ShadowAQP: Efficient Approximate Group-by and Join Query via
Attribute-oriented Sample Size Allocation and Data Generation

Rong Gu* Han Li Haipeng Dai*

State Key Laboratory for Novel State Key Laboratory for Novel State Key Laboratory for Novel
Software Technology Software Technology Software Technology
Nanjing University Nanjing University Nanjing University

gurong@nju.edu.cn han li@smail.nju.edu.cn haipengdai@nju.edu.cn
Wenjie Huang Jie Xue Meng Li*
State Key Laboratory for Novel New York University Shanghai State Key Laboratory for Novel
Software Technology jiexue@nyu.edu Software Technology
Nanjing University Nanjing University

wenjiehuang@smail.nju.edu.cn

meng@nju.edu.cn

Jiaqi Zheng Haoran Cai Yihua Huang
State Key Laboratory for Novel No Affiliation Guihai Chen*
Software Technology caihaoran18@163.com State Key Laboratory for Novel
Nanjing University Software Technology
jzheng@nju.edu.cn Nanjing University
{vhuang,gchen}@nju.edu.cn
ABSTRACT PVLDB Artifact Availability:

Approximate query processing (AQP) is one of the key techniques
to cope with big data querying problem on account that it ob-
tains approximate answers efficiently. To address non-trivial sam-
ple selection and heavy sampling cost issues in AQP, we propose
ShadowAQP, an efficient and accurate approach based on attribute-
oriented sample size allocation and data generation. We select sam-
ples according to group-by and join attributes, and determine the
sample size for each group of unique value combinations to improve
query accuracy. We design a conditional variational autoencoder
model with automatic table data encoding and model update strate-
gies. To further improve accuracy and efficiency, we propose a set
of extensions, including parallel multi-round sampling aggregation,
data outlier-aware sampling, and dimension reduction optimiza-
tion. Evaluation results on diversified datasets show that, compared
with SOTA approaches, ShadowAQP achieves 5.8X query speed
performance improvement on average (up to 12.8%), while reducing
query error by 74% on average (up to 95%) at the same time.

PVLDB Reference Format:

Rong Gu, Han Li, Haipeng Dai, Wenjie Huang, Jie Xue, Meng Li, Jiaqi
Zheng, Haoran Cai, Yihua Huang, and Guihai Chen. ShadowAQP: Efficient
Approximate Group-by and Join Query via Attribute-oriented Sample Size
Allocation and Data Generation. PVLDB, 16(13): 4216 - 4229, 2023.

doi:10.14778/3625054.3625059

* represents the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.
doi:10.14778/3625054.3625059

4216

The source code, data, and/or other artifacts have been made available at
https://github.com/nju-lands/ShadowAQP.

1 INTRODUCTION

Approximate query processing (AQP) is proposed to compute ap-
proximate answers as exactly as possible in many time-inefficient
or resource-consuming query scenarios, such as exploratory analyt-
ics [4, 51], interactive visualization [35, 41], and real-time IoT data
summarization [30]. Instead of executing queries on the total data,
AQP performs sampling over data and generates answers based
on the samples to estimate the analytical query results. For join
queries, prior works on AQP aggregate join [3, 12, 14, 18, 20, 23, 32]
mainly adopt the join-after-sample strategy to avoid joining total
data. Naively taking samples from tables cannot guarantee the join
matching of sample tables, thereby suffering from high sampling
error [12]. As for group-by queries, existing approaches [2, 14, 20,
31, 44] have drawbacks in processing small groups, large group
variance, and data outliers issues.

For example, uniform sampling allocates the sample size of each
group in proportion to its original size. It would select fewer or even
no tuples from small groups, resulting in poor query accuracy [31].
Stratified sampling [2] assigns the sample size equally to each group.
Distinct sampler [20] guarantees that at least a certain number of
tuples in each sub-group will be selected as samples. However,
groups with high variances in the aggregation attribute are more
heterogeneous and require more sample tuples than the groups
with low variances. This issue also exists in sampling methods
like Universe Sampler [20] and Two-Level Sampling [14]. Though
works in [44] [31] consider the aggregation attribute variance, they
do not think about outlier tuples which have great influence on

https://doi.org/10.14778/3625054.3625059
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625059
https://github.com/nju-lands/ShadowAQP
https://www.acm.org/publications/policies/artifact-review-and-badging-current

the aggregate results. To sum up, a proper sampling size allocation
strategy is critical to the accuracy of AQP.

In addition, most existing AQP methods [18, 20, 23] rely on data-
scanning based sampling, which usually impose non-negligible I/O
overhead. To address the I/O cost issue, many machine learning
model-based AQP methods, which aim to learn the underlying
table data distribution, have been proposed [27, 28, 43, 55]. They
can be mainly classified into sample-based and probability-based
approaches. Sample-based approaches [47, 55, 66] generate sam-
ples based on learned models and obtain query answers on them.
However, prior work [55] does not allocate sample sizes accord-
ing to group-by or join attributes, and thus can hardly get suf-
ficiently accurate estimation. The probability-based approaches
[27, 28, 43, 45, 67] directly approximate query answers based on
the probabilities learned by models. These approaches suffer from
obvious query errors for join queries because it is difficult to learn
the joint probability distribution of tables.

In this paper, we propose ShadowAQP, an efficient and accurate
AQP approach based on the attribute-oriented sample size alloca-
tion and conditional sample data generation. We divide the AQP
process into two steps: sample size allocation and sample tuples
acquisition. Firstly, given the sampling ratio, our sample size allo-
cation algorithm determines the reasonable sample quota for each
group to improve the estimation accuracy. After that, to efficiently
and accurately generate samples, we devise a conditional generative
model with various table data encoding techniques and optimiza-
tion extensions. In this way, our approach can effectively estimate
the query results for queries without scanning data.

We mainly confront three obstacles in the design of the proposed
approaches. The first challenge is how to effectively select samples
from tables under a fixed sampling ratio to give a good approxi-
mation. As mentioned above, naively taking samples from tables
cannot guarantee the query result accuracy for all groups and the
join matching of sample tables, thereby suffering from high sam-
pling error. To address this challenge, we select samples according
to the given group-by and join attributes and determine the sam-
ple size allocation for each value combination of attributes under
the given total sample size. The proposed sample size allocation
method uses Markov’s inequality to get an upper bound of the error
function’s expectation, then sets the sample sizes by minimizing
the upper bound while ensuring enough samples for small groups.

The second challenge is how to build a generative model over
a table with various data types to approximate the underlying
data distribution with high fidelity. To address this concern, we
propose an approach called Table-CVAE that customizes the gen-
eral conditional variational autoencoder (CVAE) [49] model with
automatically-chosen data encoding strategies. Table-CVAE can
capture the conditional distribution of table data with a lightweight
neural network model. We also design three model update strategies
along with an automatic strategy selection method. During online
service, once given a query, Table-CVAE can efficiently generate
samples according to the query semantics.

The third challenge is how to reduce query accuracy loss caused
by learned model bias and outliers in the original dataset. Besides,
how to avoid the dimension explosion for complicated join queries,
such as multi-join queries? To address these problems, we propose
a set of extensions, including the parallel multi-round sampling

4217

aggregation strategy, data outlier-aware sampling method, and
dimension reduction optimization.
The main contributions of this paper are summarized as follows.

o Attribute-oriented sample size allocation. For the sam-
ple size allocation, we propose to select samples according
to the group-by and join attributes and determine the sam-
ple size quota for each value combination. The proposed
sample size allocation algorithm leverages Markov’s in-
equality to obtain an upper bound of the error function’s
expectation, then determines the sample sizes by minimiz-
ing the upper bound.

Conditional sample generation with automatic data
encoding and model update. To avoid inefficiently sam-
pling table data by scanning datasets, we propose Table-
CVAE, which can pre-encapsulate the table data distribu-
tion into a learned conditional generative model with both
automatic data encoding and automatic model update.
Extensions for query accuracy and efficiency. To re-
duce the data bias of model generation, we propose paral-
lel multi-round sampling aggregation strategy to improve
query accuracy. To prevent missing data outliers, we pro-
pose the data outlier-aware sampling method to identify
and separate outlier tuples. To handle complicated join
queries, we propose dimension reduction optimization to
efficiently generate samples for complicated queries.
Extensive experimental performance evaluation. Eval-
uation results on synthetic and real-world datasets show
that, compared with state-of-the-art approaches, our ap-
proach achieves 5.8x speedup on average (up to 12.8x)
in query latency, while reducing error by 74% on average
(up to 95%) in query accuracy at the same time. Moreover,
the model used in our approach is lightweight in size and
efficient to train. Finally, the evaluation results show that
ShadowAQP is effective in real-world business applications.

2 PRELIMINARIES

AQP aggregate query. In this paper, we mainly focus on AQP
approaches for the aggregate query with group-by or join operators.
For quick reference, related notations are summarized in Table 1.
Consider two table T; and T5 to be joined on the common attribute
Ay and then grouped by the categorical attribute Ag, the general
format of the aggregate query is given by

SELECT Ag, AGG(Aq1),..., AGG(Agi)

FROMT; JOINT; ON T1. A = T2.Aj

WHERE condition GROUP BY Ag;

Here, similar to other AQP methods like [19, 55], aggregate
functions AGG could be standard aggregate operators, such as AVG,
COUNT, and SUM. A; is the aggregation attribute that is involved
in aggregate functions. The values of aggregation attributes in our
approach are numeric. The query demonstrated above is a two-table
join one, and we also support multi-table join query.

