Taurus MM: bringing multi-master to the cloud

Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin, Guanzhu Xiong, Paul Lee,
Emad Boctor, Samiao Ren, Lengdong Wu, Yuchen Zhang, Calvin Sun
Huawei Research
Toronto, Canada
firstname.lastname@huawei.com

ABSTRACT

A single-master database has limited update capacity because a sin-
gle node handles all updates. A multi-master database potentially
has higher update capacity because the load is spread across mul-
tiple nodes. However, the need to coordinate updates and ensure
durability can generate high network traffic. Reducing network
load is particularly important in a cloud environment where the
network infrastructure is shared among thousands of tenants. In
this paper, we present Taurus MM, a shared-storage multi-master
database optimized for cloud environments. It implements two
novel algorithms aimed at reducing network traffic plus a number
of additional optimizations. The first algorithm is a new type of
distributed clock that combines the small size of Lamport clocks
with the effective support of distributed snapshots of vector clocks.
The second algorithm is a new hybrid page and row locking pro-
tocol that significantly reduces the number of lock requests sent
over the network. Experimental results on a cluster with up to eight
masters demonstrate superior performance compared to Aurora
multi-master and CockroachDB.

PVLDB Reference Format:

Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin,
Guanzhu Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu,
Yuchen Zhang, Calvin Sun. Taurus MM: bringing multi-master to the

cloud. PVLDB, 16(12): 3488 - 3500, 2023.

doi:10.14778/3611540.3611542

1 INTRODUCTION

A multi-master or multi-writer database provides a single unified
view of data but allows more than one database node to update the
database concurrently. Multi-master databases can be used for mul-
tiple purposes: for increased throughput and/or lower latency; for
continuous availability during database node maintenance, crashes,
and recovery; for on-demand scale out and scale in; and for adapt-
ing to highly variable workloads. In a single-master system, update
throughput is limited because a single node handles all updates; a
multi-master system removes this bottleneck [1, 14, 23, 28].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
do0i:10.14778/3611540.3611542

3488

There are two main multi-master architectures: shared-nothing
and shared-storage. Google Spanner, Amazon DynamoDB, Cock-
roachDB, Alibaba OceanBase, and others have adopted a shared-
nothing architecture [8, 10, 21, 31, 33, 39]. The shared-storage ap-
proach is used by Amazon Aurora multi-master, Oracle RAC, and
IBM Db2 pureScale [4, 6, 38].

It is generally held that shared-nothing systems have better scal-
ability but lower efficiency (higher overhead) than shared-storage
systems. The shared-nothing architecture generates the same or
more inter-node messages compared to the shared-storage archi-
tecture [6]. One reason is that shared-nothing systems employ
distributed commit protocols. Such protocols degrade the perfor-
mance of replicated multi-master systems due to multiple rounds
of synchronous message exchange [1, 14, 23].

To achieve good performance, traditional shared-storage sys-
tems, like Oracle RAC and IBM pureScale, need high-end network-
ing hardware [30]. The recommendation is to have a dedicated
RDMA-enabled network for each cluster. This is not possible in a
cloud environment, especially across availability zones. Cost sav-
ings by sharing infrastructure among tenants is a key driver in the
cloud. It is difficult to provide guaranteed latency and bandwidth,
similar to what on-premise solutions, such as RAC or pureScale
require, at a competitive price [37].

Performance bottlenecks in distributed database systems are
often caused by the limited bandwidth, high latency, and limited
message rates that the network can deliver. There are two main
reasons for this: high message rates and write amplification. Page
and row locking and log record propagation may generate hun-
dreds of thousands or even millions of messages per second [30].
Write amplification may be as high as 46X because of sending fully
modified pages to storage [37].

Taurus MM is a cloud-native, multi-master, scaleable OLTP data-
base system designed to achieve good performance and scalability
on modest-size clusters (2-16 masters) in a cloud environment. It is
designed to handle a wide variety of partitioned and shared work-
loads. It adopts a shared-storage approach with separate compute
and storage layers. It relies on pessimistic concurrency control
(PCC) instead of optimistic concurrently control (OCC). OCC suf-
fers from high rates of transaction aborts due to write conflicts for
some workloads, while aborts are very rare in PCC. Aborts not
only reduce throughput and consume additional resources, but few
applications handle high abort rates well.

The contributions of this paper include two novel algorithms that
significantly reduce the amount of network traffic, a new database
architecture, and performance evaluation.

Vector-scalar (VS) clocks algorithm. Logical clocks are commonly
used to order updates and create consistent snapshots in distributed
systems [5]. Lamport clocks are used, for example, by Oracle RAC


https://doi.org/10.14778/3611540.3611542
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611542

and IBM pureScale [22]. However, Lamport clocks are impractical
for creating global snapshots and don’t preserve causality. Instead,
vector clocks or similar approaches are used [12, 25]. The disad-
vantage of vector clocks is high space overhead, making message
size proportional to the number of nodes. Vector-scalar (VS) clocks
combine the low overhead of Lamport clocks with the ability of
vector clocks to preserve causality and create snapshots effectively.
Rapid creation of global snapshots is important because it makes
it possible to read pages without locking. Using VS clocks reduces
space and network bandwidth consumption by up to 60% compared
to vector clocks, even for a modest 8-master cluster.

Hybrid page-row locking algorithm. Another source of network
traffic is row locking. Before updating a row, a transaction must
first acquire a lock on the row to prevent other transactions from
reading or changing it. We designed a protocol where row locks
are granted locally by each master without contacting a global
lock manager. This hybrid page-row locking protocol eliminates
separate row lock and unlock requests altogether by piggybacking
information on page lock requests. This noticeably reduces the
number of messages being sent over the network.

Cloud-native multi-master database architecture. Our third contri-
bution is a detailed description of the overall architecture of Taurus
MM. We describe how to implement and use the above algorithms
in a database system, as well as other performance optimizations,
in particular, how to read pages without any locking at all.

Performance evaluation Our final contribution is an experimental
performance evaluation of Taurus MM. We report its performance
and scalability on workloads with different degrees of data shar-
ing. We compare its performance on TPC-C with CockroachDB, a
shared-nothing NewSQL system, and Amazon Aurora multi-master
shared-data system. Taurus MM achieves 2-4X higher throughput
than CockroachDB on clusters of up to 12 nodes. It scales signifi-
cantly better and has higher throughput than Aurora multi-master.

The remainder of this paper is organized as follows. In the next
section, we describe VS clocks. Section 3 provides a description of
our hybrid page-row locking protocol. Section 4 gives a high-level
overview of the single-master Taurus database, on which Taurus
MM is based. We describe the Taurus MM architecture, the usage
of VS clocks, and the hybrid locking protocol in Section 5. Section 6
reviews the related work, and performance results are presented in
Section 7. We conclude in Section 8. The results from experiments
estimating the impact of individual improvements are summarized
in appendix A.

2 VECTOR-SCALAR CLOCKS

Every database system must ensure that its internal data structures
remain consistent and that user data is not corrupted. For exam-
ple, updates must be applied in a valid order. The ANSI/ISO SQL
standard defines several transaction isolation levels that specify
strict rules on data visibility that depend on the ordering of events,
such as transaction start, end, and data changes [9]. Key to tracking
ordering relationships is the notion of clocks, which make it possi-
ble to label events with timestamps that allow a comparison, i.e.,
a "happens before" relationship. In a distributed system, physical
clocks running on different nodes are difficult to keep synchronized

3489

accurately enough. Having a single network-connected clock de-
vice would cause intolerable delays in obtaining timestamps. Thus,
distributed systems often use logical clocks running on each node
that count “events” rather than measure physical time. A logical
clock is local to a node and represents the node’s view of system
time. A logical clock must satisfy the following requirements.

(C1) Before each event happens on a node, e.g., sending or re-
ceiving a message, or a local event, the logical clock value
of the node is incremented. The new value is the timestamp
assigned to the event. Thus, all local events that happened
before the current event will have lower timestamps.
Messages between nodes are timestamped by the sender.
Upon receiving a message, the receiver’s local clock is set
to a value higher than the message’s timestamp.

(€2)

The first logical clock algorithm was proposed by Lamport [22].
Lamport clocks are represented by a single integer counter on each
node, so we call them scalar clocks. Each event happening on a
node increments its local clock by some amount. Upon receiving
a message with a timestamp, the local clock value is set to the
maximum of the old value and the message’s timestamp plus an
increment. If Clock; is a logical scalar clock of node i, and TS(m)
is a timestamp of message m, then conditions C1-C2 are satisfied
by using the following formulas:

Clock; = Clock; + s, TS(m) = Clock; (S1)
when message m is sent by node i.
Clockj = max(TS(m),Clockj) +r, (S2)

when message m is received by node j. Constants s and r are often
equal to 1, however, they can have arbitrary values greater than
Z€ro.

