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ABSTRACT
Today’s scientific simulations and instruments are producing a large

amount of data, leading to difficulties in storing, transmitting, and

analyzing these data. While error-controlled lossy compressors

are effective in significantly reducing data volumes and efficiently

developing databases formultiple scientific applications, theymainly

support error controls on raw data, which leaves a significant gap

between the data and user’s downstream analysis. This may cause

unqualified uncertainties in the outcomes of the analysis, a.k.a

quantities of interest (QoIs), which are the major concerns of users

in adopting lossy compression in practice. In this paper, we propose

rigorous mathematical theories to preserve four families of QoIs

that are widely used in scientific analysis during lossy compression

along with practical implementations. Specifically, we first develop

the error control theory for univariate QoIs which are essential

for computing physical properties such as kinetic energy, followed

by multivariate QoIs that are more commonly used in real-world

applications. The proposed method is integrated into a state-of-the-

art compression framework in a modular fashion, which could easily

adapt to newQoIs and new compression algorithms. Experiments on

real-world datasets demonstrate that the proposed method provides

faithful error control on important QoIs including kinetic energy,

regional average, and isosurface without trials and errors, while

offering compression ratios that are up to 4× of the compression

ratios provided by state-of-the-art compressors.
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1 INTRODUCTION
Today’s large-scale simulation and high-resolution instruments

are producing data at an unprecedented velocity and amount. For

instance, climate simulations can generate over 200 TB of data in 16

seconds [33], and fusion simulations produce over 200 PB of data

in a single run [3]. As such data velocity and amount significantly

outpace storage and I/O systems, there is an urgent need for data

systems to efficiently store and query these scientific data.

Compression is the most promising way to address the big data

problem and has been widely used in designing databases [18, 22,

25, 54, 58] and accelerating queries [14, 21] or analytics [60, 61].

However, traditional compression techniques face critical challenges

when dealing with scientific data. On the one hand, lossless com-

pressors [13, 23, 26] suffer from limited compression ratios (usually

≤ 2 according to [46, 52]) because of the random mantissas in the

floating-point format. On the other hand, although lossy compres-

sors [37, 50, 56] can obtain fairly high compression ratios, they

have certain data loss during the compression, which may cause

unqualified reconstructed data for post-processing.

Error-controlled lossy compression [10, 16, 36, 40, 45, 47, 53, 62]

has been proposed and developed in recent years to significantly

reduce scientific data volume and provide error controls at the

same time. Using these compressors, scientists can specify an error

tolerance (usually in the forms of 𝐿∞ norms and/or 𝐿2 norms) and

gurantee the decompressed data is within the given error tolerance

compared with the original data. As such, scientists can control

the impact of the lossy compression on their post hoc analysis

as needed. Error-controlled lossy compressors have been widely

used in different applications including cosmology [57], quantum

chemistry [27], molecular dynamics [64], and climate studies [15].

For the success of error-controlled lossy compressors in multiple

disciplines, there is an ever-increasing trend of using them in the

development of today’s databases [30, 64].

Because of the gap between the error tolerance applied on the

raw data and that on the user’s post hoc analysis, how the recon-

structed data can be guaranteed to produce correct outcomes in the

downstream analysis, a.k.a., Quantities of Interest (QoIs), is still the

most critical and challenging issue. Typical QoIs, including physical

properties such as kinetic energy and topological information such

as isosurface [48], contain important information that should not be

altered too much during compression, otherwise the reconstructed

data can lead to misinterpretation. However, most existing error-

controlled lossy compressors, including SZ [62] and ZFP [45], have

no error control for QoIs. As a result, determining a proper setting
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Table 1: Error control provided by existing compressors

Compressor 𝐿∞ 𝐿2
Pointwise

Relative

Linear

QoI

Quadratic

QoI

Topological

QoI

ISABELA [36] ✓
FPZIP [47] ✓
ZFP [45] ✓
SZ [62] ✓ ✓ ✓

MGARD [11] ✓ ✓ ✓
cpSZ [41] ✓ ✓

Our method ✓ ✓ ✓ ✓ ✓ ✓

to ensure acceptable QoIs loss with these compressors requires trial

and error, which is contrary to the benefits of adding error control.

While being understudied in the community, QoI-preserving com-

pression has already been explored for a few specific data analyses.

MGARD [11] is the first compressor that considers QoI preservation

via rigorous mathematical derivation, but it can only guarantee

errors in bounded-linear QoIs while many important QoIs such

as kinetic energy is nonlinear. The feature-preserving compressor

in [41] proposes an elegant way to keep the locations and types of

critical points in 2D and 3D vector fields, but it is specialized for that

particular feature. Table 1 summarizes the error control provided

by state-of-the-art lossy compressors for scientific data. To the best

of our knowledge, there is no compression software that preserves

families of generic nonlinear QoIs such as the polynomial ones.

In this work, we develop both the theory and the implementation

of a general QoI-preserving lossy compression framework. Inspired

by [41], we leverage a pointwise error bound for each data point to

convey the constraints from QoI to data. Specifically, we formulate

the QoI error preservation problem as an error bound derivation

problem for the compression of raw data. We theoretically establish

a series of mappings from the error of target QoIs to the pointwise

error bound on raw data. In particular, we show that four families

of important QoIs can be preserved in this way and the set of

preservable QoIs is closed under certain arithmetic operations. This

method further generalizes to multivariate QoIs by taking advantage

of the prediction-based compression pipeline where decompressed

data is immediately accessible during compression. To this end, we

develop a QoI-preserving compressor based on a state-of-the-art

compression framework and validate it using real-world datasets

on a cluster. Our contributions are summarized as follows.

• We develop rigorous error preservation theories for four

families of important univariate QoIs. We also prove that

QoIs composed through the operations such as addition,

multiplication, and composition, can also be preserved.

• We extend our theories to preserve multivariate QoIs based

on the coupled compression scheme in [41]. By leveraging

the immediately available decompressed data during com-

pression, we reduce the preservation of multivariate QoIs

to that of univariate QoIs, which can be solved using the

proposed error preservation theories.

• We implement a general QoI-preserving lossy compression

framework based on our theories and a state-of-the-art lossy

compressor. Particularly, we decouple the QoI derivation from

the compressor so that 1) new QoI can be easily integrated

and 2) the QoI preservation method can adapt easily to new

compression algorithms.

• We evaluate our framework using four scientific datasets

from real applications on a cluster. Experiments demonstrate

that our method delivers compression ratios that are up to 4×
of the compression ratios provided by the best existing com-

pressors under the same QoI tolerance. The proposed method

is also able to preserve the isosurface, leading to almost no

difference in the underlying visualization. In addition, the

localized error constraints make it easy and convenient for

our algorithm to preserve multiple QoIs at the same time.

The rest of the paper is organized as follows. In Section 2, we

discuss about the background and related works. In Section 3, we

formulate the research problem and present an overview of the com-

pression framework. In Section 4, we introduce error preservation

theories for both univariate and multivariate QoIs, which serves

as the foundation for the proposed work. In Section 5, we describe

the implementation of the proposed framework. In Section 6, we

present our evaluation results with real-world datasets on a cluster.

In Section 7, we conclude with a vision for future work.

2 BACKGROUND AND RELATEDWORKS
In this section, we present the background of Quantities-of-Interest

(QoIs) and related works on scientific data compression.

2.1 Quantities-of-Interest in Scientific Data
Scientific data generated by simulations and instruments will be

used in data analytics to identify patterns and extract features. As

studied in [11], Quantities-of-Interest (QoIs) are used to refer to

the outcomes of the underlying analytics, derived statistics from

raw data. Typical QoIs include physical properties such as mass and

momentum and topological features such as critical points [7] and

isosurface [48], and they can be generalized to any information that

is extracted from the data.

We classify QoIs into two categories and define them as follows.

Univariate QoIs are defined as the downstream quantities computed

using only one data point. These include momentum 𝑝 =𝑚𝑣 and

kinetic energy 𝐸 = 1

2
𝑚𝑣2 for particles, and logarithmic mapping

𝑦 = log𝑥 for log-scale visualization, etc. Multivariate QoIs are

defined as the downstream quantities computed using multiple

data points. Statistical measurements such as regional average and

topological information such as isosurface fall into this category.

In our paper, we focus on how to preserve four families of QoIs

widely used in domain scientific analytics, with the corresponding

visualization on a sample data field in Fig. 1. It is observed that these

QoIs exhibit very different properties that are needed by different

data analytics. The detailed mathematical formulation of these QoIs

will be presented in Section 3.1.

Polynomials: Polynomials are univariate QoIs that involve only

the operations of addition, subtraction, multiplication, and non-

negative integer exponentiation of a data point . As a typical exam-

ple, kinetic energy 𝐸 = 1

2
𝑚𝑣2 is the energy that an object possesses

due to its motion, where𝑚 and 𝑣 are the mass and velocity of the

object. Because𝑚 is usually a constant (especially for particle simu-

lations), kinetic energy is a quadratic function of 𝑣 . As one of the

key properties needed in many physics-related domains, the preser-

vation of kinetic energy is important for many physics simulations

including fusion energy science [19] and cosmology [29].
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(a) Original data (b)  f(x) = x2 (c) f(x) = log x

(d) Regional average of  block4 × 4 × 4 (e) Isosurface (isovalue = 0)
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Figure 1: Visualization of original data and the four QoIs on
a scientific data field (NYX velocity_x).

Logarithmic Mappings: Logarithmic mappings are univariate

QoIs that map original data to the logarithmic domain with a given

base. As demonstrated in previous work [39], this QoI is particularly

useful for visualizing data with clustered values close to 0, which is

usually the case for certain data fields in scientific datasets (such as

dark matter density in cosmology simulations [2]).

Weighted Sum: Weighted sum is a family of multivariate QoIs

that compute aggregated information in local regions, where the

regional average is a particular example. The regional average

is usually used to represent data in coarse resolution for either

visualization or exploratory analysis, as doing that on the entire

data is costly while sampling approaches based on decimation may

not be accurate due to the negligence of unselected data points. For

instance, it is a required preprocessing step for images produced by

the x-ray diffraction in [1] due to the ultra-fast data generation rate.

Isoline/Isosurface: Isoline, also known as contour line, is the

line connecting specified constant values (a.k.a isovalues) in 2D data

and isosurface is its generalization to 3D cases. Similar to weighted

sum, they are multivariate QoIs whose computation involves data

from local regions. They are widely used in various applications to

recognize and understand patterns and relationships in the data. For

instance, isobar used in [51] is the isoline used to represent points

of equal atmospheric pressure and isotherm studied in [32] is the

one for equal temperature in climate research.

