-019-00578-5
Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In Proceedings of the International Conference on Management of Data
(SIGMOD). https://doi.org/10.1145/2588555.2610507

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In Proceedings
of the International Conference on Data Engineering (ICDE). https://doi.org/10.
1109/icde.2018.00026

Daniel Lemire and Wojciech Mula. 2022. Transcoding billions of Unicode char-
acters per second with SIMD instructions. Software: Practice and Experience 52,
2(2022). https://doi.org/10.1002/spe.3036

Daniel Lemire and Christoph Rupp. 2017. Upscaledb: Efficient integer-key com-
pression in a key-value store using SIMD instructions. Information Systems 66
(2017). https://doi.org/10.1016/.i5.2017.01.002

Linux Kernel Development Community. 2022. Linux Kernel Guide: Transparent
Hugepage Support. https://www.kernel.org/doc/html/latest/admin- guide/mm/
transhuge.html

Mathieu Lobet, Francesco Massimo, Arnaud Beck, Guillaume Bouchard, Frederic
Perez, Tommaso Vinci, and Mickael Grech. 2022. Simple Adaptations to Speed-up
the Particle-In-Cell Code Smilei on the ARM-Based Fujitsu A64FX Processor. In
Proceedings of the International Conference on High Performance Computing in
Asia-Pacific Region (Workshops). https://doi.org/10.1145/3503470.3503475
Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proceedings of the VLDB Endowment 13, 8 (2020).
https://doi.org/10.14778/3389133.3389134

https://www.

https://doi.org/10.1002/cpe.6512
AWS Announces General Availability of Amazon EC2 C7g Instances Powered by AWS-designed Graviton3 Processors
AWS Announces General Availability of Amazon EC2 C7g Instances Powered by AWS-designed Graviton3 Processors
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://developer.arm.com/documentation/ddi0584/latest/
https://developer.arm.com/documentation/ddi0584/latest/
https://developer.arm.com/documentation/uan0015/b/
https://developer.arm.com/documentation/uan0015/b/
https://developer.arm.com/documentation/102340/0001/Introducing-SVE2
https://developer.arm.com/documentation/102340/0001/Introducing-SVE2
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1109/icde.2013.6544839
https://doi.org/10.1109/icde.2013.6544839
https://doi.org/10.1109/tkde.2014.2313874
https://doi.org/10.1109/tkde.2014.2313874
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.14778/2735496.2735499
https://doi.org/10.1109/Cluster48925.2021.00106
https://doi.org/10.5441/002/EDBT.2018.54
https://doi.org/10.5441/002/EDBT.2018.54
https://doi.org/10.1109/TPDS.2021.3084795
https://doi.org/10.1109/TPDS.2021.3084795
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/1989323.1989328
https://openpower.foundation/blog/the-next-step-in-the-openpower-foundation-journey/
https://openpower.foundation/blog/the-next-step-in-the-openpower-foundation-journey/
https://openpower.foundation/blog/final-draft-of-the-power-isa-eula-released/
https://openpower.foundation/blog/final-draft-of-the-power-isa-eula-released/
https://doi.org/10.18420/BTW2019-WS-07
https://github.com/facebook/folly/blob/b634e420d75e72cc96762e1ec4fb90f44d59c464/folly/container/F14.md
https://github.com/facebook/folly/blob/b634e420d75e72cc96762e1ec4fb90f44d59c464/folly/container/F14.md
https://github.com/facebook/folly/blob/b634e420d75e72cc96762e1ec4fb90f44d59c464/folly/container/F14.md
https://engineering.fb.com/2019/04/25/developer-tools/f14/
https://doi.org/10.1145/3437359.3465578
https://doi.org/10.1109/sfcs.1985.48
https://doi.org/10.1006/jagm.1997.0873
https://www.anandtech.com/show/16584/arm-announces-armv9-architecture
https://www.anandtech.com/show/16584/arm-announces-armv9-architecture
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.7.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.7.pdf
https://www.techspot.com/article/1989-arm-inside/
https://www.techspot.com/article/1989-arm-inside/
https://abseil.io/docs/cpp/guides/container#abseil-containers
https://abseil.io/docs/cpp/guides/container#abseil-containers
https://doi.org/10.14778/3583140.3583142
https://doi.org/10.14778/3583140.3583142
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.1007/978-3-319-98398-1_8
https://doi.org/10.1007/978-3-319-98398-1_8
https://doi.org/10.1007/978-3-540-87779-0_24
https://www.ibm.com/systems/power/openpower/posting.xhtml?postingId=FC2A3168C5821FA78525803D00719802
https://www.ibm.com/systems/power/openpower/posting.xhtml?postingId=FC2A3168C5821FA78525803D00719802
https://www.ibm.com/systems/power/openpower/posting.xhtml?postingId=FC2A3168C5821FA78525803D00719802
https://www.redbooks.ibm.com/redpapers/pdfs/redp5584.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://techhq.com/2021/08/intel-and-amd-reign-supreme-in-record-2021-server-market/
https://techhq.com/2021/08/intel-and-amd-reign-supreme-in-record-2021-server-market/
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.1007/978-3-319-13960-9_1
https://doi.org/10.1007/s00778-019-00578-5
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1109/icde.2018.00026
https://doi.org/10.1109/icde.2018.00026
https://doi.org/10.1002/spe.3036
https://doi.org/10.1016/j.is.2017.01.002
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://doi.org/10.1145/3503470.3503475
https://doi.org/10.14778/3389133.3389134