Although widely used by applications, scalar clocks have severe
limitations. First, they don’t preserve causality, meaning that solely
from the fact that TS(a) < TS(b), we cannot tell if a caused b or
if a and b happened concurrently without a causal relationship
between them [12, 25]. Second, scalar clock algorithms that create
a distributed snapshot of the whole system require either that the
system delivers messages in the order sent or that the entire message
history is preserved [7, 20].

Vector clocks were proposed to address the limitations of scalar
clocks [12, 25]. Each node i maintains a vector Clock; of N integers,
one for each node in the system. Clock;[i] is a local clock com-
ponent and describes the time progression of node i. Any event
on node i causes Clock;[i] to be increased. Clock;|j],i # j repre-
sents the knowledge of node i about the time progression of node
Jj. Conditions C1-C2 are satisfied by using the formulas:

Clock;[i] = Clock;[i] + s, TS(m) = Clock; (V1)

when message m is sent by node i.
Clockj[k] = max(TS(m)[k],Clock;[k]),0 <k < N,k #j (V2)

when message m is received by node j.

Vector clocks preserve causality and allow the effective creation
of distributed snapshots. However, they are not space efficient: a
system that uses vector clocks has to store and exchange timestamps
of a size proportional to the number of nodes [5].



Vector clocks for a cluster of 8 nodes will have a size of 64 bytes.
This introduces a significant increase in the amount of data sent
over the network. For example, cloud databases often send log
records to the storage layer and among nodes for persistence and
change-tracking [3, 11, 37]. Each log record needs a timestamp,
often called a log sequence number (LSN). Our experiments with
the Taurus database showed that log records with scalar timestamps
are 40 bytes on average. Vector timestamps increase the size to 96
bytes. Another example is lock and unlock messages for pages and
rows, which happen at the rate of up to millions per second. The
size of such a message in Taurus is also about 40 bytes. Vector
timestamps increase log records and locking message size by 140%,
consuming additional network bandwidth and disk space. In Taurus
MM, two timestamps are used per record, making the difference in
size even more pronounced. Several authors have showed that in
cloud databases, the performance bottleneck moves to the network
rather than disk or other resources [30, 37].
Vector clocks and scalar clocks have many similarities: they
satisfy conditions C1-C2, use integer counters, and generate times-
tamps by incrementing the local clock. Although space efficient,
scalar clocks have the disadvantages of lost causality and difficul-
ties with snapshot creation. However, in many practical situations,
causality is already known from the context or is not important. For
example, when two events are changes to the same item serialized
by a lock, their causality is known. At the same time, requests for a
global snapshot happen infrequently compared to other events in
the system. One might naively suggest having two types of clocks
in the system: scalar and vector, using each of them depending on
the context. However, in this case, the values of the clocks would
be incomparable. It would be impossible to determine if a change to
an item stamped with a scalar timestamp happened before or after
a snapshot created with a vector timestamp. To solve this problem
and create clocks that have the size benefits of scalar and support
the causality and snapshots features of vector clocks, we introduce
VS (vector-scalar) clocks. Depending on the usage scenario, VS
clocks can stamp events and messages with either a scalar or a
vector timestamp, based on the following formulas:
Clock;[i] = Clock;[i] + s, TS(m) = Clocki,s > 0 (VS1)

when message m is sent by node i with a full vector timestamp.
Clockj[k] = max(TS(m)[k], Clockj[k]),k # j (VS2a)
Clockj[j] = max(TS(m)[k], Clock;[j]) +7,0 <k <N (VS2b)

when message m is received by node j.

Clock;[i] = Clock;[i] +s, TS(m) = Clock;[i],s > 0 (VS3)
when message m is sent by node i with a scalar timestamp.
Clock;[j] = max(TS(m), Clock;[j]) +r (VS4)

when message m with a scalar timestamp is received by node j.
The difference between the VS1-VS2 update formulas and the
V1-V2 formulas are that the local clock component of the receiving
node changes and becomes greater than all other clock components.
With this change, the local clock component behaves exactly as a
scalar clock. At the same time, formulas VS1-VS2 are a special case
of the more generic formulas V1-V2. The important consequence
of the proposed change is that VS clocks behave like vector clocks,
preserving the benefits of causality and effective global snapshot

3490

oo -
SR

P1

-
co-=o
coNno
SR wN

P2

200
anan
s N

P3

~ocooo
N O oo

P4 1

Lamport clock Vector clock

Figure 1: Comparison of vector, scalar, and VS clocks

creation, while the local component of VS clocks behaves the same
way as scalar clocks. VS3-VS4 allow us to timestamp a message
with a scalar local VS clock component. Receiving such a message
breaks the assumptions of vector clocks and leaves only the scalar
clock valid until the node receives the next full vector timestamp.

The above properties of the VS clocks provide an important
benefit. In scenarios where preserving causality or global snapshot
creation are required, we timestamp each message with the vector
value of the VS clocks. However, when causality is known from the
context or is unimportant, we timestamp the message only with
a scalar component of the clock. For example, the most common
messages sent in a distributed database are page lock and unlock
messages, which are required to serialize changes to the same page.

Messages requiring additional properties of vector clocks are
sent much less frequently than messages that need simple ordering.
This allows timestamping most of the messages with a simple 8-byte
timestamp, reducing network and storage requirements.

Fig.1 shows the differences and similarities of the scalar, vector,
and VS clocks by showing their values for the same sequence of
events. Each message send and receive operation increments the
local event counter by 1. We can see that each node’s local VS clock
component after receiving an event is always the same as the scalar
clock value. Other components are equal to the corresponding
values of the sender’s vector clock at the time when the message
was sent.

The usage scenarios for vector and scalar timestamps of VS
clocks are different: vectors are used to establish causality and
create global snapshots, while scalars are used for establishing the
order of events when causality is known already. In the section
describing the Taurus MM architecture, we will describe the details
of how VS clocks are used.

3 HYBRID PAGE-ROW LOCKING

We assume a database system that use short-term page locks (his-
torically also called latches) and transactional row locks to ensure
the physical and logical consistency of the database. Page locks
come in two varieties, shared (S) and exclusive (X). Page locks guard
the physical consistency of a page by serializing modifications of
the page among transactions. Row locks guard the transactional
consistency of user data and are held until the end of the transaction.



To read a page, a transaction must hold or acquire an S-lock on
the page. To update a page, it needs an X-lock. A transaction is
allowed to release a page lock immediately after it has finished
reading or writing the page, while row locks are held until the end
of the transaction.

A lock manager is used to track, grant, and release locks. In a
single master database, the lock manager is a local component, and
all calls to it are local. In a multi-master database, the lock manager
is a separate component, a global lock manager (GLM), and all calls
are remote. Each master still has a local lock manager (LLM).

Taurus MM employs global page S- and X-locks to extend page
protection to transactions on different masters. Global page locks
are longer-lived than local page locks and are held by a master, not
a transaction. A global page lock acts like a ticket; holding a global
lock on page P gives a master the following rights depending on
the type of lock it holds.

Page S-lock: the master can latch P in shared mode and grant shared
row locks on P.

Page X-lock: the master can latch P and grant row locks on P in
shared and exclusive modes. Only one master at a time can hold an
X-lock on P.

A master is not required to release a page lock immediately. If it
is likely to need the lock again soon, it may just keep it and only
release it when the GLM reclaims it. Before releasing a page lock, a
master must ensure that all its modifications to the page have been
persisted, flushing the log if necessary. However, the modifications
need not be committed, just persisted. Allowing a master to keep a
page lock reduces round trips to the GLM, especially if the workload
is fully or mostly partitioned by master. When and for how long
a master can keep a page lock are policy decisions. In our current
implementation, a master releases a page lock when the page is
evicted from the buffer pool or when the lock is reclaimed.

3.1

Database systems use several types of row locks: (plain) shared and
exclusive row locks, gap locks, next-key locks, and insert-intention
locks [13, 16, 24]. In this paper, the term “row lock” includes all
such types of locks. Row locks can be managed in different ways;
we considered three different approaches.

GLM manages row locks. One option is to have the GLM manage
both page locks and row locks. Then every row lock acquisition
requires a message round trip to the GLM, increasing the load on
the network. DB2 pureScale uses this approach, with various opti-
mizations. We rejected this approach because of its high network
traffic, even if the workload is mostly partitioned. Furthermore,
the GLM must faithfully implement all row lock types used by the
underlying system and their, sometimes complicated, interactions.

Row locks stored on pages. A second option is to store the row
locks of a page on the page itself. Oracle RAC implements this
approach. We rejected this approach for two reasons: 1) it would
have required writing row lock acquire/release records to the log,
thereby increasing network load, and 2) it would have required
changing the on-disk page format, forcing a database conversion
when upgrading to Taurus MM.