2.2 Compression for Scientific Data
Many approaches have been proposed in the literature to address the

imbalanced growth between data and storage systems for scientific

applications. Lossless compression techniques such as GZIP [26],

ZSTD [23], and BLOSC [13] can recover the exact data during

decompression, but they suffer from limited compression ratios on

scientific data due to the random mantissas in the floating-point

format. Recently studies show that lossless compression can only

achieve 2× reduction in most cases [46, 52], while at least 10× is

required in many use cases [17].

General lossy compressors such as JPEG/JPEG2000 [50, 56] and

VAPOR [37] are able to trade-off accuracy for high compression

ratios, but they are not trusted by many scientists because of the

unbounded loss in decompressed data. To mitigate this issue, error-

controlled lossy compression is proposed to reduce data while

maintaining a certain level of accuracy.

There are two main models for error-controlled lossy compres-

sion, namely prediction-based [36, 40, 47, 53, 62] and transform-

based [10, 45]. Prediction-based compression models such as SZ [53,

62] usually follow a general compression pipeline [43], which con-

sists of four stages including prediction, quantization, entropy encod-

ing, and lossless compression. In the first two stages, each data value

is predicted using specific predictors, e.g., Lorenzo predictor in [53]

and spline predictor in [62], to take advantage of the spatiotemporal

correlation in the data, and then the difference between the pre-

dicted value and the original value is quantized to an integer value to

reduce the entropy while enforcing the error bound. Please note that

decompressed data is required for prediction during compression

to ensure the enforcement of error bound during decompression.

The quantized integer values are then encoded by entropy encoders

such as Huffman encoder [31] and arithmetic encoder [59], followed

by another lossless compression stage with GZIP [26] or ZSTD [23]

that further reduces the size. ZFP is a transform-based compressor

that compresses data in separate blocks. During compression, it

first converts data in each block to fixed-point format under the

same exponents, and then applies a near-orthogonal transform to

generate coefficients in the transformed domain, which are further

quantized and encoded using embedded encoding. Although these

compressors provide error control on the decompressed data, un-

certainties may arise in QoIs derived from raw data because their

compression stages are completely QoI-agnostic.

Recently, the developers of MGARD proposed to preserve QoI

during lossy compression and managed to control the error for

the family of bounded-linear QoIs [11]. Drawn from the wavelet

theories and finite element analysis, the original MGARD [10] relies

on multilinear interpolation with 𝐿2 projection to transform data

into multilevel coefficients, which are then quantized and encoded

using linear-scaling quantization [53] and lossless compression. In

the latest studies, the MGARD team proposed an operator norm to

integrate QoI information, which is used to adjust the quantization

strategy based on prior knowledge. Through careful derivations on

both the QoI and error propagation of multilevel coefficients, they

showed that the errors in bounded-linear QoIs, such as mass and

streamlines, can be preserved. Nevertheless, the QoI error control

in MGARD is a little loose due to pessimistic estimations, and it

cannot control the errors in nonlinear QoIs.

In [41], the authors proposed a novel way to preserve critical

points in 2D/3D vector fields. Specifically, they transform the re-

quirements of retaining critical points in local cells to sufficient

error bounds on the data points based on how critical points are ex-

tracted, and use them to reduce data with two compression schemes.

However, the derivation is specific to critical point extraction and

thus cannot be generalized to other use cases. There are contradic-

tory deficiencies between the proposed two schemes as well: the

decoupled scheme can adapt to different compression methods but

suffers from limited compression ratios, while the coupled scheme

is tightly integrated with a specific compression method and thus is

hard to adapt when new compression algorithms are developed.

In this work, we develop a QoI-preserving compression frame-

work based on the coupled scheme in [41], but significantly expand
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Table 2: Notations

Symbol Description

𝜏 User-specified error tolerance on QoIs.

𝜀 Actual error of QoIs using decompressed data.

𝑛 Number of data points.

𝑑 Dimentionality of data.

𝑥 Original data (single point).

𝑥 ′ Decompressed data (single point).

𝜖 Derived error bound for a single data point.

𝜉 The error of a data point (𝜉 = 𝑥 − 𝑥 ′ ∈ [−𝜖, 𝜖 ]).
x, x′, 𝝐 Vectors of 𝑥, 𝑥 ′, 𝜖 in multivariate cases.

𝑥𝑖 , 𝑥
′
𝑖 , 𝜖𝑖 The 𝑖-th element in x, x′, 𝝐 .
𝑓 Abstraction for univariate QoI.

𝑔 Abstraction for multivariate QoI.

𝑄 (𝑓 , 𝜏, 𝑥) A univariate error bound derivation problem.

| · | Operator of getting absolute value.

| · |𝐿∞ Operator of getting 𝐿∞ norm.

the functionality to guarantee the preservation of a wide range

of QoIs and easy adaption to any prediction-based compression

method. Specifically, we develop a general error control theory

to map the tolerance of QoIs to that of data for four families of

important QoIs, and prove its applicability for any new QoIs of

their composition through certain arithmetic operations. We fur-

ther design and implement a flexible and modular compression

framework to decouple QoIs from the actual compression method

for easy adaption. Specifically, our framework is integrated into

the latest interpolation-based compressors [62] whose predictor

switches according to the user-specified tolerance, which usually

yields higher compression ratios.

3 OVERVIEW
In this section, we formulate our research problem and describe

the quality measurement, followed by an overview of the proposed

QoI-preserving lossy compression framework. Common notations

used in this paper are summarized in Table 2. The focused QoIs that

are preserved in this paper as summarized in Table 3.

Table 3: Target QoIs

Name Category Formula Goal

Polynomials univariate 𝑓 (𝑥) = ∑
𝑎𝑖𝑥

𝑖 𝜀 ≤ 𝜏

Logarithmic Mapping univariate 𝑓 (𝑥) = 𝑎 log𝑏 𝑥 + 𝑐 𝜀 ≤ 𝜏

Weighted Sum multivariate 𝑔 (x) = ∑
𝑎𝑖 𝑓 (𝑥𝑖 ) 𝜀 ≤ 𝜏

Isoline/isosurface multivariate 𝑔 (x) = {𝒙 |𝑢 (𝒙) = 𝑧 } 𝜀∗ = 0

* Using the localized metric defined in Section 3.

3.1 Problem Formulation
The objective of QoI-preserving lossy compression is to provide

error control on the underlying QoIs while compressing raw data

lossily, such that scientists can effectively reduce the volumes of

their data based on their actual needs. We first define QoI in this

paper as follows, and formulate the research objectives thereafter.

Definition 1. A univariate QoI 𝑓 : R → R is a function that
maps a data value to a quantity, e.g., 𝑓 (𝑣) = 1

2
𝑚𝑣2 maps velocity

𝑣 to kinetic energy. A multivariate QoI 𝒈 : R𝑛 → R is a function
that maps a vector of data values to a quantity, e.g., 𝒈(x) = ∑

𝑥 ∈x 𝑥

maps the data vector to its mean value. Note that this definition easily
generalizes to QoIs that map original data to multiple quantities.

Given 𝑑-dimensional scientific data x and QoI tolerance 𝜏 , the

general goal is to achieve maximum compression ratio while en-

suring 𝜀 = |𝑓 (x) − 𝑓 (x′) |𝐿∞ ≤ 𝜏 for univariate QoI 𝑓 or 𝜀 =

|𝑔(x) − 𝑔(x′) | ≤ 𝜏 for multivariate QoI 𝑔 in decompressed data

x′. Note that some statistical QoIs such as Mean Square Errors

(MSE) are defined in the form of 𝑔(x, x′) instead of 𝑔(x). In this case,

we re-define 𝑔′(y) = 𝑔(x, y) (using y as the independent variable),

such that these QoIs can be formulated in the same way.

With this general formulation, we then formulate examples of

the four QoIs that will be used in our evaluation. Specifically, we

will preserve 𝑓 (𝑥) = 𝑥2 which represents the order of kinetic

energy, and 𝑓 (𝑥) = log𝑥 which is a general logarithmic function

for polynomials and logarithmic mapping, respectively. We will

then consider the preservation of the regional average of 𝑥2 and the

isosurface with the specified isovalue as two multivariate QoIs. As

the general formulation directly applies to the univariate examples,

we mainly focus on the formulation of the latter two.

Regional average of 𝑥2: We use the regional average of 𝑥2

instead of 𝑥 as our example because 1) it cannot be preserved by

existing compressors and 2) it can be compared with the univariate

preservation of 𝑓 (𝑥) = 𝑥2. Given data of dimension 𝑛1×𝑛2×· · ·×𝑛𝑑
and block size 𝐵, we can segment the data into blocks of 𝐵𝑑 . The

regional average QoI 𝒈 maps each block of data to a single quantity

that equals to the average of their squares and produce a dataset

with a coarse resolution ⌈𝑛1

𝐵
⌉ × ⌈𝑛2

𝐵
⌉ × · · · × ⌈𝑛𝑑

𝐵
⌉. The goal is then

to control the maximal error in the coarse-resolution quantities.

Isoline/Isosurface: Formally, the isoline of an isovalue 𝑧 can be

described as the collection 𝐼 (𝑧) = {(𝑥,𝑦) |𝑓 (𝑥,𝑦) = 𝑧 𝑎𝑛𝑑 (𝑥,𝑦) ∈
Ω} where 𝑓 is the functional representation of data and Ω is the

corresponding domain, and isosurface is its direct generalization to

3D cases. As there is no general metric to evaluate the error of the

isoline or isosurface, we leverage a localized definition similar to

that of critical points in [41].

We first introduce the classical marching squares algorithmwhich

extracts isolines (marching cubes for isosurfaces [48]), followed by

our definitions for correct and erroneous cells. In particular, the

algorithm takes one cell with 4 neighbor locations at a time (8 for

3D cases) and determines the shape of the polygon based on their

relative values compared to the isovalue. An edge is identified as

required for representing the isoline if one of the node values on

the edge is larger than the isovalue and the other is smaller. Then,

linear interpolations are performed between the two nodes on the

required edges to find the exact position and generate the isoline.

An example of isoline extraction is illustrated in Fig. 2(a).