Consider an aggregate query on a single table T, AQP first obtains
sample table S with a sampling ratio. Then, aggregate functions can
be applied on S to obtain the approximate answers. Specifically, the
aggregate result of T can be estimated with that of sample table S:

AGG(T, Aqgi) ~ ¢ - AGG(S, Agi), (1

Table 1: Notations

Notations Definition
T; Table i
J Result of joining tables
Ay Join attribute
A Group-by attribute
Aai Aggregation attribute
Dy, Dg Domain of values in join/group-by attribute, respectively
0, U Value in group-by and join attribute, respectively
¢ Scaling factor to scale the aggregate results on the sample
M Total sample size
my, My, Number of samples for group value v and u, respectively
Ny, Ny Group size of group G, and G, respectively
Si, Sy Sample of table T; and join result J, respectively
Pi Sampling ratio for table T;
k Sample size threshold for small groups
SAMPLE(T;, p;) Sampling table T; with ratio p;
AGG(T;, Agi) Aggregation on attribute A,; of T;

where ¢ is a scaling factor that scales the aggregate results on the
sample according to the sampling ratio.

Consider an aggregate query involved T; and Ty, the join-after-
sample AQP first separately samples T; and T> with sampling ratios
of p1 and pa, respectively.

S1 = SAMPLE(Ry, p1), S = SAMPLE(Ry, p3). @)

Next, it joins S; and Sz to get the sample of the join result S; =
S1 »a Sy Its sampling ratio is p; - p2 with respect to J, which is the
result of the joining tables. Similarly, the estimated result can be
obtained by scaling the aggregate result on the sample table Sj.
Error metric for AQP result. Suppose the tuples are grouped by
group-by attribute Ag, and thus each attribute value v in domain
Dg corresponds to one group G,. We denote by p, the ground-
truth aggregate value of group G, for the query g, which represents
the ground-truth value of AGG(Ay;) for group G, and by f, the
estimated value we obtain. Define the error for group G, as

erry =1 — e lfo—Hol /i, 3)

This error is derived from the relative error [28]. We normalize
the error, which measures the difference between the estimated
value and the ground-truth, in the boundary between 0 and 1 (0%~
100%). By taking the exponential of the relative error, we avoid
overemphasizing estimates with high errors and provide reasonable
treatment of different error values in each group. For group-by
queries, the average relative error [55] is adopted to measure query
accuracy, which is defined as

err(q) =) erry/IDgl

veDg

4)

3 ATTRIBUTE-ORIENTED SAMPLE SIZE
ALLOCATION

3.1 Group-by Attribute-oriented Sample Size
Allocation

As mentioned above, small groups are usually under-represented

in the uniform sample [31]. In addition, groups with high variance

are also easy to be under-represented. This is because they need
more samples than groups of low variance.

4218

To address the above issues, we propose the group-by attribute-
oriented sample size allocation strategy to determine the reasonable
sample size for each group. Consider a table T of size N with the
group-by attribute of Ag. We denote the domain of Ag by Dg, and
the number of groups is | D |. Recall that for each value v € Dg, we
denote G, as the group of tuples in table T whose Ag-attribute is v,
and define group size n, = |G,|. Each group only needs to store the
ratio of the standard deviation to the variance of its aggregation
attributes. Thus the storage overhead is not large compared to the
size of the original table. Furthermore, we store the statistics data
in a hash table manner (in memory or disk), which has very low
query complexity. Therefore, the statistics of all these notations can
be computed and stored offline with neglectable overhead. Then,
they can be used many times online.

Given a total sample size M, the goal of sample size allocation
is to determine the number of samples m, for each group value
v € Dg, satisfying M = 3 ,c p,, Mo- In practice, M is computed by
multiplying the sampling ratio with the table size. The sampling
ratio p is directly related to the query running time ¢ and query
accuracy acc, respectively. It is easy to fit regression model functions
p = f(t)or p = f(acc) with afew (p, t) or (p, acc) data points. Then,
users can determine the sampling ratio p according to the query
accuracy or running time demand by calculating f(¢) or f(acc).

First, to deal with the under-representation issue of small groups,
the key idea is to allocate enough sample sizes for small groups to
prevent sampling too few samples for them. We define a positive
integer k = i - M/|Dg| as the lower bound threshold of the sam-
ple size for each group. Ensuring m, > k during the sample size
allocation can prevent small groups from having too few tuples
in the sample. Users can determine k by calculating ¢ - M/|Dg|,
where ¥ is the scaling coefficient specified by the user, M is the
total sample size, and |Dg| is the number of groups. ¢ can be set as
0.3 empirically. The threshold k ensures the base amount of sam-
ples for each group, preventing sampling too few samples for them.
Additionally, it allocates only a portion of the samples equally to
each group, while the remaining samples are allocated using the
following sample size allocation method.

Second, as for the issue of large differences in variances among
groups, we take the mean and variance into consideration when
allocating samples to groups. We bias the sample size allocation
by minimizing the expected values of the error function err(q) de-
fined in Equation 4. However, it is extremely difficult as it contains
inverse-exponent functions err,’s (Equation 3). Thus, we first es-
tablish an upper bound for err(g), and then minimize the upper
bound instead of err(q). For v € Dg, since erry € [0, 1], we have

Elerry]

1
/ Prlerry > 8] d6
0

1
/ Pr [1fio — ol > —pio - In(1 -)] d6
0

1
/ Pr [(ﬁv -)% > pzz) Jn?(1- 5)] ds.
0
We mainly assume that the variables are i.i.d., with bounded and
integrable probability density functions or cumulative distribution
functions. The mean and variance of the data distribution are p,
and o2 for group Gy, respectively. For AVG queries, fi, is equal to

mL times the sum of m, i.i.d. random variables with mean g, and
o

variance crzz,, and thus the mean of fi, is y, and the variance of fi,,

ie, B[(i — piv)?], is 02 /my. Thus, by Markov’s inequality, we have
Pr [(io — po)? > % - In*(1 -)] %

T - > s - In“(1 - < —2

Ho — Ho Ho mvyg] 1n2(1)

for any § € [0, 1]. It follows that E[err,]| < fol m dé for

all v € Dg, and hence by Equation 4 we have
o

Elerr(q)] < (/01 d(5) Z 5

veDg Moty
Our goal is to determine the values of m;’s, so that the upper
bound of E[err(g)] in the above inequality is minimized. To avoid
small groups being under-represented or missing in the sample
table, we need to ensure that the sample size of each group is not

_r
In?(1 - 6)

less than k. Note that fol m dé is a constant. So it suffices to

> k for

2
minimize Y ,ep, Pl ’;12 , subject to ¥,ep, My = M and my,
(4 at?)

2
allo € Dg. We denote the % as ay forallv € Dg and sort a,’s to get
an ascending list aj, ag, - - - ,a|Dg|- Then, the problem is changed

to minimize lez)lcl s subject to Zl.flcl m; = M and m; > k for all
1 <i < |Dg|. In an optimal solution of this minimization problem,
forall1 <i < j < |Dg|, m; and m; must satisfy the following two
conditions described below.

e If m; > k and m; > k, then m;/m; = /a;/+/a; (because
otherwise we can change the values of m; and m; while
keeping the values of other variables unchanged to make
the value of the objective function smaller).

o If at least one of m; and m; is equal to k, then m; = k
(because otherwise we can decrease m; and increase m; to
make the value of the objective function smaller).

One can easily verify that the sample size allocation satisfying the
above conditions is exactly the following:

S (M —k-
m1=m2=...:mp:k’mi=Wforalli>p’
Zr:p+1 ar

where p = min{j : \f@js1- (M —k-j)/(\@j+1+- - ++@pg)) >k}

Note that the Markov Inequality based allocation is used to adjust
the sample allocation quantity to reduce errors, while k serves as a
lower bound for the sample allocation, ensuring that small groups
are not overlooked.

3.2 Join Attribute-oriented Sample Size
Allocation

For a join query on T and T’, the simplest sampling method is
to create a uniform sample of each table, say S and S’, and use
S > §’ to approximate the aggregate statistics of the original join
result J = T » T’. However, joining two uniform samples results
in fewer output tuples, leading to the poor query accuracy. For
example, joining two p-fraction (0 < p < 1) uniform samples
will produce less than p? of the output tuples of the original join
when the distribution of the original tables is non-uniform [12].

4219

The reason is that tuples with some values on the join attribute are
under-represented or missing in the uniform samples.

To obtain good samples for join queries, we sample the table ac-
cording to the join attribute. Similar to group-by attribute-oriented
sample size allocation, we determine the sample quota for each
set of tuples with the same value on the join attribute to improve
the accuracy of approximate results. In other words, we divide the
tuples into different groups according to each distinct value on the
join attribute. Then assign the sample quota for each group based
on the sample size allocation algorithm described in Section 3.1, by
considering both the mean and variance of the aggregation attribute
across different groups.

In this way, the output cardinality of the join of samples can be
guaranteed. Assume that the two tables T and T’ are of size n and
n’, respectively, and they are joined with respect to an attribute
Aj. For each value u € Dy, we denote the set of tuples with join
value u in T and T’ by G, and G, respectively. Let n,, and n), be the
number of tuples in G, and G;,, respectively. Clearly, the cardinality
of the original join output T > T’ can be calculated by

IT > T'| = Z nyn;,.

ueDy

©)

Suppose S and S’ are the samples taken from T and T, respec-
tively; my, and m;, are the numbers of tuples with the u on the join
attribute in both samples. The cardinality of the join sample output
S >4 §’ can be calculated by

IS S| = Z mym,,.
uED]

(6)

Therefore, the cardinality of the join sample output can be de-
termined, and so is its proportional relationship with the original
join result. Let p,, be the sampling ratio of the group in the original
join result for the value u, which can be calculated as

mym,,

p(u) = 7)

nynl,
For SUM aggregation, we need to scale the aggregation results with
the sampling ratio p(u).