Row locks follow page locks. When a master acquires a page lock
on a page P, it also receives the list of row locks on P, both locks held

Approaches to managing row locks

3491

and pending lock requests. The master may then grant additional
row locks on P, provided they are compatible with its page lock.
When it releases the page lock to the GLM, it also sends informa-
tion about the current row locks on the page. Information about
pending lock requests is not crucial, but it is useful for schedul-
ing decisions at the GLM and masters. We chose this approach for
reasons discussed below.

3.2 Locking protocol

In our approach, the GLM manages only page locks. It relays row
lock information but does not grant or release row locks. When it
grants a lock on a page P to a master, it returns the page version
number, which master, if any, has the latest version of the page,
and the list of row locks on the page. The receiving master then
adds the row locks to its LLM. When a master releases a page lock
(voluntarily or on request), it returns the page version number and
the list of row locks on the page. Note that a master does not need
complete information about row locks but only what is required to
correctly decide whether to grant a row lock or not.

Master holds an X-lock on page P. In this case, no other master
can have the page locked in any mode, but rows on the page may be
locked. The current master can grant an X-lock on a row unless the
row is already S-locked or X-locked. It can grant an S-lock unless
the row is locked in X mode. This implies that the master must know
about all the row locks currently held on P. Note that including
some already-released row locks does not jeopardize correctness
but may cause unnecessary waiting on a lock that, in fact, has
already been released.

Master holds an S-lock on page P. In this case, other masters may
also have the page S-locked, but it cannot be X-locked by any master.
The current master can grant an S-lock on a row of P unless the
row is already X-locked. This implies that it needs to know about
all X-locks but not necessarily about S-locks. Again, including some
already-released locks does not jeopardize correctness.

Master does not hold a lock on page P. In this case, the master
cannot grant any row locks on the page.

Without jeopardizing the consistency of the database, row lock
changes on a master do not need to be synchronized with other
masters immediately; rather, it can be done on demand when a cov-
ering page lock is requested by another master. This approach uses
the page lock release and reclaim flow to send row lock information
to GLM. This avoids contacting the GLM on every row lock grant
or wait, which can significantly reduce the amount of row-locking
network traffic. Here is the flow in more detail:

e When releasing a page lock (voluntarily or when reclaimed):

— On the master: information about all row locks on the page
is sent to GLM.

— On the GLM: the received row lock information is cached in
memory.

¢ When requesting and granting a page lock:

— On the master: to grant a row lock requested by a local
transaction, the master must hold a covering page lock in a
sufficiently strong mode. If the master does not currently
have the required page lock, it first sends a page lock request
to the GLM.



DB master DB replica(s) I
Writing logs (read-write)

— read-only M)
==P  Reading pages 4 |
Log head updates I I

1
. I
hand Readinglogs | === === =l= === - - -
Low-latency RDMA Storage Network
Log Stores || Page Stores | |

Figure 2: Taurus components and layers

— On the GLM: When a page lock request arrives, there may be
other pending requests for locks on the same page, and the
request may have to wait. When the GLM is ready to grant
the lock, it first reclaims conflicting locks on the page, if any,
and captures the newly received row lock information. It
then grants the lock and sends the response, together with
the row lock information and the latest version number of
the page.

On the master: on receiving the grant response, the row
lock information is added to the LLM, and the transaction
attempts again to acquire the desired row lock.

4 TAURUS SINGLE MASTER

Taurus MM is a further development of Taurus single master (later
referred to as just Taurus in contrast to Taurus MM), a relational
database designed specifically for cloud environments with sepa-
rate computer and storage layers [11]. Taurus has been offered for
several years as a part of Huawei cloud services under the name
GaussDB for MySQL. Taurus offers read replica support, fast recov-
ery, and hardware sharing. The high-level Taurus architecture is
presented in Fig. 2.

The Taurus compute layer consists of a master and multiple read-
only replicas. Update transactions generate log records, which the
master ships to the storage layer. No full pages are written across
the network, reducing the required bandwidth. The compute layer
running a modified version of MySQL is responsible for accepting
incoming connections, executing queries, managing transactions,
and producing log records that describe modifications made to
database pages.

The Taurus storage layer consists of Log Stores and Page Stores.
Log Stores serve two purposes. First and foremost, they ensure
the durability of log records. Once all log records generated by a
transaction have been made durable, transaction completion can be
acknowledged to the client. Second, they serve log records to read
replicas so that the replicas can apply them to bring pages in their
buffer pools up to date. The master periodically communicates the
location of the latest log records so that read replicas can read the
latest log.

The master also distributes log records to Page Store servers.
Their main function is to create new versions of pages by continu-
ously applying the received log records to previous page versions.
Taurus divides a database into small ( 10GB) sets of pages, called
slices. Each Page Store server handles multiple slices from different

3492

Log Store nodes

| 2 Log stores write succeeds
with 3 replicas before
write is acknowledged to
user

3 Write acknowledged to

user
A 1 User activity resulting

in data changes

When a page store \
replica acknowledge,
database does not need  _
to keep logs g

in memory

5

4 Data sent to Slice

Page Store replica #1
Page Store replica #2

6 Gossip protocol

Figure 3: Taurus write path

Taurus instances. A database has multiple slices, and each slice is
replicated to three Page Stores for durability and availability.

The write flow is summarized in Fig. 3. When a log record is
generated on the master by a user transaction (Step 1), it is stamped
with the local clock value. This stamp, an 8-byte integer, is called
a log sequence number (LSN) and is used to order all changes in
the database. To make log records durable, the master writes log
records, accumulated in batches called log flush buffers (LFB), to
three Log Stores (Step 2). Each LFB contains the largest LSN of the
previous LFB to establish order and detect missing log messages.
Once all Log Stores acknowledge the write, the database considers
the data to be persistent and the write complete. Transactions whose
commit depends on the write can then be marked as committed
(Step 3).

Once a log record has been written to the Log Stores, the master
copies it into the write buffer of the slice that contains the page.
When the buffer is full, it is sent to the Page Stores (Step 4). Each
buffer also contains the LSN of the last record of the previous buffer
so buffers can be ordered in Page Stores. The master waits for a
reply from one of the Page Stores and releases the buffer (Step 5).
Page Stores that host replicas of the same slice also periodically
exchange messages with each other using a gossip protocol to detect
and recover missing buffers (Step 6).

The operation of read replicas is shown in Fig. 4. When the
master updates the database by writing log records to Log Stores
(Step 1), read replicas get notifications that include the location of
log records (Step 2). Next, replicas read all log records from the Log
Stores in order to update pages in its buffer pool (step 3). Finally,
read replicas also read pages from Page Stores (step 4) as needed.

An important challenge is maintaining a consistent view of the
data on read replicas. There are two types of consistency. First,
physical consistency refers to the consistency of internal structures
in the database, such as B-tree pages. For example, splitting a page in
an index tree modifies multiple pages. A read replica that traverses
the B-tree must observe changes to these pages as if they happened
atomically. On the master, physical page consistency is achieved by
locking the pages before they are modified. However, it would be
suboptimal to coordinate locks with read replicas. To avoid explicit
synchronization, the master writes log records in groups, always
setting the group boundary at a physically consistent point. Read
replicas read and apply log records atomically per these group
boundaries keeping its database view physically consistent. The
LSN of the last log record processed by a read replica represents



2 Read replica queries master for

the latest log location and LSN
and updates master on the oldest
LSN that might be used

— Read replica

Read replica
reads log records
to update its
buffer pool

T

- 3

Log Store nodes

T Page Store

‘4 Read replica
reads page from

page stores

1 Master writes log
records to Log and
Page Stores

Figure 4: Read replica workflow

the replica’s physical view of the database and is called the replica
visible LSN.

A read replica reads and parses the log from Log Stores and
continuously advances its visible LSN. When a read transaction
needs to perform an operation that requires physical consistency
(e.g., an index lookup), it creates its own physical view for the dura-
tion of the operation by recording the current replica visible LSN,
called a transaction visible LSN (TV-LSN). Different transactions
can have different TV-LSNs. While the read replica keeps advancing
its visible LSN, a transaction’s TV-LSN can lag behind. Since such
operations are short, read replicas advance TV-LSN fairly quickly.

Many databases, including MySQL, maintain multiple versions
of rows to reduce conflicts between readers and writers. Logical
consistency refers to the consistency of user data as required by
the transaction’s isolation level. When a write transaction commits
on the master, a commit record is written to the log. While parsing
the log, a read replica updates its active transaction list. When a
read transaction starts on the read replica, it records the active
and committed transaction list. This list determines a transaction’s
logical data view, i.e., which data is visible to a transaction.