[49]

[50]

[51]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Clemens Lutz, Sebastian Bref}, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In Proceedings of the International Conference on Management of Data
(SIGMOD). https://doi.org/10.1145/3318464.3389705

Clemens Lutz, Sebastian Bref3, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast
Interconnects. In Proceedings of the International Conference on Management of
Data (SIGMOD). https://doi.org/10.1145/3514221.3517911

Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, and Tilmann Rabl. 2022. Evaluating
Multi-GPU Sorting with Modern Interconnects. In Proceedings of the International
Conference on Management of Data (SIGMOD). https://doi.org/10.1145/3514221.
3517842

Tobias Maltenberger, Till Lehmann, Lawrence Benson, and Tilmann Rabl. 2022.
Evaluating In-Memory Hash Joins on Persistent Memory. In Proceedings of the
International Conference on Extending Database Technology (EDBT). https://doi.
org/10.48786/EDBT.2022.23

Bernard Marr. 2018. How Much Data Do We Create Every Day? The
Mind-Blowing Stats Everyone Should Read. https://www.forbes.com/sites/
bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-
blowing- stats-everyone-should-read

Satoshi Matsuoka. 2021. Fugaku and A64FX: the First Exascale Supercomputer
and its Innovative Arm CPU. In Proceedings of the Symposium on VLSI Circuits.
https://doi.org/10.23919/vlsicircuits52068.2021.9492415

Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: making compilation, vectorization, and
prefetching work together at last. Proceedings of the VLDB Endowment 11, 1
(2017). https://doi.org/10.14778/3151113.3151114

Timothy Prickett Morgan. 2022. Nvidia embraces the CPU world with “GRACE”
ARM server chip. https://www.nextplatform.com/2022/03/25/nvidias-grace-
arm-server-chip-is-a-game-changer/

Wojciech Mula and Daniel Lemire. 2020. Base64 encoding and decoding at
almost the speed of a memory copy. Software: Practice and Experience 50, 2 (2020).
https://doi.org/10.1002/spe.2777

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR).