We can ensure a given cardinality on the output of the join, in
other words, the sampling ratio for join, by conducting a binary
search on the sampling ratio for each table as follows. Suppose there
is a function f : [0,1] — [0,1], such that if we use a sampling
ratio p for each table, then the sampling ratio for the join is f(p).
Apparently, f is monotonically increasing. Also, f can be efficiently
evaluated since it suffices to determine how many samples we have
for each value on the join attribute in each table according to our
sample size allocation algorithm (similar to that in Section 3.1). If q
is the desired sample ratio for join, we only need to find a p such
that f(p) is roughly equal to g and then use p as the sampling
ratio for each table. By the monotonicity of f, p can be computed
using binary search, which won’t take much time since f can be
efficiently evaluated. It works similarly when the sampling ratios
of two tables are different.

For multiple aggregation functions, we can sum up their variance
(with/without weights) during sample size allocation. The related
theoretical analysis is similar in Section 3.1. For a group-by with join

Conditional Generative Model

—Z 0O

S }?O
| 3K

o090

Encoded Vector

Label Data

=

i Tabl
Offline Phase Table Table-CVAE

Model

Query Semantics
e.g. join attribute and query conditions etc.

AQP Parameters: sampling ratios, etc.}-;

Table Statistics: mean, variance -

__, Sample Data
Generation
... Sample Size

Sample Tables Encoded Samples

OE ion Stage | < [@ Di Stage | <= [@ Stage |

Figure 1: Online and offline workflow of ShadowAQP.

aggregation query, we combine the group-by and join attributes,
and determine the sample size quota for each value combination.

For joining tables with quite different complexity, we take into
account the data distribution of the aggregate attributes in different
sample tables. If the data distribution of the aggregate attributes
in a particular table is more uneven, allocating more samples to
that table can more comprehensively reflect its distribution and
reduce query errors. The uniformity is measured by the coefficient
of variation (CV), which is the ratio of the standard deviation to the
mean of the aggregate attributes in the tables. Reasonable sampling
ratios are set based on the relative value of the CVs of the aggregate
attributes in the two tables.

4 CONDITIONAL SAMPLE GENERATION
BASED ON TABLE-CVAE

Sampling from big data requires frequent random I/O access, re-
sulting in high query latency [15]. To solve this issue, we propose
the Table-CVAE approach, which generates samples using the con-
ditional generative model with automatic data encoding strategies.

4.1 Conditional Sampling with Automatic Table
Data Encoding

We design a table data generator based on conditional generative
models [49] to achieve conditional sample generation. However,
existing basic conditional generative models cannot directly train
over database tables and generate sample tuples. On the one hand,
unlike image datasets with clear labels, the tuples in the table usu-
ally do not have explicit labels. On the other hand, the values in
tables are often heterogeneous and have various domains.

To address these problems, we propose Table-CVAE (Table Condi-
tional Variational AutoEncoder), a table-oriented generative model
to learn the conditional data distribution over database tables for
generating targeted sample tuples according to the given query
conditions. The overall workflow of ShadowAQP which uses Table-
CVAE with the sample size allocation is shown in Figure 1. We
incorporate Table-CVAE into the AQP process and divide the whole
process into two phases: the model training phase (offline) and the
sample generation phase (online).

Model training phase. In this phase, Table-CVAE learns the
underlying probability distribution of a table with following stages.

(1) Labeling stage. The goal of this stage is to label tuples in the
table, that is to assign a label value y to each tuple x in a table.
Table-CVAE also supports multiple label attributes by labeling the

4220

Numerical Categorical Encoded Encoded

Attribute Attribute Numerical Attribute Categorical Attribute
ooeniotte ARmoWe . tumernical Attribute _ ... Faregonical Ann
idata p :; pi type i| [ithr p ---:fprot 0 | prot_1 i
0 Hi ! norm cluster_0 | cluster_1 Bl !
T 21784 il Video HTTP | [-0.3121 1 0 il 0 j
i 21848 I TvoHTTP | 03224 1 0 0]
: i HEH i |
_______ T T T e A s e

Gaussian Mixture Encoding Binary Encoding
Figure 2: Data encoding strategies of categorical and numeri-
cal attributes in table.

data with a combination of the values on the given join and group-
by attributes. For example, a tuple that takes the values of ‘male’
and ‘doctor’ on the label attributes is labeled with ‘male-doctor’.

(2) Encoding stage. Generally, Table-CVAE uses different data
encoding methods for different attribute types, as is shown in Fig-
ure 2. For categorical attributes, we use binary encoding to encode
values into integers and turn them into binary representation. For
example, ‘Video_HTTP’ in the protocol attribute is assigned to
‘0’ and is represented as [0,0,0,...,0]. For numeric attributes, we
transforms the values into the range [0, 1]. The Min-Max scaler is
a common way to normalize numeric values with uniform distribu-
tion. Suppose the min and max of a numeric attribute are v, and
Umax- The value v is scaled by vporm = (0 — Umin)/ (VUmax — Ymin)-

When the data distribution is non-uniform, the Min-Max scaler
does not perform well. We design a Gaussian mixture encoder to
solve this issue. It uses a Gaussian mixture model [42] to fit the
distribution of each numeric attribute. Since dozens of Gaussian
distributions are sufficient in most scenarios, the Gaussian mixture
encoder transforms a numeric value into a normalized numeric
value and a one-hot encoded No. of Gaussian distribution.

In addition, we design an automatic encoding method selection
strategy that automatically chooses a proper encoding method for
each numeric attribute. The strategy builds an equi-width histogram
for each numeric attribute and computes the standard deviation
¢ and mean y of bin sizes. The more uniform the distribution of a
numeric attribute is, the lower the §/p is. Thus, we use the Min-Max
scaler to encode the numeric attributes with low §/p while using
the Gaussian mixture encoder to encode the rest numeric attributes.

(3) Learning stage. In this stage, the encoded data and labels are
fed to the Table-CVAE model for training. Table-CVAE learns a
low dimensional latent representation of tables with the encoder
network and the decoder network. It usually only needs multiple
(usually less than 10) fully connected layers without using any
convolutional layers or recurrent layers, resulting in efficient model
training and updating.

Sample generation phase. After the training phase, Table-
CVAE can generate sample tuples based on the learned conditional
probability distribution. The generation phase includes the sam-
pling stage, the decoding stage, and the execution stage.

(1) Sampling stage. In this stage, Table-CVAE generates sample
vectors with the latent variables and the given labels. Suppose
the dimension of latent variables is n. The data point in the latent
space is an n-dimensional vector z. The value of each dimension
in z comes from a Gaussian distribution N (g, 6). By leveraging the
reparameterization trick [21], the decoder network in Table-CVAE
will convert z’ into z as z = 2’ ® o + p. Therefore, we can generate

sample vectors by sampling from N (0, 1) instead of N (g, o). Next,
we can label 2’ with the required label values ¢ (in the vector form)
so that the decoder network in Table-CVAE can generate sample
data with the same label values.

(2) Decoding stage. The decoding stage is responsible for convert-
ing the sample data generated from the Table-CVAE model into
table tuples. For each encoded numeric value x,, Table-CVAE first
finds out the No. of distribution to which it belongs and obtains the
corresponding mean y and variance o2. The original numeric value
can be calculated by x, * o + p.

(3) Execution stage. In this stage, we executes the queries on the
generated samples to obtain the approximate answers. We rewrite
the query such that it can be executed on the sample tables instead of
the original tables. Similar to other sampling based AQP approaches,
its error guarantee can be represented by confidence intervals on
the samples with the central limit theorem (CLT) [55][66].

In terms of the number of trained models, it relies on the aggre-
gate, join, and group-by attributes in the queries. For queries that
have the same attributes, the same model can be used. For queries
that have different attributes, training one model can be achieved
as folllows. For different aggregate attributes, we can train only one
model that learns all possible columns which might be aggregate
attributes in the same table. For different label attributes, such as A
and B, a model can be trained using A and B as label attributes. Then
the model generates samples based on both attributes, equivalently
creating a finer-grained grouping of samples. But these samples can
still be considered separately as samples grouped solely based on A
or B attributes. For real-world OLAP applications, table attributes
used as join or group-by operations do not usually change and are
enumerable. Thus, for most new queries, it can utilize pre-trained
models. If there is a new query for which no model has been trained
for its label attributes, we can still train a model for that data table
within reasonable time (as shown in Figure 15(a)).

4.2 Table-CVAE Model Update

Table-CVAE models usually need to be updated because new data
may be added to the original table. Since neural network models can
be updated with incremental training [7, 39, 48] using stochastic
gradient descent [5] parameter optimizations, we propose three
Table-CVAE model update strategies for different scenarios.

The first scenario is that the distribution of the new data is similar
to the old one. In this case, we update the trained model only with
the new data and call this update strategy Incremental Train_update.
This strategy does not cause large shifts in model weights. It only
slightly biases the model towards the distribution of the new data.

The second scenario is when the distribution of the new data is
quite different from the old one. We need to involve the old data in
training when updating the model to prevent forgetting the learned
distribution. We design a Partial Train_update strategy that samples
from both the old and new data, and train the model on them.

The third scenario is that the model accuracy has a high priority.
To ensure accuracy, we update the model with the whole updated
data, which is called Full Retrain_update. It provides a more accurate
model, but takes more time.

Additionally, we design an automatic update strategy selection
method based on data distribution. To measure the similarity of

4221

the new data distribution and old data distribution, we use Kol-
mogorov-Smirnov test (K-S test). The two-sample K-S test can
check whether the two sets of data come from the same probability
distribution or not. We first construct the cumulative distribution
function of the aggregation attribute in the old data and new data,
denoted by F,;4(x) and Fpew(x), respectively. The K-S test statis-
tic measures the largest distance between F,;;(x) and Fpew(x) by
Dks = sup |Fnew(x) — Fy1q(x)|, where supy calculates the supre-

mum of tyile set of distances.

If Dgs is greater than the critical value of the Kolmogorov distri-
bution Ky, the hypothesis about two sets of data coming from the
same probability distribution is rejected at level . The distribution
of the new data is similar to that of the old data if Dgg <= Ky, or is
quite different from that of the old data if Dgs > K. Therefore, we
use Incremental Train_update to update the model if Dgg <= Kj.
Otherwise, Partial Train_update is used instead. If a more accu-
rate model is preferred, and longer training time is acceptable, Full
Retrain_update is a good strategy.

