EricA: Query Refinement for Diversity Constraint Satisfaction

Jinyang Li Alon Silberstein Yuval Moskovitch
University of Michigan Ben Gurion University of the Negev ~ Ben Gurion University of the Negev
jinyli@umich.edu alonzilb@post.bgu.ac.il yuvalmos@bgu.ac.il

Julia Stoyanovich
New York University
stoyanovich@nyu.edu

ABSTRACT

Relational queries are commonly used to support decision making
in critical domains like hiring and college admissions. For exam-
ple, a college admissions officer may need to select a subset of the
applicants for in-person interviews, who individually meet the qual-
ification requirements (e.g., have a sufficiently high GPA) and are
collectively demographically diverse (e.g., include a sufficient num-
ber of candidates of each gender and of each race). However, tradi-
tional relational queries only support selection conditions checked
against each input tuple, and they do not support diversity con-
ditions checked against multiple, possibly overlapping, groups of
output tuples. To address this shortcoming, we present Erica, an
interactive system that proposes minimal modifications for selec-
tion queries to have them satisfy constraints on the cardinalities of
multiple groups in the result. We demonstrate the effectiveness of
ERica using several real-life datasets and diversity requirements.

PVLDB Reference Format:

Jinyang Li, Alon Silberstein, Yuval Moskovitch, Julia Stoyanovich, and H. V.
Jagadish. Erica: Query Refinement for Diversity Constraint Satisfaction.
PVLDB, 16(12): 4070 - 4073, 2023.

doi:10.14778/3611540.3611623

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/alons9911/Query_refinement.

1 INTRODUCTION

With the increasing awareness of the importance of diversity and
representation, many companies, educational institutions, profes-
sional societies, and other organizations around the world are fo-
cusing on developing their diversity recruiting strategy. Query
processing in relational databases is often used to select and pri-
oritize candidates in such settings. Traditional relational queries
specify conditions as part of the query predicates, and produce
tuples that satisfy these predicates. If a query is used as part of
some high-stakes selection process, then it would be natural to also
state diversity requirements — as cardinality constraints over some
demographic groups in the query result — as we demonstrate next.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611623

4070

H. V. Jagadish
University of Michigan

jag@umich.edu

ID Gender Race Major GPA || Q1 Q2
1 F White ME 3.65

2 F White CS 3.95 v v
3 F Black CS 3.40

4 F White ME 3.60

5 F White EE 3.85

6 F Black EE 3.90 v
7 F Asian EE 3.85

8 M White CS 3.65

9 M White CS 3.90 v v
10 M Black CS 3.85 v

11 M White CS 3.40

12 M White EE 3.65

13 M Asian EE 3.95 v
14 M Black ME 3.60

Figure 1: Job applicant dataset used in Example 1.1. Appli-
cants selected by queries Q1 and Q2 are marked with /.

ExAMPLE 1.1. Figure 1 shows a dataset D of 14 job candidates
applying to a tech company, with four attributes: gender, race, (college)
major, and GPA. Major and GPA are the qualification attributes that
may be used directly as part of the selection process. Gender and race
are the sensitive attributes that denote membership in demographic
groups, and to avoid direct discrimination in decision-making, they are
not directly specified in the selection conditions of a query. However,
to counteract the consequences of historical discrimination, sensitive
attributes may be used to state cardinality constraints for the result
set. To invite applicants with technical majors and high GPAs for an
interview, the company employs the following query:

Q1: SELECT =
FROM Applicants AS a
WHERE a.Major in ('CS') AND a.GPA >= 3.85

Candidates #2, #9, and #10 are selected by query Q1, as marked
in the corresponding column in Figure 1. However, this result does
not meet the diversity requirements of this company: only one female
applicant is selected, although half of the applicants are female, and no
Asian is selected, although Whites, Blacks and Asians are all present
in the applicant pool. To improve diversity, the company would like to
interview at least two female applicant, and at least one applicant of
each race. Additionally, to avoid overwhelming the human resources
department, the total number of selected candidates should not exceed
five. These requirements can be expressed as a set of cardinality
constraints over some groups in the query result set.

