DoveDB: A Declarative and Low-Latency Video Database

Ziyang Xiao Dongxiang Zhang Zepeng Li
Zhejiang University, China Zhejiang University, China Zhejiang University, China
22021206@zju.edu.cn zhangdongxiang@zju.edu.cn lizepeng@zju.edu.cn

Sai Wu Kian-Lee Tan Gang Chen
Zhejiang University, China National University of Singapore Zhejiang University, China
wusai@zju.edu.cn tankl@comp.nus.edu.sg cg@zju.edu.cn

ABSTRACT

Concerning the usability and efficiency to manage video data gen-
erated from large-scale cameras, we demonstrate DoveDB, a declar-
ative and low-latency video database. We devise a more compre-
hensive video query language called VMQL to improve the expres-
siveness of previous SQL-like languages, which are augmented
with functionalities for model-oriented management and deploy-
ment. We also propose a light-weight ingestion scheme to extract
tracklets of all the moving objects and build semantic indexes
to facilitate efficient query processing. For user interaction, we
construct a simulation environment with 120 cameras deployed
in a road network and demonstrate three interesting scenarios.
Using VMQL, users are allowed to 1) train a visual model using
SQL-like statement and deploy it on dozens of target cameras si-
multaneously for online inference; 2) submit multi-object tracking
(MOT) requests on target cameras, store the ingested results and
build semantic indexes; and 3) issue an aggregation or top-k query
on the ingested cameras and obtain the response within millisec-
onds. A preliminary video introduction of DoveDB is available at
https://www.youtube.com/watch?v=N139dEyvAJk

PVLDB Reference Format:

Ziyang Xiao, Dongxiang Zhang, Zepeng Li, Sai Wu, Kian-Lee Tan,

and Gang Chen. DoveDB: A Declarative and Low-Latency Video Database.
PVLDB, 16(12): 3906 - 3909, 2023.

doi:10.14778/3611540.3611582

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dovedb/DoveDB_MVP.

1 INTRODUCTION

Surveillance cameras have been extensively deployed in urban
city to enhance public safety and intelligent transportation manage-
ment. These cameras produce continuous flows of live video streams
that constitute a massive video database, which is a potential gold
mine yet to be exploited. Owing to the rapid advancement in Al
technologies, object detection and tracking models have achieved
significant breakthroughs and been successfully applied on video
data to support various applications (e.g., pedestrian and vehicle

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611582

3906

tracking, traffic flow estimation and adaptive traffic light control).
Nevertheless, these models are computationally intensive and con-
sume enormous GPU resources. According to an assessment in [3],
the popular YOLOv3 object detector can only process 100 video
frames per second on the $10,000 NVIDIA Tesla V100 GPU. It is
thus expensive to deploy them to support real-time object detection
in an urban-scale surveillance camera network. For example, given
a sampling rate of 30 fps (frames per second), there are 30, 000 video
frames generated per second from 1, 000 cameras. Therefore, in or-
der to support city-scale video analytics, there requires a systematic
data management platform with high usability and low latency.

To address the efficiency issue, there has emerged a wave of
research attention for scalable video query optimization and a no-
ticeable number of video database systems has been proposed in
recent years. Systems like NoScope [7] and TAHOMA [1] adopt
the idea of designing a lightweight proxy model to replace the
slow-running oracle model, with tolerable accuracy degradation.
An alternative strategy, adopted by MIRIS [2] and OTIF [3], for
performance speedup is to adopt downsampling to reduce the num-
ber of processed frames. Among these systems, OTIF is the only
one capable of handling versatile queries, whereas the remaining
systems are designed with tailored optimization for a particular
type of video query. However, OTIF still requires expensive over-
head to find the optimal configuration and its performance is not
satisfactory with low sampling rate.

In this paper, we develop DoveDB as a more practical video
database with high usability and low latency. Compared with OTIF,
it is integrated with the following unique features:

1) Declarative query language. We devise a more expressive
video query language called VMQL, with augmented statements to
support model-oriented management and convenient deployment.