5 EXTENSIONS
5.1 Parallel Multi-round Sampling Aggregation

To mitigate the impact of model bias on query errors, we propose
the parallel multi-round sampling aggregation (PMSA) strategy.
The key idea of PMSA is to perform multiple rounds of sample
generation and aggregation in parallel to obtain multiple sets of
query answers for bias reduction, since generating samples by
models is efficient. Though solely increasing the sampling ratio can
also mitigate bias, it takes more time with a single thread, and is not
scalable on large tables or high sampling ratios. We denote by k the
total rounds of sampling generation and aggregation. PMSA takes
the mean of the answers obtained from the k rounds of aggregation
as the final query answer. Though PMSA introduces some execution
overhead, it can improve the query accuracy of the results.

To see this, let u be the true value to be estimated, and jy, ..., fi
denote the estimations of y obtained from the k rounds of aggre-
gation. Then our final answer will be g = % Zle ;. Since the k
rounds of sampling are independent, iy, ..., fiy can be viewed as i.i.d.
random variables. Furthermore, as fii, ..., iy are unbiased estima-
tions of y, the mean of each ji; is equal to y. Let o2 be the variance
of each ji;. The following theorem shows that for the estimation f,
the length of the confidence interval [p — 8, 4 + &] around p of a
fixed confidence level decreases along with the increase of k.

THEOREM 5.1. Pr[|g—pu| > 8] < Ié'—;foranyé > 0.

Proor. Since the random variables fy, ..., fiy are independent
and the variance of each fi; is o2, the variance of the summation
Z{;l fi; is ko?. Therefore, the variance of /i is 0% /k. The mean of i
is clearly p. By applying Chebyshev’s inequality, we directly have
Pr(|i— | > 8] < 2. o

We take the Flights[17] dataset as an example and set the sam-
pling ratio to 1%.. We compare the confidence interval width (CI
Width) at a 95% confidence level between the theoretical and actual
experimental results. As shown in Figure 3, as k increases, the actual
CI Width gradually decreases and remains consistently lower than
the theoretical value. The trend of the actual CI Width closely aligns

—® - Theoretical Value —§— Actual Value

o
=]

e
| *-0-0-0-90-9-0-0

Cl Width
S

o w o

12 3 45 6 7 8 910
k Rounds

Figure 3: CI width between theoretical and actual results
under various rounds of execution.

with the theoretical expectation (CI Width o ﬁ) Consequently,

the query error also decreases as k increases.

5.2 Data Outlier-aware Sampling

Some real-world datasets might have outlier tuples on attributes
due to the Zipf’s law. Outlier tuples contain outlier values on the
aggregation attributes that are significantly different from the nor-
mal ones. For example, some data records of the network traffic
throughput have very large throughput values than normal sit-
uations due to network attacks, which become outlier tuples. In
essence, outlier tuples are not data noise or bias. Although they are
extremely rare, they indeed have a great influence on the aggregate
results. It is easy to omit outlier tuples during naive sampling, thus
leading to inaccurate query answers in AQP.

The key idea of addressing the outlier tuple issue is to identify
and preserve outlier tuples in the samples so as to avoid missing
them. Before the labeling stage in Table-CAVE, we separate the
outlier tuples from the table based on an outlier boundary, which is
a predicate condition to distinguish between normal tuples and out-
lier tuples. The outlier boundary is calculated with the percentiles
of aggregation attributes. Suppose the 7-th percentile (e.g., 99%) of
the aggregation attribute Ag; is Qy(Aqi). A tuple x whose value on
Ayi is greater than y - Qp (Ag;) is treated as an outlier tuple. Then,
the outlier boundary for Ag; is {x|Ag;i(x) 2 y - Oy(Aai)} (e.g. v is
set to 10 by default). A tuple x is treated as an outlier tuple as long
as it has an outlier value on any aggregation attributes. Combining
the outlier boundary of each aggregation attribute, we have the
outlier boundary for the table as follows.

{x|[Aa1(x) 2 v~ er(Aal)] VeV [Agi(x) 2y Qn(Aai)]}- (®)
We separate the outliers from the data based on table statistics and
store them in a specific location. After sample generation, separated
outliers are inserted into the samples, and the sampling ratio of
outliers is set to 1. Furthermore, every outlier is assigned a weight
equal to the sampling ratio p, while every non-outlier is sampled
with probability p and has a weight 1. In this way, outlier tuples will
not be missed out. It can also be guaranteed that the aggregate value
of the sample is, in expectation, still equal to that of the original
set, and hence no bias is brought.

5.3 Dimension Reduction Optimization

In Section 3, we propose an attribute-oriented sample size allocation
algorithm, which divides the tuples into multiple groups according
to their values on specific attributes and assigns the sample size for
each group. However, when there are multiple join attributes or the
join attributes have too many values in queries, the number of value

4222

combinations might be huge, leading to the combinatorial explosion
issue. If there are too many groups, the sample size allocation
algorithm becomes ineffective because all groups become small
groups, and almost all the tuples require to be selected into the
sample table. Consider an extreme example, suppose the number
of groups is equal to the number of tuples. There is only one tuple
in each group, and all tuples must be selected to avoid missing any
group. Moreover, the combinatorial explosion can result in the poor
learning performance of generative models because there are too
few tuples in each group for training.

Therefore, we propose the dimension reduction optimization
to alleviate the combinatorial explosion problem and use it when
M - ¢/|Dg| < 1, which implies that some groups will have fewer
than one sample on average. The key idea of dimension reduction
optimization is to reduce the number of value combinations during
the labeling stage in Table-CAVE. We partition the values of join at-
tributes into buckets and use the number of the buckets as the new
value for labeling. The values of a join attribute are usually discrete
and we use ordinal encoding to convert each unique category value
into an integer value. Suppose the domain of a join attribute after
ordinal encoding becomes [01nin, Umax |- Dimension reduction opti-
mization finds a set of splitting points {v1,va, ..., v, } and divides the
domain into a set of buckets {[vmin, v1), [01,92), ..., [0r, ymax] }. For
example, if each bucket is of equal width o then the sequence num-
ber (No.) of the bucket that v; belongs to is floor((v; — vmin)/®).
Then the value on the join attribute is substituted with the No. of
the bucket it belongs to. Thus, the number of value combinations
is decreased. The join attribute-oriented sample size allocation still
works to some extent because tuples in the same bucket have higher
probability of joining successfully than the random-sampled tuples.

6 EVALUATION
6.1 Experimental Setup

Hardware and software. Experiments are run on a physical cluster
with 10 nodes connected via 1 Gbps Ethernet. Each node has two
Intel Xeon E5-2620 v2 CPUs with 6 cores (12 hyper-threaded cores),
32 GB DDR3 memory. We deploy Apache Spark 2.3.2, Hive 3.1.2,
and Postgres 14.0 on the cluster. SparkSQL and Postgres are used
as distributed and single-node exact query engines for comparison.
Machine learning models are trained using PyTorch 1.8.0 on a
machine with one NVIDIA RTX3090 GPU.

Datasets and workloads.

(1) TPC-H [57]. We run a join query with 1 group-by and 1 ag-
gregation attributes on TPC-H with a scale factor of 20 by default.

(2) TPC-DS (Query-A and Query-B). We mainly run two queries,
TPC-DS(Query-A) and TPC-DS(Query-B), on TPC-DS [56] with a
scale factor of 1 and then zoom to the size of 2/3. Both of them are
join queries with 1 group-by attribute and 4 aggregation attributes.

(3) Census(Query-C and Query-D). Census [9] is a dataset ex-
tracted from the Census Bureau database. We run Census(Query-C)
and Census(Query-D) on it. Both conducting self-join on adult ta-
ble with 1 group-by attribute and 3 aggregation attributes. We use
IDEBench[16] to scale the dataset up to 150 thousand records.

(4) Flights. Flights [17] is a real-world dataset containing punc-
tuality data for all flights departing from New York in 2013. We
query on the self-join of flight table with 1 group-by attribute and

3 aggregation attributes. IDEBench is used to scale the dataset up
to 300 thousand records.

In addition, all the join result tables contain at least 1 million
tuples, and is up to 24 billion.

Model configuration. By default, both the encoder network
and the decoder network in ShadowAQP has two fully connected
hidden layers with around 100 neurons. The activation function
between layers is ReLU. Sigmoid is the output activation function
of encoded categorical values, and softmax is the output activation
function of encoded Gaussian number values.

Measure metrics.

(1) Query Error. We evaluate approximate query accuracy by
computing the difference between the exactly accurate result and
the approximate result using Equation 3 and Equation 4 in Section 2.

(2) Query Latency. Query latency is measured from the moment
the query is submitted to the moment the result is generated. We
repeat workloads three times and record the average results.

Comparison AQP methods. The comparison AQP methods
can be divided into three categories:

(1) Traditional sampling based AQP.

a. Uniform sampling based AQP: Every sample is drawn with
uniform probability.

b. Stratified sampling based AQP[2]: It divides data groups by
attribute values and allocates sample quota evenly [2].

(2) Join-oriented sampling based AQP.

a. Distinct sampler [20]: It ensures that at least a certain number
of tuples in each sub-group will be sampled.

b. Universe sampler [20]: It picks tuples whose join key is in a
random portion of a projected high dimensional space.

c. Two-Level sampling [14]: For each join key in the chosen space,
it can select at least one tuple, and each of the other tuples are
sampled independently with another probability.

d. Wander join [23]: Tt randomly picks a tuple from join tables
and finds a set of tuples that can be joined with the picked tuples,
and then randomly selects one tuple from the set. Wander join is
implemented in XDB [24].