Diversity is a compelling need when distributing access to re-
sources and opportunities in a society, as we see in our running
example. Furthermore, it is also desirable in many other settings.
For example, we usually want search and recommendation systems
to produce diverse results [4]. The techniques we present here are
applicable to all these contexts.

https://doi.org/10.14778/3611540.3611623
https://github.com/alons9911/Query_refinement
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611623
https://www.acm.org/publications/policies/artifact-review-and-badging-current

One way to satisfy the diversity constraints is to modify the
result set directly, adding or removing some tuples: Adding candi-
date #7, who is both female and Asian, to the result of Q1 would
meet the requirements. However, this method may be illegal in
some jurisdictions and application contexts (e.g., it would be illegal
in the US in the context of employment, housing, and lending),
because it uses demographic group membership explicitly as part
of decision making, effectively subjecting applicants from different
demographic groups to different processes. Even where legal, this
method may have undesirable side effects, such as tarring all mem-
bers of a group, including its best-qualified members, as “weaker”
on account of there being a different standard applied to the group.

Unlike the explicit use of demographic attributes, modifying
the query predicates is usually legal as they serve as qualification
attributes for all candidates, irrespective of their demographic group
membership. For instance, the University of Texas faced a notable
case where explicit preference for Black applicants was disallowed,
but they were permitted to use rank in school as an admission
criterion, thereby admitting top students from poor-performing
segregated schools in preference to second-tier White students
from top schools, even if they have higher standardized test scores.

Returning to our running example, the company may slightly
adjust some selection criteria, such as adding Electrical Engineer-
ing (EE) as an accepted major, to select more female applicants.
However, this would expand the result set size beyond 5 candidates
to interview, so refining the query again by restricting the GPA
to at least 3.90 helps. The following query Q2 is a refinement that
satisfies per-group and total cardinality constraints.

Q2: SELECT =
FROM Applicants AS a
WHERE a.Major in ('CS', 'EE') AND a.GPA >= 3.90

To assist the decision maker in refining their queries, we present
Erica (for quEry Refinement for dIversity Constraint sAtisfaction),
a system that generates minimal query refinements to satisfy car-
dinality constraints on groups in the result. There are two main
challenges. First, executing candidate query modifications to assess
constraint satisfaction can be time-consuming, especially with large
datasets or remote databases. Second, the abundance of predicate
variations and the large number of predicates within a query make
exhaustive analysis computationally expensive. As proved in [7],
there is no polynomial time algorithm to solve this problem.

To address the first challenge, ERICA uses provenance annota-
tions [5] and translates constraints into algebraic expressions [2]
that can be used to test whether the queries satisfy the constraints.
To address the second challenge, Erica implements a search algo-
rithm that allows for efficient traversal over possible refinements
using a dedicated data structure.

2 TECHNICAL BACKGROUND

We next informally introduce the model and algorithms underlying
ERicA. Please see [7] for more details.

2.1 Model

Query refinement. We support the class of queries considered
in [8], conjunctive Select-Project-Join (SPJ) queries with selec-
tion predicates over numerical or categorical attributes. Selection
predicates over numerical attributes include range (<, <, >, >) and

=,

4071

equality (=). Categorical predicates are of the form attribute in
(constant_1,...,constant_n)!. For ease of presentation, in the
rest of the paper, we assume numerical predicates are of the form
attribute <op> constant.?

We use the notion of query refinement defined in [8] to for-
mally state our problem. For a numerical predicate, refinements
are changes to the value of the constant; for categorical predicates,
a refinement is done by adding or removing predicates from the
original constant list. We say that a query Q’ is a refinement of
query Q if Q' is obtained from Q by refining some predicates of Q.

Cardinality constraints. Let Q(D) be the result of executing query
Q over dataset D, and G be a group defined by specifying the value
of some attributes. A cardinality constraint Cr over a group G in
Q(D) is a conjunction of expressions of the form |Q(D)g| op x,
where op € {=, <, <, >, >} and x is a constant.

Minimal refinements. Given a dataset D, a query Q, and a set of
cardinality constraints Cr such that Q(D) does not satisfy Cr, there
may be multiple ways to refine Q in order to satisfy the constraints,
as we demonstrate next.

EXAMPLE 2.1. Revisiting our running example, query Q2 is a re-
finement of Q1 obtained by applying refinements to the predicates
over GPA and Major. Q2 satisfies all cardinality constraints, e.g., it
selects at least two females: |Q(D)Gender=r| = 2. Another possible
refinement of Q1 that satisfies all constraints is Q3: adjusting the
Major predicate to be a.Major in ('EE').

The above example suggests that the company can achieve its di-
versity goal through various query modifications. Minimal modifica-
tions to the original query are preferred, prioritizing a.GPA >= 3.60
over a.GPA >= 3.55. However, refinements modifying different
attributes might be incomparable without additional preference
information provided by the end user (as long as they all satisfy
the constraints). Thus, we define the set of minimal refinements.