The buffer pool on a read replica can store multiple versions
of the same page. As the read replica reads and parses the log,
it applies the log records to the buffer pool pages and produces
newer versions of the pages on demand. This way, the read replica
already has most of the frequently used pages in its buffer pool,
thus relieving pressure on Page Stores.

5 MULTI-MASTER ARCHITECTURE

The Taurus MM high-level architecture is shown in Figure 5. It
is based on Taurus and reuses basic ideas from the read replica
support described in Section 4. Taurus MM has a shared-storage
architecture where both Log Stores and Page Stores are shared
among all masters. It uses pessimistic concurrency control and a
Global Lock Manager (GLM), as described in Section 3.

Each master maintains its own write-ahead log (WAL). A user
transaction executes on a single master — there are no distributed
transactions. Log records are written to the WAL of the master
executing the transaction. Each master periodically sends the lo-
cation of newly generated log records to all other masters. Using
this location information, a master reads log records generated by
all other masters and updates pages in its own buffer pool. Like

3493

Shared components | Global lock manager

(GLM)

Global slice manager
(GSM)

A

H

DB master 2

DB master 3
(read write)

(read write)

DB master 1
(read-write)

Low-latency RDMA Storage Network

| 1] L 1] 1
1 |ed Master 1 Master 2 Master 3 I
: Stores Log Log Log I
I — :
|

Page
tores

== Writing logs -_ Reading logs = ™=" Reading pages

Log record location and page to slice mapping updates

===sp | ock and page location requests and responses

Figure 5: Taurus MM components

single-master Taurus, logs of all masters are sent to Page Stores,
which update pages continuously and serve read page requests.

The Global Slice Manager (GSM) is responsible for creating new
slices and assigning newly created pages to a slice. The GSM is also
responsible for persisting the list of slices and page-to-slice map-
pings. At startup, each master reads the complete set of mapping
information and caches it locally. Pages are allocated and mapped
to a slice in batches of 4MB. Every time a new allocation is made,
it is asynchronously propagated to all masters in the cluster. This
mechanism ensures that calls to the GSM are infrequent and do not
affect performance in a noticeable way.

In the remainder of this section, we will describe in detail how
the concepts of VS clocks and hybrid page-row locks are imple-
mented and used to minimize network utilization and improve the
performance of Taurus MM.

5.1 Ordering and consistency

Taurus MM must maintain two types of consistency: physical and
logical. Physical consistency refers to the consistency of inter-
nal data structures. For example, pages containing data must be
recorded as in-use in database metadata, and B-tree parent nodes
must point to the correct child nodes. Logical consistency refers
to the consistency of user data, which in the case of Taurus MM,
guarantees conformance to ANSI SQL [9]. For example, no uncom-
mitted changes may be visible to any transaction apart from the
one that made the changes.

A single-master database relies on a sequence of ordered atomic
operations to ensure physical consistency in the face of multiple
concurrent updates. To perform an atomic operation, a thread ob-
tains one or more page locks and keeps them until the data is back
in a consistent state, thus preventing other threads from observing
inconsistencies. For example, when adding a row to a page, the page
is X-locked, after which space is allocated, the new row is added
to the page, and the X-lock is released. Ordering of log records is



ensured by using an LSN counter to stamp log records from every
database change operation, ensuring a total ordering.

In a multi-master database, several masters update the database
simultaneously, so using local locks is not sufficient. Also, using
a global clock service to totally order change operations would
require a message round trip to obtain a global timestamp for every
operation, which is not practical. Taurus MM uses a Global Lock
Manager (GLM) to maintain global page locks for atomic page
operations, while the ordering of operations is done by using VS
clock timestamps.

As described in Lamport and vector clock algorithms, messages
between nodes that carry information about system state must
carry timestamps [22, 25]. For Taurus MM, system state is the data
stored in the database, including internal structures and user data.
Log records and full pages are messages and must be timestamped.
These messages can be sent from master to master directly or indi-
rectly by writing them to and then reading them from Log or Page
Stores. Masters generate events that change the database state and
need to create timestamps. Timestamps are used to order messages
and to create a globally consistent snapshot of the system.

Since we are using VS clocks, an important question is whether
to use scalar or vector timestamps for each particular message type.
The overall goal is to minimize the use of full vector timestamps as
they have higher network bandwidth and disk space overhead. In
Section 2, we determined that when causality is known from the
context, a message can be stamped only with a scalar component
of the clock. Below we will describe in more detail when and how
to use vector or scalar timestamps of VS clocks.

5.1.1 Ordering page versions and log records. Each log record re-
flects a change to a single page. Also, all changes to a page are
known to be causally dependent because a master can only modify
the latest version of a page, and operations on a page are serialized.
Consequently, pages and log records can be stamped with the scalar
component of the VS clock of the node that modified the page. This
timestamp serves as the LSN for the log record and the page.

When a page is to be modified by a master that does not have
the page X-locked, the master sends an X-lock request to the GLM.
The GLM grants the lock and returns the latest scalar timestamp
of the page. The master then updates the local component of its
clock using formula VS4. Using this timestamp, the master checks
whether it already has the latest version of the page in its buffer
pool or needs to read it from the Page Store. When a new version
of a page is created, the new version and the corresponding log
record are stamped with the new timestamp using formula VS3.
All log records also contain the previous timestamp of the page.
When a page is unlocked by a master, the unlock message to the
GLM includes the page’s scalar timestamp, which is then passed
to the next master to be granted the lock. This way, all log records
for a given page can be ordered by using the page LSN, and gaps
created by missing log records can be detected using the previous
timestamp.

5.1.2  Ordering log flush buffers. As mentioned above, log records
are buffered and sent to Log and Page stores in the form of LFBs
containing multiple log records, possibly from multiple transactions.
As an LFB is a message, it needs to be timestamped. An LFB contains
log records for multiple pages, so we cannot know in advance if

3494

Master M3
LocalClock ¢, | G [ G | G

\
TS,
PS,

LFB can be applied to M3’s buffer pool when (TS,, PS,, TS, TS;) < (C;, C,, C, C3)

Master M2 ‘

LFB
Timestamp of this LFB

TS,
PS;

‘ Log records

TS,
PS,

TS,
PS;

Timestamp of previous LFB

Figure 6: LFB timestamp and master clocks

one LFB is causally dependent on another one, as they may affect
different pages and may or may not be generated independently.
Thus, to establish causal dependency between LFBs, it is not enough
to stamp them with scalar timestamps; a full vector clock timestamp
is required. Each master, before sending an LFB to a log store, stamps
it with the current vector value of its VS clock. Also, the timestamp
of the previous LFB is written so that the receiving side can detect
a missing LFB.

Page stores receive LFBs from masters and apply log records to
the pages. Page Stores operate on each page independently, apply-
ing records in the order of their timestamps. Since all changes to
the same page are known to be causally dependent, Page Stores
use the scalar timestamp of each individual log record, ignoring
the vector timestamp of the LFB.

Each master also receives LFBs from every other master by read-
ing them from the Log Stores. However, masters do not treat each
page independently. For example, when a master traverses pages
of a B-tree to find a specific record, all page versions read must be
consistent to ensure correctness. For a single master, this consis-
tency is achieved by writing LFBs at physical consistency points. A
read replica can then update pages in its buffer pool by reading and
applying the master’s log in order, at LFB boundaries. However, in
the multi-master case, there are multiple logs, and log records in a
log from one master may have causal dependencies on log records
from another master. This means causality dependency should be
enforced during every log read operation to guarantee a consis-
tent snapshot of the database. As discussed in Section 2, creating a
consistent snapshot requires using full vector timestamps. To be
causally consistent, master A reading an LFB from master B’s log
must be aware of all changes that master B was aware of when
writing this LFB. Consequently, all components of master A’s clock,
except the one that corresponds to master B, must be no less than
the corresponding component of the timestamp. The master A’s
clock component that corresponds to master B should be equal to
the master B component from the timestamp of the master’s B pre-
vious LFB, which means that we have processed the previous LFB
from master B. Fig. 6 has an example of the criteria used to check if
an LFB from master M2 can be applied immediately on master M3
or needs to wait for other LFBs. When the LFB is processed, the
processing master’s clocks are advanced using formulas VS2(a-b).

5.1.3 Consistent page reads. One way to ensure physical consis-
tency of an operation that requires reading multiple pages is to use
locking reads. Locking reads acquire a lock on each page involved
and ensure that we read the latest version of the page. However,
this results in a multitude of network locking requests that slow
down performance. A more efficient alternative, viable in many



cases, is to use versioned reads. The idea is to fix the point in time
and read all pages involved as of this point. Versioned reads are
useful for cases when reading an older version of a page suffices,
such as when there is no intention to modify data being read under
read committed or snapshot isolation. Versioned reads avoid global
page locks reducing network traffic and improving performance.