Since the shape of the isoline is solely determined by the relative

values of the nodes compared to the isovalue, we define the metric

for isoline preservation as shown in Fig. 2(b). Specifically, we define

a cell as "matched" if the relative values of all nodes (compared

with the isovalue) keep the same in original and decompressed data,

or formally (𝑥 − 𝑧) (𝑥 ′ − 𝑧) > 0 for an isovalue 𝑧 and any node 𝑥

belonging to the cell. Please note that we overlook the perturbations

on the required edges as they will not affect the shape or trend of

the isoline. Mismatches happen in the following 3 cases: (1) False

Negative (FN) if an isoline is present in the original data but absent
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(a) Isoline extraction.

Compare

with isovalue

Edge identification

and linear


interpolation
Generate


isoline

(b) Example of MS/TN (wanted) and FS/FN/FP (unwanted).

Original Data Decompressed Data

True Negative False Positive

C
as

e 
2

Matched Shape False Shape False Negative

C
as

e 
1

Origin

Origin

wanted unwanted

Figure 2: Isoline extraction and examples of False Negative
(FP), False Positive (FN), and False Shape (FS) cells. Rednodes
have larger values than the isovalue while blue nodes have
smaller values. Dotted lines indicate the extracted isoline.

in the decompressed data; (2) False Positive (FP) if an isoline is

absent in the original data but appears in the decompressed data;

(3) False Shape (FS) for any other mismatches that lead to a wrong

connection of an isoline to adjacent cells. The number of FN/FP/FS

will indicate how the isoline is preserved during lossy compression.

3.2 Quality Measurement
We use rate-distortion as a quality measurement in this paper as it

is an important and widely used metric in the community. Rate here

stands for bit-rate, which is computed by the size of the original data

type (e.g., 32 for single-precision floating point and 64 for double)

over compression ratio thus indicating the mean number of bits

used in the compressed format. When multiple fields are present in a

dataset, the aggregated bit-rate is the average bit-rate of all the fields.

We use the error of the underlying QoI as our distortion metric.

Thus, higher compression quality is indicated by a lower QoI error

under the same bit-rate or lower bit-rate (i.e., higher compression

ratios) under the same QoI error. We also present the compression

performance/throughput, which is evaluated by the size of data

divided by the corresponding compression/decompression time.

3.3 System Overview
We present the overview of our QoI-preserving compression frame-

work in Fig. 3 with the bottom line depicting stages in existing

prediction-based lossy compressors (e.g., SZ [53] and FPZIP [47]).

Unlike existing compressors which utilize a uniform global error

bound, our framework leverages a QoI module to estimate the error

bound for each data point and use it during quantization. Specifi-

cally, the pointwise error bound is estimated by a univariate QoI

solver based on original and already decompressed data follow-

ing the theories to be presented in Section 4, and quantized by a

dedicated error bound quantizer to reduce storage cost. Then, the

decompressed value of the error bound (instead of the uniform

global error bound) is fed to the data quantizer in the prediction-

based compression pipeline. When all the data points have been

processed, the quantized values of both error bounds and data are

compressed using Huffman encoding and lossless compression.

Note that the workflow of the proposed framework is similar to

the online compression scheme proposed in [41], but differs in the

decoupled design for generalization and easy extension to both new

QoIs and new predictors/compressors. The detailed implementation

and integration with the target QoIs will be introduced in Section 5.

QoIs error  
bound

error bound 
quantization

compressed 
error bound

univariate 
QoI solver

compressed 
data

lossless 
compressorquantizationprediction

overwrite with  
decompressed value

decompressed 
error bound

Prediction-based compression pipeline

QoI preservation

Figure 3: Design of QoI-preserving lossy compression frame-
work. The QoI module is fully decoupled from the pipeline
for easy adaption to new QoIs and diverse predictors.

4 THEORETICAL FOUNDATION
In this section, we present the theoretical foundation of our QoI-

preserving lossy compression framework. Specifically, we aim to

derive the analytical solutions to preserve certain families of uni-

variate and multivariate QoIs using the pointwise error bounds

proposed in [41]. Note that the theories in this section only deliver

a sufficient solution to demonstrate the feasibility of this approach

for the target families of QoIs. Integration of the example QoIs and

the corresponding optimizations will be introduced in Section 5.

4.1 Univariate QoI Preservation
Our key idea for enabling QoI preservation is to derive the proper

error bound on each point of the raw data according to the QoIs.

As such, we formulate the error bound derivation problem for

univariate QoI preservation as follows.

Definition 2. Given a univariate QoI 𝑓 : R→ R and an accept-
able QoI tolerance 𝜏 , the error bound derivation problem𝑄 (𝑓 , 𝜏, 𝑥) for
a data point 𝑥 solves an error bound 𝜖 in the form of user-specified toler-
ance 𝜏 , such that |𝑓 (𝑥) − 𝑓 (𝑥 ′) | ≤ 𝜏 for any 𝑥 ′ satisfying |𝑥 −𝑥 ′ | ≤ 𝜖 .

Per the definition, solving an error bound derivation problem

𝜖 = 𝑄 (𝑓 , 𝜏, 𝑥) returns the required error bound 𝜖 on the raw data

point 𝑥 , which leads to a maximal error of 𝜏 in the QoI 𝑓 . This

definition can be easily generalized to cover QoIs that map original

data 𝑥 to multiple quantities by treating each mapping as a sep-

arate QoI. For instance, it is straightforward to have 𝑄 (𝑓 , 𝜏, 𝑥) =
min(𝑄 (𝑓1, 𝜏, 𝑥), 𝑄 (𝑓2, 𝜏, 𝑥)) when 𝑓 (𝑥) = (𝑓1 (𝑥), 𝑓2 (𝑥)). Once 𝜖 is

identified, compressing 𝑥 with the error bound 𝜖 guarantees that

the error in the underlying QoI is less than 𝜏 . Note that 𝜖 must exist,

because 𝜖 = 0 is a feasible solution. Based on this property, we

further define the preservability of QoIs as follows.
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Definition 3. A univariate QoI 𝑓 is preservable if there is an
analytical solution for the error bound 𝜖 = 𝑄 (𝑓 , 𝜏, 𝑥).

This definition indicates a sufficient condition for univariate QoIs

that can be preserved in this paper. Also, when multiple preservable

QoIs are present at the same time, selecting the minimal derived

error bound will guarantee the required errors on them all, as

summarized in the following corollary.

Corollary 1. min(𝑄 (𝑓1, 𝜏1, 𝑥), 𝑄 (𝑓2, 𝜏2, 𝑥)) provides a sufficient
error bound that satisfies the error requirements of two QoIs (𝜏1 for 𝑓1
and 𝜏2 for 𝑓2) at the same time.

We seek for sufficient bounds to solve the error bound derivation

problems in practice, because the optimal solution that yields the

largest 𝜖 is usually hard to find especially for complex nonlinear

QoIs. In the following, we present and prove some general properties

for preservable QoIs at first, and then the sufficient solutions for

certain families of QoIs.

First, we show that the preservable QoIs are closed under certain

arithmetic operations including addition, multiplication, and com-

position, as shown in the following lemmas. These properties can

be used to compose complex preservable QoIs based on existing

ones thus increasing the coverage of the proposed method.

Lemma 1. If 𝜖1 and 𝜖2 are sufficient solutions for 𝑄 (𝑓1, 𝜏1, 𝑥) and
𝑄 (𝑓2, 𝜏2, 𝑥), respectively, then min(𝜖1, 𝜖2) is a sufficient solution for
𝑄 (𝑓1 + 𝑓2, 𝜏1 + 𝜏2, 𝑥).

Proof. Let 𝑓 = 𝑓1+𝑓2. We have |𝑓 (𝑥)−𝑓 (𝑥 ′) | ≤ |𝑓1 (𝑥)−𝑓1 (𝑥 ′) |+
|𝑓2 (𝑥) − 𝑓2 (𝑥 ′) | ≤ 𝜏1 + 𝜏2 using the triangular inequality. □

Lemma 2. If 𝜖1 and 𝜖2 are sufficient solutions for 𝑄 (𝑓1, 𝜏1, 𝑥) and
𝑄 (𝑓2, 𝜏2, 𝑥), thenmin(𝜖1, 𝜖2) is a sufficient solution for𝑄 (𝑓1 𝑓2, 𝜏1𝜏2 +
|𝑓1 (𝑥) |𝜏1 + |𝑓2 (𝑥) |𝜏2, 𝑥).

Proof. Let 𝑓 = 𝑓1 𝑓2. We have the following relationship:

|𝑓 (𝑥) − 𝑓 (𝑥 ′) | = |𝑓 (𝑥 ′) − 𝑓 (𝑥) | = |𝑓1 (𝑥 ′) 𝑓2 (𝑥 ′) − 𝑓1 (𝑥) 𝑓2 (𝑥) |
= | (𝑓1 (𝑥 ′) − 𝑓1 (𝑥)) (𝑓2 (𝑥 ′) − 𝑓2 (𝑥)) + (𝑓1 (𝑥 ′) − 𝑓1 (𝑥))
· 𝑓2 (𝑥) + 𝑓1 (𝑥) (𝑓2 (𝑥 ′) − 𝑓2 (𝑥)) |
≤ |𝑓1 (𝑥 ′) − 𝑓1 (𝑥) | |𝑓2 (𝑥 ′) − 𝑓2 (𝑥) | + | (𝑓1 (𝑥 ′) − 𝑓1 (𝑥)) |
· |𝑓2 (𝑥) | + |𝑓1 (𝑥) | | (𝑓2 (𝑥 ′) − 𝑓2 (𝑥) |
≤ 𝜏1𝜏2 + |𝑓1 (𝑥) |𝜏1 + |𝑓2 (𝑥) |𝜏2 □

By trivially setting 𝜏1 = 𝜏2, these lemmas can be used to solve

the error bound derivation problem for QoIs composed by additive

and/or multiplicative operations, as shown in the below corollaries.

Corollary 2. min(𝑄 (𝑓1, 𝜏/2, 𝑥), 𝑄 (𝑓2, 𝜏/2, 𝑥)) is one sufficient
solution for 𝑄 (𝑓1 + 𝑓2, 𝜏, 𝑥).

Corollary 3. Let 𝑓 + (𝑥) = |𝑓1 (𝑥) |+|𝑓2 (𝑥) |,𝜏 ′ =
−𝑓 + (𝑥)+

√
4𝜏+𝑓 + (𝑥)2
2

.
min(𝑄 (𝑓1, 𝜏 ′, 𝑥), 𝑄 (𝑓2, 𝜏 ′, 𝑥)) is one sufficient solution for𝑄 (𝑓1 𝑓2, 𝜏, 𝑥).