For query Q and its refinements Q" and Q”, Q’ dominates Q"
if Q" is “closer” to Q than Q" for every refined attribute. A min-
imal refinement of Q w.r.t. Cr satisfies three conditions: (i) it is a
refinement of Q, (ii) Q' (D) satisfies Cr, and (iii) there is no other
refinement Q”’ that satisfies conditions (i) and (ii) while dominating
Q’. Multiple minimal refinements may exist, and the aim is to re-
port all of them. However, there may be cases where no refinement
satisfies the constraints, resulting in an empty set of refinements.

EXAMPLE 2.2. For our running example in Figure 1, query Q1, and
five cardinality constraints, Q2 and Q3 (from Example 2.1) are both
minimal refinements. Although Q4 with a.Major in ('EE') and
a.GPA >= 3.65 also satisfies all the constraints, it is not minimal
since it is dominated by both Q2 and Q3.

2.2 Generating minimal refinements

Given a query, the number of possible refinement queries can be
extremely large, especially when dealing with queries involving
multiple tables and numerous attributes. Evaluating their satisfac-
tion of cardinality constraints can be expensive, particularly with
large or remote databases, and/or a large number of constraints.
However, our solution eliminates the need for costly query evalua-
tion by utilizing data annotations based on provenance theory. Our

!Equivalent to attribute = constant_1 OR...OR attribute = constant_n
2Extending our solution to support other forms of numerical predicates, such as
attributel <op> constant-attribute2 is straightforward, and we do not discuss
them in this paper.

solution utilizes provenance to find the set of minimal refinements,
and leverages hypothetical reasoning [2] to examine the effect of
possible relaxations on the outcome of the query.

Provenance model. To capture possible refinements, we employ
conditional tables (c-tables) [6], to annotate tuples in the data with
the query selection conditions. Specifically, we use a set of variables
A(;.a] for each selection predicate A in the query and each value
t.A in the attribute A, for some tuple ¢ in the data. The annotation
of a tuple ¢, prov(t), is the product] A, 4] of the variables that
correspond to the attributes in the query and their values in t.
Using these provenance annotations, we can express cardinality
constraints with inequalities. The provenance inequality of the
constraint Q(D)g op x is Ztng proou(t) op x.

ExaMpLE 2.3. The following is the provenance inequality corre-
sponding to the condition |Q(D)Gender=r| = 2

MME - G3.65 + Mcs - G3.95 + Mcs - G3.40 + MME - G3.60
+MEE - G3.85 + MEE - G3.90 + MEE - G3.85 > 2

For a query Q over the database D, each possible refinement
Q’ corresponds to a valuation — an assignment of values to the
variables Vj(p) in the corresponding provenance expression. Vari-
ables that satisfy the query are assigned the value 1, while those
that do not are assigned the value 0. This approach effectively rep-
resents the query’s conditions and adapts to queries with varying
conditions or constants as we explore refinements. To account for
cardinality constraints, these values are then aggregated, enabling
us to assess the impact of query refinements on their satisfaction.

EXAMPLE 2.4. In Example 2.3, the valuation of query Q1 assigns 1
to Mcs and 0 to Mgg and My, as only tuples with Major CS satisfy
Q1. Similarly, 1 is assigned to G3.95, G3.90, and G3 g5, and 0 to other
GPA variables. With this assignment, only My - G3.¢5 = 1, making
the left-hand side sum 1, and so the inequality does not hold.

A query satisfies a set of cardinality constraints if and only if
the corresponding assignment satisfies the associated provenance
inequalities. By analyzing these inequalities, we can efficiently
assess the impact of refinements on constraint satisfaction without
accessing data or executing potential refinements.

Search algorithm. With a provenance model to test potential
refinements, the next question is how to find all the minimal refine-
ments efficiently. Our algorithm employs Possible Value Lists (PVL)
to represent potential refinements for each attribute. Numerical
predicates (A op c) are stored in a single list (14) of possible values
for A, sorted by their absolute distance from ¢ (|x — c|,x € I4).
Categorical predicates (A € C) are represented using multiple lists,
including 14, for each possible value v of A, with values of 1 (exis-
tence) or 0 (absence) to indicate the presence of v in C. The order
of 1 and 0 is determined based on whether v is already part of p..