The local VS clock on a master encodes the progress of the master
and its knowledge of other masters’ progress, representing a glob-
ally consistent view of the system on this master. It corresponds to
the replica visible LSN for a single-master Taurus database described
in Section 4), and for this reason, the current value of the clock is
called a visible LSN in Taurus MM as well. As in the single-master
replica case, when a transaction needs to perform a multi-page read
operation (e.g., an index lookup), it creates its own physical read
view of the database by recording the current master clock value,
which we call the transaction visible LSN (TV-LSN). Whenever a
page needs to be read, it is read either from the local buffer pool or
brought in from a Page Store by asking it to produce the latest ver-
sion of the page prior to the TV-LSN. Thus, the TV-LSN represents
an instantaneous consistent snapshot of the database. We discuss
the implementation details of version reads in Section 5.3

5.1.4  Strict transaction consistency. A master’s knowledge about
the progress of other masters advances as it reads their logs. How-
ever, this knowledge lags relative to real time. An application may
receive an update commit message, while some masters are still not
aware of it. In this case, the application trying to read from another
master, might get an outdated result. Some applications can tolerate
out-of-date results, however, a significant number cannot [10, 26].

In order to guarantee reading the latest data, Taurus MM uses VS
timestamps. A dedicated thread on each master continuously sends
amessage to every other master requesting the VS timestamp of the
last LFB. Once replies from all masters are received, the next mes-
sages are sent, thus capping the rate of messages exchanged. When
a transaction specifying that it requires strict consistency arrives
at a master, the master puts it on hold until the next timestamp
request is sent and replies are received. The received timestamps
are combined by selecting the maximum across all replies for each
vector component. The resulting vector timestamp is not less than
the timestamp of any master in the cluster as of the time when the
transaction arrived. In other words, it includes all changes to the
database prior to when the transaction arrived. The transaction
then waits until the local master’s VS clock passes this timestamp
and, by that time, the local master is aware of all database changes
that happened before the time when the transaction began. This
consistency level can be configured at transaction granularity, al-
lowing maximum flexibility for a user.

Summarizing the contents of this section, we described situa-
tions when scalar and vector timestamps of VS clocks are required.
When stamping log records and pages, lock messages, and ordering
log records, scalar timestamps are sufficient, as these operations
involve only one page plus the knowledge that all operations are
causally dependent. When updating a master’s buffer pool with the
contents of an LFB, creating a physically consistent read view, or
supporting strict consistency, vector VS timestamps are required,
as these operations involve multiple pages, and causality cannot be
determined without timestamps.

3495

5.2 Lock processing

This section provides additional implementation details of the han-
dling of page locks and row locks in the global lock manager (GLM)
and in the masters.

5.2.1  Lock processing in the GLM. The GLM is responsible for
granting, reclaiming, and releasing page locks. When granting a
page lock, the GLM also sends the requesting master information
about row locks currently held on the page. The master needs
this information to avoid granting conflicting row locks. When
the GLM processes a page lock request, it checks if the requested
lock is compatible with existing locks, if any, on the page. If the
lock cannot be granted immediately, the GLM sends a lock reclaim
request to all masters holding the lock in conflicting modes. When
a master releases a lock, it sends information about all row locks
on the page back to the GLM for processing.

The GLM also keeps track of completed remote transactions. For
each received row lock, if the owning transaction has completed
already, the GLM discards the row lock. If the row lock is new, it is
added to the GLM’s row lock information. A row lock that exists
in the GLM but is not found in the reclaim response message is
removed from the GLM since either the row lock has been released
or moved to a different page.

5.2.2  Page lock processing in a master. When a master receives a
lock-granted message from the GLM, it merges the row lock infor-
mation contained in the message with its local row lock information.
A master also keeps track of terminated remote transactions. If the
transaction owning a row lock has terminated already, the master
discards the row lock. A row lock owned by an active transaction
that occurs in the lock-granted message but not on the master is
added to the LLM.

5.2.3 Row lock handling in a master. When a transaction termi-
nates, it releases all its row locks. If there are transactions waiting
for a released row lock, one of them is chosen to be the next lock
owner. To grant a row lock, however, the covering page lock must
be held as we have described. The protocol uses an approach that
avoids adding extra page lock requests just to grant row locks to a
waiting local transaction.

When a master learns that a transaction has terminated, its
LLM examines the row locks released by the transaction. A local
transaction that is waiting for a released row lock is woken up if
the LLM determines that the transaction can get the lock according
to the scheduling policy. At that point, if the master is holding
the covering page lock, the row lock is granted to the transaction
immediately. Otherwise, it waits until the master has acquired the
covering page lock.

Once the page lock is re-acquired, the transaction confirms that
no other transaction is holding the row lock and converts the row
lock from a grant-pending to a granted state. If the row lock has
been granted to another transaction or the transaction now requires
a stronger and incompatible row lock mode, the transaction up-
dates the row lock waiter information, resets the grant-pending
state, goes into a wait state, and retries the operation later when
it is woken up again. At that point, the covering page lock can be
reclaimed by the GLM.



5.2.4  Row lock migration. In a B-tree index, a row can be moved
to a new page by a page split or page merge. A page split occurs
during a row insert or update when the target page does not have
sufficient space. A new page is allocated, and some rows from the
target page are moved to the new page. A page merge occurs during
a row delete when the space used on the target page falls below
a threshold. Rows from the target page are moved to an adjacent
page with sufficient space, and the now-empty page is deleted. If
a moved row is locked, the row lock must also be migrated to the
corresponding page.

5.25 Row lock cleanup. When a transaction terminates, it releases
all its row locks locally but some or all of the row locks may be
cached by other masters or by the GLM. We must ensure that these
now stale copies of the row locks are eventually deleted. When a
transaction terminates, it does not notify the GLM immediately to
delete its row locks. Each master periodically (e.g., every second)
sends the IDs of terminated transactions to the GLM, which then
garbage collects its cached row locks.

Cleanup of the stale copies of row locks on a master is built on
top of the SQL read replica’s transaction handling mechanism in
the Taurus single-master architecture. When a write transaction
ends, a commit record is written to the log, and it is read by re-
mote masters, which determine what row locks were held by the
terminated transaction and deletes them from their LLMs.

5.2.6 Handling of shared row locks. To reduce network messages,
the protocol allows multiple masters to independently grant shared
row locks without immediate synchronization while holding a
covering page lock in a compatible mode.

Since different masters can grant S-locks independently, a mas-
ter’s view of row S-locks on a page can be different and incomplete
until row lock information is merged by the GLM and re-distributed
to masters together with new page lock requests. Even though there
is a time window in which knowledge about all shared row lock
owners is distributed across the cluster, with each master and the
GLM potentially having only partial knowledge about the shared
row locks in the cluster, this does not pose any data correctness
or consistency danger. Since S and X are incompatible lock modes,
when a master grants a row S-lock while holding the covering page
lock in S, it can be certain that no other master can possibly be
holding the same page lock in X. Furthermore, as a consequence of
the rule that a row X-lock can only be granted while holding the
covering page X-lock, the master can also be certain that no other
transaction can possibly have granted an X-lock to the same row.

For a local transaction holding the row lock in S, the only pos-
sibilities are 1) no other transaction is holding the same row lock
or 2) one or more transactions are holding the same row lock in S.
Neither case would impact the consistency of reading the row.

When another transaction wants to grant a row X-lock on that
page, it must first acquire the covering page X-lock. This causes the
GLM to reclaim the page lock and forces a synchronization of all
row locks held on the page by different masters. The GLM merges
the received row locks into a globally complete view and forwards
it to the requesting master.

3496

5.3 Versioned reads

As described in Section 5.1.3, versioned reads are provided by creat-
ing a globally consistent snapshot using a vector clock timestamp,
called a TV-LSN. Although, theoretically, any page version has to
be read as it was at this timestamp, in practice, there is a difficulty
associated with local changes. Changes to a page coming from re-
mote masters are received using a flush buffer that merges dozens
of changes to each page into one. However, local changes to a page
are created one by one, and multiple page versions produced by the
local master could quickly pollute its buffer pool and slow down
execution. The solution to this problem is that the master must
always observe the latest local changes to a page.

However, reading the latest locally modified version of a page
may result in a consistency violation, when at least one of the page’s
prior versions is not visible according to the TV-LSN timestamp of
the globally consistent snapshot. For example, if a page’s version
chain is (M2, 20), (M1, 30), then a read of the page using TV-LSN
timestamp [30, 10] is invalid because, according to the snapshot
timestamp, page version (M1, 30) is visible, but the page version
(M2, 20) is not visible. In other words, for a versioned read to be
consistent, it must satisfy the following property: if a version of
a page that was read was modified locally, then all its previous
versions must have been created earlier than the TV-LSN timestamp.
Violation of this property renders the read inconsistent and thus
invalid. When such an invalid read is detected, we abort the current
snapshot and fall back to locking reads. Experiments show that
such invalid reads are very rare.