(3) Model-based AQP.

a. DeepGen [55]: It uses deep generative models to learn the data
distribution and generates samples from the models.

b. DBEst++ [27]: It performs AQP using integral evaluation on
regression models and probability density estimators.

6.2 Effectiveness of Sample Size Allocation and
Sample Generation

6.2.1 Effectiveness of sample size allocation method. We evaluate
the proposed attribute-oriented sample size allocation method. Fig-
ure 4 shows that our approach outperforms the other five cutting-
edge comparing methods in query error. Overall, the average query
error of our approach is 3.04%, which is only 80% of the uniform
sampling’s error, 61% of the stratified sampling’s error, and 62% of
the distinct sampler’s error. As shown in Figure 4(a) and Figure 4(c),
two-level sampling only performs well in primary key-foreign key
joins. Our approach achieves the best performance, since it allocates
sample quota more reasonably.

4223

=~ Stratified
—#—Two-Level Sampling

Uniform

- Attribute-oriented(ours)
Universe Sampler

Distinct Sampler

-
-

geoo RS Lo
5 uaasl
i 6 10
ol 2
g g
o+ ot
° 123456708091 © 123 4567 8 910
Sampling Ratio (%o) Sampling Ratio (%o)

(a) TPC-H (b) TPC-DS(Query-A)
£ 100 geo TN
b4 N =

- S - - —
£ bbbl T SO NPRR B O
w 4 w15
S £
o 123 45678 910 123 45678 910

Sampling Ratio (%o) Sampling Ratio (%o)
(c) TPC-DS(Query-B) (d) Census(Query-C)
a0 2 =
S L S S oo ey,
FRTR L S S] .y
N 10

Hiaaasss==s P iRass -t o T
g o g o

12 3 45 6 7 8 910 1
Sampling Ratio (%o)

(e) Census(Query-D)

2 345678 910
Sampling Ratio (%o)

(f) Flights

Figure 4: Query errors of attribute-oriented sample size allo-
cation sampling and other sampling methods.

Table 2: Query errors and query latency comparison among
ShadowAQP (ours) and other approaches on TPC-DS.

TPC-DS [#joined [#group-by Query Error Query Latency(s)
Query ID | tables | attributes | Ours [Uniform [Stratified | Ours | Uniform [Stratified
44 1 1 16.52% | 44.20% 41.81% 9.138 13.683 25.082
3 2 1 1.80% | 4.67% 3.29% 1.173 9.536 25.034
23 2 1 22.01% | 40.85% 39.30% |22.959 | 30.835 86.891
83 2 1 2.61% 4.58% 3.46% 0.249 6.621 10.405
51 2 2 8.92% | 14.23% 10.85% | 1.037 8.528 18.074
59 2 2 5.08% 9.87% 8.01% 6.868 | 15.109 21.624
32 3 0 0.44% 1.90% 0.86% 1.168 8.969 23.218
48 3 0 0.23% 0.69% 6.30% 1.526 8.579 22.734
92 3 0 1.55% 2.23% 3.28% 0.521 8.256 17.941
58 3 1 7.48% | 23.14% 22.89% 7.681 | 20.737 33.905
77 3 1 2.56% 3.01% 6.40% 0.766 10.122 23.652
43 3 2 1.23% 1.97% 6.24% 1.578 8.321 23.216
55 3 2 9.13% | 31.56% 24.41% | 9.055 | 21.152 34.385
70 3 2 0.24% 3.15% 6.59% 1.537 8.108 23.088
86 3 2 5.61% 7.21% 7.22% 0.536 9.587 18.639
31 3 3 25.43% | 38.93% 39.66% | 4.528 | 24.633 100.864
16 4 0 1.19% 3.62% 1.60% 0.815 10.378 19.534
94 4 0 4.58% 5.87% 6.11% 1.679 9.064 18.881
27 5 2 8.07% | 24.48% 23.08% |14.797 | 38.204 58.304
13 6 0 0.96% 1.12% 2.03% 4.896 | 42.895 47.827
80 6 1 2.27% 6.52% 5.22% 1.63 20.565 34.801

6.2.2 Effectiveness of sample generation in ShadowAQP. As shown
in Figure 5, we evaluate the proposed model-based sample genera-
tion method. Query errors of the model-based sampling method are
similar to that of the data scan-based sampling method, which re-
trieves random tuples from each group rather than generating new
tuples using Table-CVAE. However, its query latency is obviously
less than the data scan-based sampling method.

6.2.3 Performance of sample size allocation with sample generation
on TPC-DS. We evaluate the performance of ShadowAQP, which

—4— Model Sampling Error(ours;

Model Sampling Time(ours

—8— Scan Sampling Error

= - Scan Sampling Time

3 Z z4 O
s 75 6%
2 s g 2
w3 © w ©
- 3 4
g2 > B >
S o 3 Q
(<) — é () é
1234567382910 12345678910
Sampling Ratio (%o) Sampling Ratio (%o)
(a) TPC-H (b) TPC-DS(Query-A)
_ O 0
s 33 & 5%
53 § B 45
u 2% u 38
$2 > 2 >
S 18 3 29
(<] —_ g ¢ 3
123456738910 12345678910
Sampling Ratio (%o) Sampling Ratio (%o)
(c) TPC-DS(Query-B) (d) Census(Query-C)
— T o~ 0
S 6% £ 10 8>
5 o T \ 3
2 § 28 62
‘i :
G 3 Fal 4>
5 28 3 4 g
o <] (<]

Figure 5: Query errors and query latency of ShadowAQP
sample generation and data scan-based sampling approaches.

12345678910
Sampling Ratio (%o)

(e) Census(Query-D)

12345678910
Sampling Ratio (%o)

(f) Flights

NN ShadowAQP(ours) E=S Uniform A Stratified
F=5E Distinct Sampler N Two-level Sampling

T 3 10

o o

= 20 =

wi w

210 > 8

S S

g o g o

0 08 15 2 25
Skew parameter z

(a) Skew of the group sizes

0 08 15 2 25
Skew parameter z

(b) Skew of the aggregation at-

tribute

Figure 6: Impact of skew data on the accuracy.

combines the sample size allocation with sample generation tech-
niques, on TPC-DS queries compared with competitive methods.
Based on # of joined tables (1~6) and # of group-by attributes (0~3),
we conducted experiments on TPC-DS with 21 representative work-
loads. The sampling ratio is 1% by default. However, for complex
queries with many groups, we adopt larger sampling ratios. Specif-
ically, for queries 44, 59, 58, 55, 86, and 27 in TPC-DS, we use a 5%
sampling ratio, while for queries 23, 51, and 31, we use a 10% sam-
pling ratio. As shown in Table 2, ShadowAQP always achieves both
the lowest query error and lowest query latency. This is because
that ShadowAQP has a more reasonable sample allocation method
and generate samples efficiently with models.

6.2.4 Impact of skew data on the accuracy. We vary the skew of
the group sizes and aggregation attributes to evaluate the accuracy

4224

N Auto(ours) E== Min-Max [Gaussian

g4 g“ g 3
S 5 S
= = =2
w, w2 w
2 2 21
g s g

0 0 0
G0 2 3 45 90 23 45 99023 4 s

Sampling Ratio (%o)
(a) TPC-H

Sampling Ratio (%o)
(b) Census(Query-C)

Sampling Ratio (%o)
(c) Census(Query-D)

Figure 7: Effect of auto-encoding method selection strategy.

NN Auto(ours) A Incremental E==Partial [E==Full
ge g5 ge
c6 5 s
= = =4
w4 It 1 w
) £s 52
S 5 S
(<1 <2} So
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Sampling Ratio (%o) Sampling Ratio (%o) Sampling Ratio (%o)
(a) TPC-H (b) TPC-DS(Query-A) (c) Census(Query-D)

Figure 8: Query errors of different model update strategies.

of our method. As in [2], we use the Zipf distribution to introduce
skew with varying values of the z-parameter. We select z = 0.86
since it can result in a 90-10 distribution and is used commonly [44].

The dataset is TPC-H with a sampling ratio of 1%.. As shown in
Figure 6(a), our method achieves the highest accuracy. Similarly,
the error of ShadowAQP is the lowest in Figure 6(b). This is because
our method takes the group sizes and aggregation attribute vari-
ances into consideration. For cases with a significant skew in group
sizes, we can still sample tuples from small groups. As for groups
with high variances in the aggregation attribute, we allocate more
samples to represent them.

6.2.5 Effectiveness of encoding method selection strategy. We eval-
uate the performance of different encoding methods and the auto-
matic selection strategy.

As shown in Figure 7, the Min-Max scaler achieves lower query
error on TPC-H, while the Gaussian mixture encoder behaves bet-
ter on Census(Query-C) and Census(Query-D). This is because the
distributions of numerical attributes in the TPC-H dataset are more
uniform. Using Min-Max scaler allows for a simple and effective
encoding of the data, while the Gaussian mixture encoder intro-
duces additional distribution assumptions. However, in the Census
dataset, the distributions of numerical attributes are non-uniform.
The Min-Max scaler may shrink the differences between different
data points, while the Gaussian mixture encoder can better fit the
data distribution, thus achieving more accurate results. Neverthe-
less, the proposed automatic encoding method selection strategy
always chooses the better method.

6.2.6 Effectiveness of model update strategy. We use three differ-
ent settings to evaluate the effectiveness of the proposed three
model update strategies, respectively. The sampling ratio of Partial
Train_update is set to 20%.

1000
El Auto(ours)

B Incremental
= Partial
3 Full

-
o
=]

TPC-DS(Q-A)Census(Q-D)

Training Time(s)

)

TPC-H

Figure 9: Training time of different model update strategies.