2) Lightweight ingestion scheme. We propose a lightweight
ingestion scheme to extract semantic information from videos and
construct spatial, temporal and visual indexes in real time.

We also notice the existence of recent demo papers on video
database, such as Vaas [4] for workflow-based analytical task, GNO-
SIS [8] for video event processing, and SVQ++ [5] for object interac-
tions in video streams. Compared with these works, our DoveDB is
towards systematic video data management and query processing,
with a comprehensive video-model query language, a complete
workflow of ingestion, indexing and query processing, and broader
demonstration scenarios for user interaction. We are the first to
demonstrate the usability of VMQL for both model training and
deployment. Furthermore, we have constructed an environment
with 120 cameras to validate our efficiency, which is a significant

https://www.youtube.com/watch?v=N139dEyvAJk
https://doi.org/10.14778/3611540.3611582
https://github.com/dovedb/DoveDB_MVP
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611582
https://www.acm.org/publications/policies/artifact-review-and-badging-current

v Query Engine !]

Model
; One-shot Query : | Model Training
sqQL saL | Processing | 1 m—
Querv — . odel
@ A Query Parser, : Continuous Query , I Acceleration
1 Processing 1 bmm e e mm o -
S R B
1 Real-time Ingestion 1 ! E Spatio-temporal :
I
1 Down Motion Object :) e Index 1
! Sampling Prediction Association |_,: High—dimensional:
' ! e Index I
________________________ n]
‘ i Inverted Index :
r--~——=--—~---- - il ol
H o o) iVideo b]
oIl ! Files —L DataModel T~ " Compressed Storage !
VideoSource__,! % - - 1
NN 1 j ! — = [
1) (@) (©) ! video — I
| uve]

I3 | Streams

Figure 1: System framework of DoveDB.

improvement over previous demonstrations that were performed
on single video clips.

2 SYSTEM OVERVIEW

The system framework of DoveDB is illustrated in Figure 1. Towards
uniform management of data sources in the format of video files or
live streams, we build an abstract data model called VideoSource,
which is essentially inherited from Spark’s RDD. A real-time video
ingestion engine is developed to extract semantic information, in-
cluding textual labels, visual features and spatio-temporal metadata.
The output is then used to construct offline indexes to facilitate
online query processing.

DoveDB provides SQL-like syntax to support convenient model
training and query processing. Users can train a visual model on
specified table columns, where we assume the annotations are avail-
able. The trained model can be conceived as a user-defined function
and deployed on a target VideoSource for online inference. We
also provide built-in model acceleration techniques such as neural
network compilation and quantization to reduce computational
complexity and accelerate inference speed. Our query processing
engine, assisted by the constructed offline indexes, can support a
diversified category of queries, including traditional selection and
aggregation (which are referred as one-shot queries), as well as
continuous queries deployed on video streams. In the following,
we present the core modules in DoveDB.

2.1 Data Model

DoveDB is built upon Spark and supports queries against historical
data and streaming data. We customize RDD to derive an abstract
data model called VideoSource to uniformly manage data sources
in the format of video files or live streams. The following SQL
statement encapsulates a disk file as VideoSource.

-- create VideoSource from an input file
CREATE VideoSource traffic_a
FROM FILE '/home/xzy/video-data/a.mp4';

In other words, VideoSource serves as the basic data structure
in DoveDB to support query processing. It is a collection of videos

3907

that can be processed in parallel. The elements of VideoSource are
processed from the first frame to the subsequent frames along the
time axis through RDD transformation. This procedure is typically
accompanied by calculation or memory persistence, which enables
model inference, indexing and storage on each frame.

2.2 Query Language Syntax

Several video database systems have extended SQL to VQL and
provided declarative language for video data management and
query processing. An example of selection query is illustrated in
the following.