Lemma 3. 𝑄 (𝑓2, 𝑄 (𝑓1, 𝜏, 𝑓2 (𝑥)), 𝑥) is a sufficient solution for𝑄 (𝑓1◦
𝑓2, 𝜏, 𝑥) where ◦ is composition operation.

Proof. 𝑄 (𝑓1, 𝜏, 𝑓2 (𝑥)) gives a sufficient error bound for 𝑓2 (𝑥) so
a sufficient error bound for 𝑥 would be 𝑄 (𝑓2, 𝑄 (𝑓1, 𝜏, 𝑓2 (𝑥)), 𝑥). □

Given these properties, we then identify the several preservable

QoIs including the families of polynomials, logarithmic functions,

and radical functions.

Lemma 4. For non-degenerative linear QoI 𝑓 (𝑥) = 𝑎𝑥 +𝑏, 𝜖 = 𝜏/|𝑎 |
is a sufficient solution for 𝑄 (𝑓 , 𝜏, 𝑥).

Proof. By directly applying the triangular inequality, we have

|𝑓 (𝑥) − 𝑓 (𝑥 ′) | ≤ |𝑎 | |𝑥 − 𝑥 ′ | ≤ |𝑎 |𝜖 = 𝜏 . □

Theorem 1. All polynomial QoIs are preservable.

Proof. Because an order 𝑛 polynomial can be written as the

multiplication of a linear polynomial and an order 𝑛 − 1 polynomial,

this can be proved bymathematical inductionwith Lemma 1/2/4. □

Theorem 2. For logarithmic QoIs 𝑓 (𝑥) = 𝑎 log𝑏 𝑥 + 𝑐 with 𝑏 > 1,
𝜖 = |𝑥 |min(1−𝑏−𝜏/ |𝑎 |, 𝑏𝜏/ |𝑎 |−1) is a sufficient solution for𝑄 (𝑓 , 𝜏, 𝑥).

Proof. Let 𝜉 = 𝑥 − 𝑥 ′ ∈ [−𝜖, 𝜖]. We have

|𝑓 (𝑥) − 𝑓 (𝑥 ′) | = |𝑓 (𝑥 ′) − 𝑓 (𝑥) | = |𝑎 log𝑏 (1 + 𝜉/𝑥) |
≤ |𝑎 | |log𝑏 (1 + 𝜉/𝑥) | ≤ |𝑎 | |𝜏 |/|𝑎 | = 𝜏 □

Theorem 3. For radical QoIs 𝑓 (𝑥) =
√
𝑥 , 𝜖 = 𝜏2 − 2𝜏

√
𝑥 is a

sufficient solution for 𝑄 (𝑓 , 𝜏, 𝑥).

Proof. Let 𝜉 = 𝑥 − 𝑥 ′ ∈ [−𝜖, 𝜖]. We have

|𝑓 (𝑥) − 𝑓 (𝑥 ′) | =
���� 𝜉√

𝑥+𝜉+
√
𝑥

���� < 𝜏 .

This reduces to (𝜉 − 𝜏
√
𝑥)2 < 𝜏2 (𝑥 + 𝜉) and (𝜉 + 𝜏

√
𝑥)2 > 𝜏2 (𝑥 + 𝜉),

or equivalently 𝜉2 − (2𝜏
√
𝑥 + 𝜏2)𝜉 < 0 and 𝜉2 + (2𝜏

√
𝑥 − 𝜏2)𝜉 < 0.

Similarly, it has closed-form solution 𝜖 = min(𝜏2 + 2𝜏
√
𝑥, 𝜏2 −

2𝜏
√
𝑥) = 𝜏2 − 2𝜏

√
𝑥 . □

4.2 Multivariate QoI Preservation
We define the error bound derivation problem and preservability of

multivariate QoIs in a way similar to those of the univariate ones,

which is detailed as follows.

Definition 4. Given a multivariate QoI 𝑔 : R𝑛 → R and an ac-
ceptable QoI tolerance 𝜏 , the error bound derivation problem𝑄 (𝑔, 𝜏, x)
for input 𝑑-dimensional data x solves an error bound 𝝐 , such that
|𝑔(x)−𝑔(x′) | ≤ 𝜏 for any x′ satisfying |x−x′ | ≦ 𝝐 , where |x−x′ | ≦ 𝝐
means |𝑥𝑖 − 𝑥 ′𝑖 | ≤ 𝜖𝑖 for any 𝑖 .

The definition is a direct extension of Definition 2 which works

for univariate QoIs. Instead of solving a single error bound 𝜖 for

a single data point 𝑥 in 𝑄 (𝑓 , 𝜏, 𝑥), 𝑄 (𝑔, 𝜏, x) needs to solve the

sufficient error bounds for all data points that are involved in the

computation of the multivariate QoI 𝑔.

Definition 5. A multivariate QoI 𝑔 is preservable if there is an
analytical solution for the error bound vector 𝝐 = 𝑄 (𝑔, 𝜏, x).

Similar to Definition 3, this definition indicates a sufficient con-

dition for multivariate QoIs that can be preserved in this paper,

and can be generalized to cover QoIs that map the original data to

multiple quantities. Based on this definition, we have the following

theorem for multivariate QoI preservation.

Theorem 4. Preservation of a multivariate QoI can be reduced
to that of a family of univariate QoIs when the prediction-based
compression pipeline is used.
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<latexit sha1_base64="gK6OG94rFiuRR3PAK7DZYYS0GCw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbFqEeiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/qlb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5PGWdm7KFfuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEVSNqg==</latexit>x3

<latexit sha1_base64="1DPedq+KVANDHFPOjPZEgkX/8E0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/qlb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5NGpexdlM/uzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AD9CNqQ==</latexit>x2
<latexit sha1_base64="gK6OG94rFiuRR3PAK7DZYYS0GCw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbFqEeiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/qlb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5PGWdm7KFfuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEVSNqg==</latexit>x3

<latexit sha1_base64="Ie0GEwmBAAQ7ltwlO6eS5RKQzPc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1oh6LXjxWsB/QLiWbZtvQJLskWbEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389iNVmkXywUxi6gs8lCxkBJtMejrtu/1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Obp2iE6sMUBgpW9Kgmfp7IsVC64kIbKfAZqQXvUz8z+smJrz2UybjxFBJ5ovChCMToexxNGCKEsMnlmCimL0VkRFWmBgbT8mG4C2+vExa51Xvslq7v6jUb/I4inAEx3AGHlxBHe6gAU0gMIJneIU3RzgvzrvzMW8tOPnMIfyB8/kDbZKN2A==</latexit>

x0
0

<latexit sha1_base64="JIwm2lERQMWx7PeQa0ewiABhFzE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1oh6LXjxWsB/QLiWbZtvQJLskWbEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389iNVmkXywUxi6gs8lCxkBJtMejrte/1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Obp2iE6sMUBgpW9Kgmfp7IsVC64kIbKfAZqQXvUz8z+smJrz2UybjxFBJ5ovChCMToexxNGCKEsMnlmCimL0VkRFWmBgbT8mG4C2+vExa51Xvslq7v6jUb/I4inAEx3AGHlxBHe6gAU0gMIJneIU3RzgvzrvzMW8tOPnMIfyB8/kDbxaN2Q==</latexit>

x0
1

<latexit sha1_base64="gK6OG94rFiuRR3PAK7DZYYS0GCw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbFqEeiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/qlb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5PGWdm7KFfuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEVSNqg==</latexit>x3

<latexit sha1_base64="Ie0GEwmBAAQ7ltwlO6eS5RKQzPc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1oh6LXjxWsB/QLiWbZtvQJLskWbEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389iNVmkXywUxi6gs8lCxkBJtMejrtu/1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Obp2iE6sMUBgpW9Kgmfp7IsVC64kIbKfAZqQXvUz8z+smJrz2UybjxFBJ5ovChCMToexxNGCKEsMnlmCimL0VkRFWmBgbT8mG4C2+vExa51Xvslq7v6jUb/I4inAEx3AGHlxBHe6gAU0gMIJneIU3RzgvzrvzMW8tOPnMIfyB8/kDbZKN2A==</latexit>

x0
0

<latexit sha1_base64="uf9pMmrnil4/3N34bxc/JobStxM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mtoh6LXjxWsB/QLiWbZtvQJLskWbEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389iNVmkXywUxi6gs8lCxkBJtMejrt1/rlilt1Z0DLxMtJBXI0+uWv3iAiiaDSEI617npubPwUK8MIp9NSL9E0xmSMh7RrqcSCaj+d3TpFJ1YZoDBStqRBM/X3RIqF1hMR2E6BzUgvepn4n9dNTHjtp0zGiaGSzBeFCUcmQtnjaMAUJYZPLMFEMXsrIiOsMDE2npINwVt8eZm0alXvsnp+f1Gp3+RxFOEIjuEMPLiCOtxBA5pAYATP8ApvjnBenHfnY95acPKZQ/gD5/MHcJqN2g==</latexit>

x0
2

<latexit sha1_base64="JIwm2lERQMWx7PeQa0ewiABhFzE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1oh6LXjxWsB/QLiWbZtvQJLskWbEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389iNVmkXywUxi6gs8lCxkBJtMejrte/1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Obp2iE6sMUBgpW9Kgmfp7IsVC64kIbKfAZqQXvUz8z+smJrz2UybjxFBJ5ovChCMToexxNGCKEsMnlmCimL0VkRFWmBgbT8mG4C2+vExa51Xvslq7v6jUb/I4inAEx3AGHlxBHe6gAU0gMIJneIU3RzgvzrvzMW8tOPnMIfyB8/kDbxaN2Q==</latexit>

x0
1

<latexit sha1_base64="Ie0GEwmBAAQ7ltwlO6eS5RKQzPc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1oh6LXjxWsB/QLiWbZtvQJLskWbEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389iNVmkXywUxi6gs8lCxkBJtMejrtu/1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Obp2iE6sMUBgpW9Kgmfp7IsVC64kIbKfAZqQXvUz8z+smJrz2UybjxFBJ5ovChCMToexxNGCKEsMnlmCimL0VkRFWmBgbT8mG4C2+vExa51Xvslq7v6jUb/I4inAEx3AGHlxBHe6gAU0gMIJneIU3RzgvzrvzMW8tOPnMIfyB8/kDbZKN2A==</latexit>

x0
0

Unprocessed nodes Processing node Processed node

(a) (b) (c) (d) (e)