Even when doing a versioned read, we need to ensure that local
transactions do not modify the local copy of the page being read.
To guarantee this, a master needs to lock the page locally, even for
versioned reads. However, local locks do not affect the network be-
cause this lock is intended to prevent only local page modifications.
Thus, a Taurus MM versioned read is a hybrid of a read replica
versioned read and a single-master locking read.

6 RELATED WORK

Taurus MM uses a shared-storage approach in order to minimize
network utilization for a broad class of OLTP workloads. IBM’s
Db2 pureScale also uses a shared-storage approach. It relies on a
centralized caching facility (CF) node to act as a global buffer pool
for dirty pages. If a master needs to read a previously modified
page, it reads the page from the CF node. After a master modifies a
page, it also copies the page to the CF node. The resulting network
load requires a dedicated high-end network connection between
the masters and the CF node [38]. Also, the memory requirement
for the CF is as high as 40 % of the sum of memory sizes across all
masters limiting the scalability of pureScale [30].

Oracle’s RAC architecture also uses a shared-storage approach,
as well as a distributed lock manager and buffer pool [27]. However,
it does not have a separate storage layer that updates pages based
on log records, thus causing high network utilization due to write
amplification and a higher load on masters due to the flushing of
full pages. If a RAC node has a slightly outdated version of a page,
it asks the page owner for the current holder of the latest version
of the page and then asks the holder for the desired version of the
page. Taurus MM, on the other hand, transfers only log records



between masters, reducing network utilization. Oracle RAC stores
row locks on the page itself, using an interested transaction list area
of each page. If space is not available for a row lock, the transaction
requesting the lock fails. This approach places a limitation on the
number of transactions that can lock a row. In contrast, Taurus MM
never writes full pages to disk which reduces the required network
bandwidth. Also, it does not store row lock information on pages,
thus not limiting the number of row locks and reducing the number
of page modifications. Finally, separate storage and compute layers
allow Taurus MM to share storage nodes among multiple tenants,
reducing costs and improving scalability.

Aurora multi-master is another commercially available multi-
master database with a shared-storage architecture [4]. Like Taurus
MM, it is designed for the cloud with separate storage and compute
layers, and avoids write amplification by shipping logs from masters
to storage nodes. Aurora multi-master does not have a lock manager.
Instead, it relies on optimistic concurrency control implemented in
the storage layer. When a log record reaches a storage node, the
node checks the log record for possible conflicts and rejects the
change if there is a conflict. The master that produces a log record
collects the replies from all storage nodes and aborts the transaction
if the log record is rejected by storage nodes. This approach results
in frequent transaction aborts on a workload with substantial data
sharing among masters. Applications may need to be modified to
handle these transaction aborts. Performance and scalability are
also affected by executing and rolling back aborted transactions.
Taurus MM only aborts transactions when there is a deadlock.

Using numerical counters as logical clocks was first proposed
by Lamport [22]. Later an algorithm for global snapshots using
Lamport clocks was proposed [7]. However, restrictions of this
algorithm and the inability to preserve causality resulted in the
invention of the vector clocks [12, 25]. The space overhead of vector
clocks prompted multiple optimizations [2, 10, 17, 34]. However,
according to other publications, these optimizations increase al-
gorithm complexity, compromise accuracy, and, in the worst case,
take as much space as vector clocks [17, 18]. The VS clocks used by
Taurus MM can produce scalar or vector timestamps, depending on
the use case, without sacrificing simplicity and accuracy, allowing
space-efficient timestamps to be used in most use cases.

Hybrid Logical Clocks (HCL) combine physical time informa-
tion with scalar clocks in one timestamp [19, 36]. This timestamp
values close to physical time and provides a method for creating
consistent snapshots. HCL is used by MongoDB and CochroachDB.
However, similar to Lamport clocks, HCL does not preserve causal
dependencies from timestamps. It is not possible to say based only
on the timestamps of two events if the events are not causally de-
pendent. VS clocks fully preserve dependencies which allow us to
do important optimizations, such as allowing us to apply LFBs read
from masters immediately if they are not causally dependent on
other master’s LFBs, as described in the section 5.1.2.

7 EXPERIMENTAL EVALUATION

In this section, we report experimental results for Taurus MM. We
begin by measuring absolute performance and scalability. Next, we
compare Taurus MM with Amazon Aurora multi-master (Aurora
MM) - the only other cloud-native shared-storage database that we

3497

know of. Then we compare Taurus MM with CockroachDB, which
is based on a shared-nothing architecture.

7.1 Experimental setup

We ran our experiments on a cluster with up to 8 master nodes.
Each node had two Intel Xeon Gold 6278C 2.6GHz CPUs running
CentOS 7. Buffer pool size was 128GB. Each master was restricted
to use only one CPU with 28 cores. The workload drivers ran on the
same machine but were restricted to the second CPU. The masters
were connected via a 25Gbps network. In addition, we deployed
the storage layer (Slice Stores and Log Stores) on 4 nodes with the
same hardware configuration.

We used two standard workloads for all our experiments: Sys-
bench and a TPC-C variant created by Percona [29, 32, 35]). Sys-
Bench is a popular benchmark that generates an adjustable mix
of insert, delete, update, point-select, and range queries. We ex-
tended SysBench to make it possible to control the degree of data
sharing. On a cluster of N masters, we logically divided the tables
into N + 1 groups. The tables in the first N groups were private,
i.e., each group was assigned to a separate master, and only the
designated master accessed tables in the group. The last group was
shared, i.e., any master could access tables in this group. When an
experiment specified a sharing degree of X%, X% of queries were
made against the shared tables, and the rest against the master’s
private tables. A fully partitioned workload corresponds to X=0%,
and a fully shared workload to X=100%. In our setup, each group
consisted of 100 tables for a shared workload and 200 tables for
a fully partitioned workload. Each table had 2.35M rows, so that
each master accessed 100GB of data. The TPC-C benchmark is an
industry-standard benchmark for evaluating the performance of
OLTP systems. Data was partitioned by warehouse across mas-
ters, but 10% of the transactions accessed data in another master’s
partition. Unless mentioned otherwise, we used 1000 warehouses.

7.2 Taurus MM overall performance

Taurus MM performance on SysBench write-only, SysBench read-
write (80% reads, 20% writes), and the TPC-C benchmarks are pre-
sented in Fig. 7(a-c). On the X-axis, we vary the cluster size from 1
to 8 masters. On the Y-axis, we show throughput relative to single
master as well as absolute throughput. Each line corresponds to a
different data sharing. TPC-C has a fixed 10% of shared queries.

Results for the read-only workload are omitted as it scales per-
fectly due to versioned reads. The fully partitioned workload scales
nearly linearly with the number of masters. Sysbench write-only
and read-write with 10% sharing and TPC-C workloads achieve
3.5%, 4.5x and 5x speedup, respectively, on a cluster with 8 masters.
As expected, on workloads with higher degrees of data sharing, scal-
ability suffers, with write-only and read-write workloads achieving
less than 2x speedup on an 8 node cluster at 30% and 50% sharing,
respectively. Due to the limited hardware available, we were not
able to get results for a cluster of 16 masters, but scalability up to 8
nodes was close to linear.

7.3 Comparison with Aurora MM

Fig. 8 compares Taurus MM with Aurora MM using the same num-
ber of cores and buffer pool memory. In all tests, we observed that



©20% shared 30% shared

1540

WPartitioned

#10% shared

1320

1100

2
8
3
Thousand QPS

2
8
H

QP relative to a single master

© B N W B U @ N

N
I
S

QPS relative to a single master

O R N WS U O N ®

BTPC-C

®Partitioned #10% shared ®20% shared +30% shared %50% shared

@

2080 840

~ PO
8 & § 2
g8 § & 8
Thousand tpmC

-

140

5
8
sa
QPS relative to a single master
w

o

Master number

(a) SysBench write-only

Master number

(b) SysBench read-write

6 7 8 1 2 3 4 5 6 7 8

Master number

(¢) TPC-C

Figure 7: Taurus MM performance on SysBench and TPC-C

-B-TPC-C (Taurus MM) ~4-10% shared Read-Write (Taurus MM) -e-10% shared Write-only (Taurus MM)

-B-TPC-C (Aurora MM) ~0-10% shared Read-Write (Aurora MM) -C-10% shared Write Only (Aurora MM)

5
gos — ¢
g 4
£
@35
) )
£ 3
5
©
g25
v 2
2
&15
£,
4
g0.5
0

4 5
Master number

Figure 8: Taurus MM vs. Aurora MM

Table 1: Taurus MM vs. Cockroach DB: TPC-C results

Taurus MM CRDB

1000w | 5000w | 1000w 5000w

6 nodes tpmC 250000 | 216000 | 121000 137000
Latency (ms) | 17/48 16/35 | 90/150 | 220/620

12 nodes tpmC 691000 | 734000 | 164000 | 279000
Latency (ms) | 21/106 | 19/80 | 150/300 | 590/1280

Scale factor 2.8 3.4 1.4 2
Efficiency 0.7 0.8 0.7 1.0

single master performance of Taurus MM exceeded that of Aurora
MM. However, Aurora MM does not expose hardware details, apart
from the compute layer, so we report only performance numbers
relative to a single master. Aurora does not allow more than 4 mas-
ters, so 8 master performance is measured only for Taurus MM.
Both databases scale nearly identically for fully partitioned work-
loads, thus partitioned results are omitted. However, Taurus handles
workloads with even a small degree of data sharing much better.
In Aurora with shared write workloads, we have observed a large
number of conflicts resulting in the majority of transactions being
aborted on all masters but one and uneven performance between
masters. Taurus MM did not experience any transaction aborts due
to its lock-based concurrency control.