Each minimal refinement can be represented as a list of indices,
one for each list in the PVL. The algorithm uses the PVL to locate
minimal refinements. Starting with the initial index in each list
(corresponding to the original query), the algorithm incrementally
increases the indices until the query satisfies the cardinality con-
straints. Based on the definition of minimality, any other minimal
refinement must have a smaller index in at least one list than in the
discovered query. Thus, the algorithm fixes the index in one list with
a smaller index and recursively searches for more refinements. We
show in [7] that our algorithm for searching minimal refinements

4072

lc
3.85
3.90
3.95
4.00
3.65
3.60
3.40

IMep | Myp | IMcs

NN G W N

Figure 2: Possible value lists (PVL) of the running example.

using the PVL is sound, complete, and can run over 100 times faster
than naively iterating over all possible refinements. Furthermore,
when all constraints are relaxation or contraction constraints (i.e.,
all inequalities are of the form C(D)g op x, where x is a constant
and op € {>,>} (or op € {<, <}) for all the constraints), we can
optimize the search further by leveraging a monotonicity property.

EXAMPLE 2.5. Figure 2 shows the PVL of our running example, con-
taining one list for the GPA predicate and three for the Major predicate.
To find the minimal refinements satisfying all constraints (Example
2.1), the algorithm uses a list of four indices to denote the index in
each of the four lists, initialized with the smallest indices [1,1,1,1]
for the original query Q1. The algorithm increases the indices until the
corresponding query satisfies the constraints. The minimal refinement
with indices [2, 1,1, 2] (highlighted in blue) is found. Based on the
definition of minimality, other minimal refinements must have index
1 in Iy, and/or index 1 in Ig. The algorithm then fixes the index in
Mgy to be 1 and recursively searches for minimal refinements in the
other three lists, followed by doing the same for I.

2.3 Related work

Prior research on query refinement [1, 8] focuses on introducing
slight query modifications to ensure the overall output satisfies
specified cardinality constraints. However, cardinality constraints
over specific groups in the output are not supported by these works.

Our work shares motivation with [9], aiming to satisfy group
cardinality constraints over a query result. However, their work
differs from ours in several important ways: (1) They only han-
dle constraints over a single binary sensitive attribute (e.g., either
gender or race), while we handle multiple sensitive attributes (e.g.,
both gender and race) and do not limit them to binary; (2) We sup-
port both query relaxation (i.e., generating more result tuples) and
query contraction (i.e., generating fewer result tuples) while [9]
only supports query relaxation; (3) Their objective is to minimize
the distance between the result sets produced by the original and the
rewritten query, while we aim to minimize the distance between the
queries themselves; (4) They support queries over a single relation,
while we support SPJ queries with predicates and constraints on
attributes across multiple tables (see [7] for details).

Our problem shares some similarities with work on why-not
questions [10, 11], where the goal is to explain missing tuples in the
output by refining the query. The main difference is that why-not
questions aim to include user-specified missing tuples, while we
aim to modify the cardinality of groups in the output.

3 SYSTEM OVERVIEW

Erica is implemented in Python 3 and React]S, designed to be
deployed on personal computers. Figure 3 shows the input and
output screens through which the user interacts with the system
and explores query refinements.

Input Screen (Figure 3a). The user provides Erica with data, a
selection query, and a set of cardinality constraints. They can upload
their dataset or choose from pre-loaded ones[1]. Erica offers an easy-
to-use interface to build selection queries by defining conditions
over the attributes [2]. The generated query [3] and its output [4] are
presented to the user. Users can also specify cardinality constraints
(5] The query is executed, and the cardinality of each group in the
output is displayed [6]. If constraints are not met, users can ask
ER1ca to refine the query by clicking the execution button [7].

Output Screen (Figure 3b). Once the minimal refinements are
computed, Erica displays all of them to the user, along with group
cardinalities in the result [8]. Modified selection conditions are high-
lighted in blue, and selected tuples are displayed next to each refine-
ment [9]. New tuples are highlighted in green, and removed tuples
are shown in red with a strike-through. Furthermore, users can
also sort refinements based on different properties [10], such as how
much a particular selection condition, the cardinality of a group,
or the result set is changed. For example, in Figure 3b, refinements
are sorted based on changes in grade1 selection condition [11].