<latexit sha1_base64="yZpE8p+9PpN9jwby4/taCeG+ByI="></latexit>

fx3 = (x0
0, x

0
1, x

0
2, x3)

| <latexit sha1_base64="VPzfNuJqKSeVkoLUJffmvDwT1GM="></latexit>x0 = (x0
0, x

0
1, x

0
2, x

0
3)

|<latexit sha1_base64="t9kuvMVTvKRm44uycwMj7wlRIoI="></latexit>fx2 = (x0
0, x

0
1, x2, x3)

|<latexit sha1_base64="eYhvWnQybcK6w7Czslg9mNtgCi4=">AAACVnicbVBda9RAFJ2k1tb1K+qjL4NLYQtlSbrSCiIU9cHHCm5b2GzDzeSmHTozCTM3bZeQP6kv+lN8ESfbFbT1wlwO55w7c+fktZKO4vhHEK7dW7+/sflg8PDR4ydPo2fPj1zVWIFTUanKnuTgUEmDU5Kk8KS2CDpXeJxffOj140u0TlbmCy1qnGs4M7KUAshTWaRTDXSel216JQskqQpsr7Ok6/g7Pro+TWsrNWbxDvdk33b7Ntk+bVNpCK0A1Q22MJt4e/oRFUHWlt3IW3Z4StC85X/u91S3nUXDeBwvi98FyQoM2aoOs+hrWlSi0WhIKHBulsQ1zVuwJIXCbpA2DmsQF3CGMw8NaHTzdhlLx7c8U/Cysv4Y4kv274kWtHMLnXtnv6S7rfXk/7RZQ+WbeStN3RAacfNQ2ShOFe8z5oW0KEgtPABhpd+Vi3OwIHxibuBDSG5/+S442h0ne+PJ59fDg/erODbZS/aKjVjC9tkB+8QO2ZQJ9o39DMJgLfge/ArXw40baxisZl6wfyqMfgMR1LGk</latexit>fx1 = (x0
0, x1, x2, x3)

|<latexit sha1_base64="wNzPLPkn3Hwqm4w3xQbMw+JQ56E=">AAACQXicbVBNSxxBEO0xH5rVxE085tJkERRkmXHEBEQQzSFHA1ld2FmHmt4abezpGbprwi7D/DUv/gNv3r14MIRcc0nPuoRELeji8V697uqXFEpa8v1rb+7Z8xcv5xdetRaXXr9Zbr99d2Tz0gjsiVzlpp+ARSU19kiSwn5hELJE4XFyftDox9/RWJnrbzQpcJjBqZapFECOitv9KAM6S9JqXPNdvjaO/Q0+joOmbTYtXD+pIqkJjQBVt1YxDt1c9BkVQVyltXOEGzwiKHf436visF6P2x2/60+LPwbBDHTYrA7j9lU0ykWZoSahwNpB4Bc0rMCQFArrVlRaLECcwykOHNSQoR1W0wRqvuqYEU9z444mPmX/dVSQWTvJEjfZLGkfag35lDYoKf00rKQuSkIt7h9KS8Up502cfCQNClITB0AY6Xbl4gwMCJeYbbkQgodffgyONrvBdjf8utXZ25/FscDesw9sjQXsI9tjX9gh6zHBLtgNu2M/vEvv1vvp/bofnfNmnhX2X3m//wCDbq1X</latexit>x = (x0, x1, x2, x3)
|

<latexit sha1_base64="93wNPBfbCKWkcwoo+Y1MVTo7Hpc="></latexit>

✏3 = Q(g(fx3), ⌧/4, x3)
<latexit sha1_base64="jxiDfzWn83q3yY3YFcE3wdOz1lo="></latexit>

✏2 = Q(g(fx2), ⌧/4, x2)
<latexit sha1_base64="FT5TV7CxnHESLgdXCgSAEDdgWHM="></latexit>

✏1 = Q(g(fx1), ⌧/4, x1)
<latexit sha1_base64="nKKQ8/FTGpUIEkQizDOJhdlHy0k=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARWik10aJuhKIbly3YCzQhTKaTdujkwsxEWkLfwY2v4saFIm7duPNtnLRZaPWHgY//nMOc87sRo0IaxpeWW1peWV3Lrxc2Nre2d/TdvbYIY45JC4cs5F0XCcJoQFqSSka6ESfIdxnpuKObtN65J1zQMLiTk4jYPhoE1KMYSWU5+rFFIkGZQgNewWZpULJ8JIeul4yn5Qq0JIpPahU4doyyoxeNqjET/AtmBkWQqeHon1Y/xLFPAokZEqJnGpG0E8QlxYxMC1YsSITwCA1IT2GAfCLsZHbTFB4ppw+9kKsXSDhzf04kyBdi4ruqM11YLNZS879aL5bepZ3QIIolCfD8Iy9mUIYwDQj2KSdYsokChDlVu0I8RBxhqWIsqBDMxZP/Qvu0ap5Xz5q1Yv06iyMPDsAhKAETXIA6uAUN0AIYPIAn8AJetUftWXvT3uetOS2b2Qe/pH18A265m/k=</latexit>

✏0 = Q(g(x), ⌧/4, x0)
<latexit sha1_base64="bkvOcCPgxt7K7U+wfUEx29aNj4M=">AAACC3icbVC7TsMwFHV4lvIKMLJYrZCYqgQQMFZ0YSwSfUhtFDmu01r1I7IdoIq6s/ArLAwgxMoPsPE3uG0GaLmSfY/OPUf2PVHCqDae9+0sLa+srq0XNoqbW9s7u+7eflPLVGHSwJJJ1Y6QJowK0jDUMNJOFEE8YqQVDWuTeeuOKE2luDWjhAQc9QWNKUbGUqFbqkluDVrDLnwIPXvfUzOwrUsSTZmVeKFb9iretOAi8HNQBnnVQ/er25M45UQYzJDWHd9LTJAhZShmZFzsppokCA9Rn3QsFIgTHWTTXcbwyDI9GEtljzBwyv52ZIhrPeKRVXJkBnp+NiH/m3VSE18GGRVJaojAs4filEEj4SQY2KOKYMNGFiCsqP0rxAOkEDY2vqINwZ9feRE0Tyr+eeX05qxcvcrjKIBDUALHwAcXoAquQR00AAaP4Bm8gjfnyXlx3p2PmXTJyT0H4E85nz8RZ5nP</latexit>

Compress x0 with ✏0
<latexit sha1_base64="LztvyV+rLAwWULjPYmML9OmXcXo=">AAACC3icbVC7TsMwFHV4lvIKMLJYrZCYqgQQMFZ0YSwSfUhtFDmu01r1I7IdoIq6s/ArLAwgxMoPsPE3uG0GaLmSfY/OPUf2PVHCqDae9+0sLa+srq0XNoqbW9s7u+7eflPLVGHSwJJJ1Y6QJowK0jDUMNJOFEE8YqQVDWuTeeuOKE2luDWjhAQc9QWNKUbGUqFbqkluDVrDLnwIfXvfUzOwrUsSTZmV+KFb9iretOAi8HNQBnnVQ/er25M45UQYzJDWHd9LTJAhZShmZFzsppokCA9Rn3QsFIgTHWTTXcbwyDI9GEtljzBwyv52ZIhrPeKRVXJkBnp+NiH/m3VSE18GGRVJaojAs4filEEj4SQY2KOKYMNGFiCsqP0rxAOkEDY2vqINwZ9feRE0Tyr+eeX05qxcvcrjKIBDUALHwAcXoAquQR00AAaP4Bm8gjfnyXlx3p2PmXTJyT0H4E85nz8Ug5nR</latexit>

Compress x1 with ✏1
<latexit sha1_base64="fbtVbz+S+8Uh65bws7rQ7X2Q5vw=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCUFAWNFF8Yi0YfURJHjOq1VO45sB6ii7iz8CgsDCLHyA2z8DW6bAVquZN+jc8+RfU+YMKq043xbhZXVtfWN4mZpa3tnd8/eP2grkUpMWlgwIbshUoTRmLQ01Yx0E0kQDxnphKPGdN65I1JREd/qcUJ8jgYxjShG2lCBXW4IbgxKQQ8+BDVz31M9NM0jiaLMSGqBXXGqzqzgMnBzUAF5NQP7y+sLnHISa8yQUj3XSbSfIakpZmRS8lJFEoRHaEB6BsaIE+Vns10m8NgwfRgJaU6s4Yz97cgQV2rMQ6PkSA/V4mxK/jfrpTq69DMaJ6kmMZ4/FKUMagGnwcA+lQRrNjYAYUnNXyEeIomwNvGVTAju4srLoF2ruufV05uzSv0qj6MIjkAZnAAXXIA6uAZN0AIYPIJn8ArerCfrxXq3PubSgpV7DsGfsj5/ABefmdM=</latexit>

Compress x2 with ✏2
<latexit sha1_base64="ifIQTZ7VMaSZIssPP9FSjSRqhAE=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCUUAWNFF8Yi0YfURJHjOq1Vx45sB6ii7iz8CgsDCLHyA2z8DW6bAVquZN+jc8+RfU+YMKq043xbhZXVtfWN4mZpa3tnd8/eP2grkUpMWlgwIbshUoRRTlqaaka6iSQoDhnphKPGdN65I1JRwW/1OCF+jAacRhQjbajALjdEbAxKQQ8+BDVz31M9NM0jiaLMSGqBXXGqzqzgMnBzUAF5NQP7y+sLnMaEa8yQUj3XSbSfIakpZmRS8lJFEoRHaEB6BnIUE+Vns10m8NgwfRgJaQ7XcMb+dmQoVmoch0YZIz1Ui7Mp+d+sl+ro0s8oT1JNOJ4/FKUMagGnwcA+lQRrNjYAYUnNXyEeIomwNvGVTAju4srLoH1adc+rtZuzSv0qj6MIjkAZnAAXXIA6uAZN0AIYPIJn8ArerCfrxXq3PubSgpV7DsGfsj5/ABq7mdU=</latexit>

Compress x3 with ✏3
<latexit sha1_base64="h8q4G5OzUEfmMuynj75oOVrbFmQ=">AAAB73icbVDLSgNBEJz1GeMr6tHLYBA8hV0V9RjMxWME84BkCbOT3mTIPNaZWSEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFRTaFDFlW5HxABnEhqWWQ7tRAMREYdWNKpN/dYTaMOUfLDjBEJBBpLFjBLrpHZNiYSDhV6p7Ff8GfAyCXJSRjnqvdJXt69oKkBayokxncBPbJgRbRnlMCl2UwMJoSMygI6jkggwYTa7d4JPndLHsdKupMUz9fdERoQxYxG5TkHs0Cx6U/E/r5Pa+CbMmExSC5LOF8Upx1bh6fO4zzRQy8eOEKqZuxXTIdGEWhdR0YUQLL68TJrnleCqcnF/Wa7e5nEU0DE6QWcoQNeoiu5QHTUQRRw9o1f05j16L9679zFvXfHymSP0B97nDyLrkAs=</latexit>

Complete

Figure 4: Online error bound derivation and compression with prediction-based compression pipeline for multivariate QoIs.