7.4 Comparison with CockroachDB

In this section, we compare Taurus MM with a system based on
a shared-nothing architecture. We chose CockroachDB (CRDB),
which is open source and has demonstrated better performance

3498

than Spanner and TiDB [15, 33]. We deployed CRDB on the same
cluster as Taurus using two configurations with 6 and 12 nodes, re-
spectively. The goal was to compare the performance of the systems
using identical hardware. Since Taurus uses 4 nodes exclusively for
the storage layer, and CRDB combines compute and storage layers
on each node, we compared the 6 and 12 node CRDB configuration
with 2 and 8 masters in Taurus MM, respectively. For both CRDB
and Taurus MM, we experimentally determined and used the num-
ber of connections that maximizes the throughput. For Taurus MM,
we used 64 connections per master, and for CRDB, the number of
connections varied from 128 to 512 per node.

For CRDB, we ran the TPC-C like benchmark that comes with
CRDB. For Taurus MM, we ran the Percona variant of TPC-C. TPC-
C think/keying time was set to zero for both benchmarks. We
present results for 1000 and 5000 warehouses in Table 1. For each
run, we recorded New Order transactions per second (tpmC) as
well as transaction average/95% latencies. In all cases, Taurus MM
throughput was noticeably higher, varying from 60% higher for 6
nodes and 5000 warehouses to 320% higher for 12 nodes and 1000
warehouses. Taurus MM also had considerably lower transaction
latency, both average and 95%. In addition, we report a scale fac-
tor, i.e., relative throughput increase between 6 and 12 nodes, and
efficiency, i.e., scale factor divided by the relative increase of the
number of front-end nodes (2x for CRDB and 4x for Taurus MM).
As noted in the Introduction, a shared nothing architecture is sub-
ject to overhead of the distributed commit, which grows with the
number of nodes involved in a transaction. For a given workload,
this number is limited by the complexity of transactions. Once the
number of nodes in a cluster exceeds this number of nodes involved
in a transaction, scalability becomes ideal. On a smaller database
with 1000 warehouses, scaling efficiency of Taurus and CRDB are
the same. However, on a larger database, where amount of data
conflicts is smaller, CRDB demonstrates more efficient scaling.

8 CONCLUDING REMARKS

Taurus MM is a multi-master OLTP database system specifically
designed for cloud environments. It is a shared-storage system with
separate compute and storage layers and uses a global lock manager
to coordinate read-write access to database pages. Many OLTP
workloads are mostly partitionable where only a small fraction of
pages are shared among multiple clients. For example, in TPC-C,
only 10% of accesses are to a “foreign” warehouse. A key goal of



Hybrid Locks mBaseline 1l mBaseline 2

11l n

50% shared

Thousands Messages Per

Partitioned Fully shared

Figure 9: Impact of hybrid page-row locks

the design was to achieve good performance and scalability on
workloads with a low degree of sharing.

Taurus MM incorporates two key innovations aimed at reduc-
ing network load and improving performance: vector-scalar (VS)
clocks and hybrid page-row locking. VS clocks reduce network load
by allowing the most frequent messages (log records) to be times-
tamped with a single scalar timestamp and far fewer messages with
a vector timestamp. With VS clocks, the system retains the ability
of transactions to see a system-wide consistent state. The purpose
of hybrid page-row locking is to improve transaction latency and
throughput by reducing the number of lock requests sent to the
global lock manager. In particular, if a page is accessed by a master
for some time, locking is automatically delegated to the master.
Our experimental results confirm the performance and scalability
of the system. On the TPC-C benchmark, scaling efficiency was
84% up to four masters and 62% up to eight masters, achieving a
total throughput of 734,000 tpmC with eight masters. Experiments
with the SysBench benchmark showed, as expected, that scalability
deteriorates as the degree of shared access increases. On cluster size
of up to 8 compute nodes, we demonstrated superior performance
on TPC-C compared to Aurora MM and CockroachDB.

APPENDIX A. IMPACT OF INDIVIDUAL
IMPROVEMENTS

We ran a number of experiments aimed at estimating the impact of
three improvements in isolation: VS clocks, versioned reads, and
hybrid row-page locks.

Impact of VS clocks

To estimate the impact of VS clocks on network bandwidth, we ran
the fully partitioned write-only SysBench workload on a cluster
with 8 masters. The total number of log records generated was 11.8
mln per second, corresponding to 570 MB/s of logs with VS clocks
and 1,800 MB/s with vector clocks. The overall reduction in log
data was 68%. Each log record is sent to three log servers and three
page stores, and read by seven other masters, so transported over
the network a total of 13 times. This adds up to a total network load
of 13*1,800MB/s = 22.9GB/s with vector clocks and 13*570Mb/s =
7.2GB/s with VS clocks - a substantial saving of network bandwidth.
It is worth noting that Taurus already performs simple compression
of log records. Also, due to the batching of log records and lock
messages, TCP packet size is maximized, resulting in TCP/IP header
overhead being minimized as most segments are 1500 bytes.

The above experiment demonstrates the upper bound of the
network traffic saved. In order to test a more realistic workload, we
ran TPC-C on the 8 node cluster. Even then, the rate of log records

3499

generated by all masters was 72MB/s with VS clocks and 230MB/s
with vector clocks. In summary, VS clocks significantly reduce
network load, which helps reduce the investment in networking
infrastructure required to support tenant workloads.

Impact of versioned reads

VS clocks enable instantaneous creation of global snapshots, thus
enabling consistent versioned reads. To estimate the performance
impact of versioned reads, we ran the SysBench workload with

versioned reads and with locking reads on a 4-master cluster. Two
masters ran a fully-partitioned SysBench write-only workload, and

two masters ran a SysBench read-only workload reading the data
modified by the first two masters. We ran the workloads once with
locking reads and once with versioned reads and compared the
results. Versioned reads with VS clocks resulted in 40% fewer page
lock requests and 116% more queries per second.

Impact of hybrid locks

We also tried to estimate the reduction in network traffic due to
our hybrid page-row locking protocol. We compared our approach
with a system where row locks are explicitly granted by a GLM.
The local lock manager is responsible for granting row locks to
transactions executing on its master and for releasing locks back
to the GLM. A similar approach is used in IBM Db2 pureScale [38].

There are multiple possible policies for releasing locks to the
GLM. One option (Baseline 1), is to release locks to the GLM only
upon request from another master. This approach works very well
for fully-partitioned workloads, as after the initial warm-up period,
no further lock requests are sent to the GLM. However, for a shared
workload with lock migration between masters, each lock reclaim
request involves up to four message exchanges.

An alternative approach (Baseline 2), is to release a row lock to
the GLM as soon as the transaction holding the lock completes. This
approach requires up to two messages for every lock request and
one unlock message per transaction, as all row locks are released
upon transaction completion.

Our hybrid page-row locks do not require any lock messages be-
yond page locks. To evaluate the impact of our locking approach, we
ran three variants of the read-write SysBench workload (80% reads,
20% writes) on a 4-master cluster: fully partitioned, 50% shared, and
100% shared. We disabled versioned reads and measured how many
lock-related messages would be sent with the two baseline poli-
cies and with our hybrid page-row locking algorithm. The results
are presented in Fig.9. Hybrid page-row locking performs better
than both baseline alternatives, reducing the number of messages
by 25%-44%, with the exception of the fully partitioned workload
where both Baseline 1 and hybrid locks produced no lock-related
messages after the initial warm-up.

ACKNOWLEDGMENTS

This work would not be possible without people who greatly con-
tributed to the Taurus MM: Jin Chen, Hongbin Lu, and Juncai Meng.
We also want to express gratitude to Calvin Wong, David Bigagli,
Gaghik Khachatrian, Sergey Vojtovich, Sergey Glushchenko, Alexey
Kopytov, Zheshan Hou, Zixi Qu, Haoze Huang, and Gord Sissons
for their expertise and contribution.