4 DEMONSTRATION PLAN

Overview. We will demonstrate the functionality of Erica using
three real-life datasets: (1) Student?, containing demographic and
grade data of 395 students from two Portuguese high schools; (2)
Healthcare?, with demographics and clinical history of 887 pa-
tients; and (3) ACSIncome, with demographics and socioeconomic
information of 1,664,500 US Census respondents [3]. Attendees
will specify queries and cardinality constraints, and observe refine-
ments produced by the system. The running time of ERicA can
vary based on dataset size and characteristics, and on whether the
monotonicity optimization can be used (i.e., whether all constraints
are relaxations or contractions). For a query with 2-5 predicates
and 2-5 cardinality constraints, ERICA runs in interactive time for
all three datasets: within 1-2 seconds when the optimization can be
used, and within 5-60 seconds otherwise.

Demonstration scenario. Let us consider the Student dataset and
play the role of a policymaker selecting students to receive college
application guidance. First, as shown in Figure 3a, we enter selection
conditions: good grades (grade1 and grade2 are at least 13 out of
20), age between 15 and 18, and an expressed interest in attending
college. Next, we add cardinality constraints to the query results to
ensure adequate representation for underprivileged groups. We aim
to select a minimum of 30 female students and at least 15 students
from rural areas, making sure that students from these groups
receive information about colleges, and are encouraged to apply.
We also limit the total number of students to 100 due to resource
constraints. Upon executing the query, we obtain 100 students,
with 46 being female, satisfying the first constraint. However, only
13 students come from rural areas, falling short of the desired 15.
Therefore, we ask ERica to refine the query. We navigate to the
output view, where Erica has identified five minimal refinements
that satisfy all constraints. Changes in the selection conditions and
result sets are highlighted for us to review. Sorting the refinements
based on how much the condition gradel >= 13 is changed (as

3https://archive.ics.uci.edu/ml/datasets/student+performance
4https://github.com/stefan-grafberger/mlinspect/tree/master/example_pipelines/
healthcare

4073

ERICAIN

Your requested query

0 AND sgrade2 >= 130 AND sage
AND s.higherEdintention IN (yes)

IN(15-16.17-18)

W[5 178

o=

18-
®

(a) Input screen

We found some minimal refinements:

(b) Output screen
Figure 3: UI of Erica.

in Figure 3b), we observe variations from no change to a 2-point
adjustment. This helps the user find a refinement that best suits their
preference. Other properties, such as changes in group cardinalities
and overall results, can also be used to sort refinements.

ACKNOWLEDGMENTS

This work was supported in part by NSF under grants 1741022,
1916505, 1922658, 1934565, and 2106176, and by ISF grant 2121/22.

REFERENCES

Wesley W. Chu and Qiming Chen. 1994. A structured approach for cooperative
query answering. ACM TKDE 6, 5 (1994), 738-749.

Daniel Deutch, Zachary G. Ives, Tova Milo, and Val Tannen. 2013. Caravan:
Provisioning for What-If Analysis. In CIDR. www.cidrdb.org.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. 2021. Retiring
Adult: New Datasets for Fair Machine Learning. In Proceedings of NeurIPS.
Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in big data: A review. Big data 5, 2 (2017), 73-84.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance
semirings. In Proceedings of PODS.

Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-
tional Databases. J. ACM 31, 4 (1984).

Jinyang Li, Yuval Moskovitch, Julia Stoyanovich, and H. V. Jagadish. 2023.
Query Refinement for Diversity Constraint Satisfaction. https://github.com/
JinyangLi01/Query_refinement/blob/master/FullPaper/Query_Refinement.pdf.
Chaitanya Mishra and Nick Koudas. 2009. Interactive query refinement. In EDBT.
Suraj Shetiya, Ian P Swift, Abolfazl Asudeh, and Gautam Das. 2022. Fairness-
aware range queries for selecting unbiased data. In Proceedings of IEEE ICDE.
Quoc Trung Tran and Chee-Yong Chan. 2010. How to conquer why-not questions.
In Proceedings of ACM SIGMOD. 15-26.

Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query
by output. In Proceedings of ACM SIGMOD. 535-548.

—_——
2.%

[10]

(1]

https://archive.ics.uci.edu/ml/datasets/student+performance
https://github.com/stefan-grafberger/mlinspect/tree/master/example_pipelines/healthcare
https://github.com/stefan-grafberger/mlinspect/tree/master/example_pipelines/healthcare
https://github.com/JinyangLi01/Query_refinement/blob/master/FullPaper/Query_Refinement.pdf
https://github.com/JinyangLi01/Query_refinement/blob/master/FullPaper/Query_Refinement.pdf

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Model
	2.2 Generating minimal refinements
	2.3 Related work

	3 System Overview
	4 Demonstration Plan
	Acknowledgments
	References