Proof. We reduce the multivariate error bound derivation prob-

lem𝑄 (𝑔, 𝜏, x) to a family of univariate problems as follows. As men-

tioned in Section 2, prediction-based compressors such as SZ [53]

and FPZIP [47] process input data point one by one, and the decom-

pressed value for any data point is known immediately after it is

processed. Consider the case when the 𝑖-th point is being processed.

As 𝑥𝑖 is the only value that will be changed in this iteration, the mul-

tivariate QoI 𝑔(x) can be regarded as a univariate one when 𝑥 𝑗 ( 𝑗<𝑖)
are treated as constants with decompressed values and 𝑥 𝑗 ( 𝑗>𝑖) are
treated as constants with the original value, respectively. Specifi-

cally, let x̃i = (𝑥 ′
0
, . . . , 𝑥 ′

𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛−1)
⊺
and 𝑔𝑖 (𝑥𝑖 ) = 𝑔(x̃i)

be a univariate QoI of 𝑥𝑖 , and we have x̃0 = x, x′ = x̃n, and 𝑔𝑖 (𝑥 ′𝑖 ) =
𝑔(x̃i+1). Then, the error bound derivation problem at the current

iteration with 𝜏𝑖 as the allowed tolerance is reduced to 𝑄 (𝑔𝑖 , 𝜏𝑖 , 𝑥𝑖 )
based on the definitions in the previous section. If 𝑄 (𝑔𝑖 , 𝜏𝑖 , 𝑥𝑖 ) is
preservable for any 𝑖 , the multivariate problem is divided into 𝑛

univariate problems and solved thereafter by letting 𝜏𝑖 = 𝜏/𝑛, based
on the fact that |𝑔(x) − 𝑔(x′) | ≤ |𝑔(x) − 𝑔(x̃1) | + |𝑔(x̃1) − 𝑔(x̃2) | +
· · · + |𝑔(�xn−1) − 𝑔(x′) | = ∑

𝑖 |𝑔𝑖 (𝑥𝑖 ) − 𝑔𝑖 (𝑥 ′𝑖 ) | ≤ 𝑛 · (𝜏/𝑛) = 𝜏 . To

illustrate the processing steps, we present an example with 2 × 2
input data x = (𝑥0, 𝑥1, 𝑥2, 𝑥3)⊺ in Fig. 4. □

One can prove that a wide range of QoIs are preservable given

Lemma 1, 2, and 3, and the four theorems. For instance, the norm of

velocity 𝑣 =

√
𝑣2𝑥 + 𝑣2𝑦 is preservable because it is composed by a

radical function and a polynomial. As a more complex example, if

the original data is a probability function, the Kullback–Leibler di-

vergence [35] between the original and decompressed distributions

is preservable as it is a weighted average of logarithmic functions.

5 IMPLEMENTATION AND INTEGRATION
In this section, we introduce the implementation of our lossy com-

pression framework and the integration of the example QoIs. Com-

pared with existing error-controlled compressors, the proposed

framework features guaranteed QoI error control, non-iterative

compression, and high extensibility to new QoIs and predictors.

5.1 Algorithm and Implementation
We present our QoI-preserving compression algorithm in Algo-

rithm 1 based on a modular prediction-based compression frame-

work [43], with the highlighted changes in blue (compared with

the general compression algorithms). Specifically, a QoI object is

initiated in the beginning (line 1) with user-specified error tolerance

𝜏 . In each iteration, the QoI information is used to estimate the

pointwise error bound. This estimated pointwise error bound is the

minimum of the global error bound and the one derived from QoI

(line 3-4). Then, this estimated error bound is quantized using a

log-scale quantizer [41] and immediately recovered as the actual

pointwise error bound to guide the quantization of data points (line

5-7) using the existing algorithms [53]. Next, an optional sanity

check (line 8-12) is performed to eliminate corner cases where the

error bound is not met due to round-off errors. By the end of each

iteration, tolerance in the QoI is updated using decompressed data

(line 13). In the end, the quantizer and encoder for the derived

error bounds are both stored to ensure complete information dur-

ing decompression (line 17 and line 19). Such a design decouples

QoI preservation (which includes error bound derivation and error

bound compression) with data compression (which compresses data

based on the derived error bounds), thus facilitating the integration

of the former to diverse prediction-based compression algorithms.

Algorithm 1 QoI-preserving Lossy Compressor

Input: input data 𝑑 of size 𝑛, QoI error 𝜏 , global error bound 𝜖𝑔
Output: compressed data 𝑐𝑐

1: qoi.init(𝜏 ) /*Initiate QoI information*/

2: for 𝑖 = 1→ 𝑛 do
3: eb← qoi.estimate_eb(d[i]) /*Estimate error bound for data*/

4: eb← min(𝜖𝑔, 𝑒𝑏) /*Ensure global error bound*/
5: eb, q_e[i]← quantizer_eb.quantize(eb) /*Quantize computed error bound*/

6: 𝑝 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 .predict(𝑑 [𝑖 ]) /*perform prediction*/

7: 𝑞 [𝑖 ], 𝑑′ [𝑖 ] ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 .quantize(𝑑 [𝑖 ], 𝑝, 𝑒𝑏) /*perform quantization

based on the estimated error bound*/

8: /*Optional condition check for QoIs*/

9: if qoi.check_compliance(d[i], d’[i]) then
10: 𝑒𝑏 ← 0, 𝑞_𝑒 [𝑖 ] ← 0 /*Set error bound to 0*/

11: 𝑞 [𝑖 ] ← 0, 𝑑′ [𝑖 ] ← 𝑑 [𝑖 ]
12: end if
13: qoi.update_tolerance(d[i], d’[i]) /*Update the error tolerance for aggregated

QoIs*/

14: end for
15: 𝑐 ← allocate_memory()
16: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 .save(𝑐) /*save predictor*/
17: 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟_𝑒𝑏.save(𝑐) /*save error bound quantizer*/

18: 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 .save(𝑐) /*save data quantizer*/
19: 𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑒𝑏.encode(𝑞, 𝑐) /*perform encoding for error bounds*/

20: 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 .encode(𝑞_𝑒, 𝑐) /*perform encoding for data*/

21: 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 .save(𝑐) /*save encoder*/
22: 𝑐𝑐 ← 𝑙𝑜𝑠𝑠𝑙𝑒𝑠𝑠_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 .compress(𝑐) /*perform lossless compression*/

23: return 𝑐𝑐

We integrate the proposed method to two families of predic-

tors, namely multi-layer Lorenzo predictors [53] and interpolation
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predictors [62], because recent studies show that they lead to the

best rate-distortion under relatively low and high error bounds,

respectively. In practice, we notice that the final compression ratio

will first increase and then decrease when the global error bound

decreases. This is because a very large global error bound will lead

to large errors and low prediction accuracy (thus low compression

ratios) for certain datasets, while a very small global error bound

will over-preserve the data in most cases. As such, we set the most

appropriate global error bound based on a sampling approach if it

is not specified by the users. Specifically, we start with the largest

allowed error bound (or a rough estimation) and use the selected pre-

dictors to perform compression on sampled data. The error bound

is decreased by half every time and this process is repeated until the

current error bound leads to a lower compression ratio compared

with the previous iteration.

5.2 QoI Integration
We demonstrate how the examples of the target QoIs can be inte-

grated into our framework. To this end, we further show that our

framework is adept at preserving multiple QoIs at the same time.

Quadratic function 𝑓 (𝑥) = 𝑥2: Since this QoI is quadratic,

it falls into the polynomial family and the corresponding error

bound derivation problem can be solved by the theory in Section 4.

According to Corollary 3, a sufficient error bound for this problem

would be 𝑄 (𝑓 , 𝜏, 𝑥) = −|𝑥 | +
√
𝑥2 + 𝜏 because 𝑓

+ (𝑥) = 2|𝑥 |. There
is no need to update tolerance in this case as it is a univariate QoI.

Logarithmicmapping 𝑓 (𝑥) = log
2
𝑥 :The sufficient error bound

for this QoI can be directly derived using Theorem 2 with 𝑎 = 1,

𝑏 = 2, and 𝑐 = 0. Again, there is no need to update tolerance in this

case as it is a univariate QoI.

Regional average of 𝑥2: Based on our theory, this QoI can be

treated as Π𝑑
𝑗=1

𝑛 𝑗 decomposed QoIs where each of them operates on

a data block independently. Specifically, denoting the set of data in

the 𝑖-th block as Ω𝑖 , the corresponding QoI in this block is translated

to 𝑔𝑖 (x) =
∑

𝑥∈Ω𝑖 𝑥

card(Ω𝑖 ) in this case, where card is the cardinality, a.k.a

number of data points in the block. As each 𝑔𝑖 is a multivariate

linear QoI, they can be preserved using Theorem 4. Specifically, the

sufficient error bound for the 𝑗-th data point in the block would

be 𝑄 (𝑔𝑖 , 𝜏, 𝑥 𝑗 ) = 𝜏∗card(Ω𝑖 )
card(Ω𝑖 ) = 𝜏 . This reduces to the uniform error

bound of 𝜏 on all the data points, which certainly preserves the

error in the regional average.

We further optimize our method in this case, since the direct

derivation above does not take the cancellation into consideration

when computing the average, leading to over-conservative error

bounds. Specifically, we accumulate an error value 𝑒𝑖 =
∑
𝑥 ∈Ω𝑖

and

𝑥 is processed 𝑥 −𝑥 ′ in each block during compression, which sums

up the error in all decompressed data at the current stage. Then, a

possible better solution could be 𝑄 (𝑔𝑖 , 𝜏, 𝑥 𝑗 ) = 𝜏∗card(Ω𝑖 )−𝑒𝑖
card(Ω𝑖 )−𝑗 which

accounts for both the cancellation and the number of points left.

After this data point is processed, the accumulated tolerance will be

updated to 𝑒𝑖 = 𝑒𝑖 + 𝑥 𝑗 − 𝑥 ′𝑗 . As this method takes the cancellation

during the summation into consideration, we find in practice that it

always leads to better compression ratios than compressing with a

uniform QoI error bound 𝜏 .