—4—PSMA error —®—w/o PSMA error PSMAtime =-#- w/o PSMA time
—_ "; —_ ‘IIT = @
S =8 15% & >
535 102 525 g 56 4
30 gt 8 = 2
o 3 T W 54, 3
225 5 > 5 10% 5 3z
I 1R g 315 28 gz, g
320 = 56 H EX: a

345678910
Sampling Ratio (%)

(a) TPC-DS(Query-A)

12345678910
Sampling Ratio (%o)

(b) TPC-DS(Query-B)

12345678910
Sampling Ratio (%o)

(c) Flights

Figure 10: Effect of parallel multi-round sampling aggrega-
tion (PMSA).

In the first setting, the distribution of the new data is similar
to the old data. The result is shown in Figure 8(a). Incremental
Train_update has lower errors compared to Partial Train_update
(average error of 2.84% vs. 6.80%). In the second setting, the new
and old data are quite different. As depicted in Figure 8(b), Partial
Train_update achieves lower errors than Incremental Train_update
(average error of 4.72% vs 15.36%). In the third setting, we assume
a higher requirement for model accuracy. As shown in Figure 8(c),
Incremental Train_update and Partial Train_update lead to an in-
crease in query errors by 34.04% and 103.25%, respectively. Full
Train_update has a similar query error performance to that of the
original one. However, the training time of Full Retrain_update is
about 4 to 5 times that of the other two model update strategies,
as the latter updates the model with less training data. Figure 8
verifies that our automatic selection strategy can select the better
one between Incremental Train_update and Partial Train_update.

6.3 Effectiveness of Extensions

6.3.1 Effectiveness of Parallel Multi-round Sampling Aggregation
(PMSA). We evaluate performance of our approach with PMSA
and without PMSA (w/o PMSA). We set PMSA multiple sampling
round k = 3. As shown in Figure 10, PMSA can reduce query errors
by narrowing the confidence interval of the approximate answers.

We also compare the query latency of ShadowAQP with PMSA
and w/o PMSA. As shown in Figure 10, the average query latency
of PMSA is about 1.71 times that of w/o PMSA. However, as shown
in Figure 14, the query latency of PMSA is still much shorter than
that of traditional sampling methods.

6.3.2 Effectiveness of Data Outlier-aware Sampling (DOS). The ef-
fectiveness of the Data Outlier-aware Sampling (DOS) optimization
is evaluated by comparing our approach with the version without
DOS (w/o DOS). We inject 0.1%. outlier values to the aggrega-
tion attribute columns in TPD-DS, and 1%. outlier values to the
aggregation attribute columns in Flights.

4225

—4—DOS error —®—w/o DOS error DOS time —#- w/o DOS time
5 5 028 % M
2 105 2 20 T - el i3
w = © W ' o T w ©
2 & 2% i ol iz L 43
s re 3 > 510 : 2 5107 4% >
3 ’vf- 29 3 - 01g 3 A4 o0 4sssdl2e
<] <] 59 Fam S22 -

12345678910
Sampling Ratio (%o)

(a) TPC-DS(Query-A)

12345678910
Sampling Ratio (%o)

(c) Flights

12345678910
Sampling Ratio (%o)

(b) TPC-DS(Query-B)

Figure 11: Effect of Data Outlier-aware Sampling (DOS).

—@—ShadowAQP Error —#- ShadowAQP Time Exact Time
= OB z
> 208 é 15 8
= = 16.5
g 145 § e §,
wi 105 4160 108
2140 > = 155 >
S g 3 5 g
c g ° G

123456738910
Sampling Ratio (%o)

(a) TPC-H(Complex-1)

123456782910
Sampling Ratio (%o)

(b) TPC-H(Complex-2)

Figure 12: Effect of dimension reduction optimization.

As shown in Figure 11, the query error of w/o DOS is almost
8.8 times that of DOS on average. This is because that DOS can
balance the number of samples between groups and preserve data
outliers for skewed dataset. In Figure 11, we find that the query
latency difference between DOS and w/o DOS is within 1s. DOS
has little overhead because the number of outliers is small.

6.3.3 Effectiveness of Dimension Reduction Optimization. We use
two complicated queries, including multiple-joins, which would
cause combinatorial explosion issues, to evaluate the effectiveness
of the dimension reduction optimization.

We compare the query latency with the exact query method
using native SparkSQL. As shown in Figure 12, the average query
errors of our approach on the dataset are 14.21% and 15.95%, respec-
tively, which is usually acceptable in complicated query scenarios.

6.4 Comparison with Other AQP Approaches

We also compare our approach with state-of-the-art AQP methods.
Since the datasets used in this section don’t contain outliers, our
method does not employ DOS during the experiments here. We set
multiple sampling rounds k = 3 for PMSA and also compare the
version without PMSA. Figure 13 and 14 demonstrate the query
errors and query latency of our approach and the other methods, re-
spectively. The two horizontal lines with the ‘Exact’ label represent
the query latency of SparkSQL and Postgres respectively. The query
speed performance of our ShadowAQP(with PMSA) achieves 79x
and 151X improvement on average compared with exact queries
using SparkSQL and Postgres,respectively. The performance com-
parison among our approach and others is elaborated as follows:
(1) Traditional sampling based AQP. As shown in Figure 13, the
average query error of ShadowAQP is only 53.44% of uniform sam-
pling and 40.32% of stratified sampling. Meanwhile, the average
query latency of our approach is close to both of them. Thus, our
approach outperforms the above traditional sampling methods.

-9- ShadowAQP(ours)+ShadowAQP w/o PMSA - - Uniform

—— Stratified Wander Join =¥ Distinct Sampler
== Universe Sampler Two Level Sampling =< DeepGen
—J— DBEst++

s =100
'LL, % gg Lk D o S
o o
£ s 10 {5
W u
E b = e =
[o 2 B
S S %
<] 9 o
123456728910 123456728910
Sampling Ratio (%o) Sampling Ratio (%o)
(a) TPC-H (b) TPC-DS(Query-A)
_ ~ 100
=1 E=S- e e Sy
o o
= = 15
W u o
A
E E 5 Y= ¥
> 3 o=
(<} g 9 i

12345678910
Sampling Ratio (%o)

(c) TPC-DS(Query-B)

12345678910
Sampling Ratio (%o)

(d) Census(Query-C)

—_ —~ 100

= = 15

w w 10

> ol

[[5

S = =
(<} g o

123456728910
Sampling Ratio (%o)

12345678910
Sampling Ratio (%o)

(e) Census(Query-D) (f) Flights

Figure 13: Query errors comparison among ShadowAQP and
other AQP approaches under various datasets.

(2) Join-oriented sampling based AQP. As shown in Figure 13
and 14, compared to distinct sampler, universe sampler, and two-
level sampling, our approach reduces the average query error by
58.94%, 95.77%, and 90.27%, achieving a speedup of 6.81%, 10.03X,
and 12.86X, respectively. As for wander join, our approach reduces
the average query error by 61.5% in TPC-H and TPC-DS(Query-B)
while the query latency is nearly the same. In TPC-DS(Query-A),
though the average query error of wander join is lower than ours
(1.32% vs 2.23%), its average query latency is 249.65 seconds which
is almost 34 times that of ours and even exceeded the time cost of
querying exact answers using SparkSQL (166.026 seconds).

(3) Learned Model-based AQP. As shown in Figure 13 and 14,
DeepGen has large errors for all datasets because it does not support
join-aggregation queries well. Query errors of DBEst++ are small in
TPC-DS, but large in other datasets. This is because that DBEst++
cannot handle skewed distribution well. The average query error
of ShadowAQP is only 8.88% of DBEst++ and 8.29% of DeepGen.
DBEst++ and DeepGen are also learned model-based AQP. Similar
to our approach, their query latency is low. However, our approach
obviously achieves better accuracy.

We evaluate the training time and model storage overhead of
ShadowAQP by comparing it with other model-based approaches
on different datasets. Figure 15 shows the training time and model
sizes of ShadowAQP, DeepGen, and DBEst++. We can see that
the training time of ShadowAQP models is similar to DeepGen or

4226

ShadowAQP(ours) + ShadowAQP w/o PMSA = - Uniform

+Stratlfle =#—Wander Join =% Distinct Sampler
== Universe Sampler Two-Level Sampling —¢—DeepGen
—— DBEst++ Exact(SparkSQL) —— Exact(Postgres)

0 o

> Fow -y g-F 7| 3 700

221y 0

% O e E _

310 o ¥ — 3 20 va-—-v—v-:—v—:—::.

E = S T] e -l L. -Eg.‘; .'.-l M

g0 St - g o . .y
123456738910 123456738910
Sampling Ratio (%o) Sampling Ratio (%o)

(a) TPC-H (b) TPC-DS(Query-A)

) = 2

= L= Sl S oE £ ol i =

g 20 3 400

g |== —(3

< =

< — c | o

a4 3{%*s—= e taa |] 5 \m—i‘-»-ﬂ-»- =

E 09 > .

é 0 ettt § (1 e T
123456728910 123456738910
Sampling Ratio (%o) Sampling Ratio (%o)

(c) TPC-DS(Query-B) (d) Census(Query-C)

0 0

> 2900

g 400 g

g 2 Y

Ty Lok = T e S e

2 2

§ |t el 5

g g

123456738910
Sampling Ratio (%o)

12345678910
Sampling Ratio (%o)

(e) Census(Query-D) (f) Flights

Figure 14: Query latency performance comparison among
ShadowAQP and other approaches under various datasets.

N ShadowAQP(ours) E==DeepGen [Z& DBEst++

o
S
S

900
400
200

50

N
=3
S

Training Time(min)
3
Model Size(KB)

0

o

N B N A O O
5\0 05\ o 9\0 e\ Q\\Q“ <R¢ 05\0 5\° g\° 5\0(«\9“
oe

920 o T e o

«

(a) Training Time (b) Model Size

Figure 15: Training time and model size cost of ShadowAQP,
DeepGen, and DBEst++ on different datasets.