Thomas Neumann, Tobias Mithlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the International Conference on Management of Data (SIGMOD).
https://doi.org/10.1145/2723372.2749436

Ryohei Okazaki, Takekazu Tabata, Sota Sakashita, Kenichi Kitamura, Noriko
Takagi, Hideki Sakata, Takeshi Ishibashi, Takeo Nakamura, and Yuichiro Ajima.
2020. Supercomputer Fugaku CPU A64FX Realizing High Performance, High-
Density Packaging, and Low Power Consumption. In Fujitsu Technical Review.
Oracle. 2017. Database Administrator’s Reference: HugePages. https://docs.
oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR391

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004). https://doi.org/10.1016/j.jalgor.2003.12.002

Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, and Wolfgang Lehner. 2019.
Fighting the Duplicates in Hashing: Conflict Detection-aware Vectorization of
Linear Probing. In Proceedings of Datenbanksysteme fiir Business, Technologie und
Web (BTW). https://doi.org/10.18420/btw2019-04

Constantin Pohl, Kai-Uwe Sattler, and Goetz Graefe. 2019. Joins on high-
bandwidth memory: a new level in the memory hierarchy. The VLDB Journal 29,
2-3(2019). https://doi.org/10.1007/s00778-019-00546-z

Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the International
Conference on Management of Data (SIGMOD). https://doi.org/10.1145/2723372.

2768

[66

[67]

[68]

[69

[70

[71

[72

[73

[74

k=
2

[76

[77

(81]
(82]

[83

2747645

Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A seven-dimensional
analysis of hashing methods and its implications on query processing. Proceedings
of the VLDB Endowment 9, 3 (2015). https://doi.org/10.14778/2850583.2850585
John Russel. 2021. IBM Introduces its First Power10-based Server, the Power
E1080; Targets Hybrid Cloud. https://www.hpcwire.com/2021/09/08/ibm-
introduces-power10-based-server-the-power-e1080- targets-hybrid-cloud/
David Schor. 2021. Arm Launches ARMv9. https://fuse.wikichip.org/news/4646/
arm-launches-armv9/

Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison of
Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the International
Conference on Management of Data (SIGMOD). https://doi.org/10.1145/2882903.
2882917

Agam Shah. 2021. Apple is beginning to undo decades of Intel, x86 dominance
in PC market. https://www.theregister.com/2021/11/12/apple_arm_m1_intel
x86_market/

Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K. DK Panda. 2019. SimdHT-Bench:
Characterizing SIMD-Aware Hash Table Designs on Emerging CPU Architec-
tures. In Proceedings of the International Symposium on Workload Characterization

(IISWC). httpS://dOLOré/lOA11O9/iiSWC47752.20199042069
Steve Sibley. 2018. POWER9 Scale-Up servers designed to fuel innovation.

https://www.ibm.com/blogs/systems/ibm-power9-enterprise-servers/
SSE2NEON Contributors. 2022. SSE2NEON Movemask Im-
plementation. https://github.com/DLTcollab/sse2neon/blob/
dcf6a2a802986341939fc2e1e02bf33702633d63/sse2neon.h/#L4752

Nigel Stephens. 2016. Technology Update: Scalable Vector Extension (SVE)
for Armv8-A. https://community.arm.com/arm-community-blogs/b/high-
performance-computing-blog/posts/technology-update-the-scalable-vector-
extension-sve-for-the-armv8-a-architecture

Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, Alastair Reid, Alejandro Rico, and Paul Walker. 2017. The ARM Scal-
able Vector Extension. IEEE Micro 37, 2 (2017). https://doi.org/10.1109/mm.2017.
35

The TOP500 Project. 2022. TOP500 List: November 2022. https://www.top500.
org/lists/top500/2022/11/

Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk.
2020. LightSaber: Efficient Window Aggregation on Multi-core Processors. In
Proceedings of the International Conference on Management of Data (SIGMOD).
https://doi.org/10.1145/3318464.3389753

Trendforce. 2022. ARM-based Server Penetration Rate to Reach 22 % by 2025
with Cloud Data Centers Leading the Way, Says TrendForce. https://www.
trendforce.com/presscenter/news/19700101-11178 html

Mark Tyson. 2022. Ampere’s Altra Max 80 Core Arm CPU Gets Benchmarked,
Delidded, Measured. https://www.tomshardware.com/news/ampere-altra-max-
80-ccore-arm-delidded

Annett Ungethiim, Johannes Pietrzyk, Patrick Damme, Alexander Krause, Dirk
Habich, Wolfgang Lehner, and Erich Focht. 2020. Hardware-Oblivious SIMD
Parallelism for In-Memory Column-Stores. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR).