Isoline/Isosurface: Based on the marching cube algorithm and

our metrics described in Section 3.1, a possible error bound esti-

mation function for a data point 𝑥 with respect to an isovalue 𝑧

could be |𝑥 − 𝑧 |. In a general case where multiple isovalues {𝑧𝑖 }
need to be preserved, the estimated error bound be min𝑖 |𝑥 − 𝑧𝑖 |. In
our implementation, we optimize the estimation process by sorting

the isovalues at first and then identifying the most adjacent ones

with the binary search for comparison.

Preservation with multiple QoIs: Our framework easily gen-

eralizes to preserve multiple desired QoIs. Based on Corollary 1, this

can be done by solving the error bounds for all QoIs and choosing

the minimal one as the final error bound.

6 EXPERIMENTAL EVALUATIONS
We evaluate our method with the four QoIs mentioned above with

four real-world datasets from Scientific Data Reduction Bench-

marks [63]. Specifically, we mainly compare the compression quality

and QoI error control capability of our method with three state-of-

the-art error-controlled lossy compressors, namely SZ-interp [62],

ZFP [45], and MGARD [10, 11]. For all compressors we have bench-

marked, the latest releases from their master branches were used as

of Feb. 1st, 2022. Throughout the evaluation, we use "CR" to denote

compression ratio, "𝑆𝐶 " for compression speed in megabytes per

second (MB/s), "𝑆𝐷 " for decompression speed in MB/s, "NMAE"

for normalized maximal absolute error, and "#FN/#FP/#FS" for the

number of false negative/false positive/false shape cells in the iso-

line/isosurface preservation, respectively.

6.1 Experiment Setup
We evaluate four scientific datasets from diverse applications do-

mains (shown in Table 4), including Hurricane Isabel climate simu-

lation [24], NYX cosmology simulation [12], SCALE climate simula-

tion [44], and QMCPACK quantum Monte Carlo simulation [34].

Table 4: Benchmark datasets

Dataset #Fields Dimensions Size

Hurricane 13 100 × 500 × 500 1.21 GB

NYX 6 512 × 512 × 512 3.00 GB

SCALE 12 98 × 1200 × 1200 6.31 GB

QMCPACK 1 288 × 115 × 69 × 69 0.59 GB

All the experiments are conducted on a high-performance clus-

ter [5], where each compute node is equipped with 2 AMD EPYC

7502 processors containing 64 physical cores in total and 128 GB

of DDR4 memory. GCC 9.2 is used as the compiler for all the com-

pressors. Any experiment related to compression/decompression

speed is performed 5 times and the average values are reported.

We present the aggregated results over the datasets in most of the

experiments and use two representative data fields, namely Uf48

and Pf48 from Hurricane ISABEL, to demonstrate the effectiveness

of our method on error control and isosurface preservation.

6.2 Preservation of 𝑥2

We first compare the compression quality and performance of our

method with other state-of-the-art lossy compressors when preserv-

ing 𝑓 (𝑥) = 𝑥2. Since none of the existing compressors preserve this
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non-linear QoI, we iteratively tune them to make the error of this

QoI in their decompressed data as close to the target as possible.

This usually requires several compress-decompress-verification pro-

cesses that are extremely time-consuming and inefficient. We test

two modes of MGARD: the 𝐿∞ mode [10] (labeled "MGARD(inf)"

in the figures) which better preserves pointwise error and the 𝐿2

mode [9] (labeled "MGARD(0)") with smooth parameter 𝑠 = 0which

better preserves sum of squared errors.
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Figure 5: Rate-distortion for preserving 𝑓 (𝑥) = 𝑥2.

Fig. 5 shows the overall rate-distortion of all the evaluated com-

pressors on the four datasets. It is observed that our method always

leads to the best compression ratios under the same QoI error bound.

In absolute terms, the compression ratios of our method are up to

1.77× (1E-3 on Hurricane), 4.03× (1E-3 on NYX), 2.06× (1E-2 on

SCALE), and 2.12× (1E-5 on QMCPACK) of those of the best existing

compressors, respectively. Such benefits demonstrate the necessity

of leveraging pointwise error bounds against a uniform error bound,

because the latter usually over-preserves data in many regions.

We also present the compression/decompression speed in Fig. 6

and Fig. 7, respectively, using log-scale because of the large gap

between the fastest and slowest compressors. Similar to previous

works [38, 42, 62], ZFP leads in both the compression speed and

decompression speed in most cases because its optimized implemen-

tation for orthogonal transforms and embedded encoding. SZ-interp

is generally slower compared with ZFP, but it outperforms ZFP

in some small error bounds because the embedded encoding in

ZFP becomes costly in those cases. The two modes of MGARD are

usually the slowest, because they use a general implementation that

is applicable to broader use cases, e.g., compressing data in non-

uniform and unstructured grids. Our method has a slower speed

compared with SZ-interp, because it involves extra computation

including error bound estimation, quantization, and encoding.
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Figure 6: Compression speed of different compressors.
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Figure 7: Decompression speed of different compressors.

Since the results above overlook the tuning process, we further

perform a more fair comparison between our method and FRaZ [55],

a state-of-the-art tuning-based compressor that is able to preserve

QoIs via trials and errors. Specifically, FRaZ starts with a preset

error bound and compressor, and then iteratively refines the error

bound by decompressing the data and checking the tolerance of

the target QoI. We present the results with FRaZ in Table 5. Note

that we only test FRaZ with SZ and ZFP because our method al-

ready delivers comparable speed with higher compression ratios

compared to MGARD. According to the table, FRaZ cannot achieve

high compression ratios unless lower-bound is set close to the tar-

get. The only case FRaZ outperforms our method in compression

ratio is when 𝜏 = 1𝐸 − 1 on Pf48, because the compressed error

bounds in our method manifest high overhead when compression

ratios become extremely high. Also, FRaZ yields similar (and lower

when the number of iterations becomes large) compression speed
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Table 5: Preservation of 𝑓 (𝑥) = 𝑥2 compared with FRaZ. MT indicates "manually tuned" results. LB is the lower-bound of
acceptable errors in FRaZ and "#Iter" indicates the number of iterations used to find the appropriate setting.

Uf48 Pf48

𝜏 Compressor LB #Iter CR 𝑆𝐶 𝑆𝐷 NMAE #Iter CR 𝑆𝐶 𝑆𝐷 NMAE

1E-1

SZ3-FRaZ

1E-2 3 1034.90 28.72 394.08 7.75E-2 3 2548.36 30.63 397.36 8.35E-2

5E-2 3 1034.90 28.73 394.08 7.75E-2 3 2526.46 30.66 397.36 8.35E-2

9E-2 25 1430.62 4.45 399.03 9.73E-2 36 2913.84 3.13 399.03 9.63E-2

SZ3-MT - - 1517.68 154.13 507.85 9.91E-2 - 3101.16 173.20 532.42 9.96E-2

ZFP-FRaZ

1E-2 3 59.46 52.78 472.12 8.19E-2 5 57.24 36.71 489.06 4.90E-2

5E-2 3 59.46 52.81 472.12 8.19E-2 N/A - - - -

9E-2 N/A - - - - N/A - - - -

ZFP-MT - - 59.46 452.44 955.20 8.19E-2 - 44.74 408.32 942.41 2.33E-2

Our method - - 1619.30 33.24 65.46 9.79E-2 - 2112.65 33.12 64.88 9.89E-2

1E-2

SZ3-FRaZ

1E-3 3 55.85 24.97 338.18 7.98E-3 3 237.63 27.50 364.00 8.78E-3

5E-3 3 55.85 28.73 394.08 7.98E-3 3 237.63 27.52 364.00 8.78E-3

9E-3 25 68.75 3.72 350.62 9.89E-3 66 261.96 1.65 368.21 9.90E-3

SZ3-MT - - 66.71 135.08 422.66 9.61E-3 - 260.82 142.48 443.08 9.87E-3

ZFP-FRaZ

1E-3 5 16.56 26.06 346.79 7.02E-3 5 25.76 30.21 416.51 8.18E-3

5E-3 5 16.56 26.02 348.06 7.02E-3 5 25.76 30.20 416.52 8.18E-3

9E-3 N/A - - - - N/A - - - -

ZFP-MT - - 16.56 289.91 553.51 7.02E-3 - 25.76 336.23 751.05 8.17E-3

Our method - - 155.79 33.33 64.22 9.98E-3 - 329.71 34.11 64.83 9.98E-3

1E-3

SZ3-FRaZ

1E-4 3 13.47 17.70 172.77 8.09E-4 3 34.77 23.43 294.43 9.07E-4

5E-4 3 13.45 17.70 172.77 8.09E-4 3 34.77 23.43 293.44 9.07E-4

9E-4 25 14.06 2.73 138.41 9.88E-4 3 34.77 23.44 293.44 9.07E-4

SZ3-MT - - 13.97 88.12 143.24 9.61E-4 - 37.51 126.81 331.89 9.81E-4

ZFP-FRaZ

1E-4 3 7.78 29.88 270.16 8.77E-4 3 11.38 35.65 317.89 8.44E-4

5E-4 3 7.78 29.89 271.70 8.77E-4 3 11.38 35.66 318.95 8.44E-4

9E-4 N/A - - - - N/A - - - -

ZFP-MT - - 7.78 224.94 378.07 8.77E-4 - 11.38 259.28 510.04 8.43E-4

Our method - - 27.17 33.10 60.55 9.99E-4 - 62.68 34.07 62.50 9.99E-4

compared to our method because of the costly iterative tuning. This

table also demonstrates the tight error bound in our method, as our

NMAEs are very close to the target error bounds.

6.3 Preservation of Regional Average of 𝑥2

We then present how the optimization proposed in Section 5.2 im-

proves the compression ratios when the QoI is the regional average

of 𝑥2. Again, we first show in Table 6 that our method successfully

preserves the regional average of 𝑥2 for various block sizes. It is

noticed that the error control becomes looser when the block size

increases. This is because larger block sizes lead to less number of

blocks and it becomes less likely for the last point in the block to

have an error that is close to the error bound.