DBEst++. Besides, like DeepGen and DBEst++, the model sizes of
ShadowAQP are around 200 KB. The number of the distinct groups
in experiments ranges from several to billions. And, all the model
sizes are about hundreds of KB, thus the model size will not be
large when there are many distinct values. Thus, all three methods
do not bring large-scale models. In summary, ShadowAQP does not
introduce excessive model training and storage overhead.

—@- ShadowAQP(ours) =#l- Uniform Stratified
=#—Wander Join =¥ Distinct Sampler =+ Universe Sampler

Two-Level Sampling —¢— DeepGen DBEst++
——Exact(SparkSQL) = —— Exact(Postgres)

:\3128 iy o %
T 20 [Pttt | ©
o S € 20
5 15 H e
B .- ©
> 0 I g
6 5| W Lol | o
S = -F - SR =p| O
g 9 3 0

123456738910
Sampling Ratio (%o)

123456738910
Sampling Ratio (%o)

(a) Query Error (b) Query Latency

Figure 16: Performance comparison among ShadowAQP and
other AQP approaches under Traffic Analysis-No_Outlier.

=8 - ShadowAQP(ours) =#- Uniform Stratified
=#—Wander Join =% Distinct Sampler =+ Universe Sampler

Two-Level Sampling —¢— DeepGen BEst++
——Exact(SparkSQL) —— Exact(Postgres)

S0 ==r v

S 501; = >

T 20 {tma m Al g O

o N - c

= AR

Tl E= = ©

> 10 Tyl \\/ -1

o 5 -l 2

3 olett e tme—e e g i il
(<]

12345678910

123456738910

Sampling Ratio (%o) Sampling Ratio (%o)

(a) Query Error (b) Query Latency

Figure 17: Performance comparison among ShadowAQP and
other AQP approaches under Traffic Analysis.

6.5 Performance on Real-world Applications

We evaluate the performance of our approach on a real-world
telecommunication network traffic analysis dataset (short as Traf-
fic Analysis) from a large telecommunication company in China.
The dataset includes information on the upstream and downstream
network traffic and data packets for various communication proto-
cols. We conduct a group-by-join aggregation query on the traffic
table (about 1.2 million tuples) and the protocol table (about 1.5 thou-
sand tuples) with the protocol_id join key, and there is 1 group-by
attribute and 4 aggregation attributes. The origin Traffic Analysis
contains some data outliers. For fair comparison with methods that
can not handle outliers, we also prepare a variant dataset called
Traffic Analysis-No_Outlier by removing outliers (through formula
8 with = 0.99) from the traffic table (approximately 1.7K tuples).

We compare our approach with SOTA AQP methods. The round
k for PMSA is 3. Figure 16 indicates that our approach is more accu-
rate than others except stratified sampling. However, the average
query latency of our approach is only 17.62% of stratified sampling,
and is lower than almost other methods. Figure 17 shows that our
approach achieves the lowest query error. The query latency of
ShadowAQP is within 0.1s, which is lower than most other methods.

7 RELATED WORK

Approximate query processing. AQP is an extensively-studied
big data query technique [1, 4, 13, 20, 33, 36, 50, 64] which can

4227

be divided into offline synopses and online sampling categories.
Offline synopses use prior knowledge to pre-compute the synopses,
such as samples [4, 26, 36, 37], histograms [38], sketches [6], and
wavelets [10]. However, it relies heavily on prior knowledge and in-
troduces extra storage overhead. Online sampling conducts ad-hoc
sampling when queries arrive [1, 8, 20, 32, 33]. It does not require
prior knowledge, but has high latency. Our approach can efficiently
generate samples according to models with query semantics.

Data-scanning sampling-based AQP join approaches. Sam-
pling over join for AQP is a challenging problem [3, 12, 18, 23, 46, 69].
Ripple join [18] is an adaptive join algorithm for online aggrega-
tion. Wander join [23] designs an efficient algorithm that performs
random walks to yield a random sample of the join output with
pre-built indexes. Our method generates samples from the proposed
Table-CVAE model. Quickr [20] handles AQP by injecting a sam-
pling operator that can sample multiple tables. Our method can
provide more accurate answers for join queries.

Machine learning Model-based AQP approaches. Machine
learning has shown its potential in addressing many challenges
in the database area, such as knobs tuning [25, 65], joining order
selection [29, 63], query plan cost estimation [52, 61], and cardi-
nality estimation[22, 34, 53, 54, 58-60, 62, 68]. Techniques like [54]
for learned cardinality estimation of joins with correlations can be
extended for simple AQP. DeepGen [55] employs deep generative
models to answer aggregate queries by generating samples from the
models. However, it does not consider the query semantics during
sample generation. Similar works [47] [40] [45] [66] [67] also adopt
machine learning models to estimate the query results.

DBEst [28] transforms aggregation queries into integrals and
computes them with density estimators and regression models.
Further, DBEst++ [27] extends DBEst and uses mixture density
networks well. DeepDB [19] is a deep probability model-based AQP
method that supports join queries. But, it requires that the tables
must be joined on primary keys and foreign keys.

Sample size allocation for AQP. Sampling has been widely
usedin AQP [2, 4, 11, 15, 31, 44]. For group-by queries, congressional
sampling [2] combines house sampling and senate sampling. STRAT
[11] builds sample synopses to minimize the £, norm of expected
relative error of the whole query workload. However, little work
considers the for join query sample size allocation at attribute level.

8 CONCLUSION AND FUTURE WORK

We propose ShadowAQP, an approach based on attribute-oriented
sample size allocation and data generation. Experimental results
show that it improves query latency and query accuracy perfor-
mance compared with SOTA ones. In the future, we plan to improve
other typical DB workloads by using AIGC techniques.

ACKNOWLEDGMENTS

This work is funded in part by the National Natural Science Founda-
tion of China (No0.62072230, 62272223, U22A2031), Jiangsu Province
Science and Technology Key Program (No.BE2021729), Fundamen-
tal Research Funds for the Central Universities (N0.020214380089,
020214380098), and the Collaborative Innovation Center of Novel
Software Technology and Industrialization. Haipeng Dai, Rong Gu,
Meng Li and Guihai Chen are the corresponding authors.

REFERENCES

(1]

[11]

[12]

[13]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. 1999. Aqua: A Fast
Decision Support Systems Using Approximate Query Answers. In Proceedings
of the 25th VLDB International Conference on Very Large Data Bases. Morgan
Kaufmann, 754-757.

Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. 2000. Congressional
Samples for Approximate Answering of Group-By Queries. In Proceedings of the
19th ACM International Conference on Management of Data. ACM, 487-498.
Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. 1999. Join Synopses for Approximate Query Answering. In Pro-
ceedings of the 18th ACM International Conference on Management of Data. ACM,
275-286.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Jon Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 29-42.

Shun-ichi Amari. 1993. Backpropagation and stochastic gradient descent method.
Neurocomputing 5, 3 (1993), 185-196.

Vladimir Braverman and Rafail Ostrovsky. 2013. Generalizing the Layering
Method of Indyk and Woodruff: Recursive Sketches for Frequency-Based Vec-
tors on Streams. In Proceedings of the 16th Approximation, Randomization, and
Combinatorial Optimization. Springer, 58-70.

Lorenzo Bruzzone and Diego Fernandez-Prieto. 1999. An incremental-learning
neural network for the classification of remote-sensing images. Pattern Recogni-
tion Letters 20, 11-13 (1999), 1241-1248.

Yang Cao and Wenfei Fan. 2017. Data Driven Approximation with Bounded
Resources. Proceedings of the VLDB Endowment 10, 9 (2017), 973-984.

Census. 1996. Census Income Data Set. Retrieved February 17, 2023 from
https://archive.ics.uci.edu/ml/datasets/Census+Income

Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
2000. Approximate Query Processing Using Wavelets. In Proceedings of the 26th
International Conference on Very Large Data Bases. Morgan Kaufmann, 111-122.
Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. 2007. Optimized
stratified sampling for approximate query processing. ACM Transactions on
Database Systems 32, 2 (2007), 9-es.

Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On Random
Sampling over Joins. In Proceedings of the 18th ACM International Conference on
Management of Data. ACM, 263-274.

Xingguang Chen and Sibo Wang. 2021. Efficient Approximate Algorithms for
Empirical Entropy and Mutual Information. In Proceedings of the 40th ACM
International Conference on Management of Data. ACM, 274-286.

Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In
Proceedings of the 36th ACM International Conference on Management of Data.
ACM, 759-774.

Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang.
2016. Sample + Seek: Approximating Aggregates with Distribution Precision
Guarantee. In Proceedings of the 35th ACM International Conference on Manage-
ment of Data. ACM, 679-694.

Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. 2020.
IDEBench: A Benchmark for Interactive Data Exploration. In Proceedings of the
39th ACM International Conference on Management of Data. ACM, 1555-1569.
Flights. 2013. Flights and Airports Data. Retrieved February 18, 2023 from
http://www.transtats.bts.gov

Peter J. Haas and Joseph M. Hellerstein. 1999. Ripple Joins for Online Aggregation.
In Proceedings of the 18th ACM International Conference on Management of Data.
ACM, 287-298.

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proceedings of the VLDB Endowment 13, 7 (2020), 992-1005.

Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximating
Complex AdHoc Queries in BigData Clusters. In Proceedings of the 35th ACM
International Conference on Management of Data. ACM, 631-646.

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In Proceedings of the 9st Conference on Innovative Data Systems
Research. CIDR Conference, 1-8.

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggrega-
tion via Random Walks. In Proceedings of the 35th ACM International Conference
on Management of Data. ACM, 615-629.

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2019. Wander Join and XDB: Online
Aggregation via Random Walks. ACM Transactions on Database Systems 44, 1
(2019), 2:1-2:41.

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware

Database Tuning System with Deep Reinforcement Learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118-2130.

4228

[26

[27

(31]

[32

[34

(35]

[36

[38

[39

[40]

[41

[42

[43]

[44

[45]

=
&

[47

(48

Kaiyu Li, Yong Zhang, Guoliang Li, Wenbo Tao, and Ying Yan. 2019. Bounded
Approximate Query Processing. IEEE Transactions on Knowledge and Data
Engineering 31, 12 (2019), 2262-2276.