SELECT frame FROM source_name
WHERE CONTAINS(label, 'CAR')
AND confidence > 0.8
ORDER BY timestamp DESC LIMIT 10;

In this paper, we devise a more expressive language called VMQL,
which augments existing VQL with functionalities for model-oriented
management and convenient deployment. For instances, to train
an object detection model for an out-of-vocabulary object type, we
can use the following statement

CREATE YOLO model_name
ON DATA_TABLE (img_column, label_column);

Here, we assume the training data have been annotated and
stored in the database. The trained model is named and stored in
our model corpus. It can be conceived as a user-defined function
and applied on a VideoSource for visual inference:

CREATE MONITOR_EVENT event_name
USING model_name
ON DATA_SOURCE source_name;

The above example shows how to create a monitoring event on
a target VideoSource using our trained model.

2.3 Real-time Ingestion

The advantages of OTIF [3] essentially come from its multi-object
tracking (MOT) model to extract the tracklets of all the moving ob-
jects and index them to support selection and aggregation queries.
In DoveDB, we devise a more advanced MOT model that works
well with low sampling rate. In other words, DoveDB can achieve
the same query accuracy level with OTIF by ingesting much fewer
number of video frames. In our implementation, we adopt the pop-
ular tracking-by-detection paradigm in the family of existing MOT
models. It first applies an existing detection model (e.g., YOLOX)
on the sampled frames to generate bounding boxes for the detected
objects. The second step is to associate those bounding boxes to
recover the tracklets of moving objects. A common strategy is to
apply Kalman filter to predict the future position of a bounding
box in the next frame. As such, a detected object is assigned to an
existing tracklet if its spatial matching distance is small. In DoveDB,
we devise a sampling-resilient MOT model, with accurate motion
prediction and robust bounding box association. To predict the
position of an object in the next sampled frame more accurately,
we propose an enhanced Kalman filter with more informative state

representation and parameter matrix update mechanism. The state
representation is augmented with acceleration speed to capture
non-linear motion pattern. The estimated and process covariance
matrix can be dynamically updated according to the divergence
between observation and internal state prediction. In addition, to
associate the detected bounding boxes more robustly, we propose a
comprehensive similarity metrics that integrates multiple spatial
matching clues, including overlap, center point distance and aspect
ratio of the bounding boxes. For more details of sampling-resilient
MOT, readers can refer to our technical reportl, where we also
compare our approach with many recent MOT models.

In the following, we briefly present the experimental comparison
between DoveDB and OTIF using GeForce RTX 3090 Ti as the
hardware environment and Jackson Town as the test dataset. In
Table 1, we vary the sampling ratio and report MOTA and IDF1,
which are two popular performance metrics to measure tracking
accuracy. When we use lower sampling ratio, the inference time
can be significantly reduced but the accuracy of tracking also drops.
Under the same ratio, DoveDB is much superior over OTIF in terms
of both efficiency and accuracy.

Table 1: Tracking performance of DoveDB and OTIF.

Sampling Ratio=1/8 Sampling Ratio=1/16 Sampling Ratio=1/32

MOTA IDF1 Time | MOTA IDF1 Time | MOTA IDF1 Time
OTIF 55.5 69.6 1113.5s 51.5 62.3 556.7s 42.3 53.1 278.3s
DoveDB 74.6 74.7 752.1s 70.8 67.4 353.7s | 65.2 59.9 181.2s

As mentioned, we can leverage the results from MOT models to
answer selection and aggregation queries. In Figure 2, we compare
DoveDB with OTIF in terms of the trade-off between efficiency and
query accuracy, by varying sampling ratios. The selection query
retrieves all the video frames containing at least one vehicle. The
aggregation query estimates the number of vehicles that appear in
the video clip. We use F1-score and Mean Average Error to measure
the quality of these two queries, respectively. With the same video
ingestion time, our DoveDB achieves significantly more accurate
retrieval performance than OTIF. Due to space limit, more details
are presented in section 4.9 of our technical report.

1.0
0.9
0.8
So.7
go.
Woe
i)
os
0.4
03

250 500 1000
Process Time (s)

250 0 1000 2000

Process Time (s)

125 125 2000

(a) Selection Query (b) Aggregation Query

Figure 2: Query processing performance of DoveDB and OTIF.