Table 6: NMAE of regional average of 𝑥2 (𝜏=1E-3)

Block size 1 2 3 4

Uf48 9.99426E-4 9.99285E-4 9.17413E-4 8.66270E-4

Pf48 9.99293E-4 9.87116E-4 9.05715E-4 7.06676E-4

We also show how this optimization improves compression qual-

ity by presenting the rate-distortion in Fig. 8, where the case of block

size equals 1 reduces to the preservation of 𝑓 (𝑥) = 𝑥2. According

to the figures, the QoI integration with cancellation generally leads

to 10% ∼ 30% improvement on the compression ratios when the

block size equals 4, and this improvement comes with the fact that

the regional average applies a uniform weight on all the data in the

block, which is not the most advantageous case for this approach. A

larger compression ratio gain is expected when a weighted average

QoI with non-uniform weights needs to be preserved.
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Figure 8: Rate-distortion in terms of the regional average of
𝑥2 using different region block sizes.

6.4 Preservation of Isoline/Isosurface
Next, we present both the quantitative and qualitative analysis of

isosurface preservation using the two example data fields. Specifi-

cally, we use the number of #FN/#FP/#FS cells for the quantitative
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(a) Original data (b) SZ-Interp (CR=59.70) (c) ZFP (CR=59.46)

(d) MGARD (s=0, CR=59.02) (e) MGARD (s=-0.5, CR=56.60) (f) Our method (CR=59.84)

Figure 9: Isosurface of a zoomed-in region on Uf48 (isovalue equals to the mean of data).

study and the visualization result from ParaView [8] for the qualita-

tive study. The compression ratios of all the compressors are tuned

to the same level for a fair comparison. For MGARD, we evaluate

the modes 𝑠 = 0 and 𝑠 = −0.5, and leave out the 𝐿∞ mode for QoI

preservation as recommended by the authors [11].

Table 7: Quantitative error for isosurface (Hurricane Uf48)

Compressor CR #FN #FP #FS 𝑆𝐶 𝑆𝐷

SZ-interp 59.71 33168 43321 369902 147.17 510.35

ZFP 59.46 93798 83806 553660 442.23 931.24

MGARD(s=0) 59.02 29854 40198 354863 26.74 29.85

MGARD(s=-0.5) 56.60 29591 37855 345242 26.82 29.61

Our method 59.84 0 0 0 31.94 61.04

The quantitative results in terms of erroneous cells for the iso-

surface on Uf48 are presented in Table 7, where the isovalue is the

mean of the data. It is observed that, under this compression ratio,

all the other compressors have a large number of #FN/#FP/#FS cells,

while our method preserves all the cells. However,our method is

slightly slower than SZ-interp and ZFP.

Fig. 9 shows the qualitative results over a zoomed-in region of

the extracted isosurface with the same setting. Although SZ-interp

maintains the rough shape of the isosurface, there are obvious

disjoints (e.g., islands on the left), extra joints (islands in the middle

top), distorted shapes (e.g., holes on the right), etc. ZFP leads to larger

distortions with blockwise artifacts owing to its block-transform-

based design. Compared with SZ-interp, the two modes of MGARD

have relatively better preservation of the holes on the right, but

exhibit larger distortion in the middle. Also, 𝑠 = 0 has better quality

in this region because it cares more about high frequencies related

to the local details compared with 𝑠 = −0.5, although it has less

#FN/#FP/#FS cells in the global view. In contrast, our method keeps

almost all isosurface details and exhibits negligible visual distortions.

Table 8: Quantitative error for isosurface (Hurricane Pf48)

Compressor CR #FN #FP #FS 𝑆𝐶 𝑆𝐷

SZ-interp 130.05 17252 51760 98320 152.78 539.46

ZFP 129.71 3798289 33408 358907 730.06 1224.94

MGARD(s=0) 126.17 8665 56591 95248 23.62 24.76

MGARD(s=-0.5) 124.97 8222 55365 92958 23.62 24.64

Our method 133.90 0 0 0 31.75 63.05

(a) Original data (b) SZ-Interp (CR=129.81) (c) ZFP (CR=129.71)

(d) MGARD (s=0, CR=126.17) (e) MGARD (s=-0.5, CR=124.97) (f) Our method (CR=133.81)

Figure 10: Isosurface on Pf48 (isovalue equals to 0).

We also present the results on Pf48, using a special isovalue 0 be-

cause 1) it represents some important features such as critical points

in vector fields, and 2) it is easily distorted by existing compressors.

The corresponding quantitative and qualitative results are shown

in Table 8 and Fig. 10, respectively. According to the figures, severe

artifacts are present in almost all the other compressors because the

existing compression algorithm easily flushes values to 0, which is

also evidenced by the large number of FP cells in Table 8.

6.5 Preservation of Multiple QoIs
Finally, we present the results of the preservation of multiple QoIs.

The selected QoIs and error requirements are: (1) 𝑓1 = 𝑥2 with

normalized error bound 1E-3; (2) 𝑓2 = log
2
𝑥 with error bound 1E-2;

(3) 𝑓3 is the isosurface extraction with mean as the only isovalue.

We omit the regional average of 𝑥2 because it is overlapped with

𝑓1. Also, our error bound for 𝑓2 is 10× larger than 𝑓1 as it usually

poses much more stricter constraints than 𝑓1 under the same error

bound. We evaluate all 7 combinations of the three QoIs on the two

example data fields, and present the results in Table 9.

As shown in the table, our method faithfully preserves the QoIs

as requested. For instance, when 𝑓1 is enabled, the NMAE of 𝑥2

is always smaller than the error bound 1E-3. Nevertheless, such

bound is exceeded when 𝑓1 is not enabled, even though both 𝑓2
and 𝑓3 are enabled (row 6). Furthermore, our method successfully

preserves multiple QoIs at the same time. It is observed that all the

corresponding error bounds are respected when all three QoIs are

enabled and some of them might be over-preserved because of the

combined constraints.
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Table 9: Preservation of multiple QoIs: 𝑓1 = 𝑥2 (𝜏 = 1𝐸 − 3), 𝑓2 = log
2
𝑥 (𝜏 = 1𝐸 − 2), and isosurface 𝑓3 (mean as the isovalue)

Field 𝑓1 𝑓2 𝑓3 NMAE (𝑥2
) NMAE (log𝑥 ) #𝐹𝑁 #𝐹𝑃 #𝐹𝑆 𝑆𝐶 𝑆𝐷 CR

Uf48

✓ 9.99E-4 INF 27389 35903 329811 33.16 60.49 27.17

✓ 1.07E-2 1.00E-2 5707 6939 88540 20.94 55.59 6.75

✓ 1.84E-2 INF 0 0 0 38.18 62.80 59.95

✓ ✓ 8.57E-4 9.99E-3 4712 5508 71574 19.38 52.69 7.26

✓ ✓ 9.99E-4 INF 0 0 0 27.86 59.86 24.21

✓ ✓ 1.15E-3 9.99E-3 0 0 0 20.03 52.21 7.34

✓ ✓ ✓ 8.57E-4 9.99E-3 0 0 0 18.40 52.58 7.20

Pf48

✓ 9.99E-4 INF 5949 5236 46651 34.13 62.38 62.68

✓ 2.36E-2 1.00E-2 423 418 6095 23.25 67.76 9.46

✓ 1.85E-2 INF 0 0 0 39.13 64.32 244.96

✓ ✓ 9.99E-4 9.99E-3 347 399 5080 20.41 57.73 15.38

✓ ✓ 9.99E-4 INF 0 0 0 28.39 62.22 58.54

✓ ✓ 2.29E-3 9.99E-3 0 0 0 21.12 57.32 16.01

✓ ✓ ✓ 9.99E-4 9.99E-3 0 0 0 19.41 57.73 15.35

An interesting trend in the table is that the compression ratio and

speedwill be dominated by the strictest constraint, which is 𝑓2 in this

case. One can see degraded compression ratios and speed every time

when 𝑓2 is included (e.g., row 1 and row 4). Nevertheless, an increase

in compression ratio is noticed when other QoIs are included in the

target QoI sets where 𝑓2 is present (e.g., row 2 and row 4). This is

because 𝑓2 imposes a very large error bound on data points with a

large value, which may negatively impact the prediction accuracy

(because prediction is performed using the decompressed data [53]).

Under those circumstances, adding constraints from additional QoIs

could decrease the error bounds that are actually assigned to those

large values, thus improving the prediction accuracy, and in turn

leading to better compression ratios.

6.6 Discussion
Coverage and limitations: The proposed method in this paper

provides guaranteed error control for four families of QoIs and any

QoI of their composition through certain arithmetic operations.

These QoIs cover a wide range of frequently used analyses in scien-

tific simulations, including quantity derivation (e.g., kinetic energy,

the magnitude of velocity, and density, etc.) in fusion and cosmology

simulation [28], statistical analysis (e.g., mean, standard derivation,

and contrast variations, etc.) in climate research [49], and isosurface

extraction in almost all the domains [20, 32, 51]. The same idea can

be generalized to other analyses, as long as the mapping from the

target QoI error to those of raw data is derivable. One limitation is

that this method does not apply to QoIs without such an error map-

ping, which is typical when the QoIs are irreversible. For instance,

it does not work for the halo finding analysis in HACC cosmol-

ogy simulation [29], which requires a random down-sampling step

that prevents the derivation of the error bounds. In such cases, an

iterative approach would be needed to control the errors.

Trade-offs between compression ratio and speed: There

are two urgent needs for data compression in the scientific domains:

mitigation of storage overhead and improvement of I/O performance.

For the former, higher compression ratios are always preferred. For

the latter, the trade-offs between compression ratio and speed need

to be considered. As evidenced by previous works, compression

ratios have a higher impact when I/O dominates the overall time [38]

(which is typical for medium-scale clusters such as [4]), and high

compression speed would be more important after compression time

occupies a certain portion of the running time (which is observed on

high-end computing systems such as [6]). In this work, we focus on

developing the theory and implementation of QoI-preserving lossy

compression that yields high compression ratios. We will investigate

how to improve our compression speed in the future.

7 CONCLUSION AND FUTUREWORK
In this paper, we design and develop a novel lossy compression

framework for scientific data that is capable of preserving the er-

rors in the downstream QoIs in addition to those of the raw data.

Specifically, we develop rigorous theories to preserve four families

of important QoIs, which cover a wide range of data analytics per-

formed by computational scientists in real applications. The theories

and methods are further integrated into a state-of-the-art lossy com-

pression framework in a modular fashion, such that new QoIs and

novel compression algorithms can be supported easily. Extensive

evaluations on four real-world scientific datasets demonstrate that

our framework provides strict error guarantees on the underly-

ing QoIs while offering up to 4× compression ratios compared to

state-of-the-art error-controlled compressors. In the future, we will

work on improving the compression/decompression speed using

advanced optimization techniques and/or accelerators, as well as

designing efficient database systems with compression for scientific

data while providing quality guarantees.
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