Reini Urban. 2021. SMHasher 128-bit Multiply Shift. https://github.com/rurban/
smhasher/blob/28de33a868763a00439a5fc408b56b20f2d86f7c/Hashes.cpp#L906
xSIMD Contributors. 2022. xSIMD Github Repository. https://github.com/
xtensor-stack/xsimd

Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Bref3, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing efficient stream processing on modern hardware. Proceedings of the VLDB
Endowment 12,5 (2019). https://doi.org/10.14778/3303753.3303758

https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3514221.3517911
https://doi.org/10.1145/3514221.3517842
https://doi.org/10.1145/3514221.3517842
https://doi.org/10.48786/EDBT.2022.23
https://doi.org/10.48786/EDBT.2022.23
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://doi.org/10.23919/vlsicircuits52068.2021.9492415
https://doi.org/10.14778/3151113.3151114
https://www.nextplatform.com/2022/03/25/nvidias-grace-arm-server-chip-is-a-game-changer/
https://www.nextplatform.com/2022/03/25/nvidias-grace-arm-server-chip-is-a-game-changer/
https://doi.org/10.1002/spe.2777
https://doi.org/10.1145/2723372.2749436
https://docs.oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR391
https://docs.oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR391
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.18420/btw2019-04
https://doi.org/10.1007/s00778-019-00546-z
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.14778/2850583.2850585
https://www.hpcwire.com/2021/09/08/ibm-introduces-power10-based-server-the-power-e1080-targets-hybrid-cloud/
https://www.hpcwire.com/2021/09/08/ibm-introduces-power10-based-server-the-power-e1080-targets-hybrid-cloud/
https://fuse.wikichip.org/news/4646/arm-launches-armv9/
https://fuse.wikichip.org/news/4646/arm-launches-armv9/
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/2882903.2882917
https://www.theregister.com/2021/11/12/apple_arm_m1_intel_x86_market/
https://www.theregister.com/2021/11/12/apple_arm_m1_intel_x86_market/
https://doi.org/10.1109/iiswc47752.2019.9042069
https://www.ibm.com/blogs/systems/ibm-power9-enterprise-servers/
https://github.com/DLTcollab/sse2neon/blob/dcf6a2a802986341939fc2e1e02bf33702633d63/sse2neon.h/#L4752
https://github.com/DLTcollab/sse2neon/blob/dcf6a2a802986341939fc2e1e02bf33702633d63/sse2neon.h/#L4752
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://doi.org/10.1109/mm.2017.35
https://doi.org/10.1109/mm.2017.35
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://doi.org/10.1145/3318464.3389753
https://www.trendforce.com/presscenter/news/19700101-11178.html
https://www.trendforce.com/presscenter/news/19700101-11178.html
https://www.tomshardware.com/news/ampere-altra-max-80-ccore-arm-delidded
https://www.tomshardware.com/news/ampere-altra-max-80-ccore-arm-delidded
https://github.com/rurban/smhasher/blob/28de33a868763a00439a5fc408b56b20f2d86f7c/Hashes.cpp#L906
https://github.com/rurban/smhasher/blob/28de33a868763a00439a5fc408b56b20f2d86f7c/Hashes.cpp#L906
https://github.com/xtensor-stack/xsimd
https://github.com/xtensor-stack/xsimd
https://doi.org/10.14778/3303753.3303758

	Abstract
	1 Introduction
	2 Background
	2.1 Hash Tables
	2.2 SIMD Programming and CPU Architectures

	3 Hashing Scheme Design
	3.1 Scalar Hashing Schemes
	3.2 Vectorized Hashing Schemes
	3.3 Building a SIMD Abstraction Layer

	4 Evaluation
	4.1 Setup
	4.2 Scalar Baseline
	4.3 Vectorized Linear Probing
	4.4 Vectorized Fingerprinting
	4.5 Bucket-Based Comparison
	4.6 String Keys
	4.7 Large Payloads
	4.8 Skewed Workloads
	4.9 Multithreading

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