2.4 Offline Index Construction

For each frame of video, we employ visual models(i.e., YOLOX in
DoveDB) to extract a set of spatio-temporal meta-data, including
bounding boxes outlining detected objects, as well as their corre-
sponding visual features. Additionally, we capture meta-data such
as camera locations, frame timestamps, and the precise positions of

!https://github.com/dovedb/DoveDB/blob/main/SR-Track.pdf

3908

identified bounding boxes. We use OpenGauss? to store this data
and create the necessary indexes for them to facilitate a wide range
of advanced queries, such as interesting location-aware queries or
mining tasks.

2.5 Visual Model Management

In DoveDB, a visual model is conceived as a user-defined function to
perform a specified inference task, such as object detection, image
classification, image segmentation, etc. DoveDB is integrated with
built-in functions to train a new model from scratch or fine-tune
an existing visual model with additional annotation data. In order
to support model training and inference, the system integrates
PyTorch Lighting as the deep learning framework and exposes batch
data feeding API to support other machine learning frameworks.

2.6 Query Processing Engine

With the textual, visual, and spatio-temporal indexes built from the
extracted tracklets, online queries can be processed with very low
latency. For instance, to retrieve video frames containing ambulance
and firetruck, we can simply perform an intersection between the
inverted lists of these two labels. As another example, to estimate
the traffic flow with a time period, we can leverage the spatial-
temporal index to identify the relevant video frames and aggregate
the number of distinct objects within these frames. If a query cannot
be answered via the offline index and requires online inference,
we also provide model acceleration techniques, including network
compilation and quantization, to reduce computational complexity
and boost inference speed. Finally, our real-time ingestion scheme
can be naturally used to support continuous object tracking queries.

3 DEMONSTRATION SCENARIOS

3.1 User Interface

In Figure 3, we show the user interface of DoveDB for declarative
video query processing. The layout contains five main components,
marked as zone A, B, C, D, and E, respectively. In zone A, users
are allowed to select a target camera to view its streaming video
frames through the drop-down box. If the camera is deployed with
monitoring events or continuous queries, the output (e.g., the de-
tected bounding boxes for the multi-object tracking event) will be
displayed as well. Zone B contains the visual models that have been
trained and stored in the database, such as object detection model
YOLOX and our proposed multi-object tracking models. Zone C is a
map panel, deployed with 120 surveillance cameras for the demon-
stration purpose. The videos are generated using Carla simulator?,
which has also been used in Visual Road [6] to generate benchmark
datasets for video database. Zone D is a result panel for selection
and top-k queries to show the list of retrieved video frames. Zone
E is a command-line panel to accept user’s VMQL input.

3.2 User Interaction Scenarios

Scenario 1: Model training and deployment. In this scenario, we il-

lustrate the utilities of model training and deployment with VMQL.
Specifically, we train a lightweight model to detect red vehicles and

Zhttps://opengauss.org/
3https:/carla.org/

https://github.com/dovedb/DoveDB/blob/main/SR-Track.pdf
https://opengauss.org/
https://carla.org/

$) DoveDB

DoveDB: A Declarative and Low-Latency Video Database

@ online cameras: 120 | | Query results

" = Leaflet | DoveDB

> SELECT COUNT(DISTINCT car_id) FROM (SELECT car_id FROM mot(online_cameras) WHERE cam_id=102 AND timestamp>now()-300)

camera id
Select camera: Cam 0 ~ &
@
IS
1
=
A
Models
H H =
fo (bl 72~
car_classfier road seg = jam detector
ﬂi% HE
mot red_car_yolo
Ok
> CREATE MONITOR_EVENT mot_for_cars USING mot ON DATA_SOURCE online_cameras
Ok
65

> SELECT frame, timestamp FROM mot(online_cameras) WHERE cam_id=0 AND timestamp > now() - 300 ORDER BY COUNT(car_id) DESC LIMIT 10

Figure 3: User interface of DoveDB.