REFERENCES

(1]

(2]
(3]

[12

[13]
[14]
[15]

[16

[17]

[18

[19]

[20]

Michael Abebe et al. 2020. DynaMast: Adaptive dynamic mastering for replicated
systems. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, Texas, USA, 1381-1392.

P.S. Almeida, C. Baquero, and V. Fonte. 2008. Interval tree clocks. In International
Conference On Principles Of Distributed Systems. Springer, Luxor, Egypt, 259-274.
P. Antonopoulos et al. 2019. Socrates: The New SQL Server in the Cloud. In
Proceedings of the 2019 International Conference on Management of Data (Am-
sterdam, Netherlands) (SIGMOD ’19). ACM, New York, NY, USA, 1743-1756.
https://doi.org/10.1145/3299869.3314047

E. Boutin and S. Abraham. 2019. Amazon Aurora Multi-Master: Scaling out
database write performance. Amazon Relnvent.

M. Bravo et al. 2015. On the use of Clocks to Enforce Consistency in the Cloud.
IEEE Data Eng. Bull. 38, 1 (2015), 18-31.

S. Chandrasekaran and R. Bamford. 2003. Shared cache-the future of parallel
databases. In Proceedings 19th International Conference on Data Engineering (Cat.
No. 03CH37405). IEEE Computer Society, NY USA, 840-840.

K Mani Chandy and L. Lamport. 1985. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems (TOCS) 3,
1(1985), 63-75.

J. C. Corbett et al. 2013. Spanner: Google’s globally distributed database. ACM
Transactions on Computer Systems (TOCS) 31, 3 (2013), 1-22.

C.J. Date and H. Darwen. 1997. A Guide to the SQL Standard: A user’s guide to
the standard database language SQL. Addison-Wesley, San Francisco, CA.

G. DeCandia et al. 2007. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS operating systems review 41, 6 (2007), 205-220.

A. Depoutovitch et al. 2020. Taurus Database: How to Be Fast, Available, and
Frugal in the Cloud. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD °20). As-
sociation for Computing Machinery, New York, NY, USA, 1463-1478. https:
//doi.org/10.1145/3318464.3386129

J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial
ordering. In Proc. 11th Australian Comput. Science Conf. Australian National
University. Department of Computer Science, Canberra, Australia, 56-66.
Goetz Graefe. 2010. A Survey of B-Tree Locking Techniques. ACM Trans. Database
Syst. 35,3, Article 16 (jul 2010), 26 pages. https://doi.org/10.1145/1806907.1806908
R. Harding et al. 2017. An Evaluation of Distributed Concurrency Control. Proc.
VLDB Endow. 10, 5 (jan 2017), 553-564. https://doi.org/10.14778/3055540.3055548
Dongxu Huang et al. 2020. TiDB: a Raft-based HTAP database. Proceedings of
the VLDB Endowment 13, 12 (2020), 3072-3084.

Jesper Wisborg Krogh. 2021. InnoDB Locks. Apress, Berkeley, CA, 123-140.
https://doi.org/10.1007/978-1-4842-6652-6_7

A. D. Kshemkalyani and A. Misra. 2020. The bloom clock to characterize causality
in distributed systems. In International Conference on Network-Based Information
Systems. Springer, Victoria, Canada, 269-279.

Ajay D Kshemkalyani, Min Shen, and Bhargav Voleti. 2020. Prime clock: Encoded
vector clock to characterize causality in distributed systems. J. Parallel and Distrib.
Comput. 140 (2020), 37-51.

S. Kulkarni et al. 2014. Logical physical clocks. In Principles of Distributed Systems:
18th International Conference, OPODIS 2014, December 16-19, 2014. Proceedings 18.
Springer, Cortina d’Ampezzo, Italy, 17-32.

Ten H Lai and Tao H Yang. 1987. On distributed snapshots. Inform. Process. Lett.
25,3 (1987), 153-158.

3500

[21]
[22]

(23]

[27]

[28]

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35-40.
L. Lamport. July 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21 (July 1978), 558-564.

Q. Lin et al. 2016. Towards a Non-2PC Transaction Management in Dis-
tributed Database Systems. In Proceedings of the 2016 International Conference
on Management of Data (San Francisco, California, USA) (SIGMOD ’16). As-
sociation for Computing Machinery, New York, NY, USA, 1659-1674. https:
//doi.org/10.1145/2882903.2882923

David B. Lomet. 1993. Key Range Locking Strategies for Improved Concurrency.
In Proceedings of the 19th International Conference on Very Large Data Bases (VLDB
’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 655-664.

F. Mattern. 1989. Virtual Time and Global States of Distributed Systems. In
Parallel and Distributed Algorithms. North-Holland, Netherlands, 215-226.
Bronson N. and ohers. 2013. TAO: Facebook’s Distributed Data Store for the
Social Graph. In 2013 USENIX Annual Technical Conference (USENIX ATC 13).
USENIX Association, San Jose, CA, 49-60. https://www.usenix.org/conference/
atc13/technical-sessions/presentation/bronson

Oracle. 2020. Oracle Real Application Clusters 19c Technical Architec-
ture. https://www.oracle.com/webfolder/technetwork/tutorials/architecture-
diagrams/19/rac/pdf/rac-19c-architecture.pdf

A. Pavlo et al. 2012. Skew-Aware Automatic Database Partitioning in Shared-
Nothing, Parallel OLTP Systems. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 61-72.
https://doi.org/10.1145/2213836.2213844

Percona. 2018. TPCC-Like Workload for Sysbench 1.0. Percona. Retrieved Octo-
ber 1, 2022 from https://www.percona.com/blog/2018/03/05/tpcc-like-workload-
sysbench-1-0/

Rees S. 2012. DB2 pureScale: Best Practices for Performance and Monitoring.
Technical Report. IDUG DB2 Technical Conference, Denver, CO, USA.

Michael Stonebraker. 1986. The case for shared nothing. IEEE Database Eng. Bull.
9,1 (1986), 4-9.

Sysbench. 2020. Scriptable multi-threaded benchmark tool. Sysbench. Retrieved
October 1, 2022 from https://github.com/akopytov/sysbench

R. Taft et al. 2020. Cockroachdb: The resilient geo-distributed sql database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. ACM, New York, NY, USA, 1493-1509.

F.J. Torres-Rojas and M. Ahamad. 1999. Plausible clocks: constant size logical
clocks for distributed systems. Distributed Computing 12, 4 (1999), 179-195.
TPC. 1992. TPC-C. https://www.tpc.org/tpce/

M. Tyulenev et al. 2019. Implementation of cluster-wide logical clock and causal
consistency in mongodb. In Proceedings of the 2019 International Conference on
Management of Data. ACM, Amsterdam, Netherlands, 636-650.

A. Verbitski et al. 2017. Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases. In Proceedings of the 2017 ACM
International Conference on Management of Data (Chicago, llinois, USA) (SIGMOD
’17). ACM, New York, NY, USA, 1041-1052. https://doi.org/10.1145/3035918.
3056101

IBM white paper. 2009. Transparent application scaling with IBM DB2 pureScale.
Zhenkun Yang et al. 2022. OceanBase: a 707 million tpmC distributed relational
database system. Proceedings of the VLDB Endowment 15, 12 (2022), 3385-3397.


https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3318464.3386129
https://doi.org/10.1145/3318464.3386129
https://doi.org/10.1145/1806907.1806908
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.1007/978-1-4842-6652-6_7
https://doi.org/10.1145/2882903.2882923
https://doi.org/10.1145/2882903.2882923
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/19/rac/pdf/rac-19c-architecture.pdf
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/19/rac/pdf/rac-19c-architecture.pdf
https://doi.org/10.1145/2213836.2213844
https://www.percona.com/blog/2018/03/05/tpcc-like-workload-sysbench-1-0/
https://www.percona.com/blog/2018/03/05/tpcc-like-workload-sysbench-1-0/
https://github.com/akopytov/sysbench
https://www.tpc.org/tpcc/
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3035918.3056101

	Abstract
	1 Introduction
	2 Vector-scalar clocks
	3 Hybrid page-row locking
	3.1  Approaches to managing row locks
	3.2 Locking protocol

	4 Taurus single master
	5 Multi-master architecture
	5.1 Ordering and consistency
	5.2 Lock processing
	5.3 Versioned reads

	6 Related work
	7 Experimental Evaluation
	7.1 Experimental setup
	7.2 Taurus MM overall performance
	7.3 Comparison with Aurora MM
	7.4 Comparison with CockroachDB

	8 Concluding remarks
	Acknowledgments
	References