Qingzhi Ma, Ali Mohammadi Shanghooshabad, Mehrdad Almasi, Meghdad Kur-
manji, and Peter Triantafillou. 2021. Learned Approximate Query Processing:
Make it Light, Accurate and Fast. In Proceedings of the 11st Conference on Innova-
tive Data Systems Research. CIDR Conference, 1-11.

Qingzhi Ma and Peter Triantafillou. 2019. DBEst: Revisiting Approximate Query
Processing Engines with Machine Learning Models. In Proceedings of the 38th
ACM International Conference on Management of Data. ACM, 1553-1570.

Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the st International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management. ACM, 3:1-3:4.
Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik
Chakraborty, Hemant Bhanawat, and Kishor Bachhav. 2017. SnappyData: A Uni-
fied Cluster for Streaming, Transactions and Interactice Analytics. In Proceedings
of the 8th Conference on Innovative Data Systems Research. CIDR Conference,
1-8.

Trong Duc Nguyen, Ming-Hung Shih, Sai Sree Parvathaneni, Bojian Xu, Divesh
Srivastava, and Srikanta Tirthapura. 2020. Random Sampling for Group-By
Queries. In Proceedings of the 36th IEEE International Conference on Data Engi-
neering. IEEE, 541-552.

Frank Olken. 1993. Random Sampling from Databases. Ph.D. Dissertation. Uni-
versity of California at Berkeley.

Matthaios Olma, Odysseas Papapetrou, Raja Appuswamy, and Anastasia Aila-
maki. 2019. Taster: Self-Tuning, Elastic and Online Approximate Query Process-
ing. In Proceedings of the 35th IEEE International Conference on Data Engineering.
IEEE, 482-493.

Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Rein-
forcement Learning. In Proceedings of the 2nd ACM Workshop on Data Manage-
ment for End-To-End Machine Learning. ACM, 1-4.

Yongjoo Park, Michael]. Cafarella, and Barzan Mozafari. 2016. Visualization-
aware sampling for very large databases. In Proceedings of the 32nd IEEE Interna-
tional Conference on Data Engineering. IEEE, 755-766.

Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. Ver-
dictDB: Universalizing Approximate Query Processing. In Proceedings of the 37th
ACM International Conference on Management of Data. ACM, 1461-1476.
Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. 2018. AQP++:
Connecting Approximate Query Processing With Aggregate Precomputation for
Interactive Analytics. In Proceedings of the 37th ACM International Conference on
Management of Data. ACM, 1477-1492.

Gregory Piatetsky-Shapiro and Charles Connell. 1984. Accurate estimation of
the number of tuples satisfying a condition. ACM SIGMOD Record 14, 2 (1984),
256-276.

Robi Polikar, L. Upda, S. S. Upda, and Vasant G. Honavar. 2001. Learn++: an in-
cremental learning algorithm for supervised neural networks. IEEE Transactions
on Systems, Man, and Cybernetics 31, 4 (2001), 497-508.

Vibhor Porwal, Subrata Mitra, Fan Du, John Anderson, Nikhil Sheoran, Anup B.
Rao, Tung Mai, Gautam Kowshik, Sapthotharan Nair, Sameeksha Arora, and
Saurabh Mahapatra. 2022. Efficient Insights Discovery through Conditional
Generative Model based Query Approximation. In Proceedings of the 41st ACM
International Conference on Management of Data. ACM, 2397-2400.

Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais, Karrie Kara-
halios, Aditya Parameswaran, and Ronitt Rubinfield. 2017. I've Seen "Enough":
Incrementally Improving Visualizations to Support Rapid Decision Making. Pro-
ceedings of the VLDB Endowment 10, 11 (2017), 1262-1273.

Carl Edward Rasmussen. 1999. The Infinite Gaussian Mixture Model. In Proceed-
ings of the 12th MIT Advances in Neural Information Processing Systems. The MIT
Press, 554-560.

Nir Regev, Lior Rokach, and Asaf Shabtai. 2021. Approximating Aggregated
SQL Queries with LSTM Networks. In Proceedings of the 25th International Joint
Conference on Neural Networks. IEEE, 1-8.

Philipp Résch and Wolfgang Lehner. 2009. Sample synopses for approximate
answering of group-by queries. In Proceedings of the 12th International Conference
on Extending Database Technology. ACM, 403-414.

Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. 2020. ML-AQP:
Query-Driven Approximate Query Processing based on Machine Learning. arXiv
preprint arXiv:2003.06613 (2020).

Michael Shekelyan, Graham Cormode, Peter Triantafillou, Ali Mohammadi
Shanghooshabad, and Qingzhi Ma. 2022. Weighted Random Sampling over
Joins. arXiv preprint arXiv:2201.02670 (2022).

Nikhil Sheoran, Subrata Mitra, Vibhor Porwal, Siddharth Ghetia, Jatin Varshney,
Tung Mai, Anup B. Rao, and Vikas Maddukuri. 2022. Conditional Generative
Model Based Predicate-Aware Query Approximation. In 36th AAAI Conference
on Artificial Intelligence. AAAI Press, 8259-8266.

Shigetoshi Shiotani, Toshio Fukuda, and Takanori Shibata. 1995. A neural net-
work architecture for incremental learning. Neurocomputing 9, 2 (1995), 111-130.

https://archive.ics.uci.edu/ml/datasets/Census+Income
http://www.transtats.bts.gov

[49

[50]

[51]

[52]

[53

[54]

[55]

[56]

[57]

[58

[59]

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning Structured Output
Representation using Deep Conditional Generative Models. In Proceedings of
the 29th Annual Conference on Neural Information Processing Systems. ACM,
3483-3491.

Shaoxu Song, Fei Gao, Ruihong Huang, and Yihan Wang. 2021. On Saving
Outliers for Better Clustering over Noisy Data. In Proceedings of the 40th ACM
International Conference on Management of Data. 1692-1704.

Hong Su, Mohamed Zait, Vladimir Barriére, Joseph Torres, and Andre Cavalheiro
Menck. 2016. Approximate Aggregates in Oracle 12C. In Proceedings of the 25th
ACM International Conference on Information and Knowledge Management. ACM,
1603-1612.

Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proceedings of the VLDB Endowment 13, 3 (2019), 307-319.

Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for
Similarity Queries. In Proceedings of the 40th ACM International Conference on
Management of Data. ACM, 1745-1757.

Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-
dinality Estimation: A Design Space Exploration and A Comparative Evaluation.
Proceedings of the VLDB Endowment 15, 1 (2021), 85-97.

Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and Gautam
Das. 2020. Approximate Query Processing for Data Exploration using Deep
Generative Models. In Proceedings of the 36th IEEE International Conference on
Data Engineering. IEEE, 1309-1320.

TPC-DS. 2006. TPC-DS Benchmark. Retrieved January 15, 2023 from http:
/Iwww.tpc.org/tpeds/

TPC-H. 2003. TPC-H Benchmark.
//www.tpc.org/tpch/

Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingging Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proceedings of the
VLDB Endowment 14, 9 (2021), 1640-1654.

Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2014.
Selectivity Estimation on Streaming Spatio-Textual Data Using Local Correla-
tions. Proceedings of the VLDB Endowment 8, 2 (2014), 101-112.

Retrieved January 10, 2023 from http:

4229

(60

[61]

(62]

[64

[65

[66

o
=

(68

[69]

Yaoshu Wang, Chuan Xiao, Jianbin Qin, Rui Mao, Makoto Onizuka, Wei Wang,
Rui Zhang, and Yoshiharu Ishikawa. 2021. Consistent and Flexible Selectivity Es-
timation for High-Dimensional Data. In Proceedings of the 40th ACM International
Conference on Management of Data. ACM, 2319-2327.

Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both
Data and Queries for Cardinality Estimation. In Proceedings of the 40th ACM
International Conference on Management of Data. ACM, 2009-2022.

Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2022. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. arXiv preprint arXiv:2212.05526 (2022).

Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In Proceedings of the 36th
IEEE International Conference on Data Engineering. IEEE, 1297-1308.

Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, and Carlo Zaniolo. 2014. ABS: a
system for scalable approximate queries with accuracy guarantees. In Proceedings
of the 33rd ACM International Conference on Management of Data. ACM, 1067—
1070.

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019.
An End-to-End Automatic Cloud Database Tuning System Using Deep Rein-
forcement Learning. In Proceedings of the 38th ACM International Conference on
Management of Data. ACM, 415-432.

Meifan Zhang and Hongzhi Wang. 2021. Approximate Query Processing for
Group-By Queries based on Conditional Generative Models. arXiv preprint
arXiv:2101.02914 (2021).

Meifan Zhang and Hongzhi Wang. 2021. LAQP: Learning-based approximate
query processing. Information Sciences 54, 6 (2021), 1113-1134.

Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, and Hao Zhang. 2021. Uncertainty-
aware Cardinality Estimation by Neural Network Gaussian Process. arXiv
preprint arXiv:2107.08706 (2021).

Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In Proceedings of the 37th ACM International
Conference on Management of Data. ACM, 1525-1539.

http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Attribute-oriented Sample Size Allocation
	3.1 Group-by Attribute-oriented Sample Size Allocation
	3.2 Join Attribute-oriented Sample Size Allocation

	4 Conditional sample generation based on Table-CVAE
	4.1 Conditional Sampling with Automatic Table Data Encoding
	4.2 Table-CVAE Model Update

	5 Extensions
	5.1 Parallel Multi-round Sampling Aggregation
	5.2 Data Outlier-aware Sampling
	5.3 Dimension Reduction Optimization

	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness of Sample Size Allocation and Sample Generation
	6.3 Effectiveness of Extensions
	6.4 Comparison with Other AQP Approaches
	6.5 Performance on Real-world Applications

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