deploy it on 30 cameras for real-time object detection on streaming
data. To train the model, we first harvest training labels without
human intervention, i.e., we use expensive object detection models
to generate pseudo labels. Among the detection results, we filter the
objects whose class labels are not related to vehicle and leverage
prior knowledge on RGB color space to retain red vehicles. After-
wards, we train a lightweight object detector using the network
structure of YOLO nano whose model size is only around 4.0MB.
To accelerate training speed, we also adopt the mixed-precision
training scheme provided by NVIDIA. When the training is finished,
the model specifically designed for red vehicle detection will be
added to the model panel in Zone B. Using the following VMQL,
we deploy it on 30 cameras for real-time detection of red vehicles.
In the demonstration, once a target vehicle is detected, a dialog box
is popped from the camera to show the related video frame.

CREATE MONITOR_EVENT red_car_event
USING red_car_detector
ON DATA_SOURCE online_cameras WHERE cam_id < 30;

Scenario 2: Multi-object tracking and index construction. This sce-
nario illustrates the efficiency of multi-object tracking, which can
be viewed as a continuous query on video streams. Similar to the
above VMOQL statement, users can create a monitoring event to de-
ploy our sampling-resilient MOT model on multiple target cameras.
After the model has been deployed, users can click the camera icons
on the map plane to find the real-time tracking output. In addition,
the detected results will be collected to build indexes and support
queries that will be demonstrated in Scenario 3.

Scenario 3: Aggregation and top-k queries. This scenario illustrates

the low latency of query processing. As illustrated in the panel of

3909

command line in Figure 3, we use aggregation and top-k queries for
demonstration. The aggregation query obtains the number of vehi-
cles in a target camera within the specified time period. The top-k
query retrieves the most dense video frames and the result frames
will be displayed in Zone D. During the demonstration, since we
have built offline indexes for the target camera, these two queries
can be answered instantly.

4 ACKNOWLEDGMENTS
This work is sponsored by CCF-Huawei Populus Grove Fund.

REFERENCES

[1] Michael R. Anderson, Michael J. Cafarella, German Ros, and Thomas F. Wenisch.
2019. Physical Representation-Based Predicate Optimization for a Visual Analytics
Database. In ICDE. IEEE, 1466-1477.

Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael J. Cafarella, Tim Kraska, and Sam
Madden. 2020. MIRIS: Fast Object Track Queries in Video. In SIGMOD. ACM,
1907-1921.

Favyen Bastani and Sam Madden. 2022. OTIF: Efficient Tracker Pre-processing
over Large Video Datasets. SIGMOD (2022).

Favyen Bastani, Oscar R. Moll, and Samuel Madden. 2020. Vaas: Video Analytics
At Scale. Proc. VLDB Endow. 13, 12 (2020), 2877-2880.

Daren Chao, Nick Koudas, and Ioannis Xarchakos. 2020. SVQ++: Querying for
Object Interactions in Video Streams. In SIGMOD. ACM, 2769-2772.

Brandon Haynes, Amrita Mazumdar, Magdalena Balazinska, Luis Ceze, and Alvin
Cheung. 2019. Visual Road: A Video Data Management Benchmark. In SIGMOD,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim
Kraska (Eds.). ACM, 972-987.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale. Proc.
VLDB Endow. 10, 11 (2017), 1586-1597.

Piyush Yadav, Dhaval Salwala, Felipe Arruda Pontes, Praneet Dhingra, and Edward
Curry. 2021. Query-Driven Video Event Processing for the Internet of Multimedia
Things. Proc. VLDB Endow. 14, 12 (2021), 2847-2850.

(2]

	Abstract
	1 Introduction
	2 System Overview
	2.1 Data Model
	2.2 Query Language Syntax
	2.3 Real-time Ingestion
	2.4 Offline Index Construction
	2.5 Visual Model Management
	2.6 Query Processing Engine

	3 Demonstration Scenarios
	3.1 User Interface
	3.2 User Interaction Scenarios

	4 Acknowledgments
	References

