
SIFTER: Space-Efficient Value Iteration for Finite-Horizon MDPs
Konstantinos Skitsas

Aarhus University

201903630@post.au.dk

Ioannis G. Papageorgiou

NTU Athens

johnpapageorgiou0@gmail.com

Mohammad Sadegh Talebi

University of Copenhagen

m.shahi@di.ku.dk

Verena Kantere

NTU Athens

verena@mail.ntua.gr

Michael N. Katehakis

Rutgers University

mkatehakis@gmail.com

Panagiotis Karras

Aarhus University

piekarras@gmail.com

ABSTRACT
Can we solve finite-horizon Markov decision processes (FHMDPs)

while raising low memory requirements? Such models find ap-

plication in many cases where a decision-making agent needs to

act in a probabilistic environment, from resource management to

medicine to service provisioning. However, computing optimal poli-

cies such an agent should follow by dynamic programming value

iteration raises either prohibitive space complexity, or, in reverse,

non-scalable time complexity requirements. This scalability ques-

tion has been largely neglected. In this paper, we propose SIFTER

(Space Efficient Finite Horizon MDPs), a suite of algorithms that

achieve a golden middle between space and time requirements. Our

former algorithm raises space complexity growing with the square

root of the horizon’s length without a time-complexity overhead,

while the latter’s space requirements depend only logarithmically

in horizon length with a corresponding logarithmic time complex-

ity overhead. A thorough experimental study under diverse settings

confirms that SIFTER algorithms achieve the predicted gains, while

approximation techniques do not achieve the same combination of

time efficiency, space efficiency, and result quality.

PVLDB Reference Format:
Konstantinos Skitsas, Ioannis G. Papageorgiou, Mohammad Sadegh Talebi,

Verena Kantere, Michael N. Katehakis, and Panagiotis Karras. SIFTER:

Space-Efficient Value Iteration for Finite-Horizon MDPs. PVLDB, 16(1): 90 -

98, 2022.

doi:10.14778/3561261.3561269

PVLDB Artifact Availability:
Source code, data, and other artifacts have been made available at

https://github.com/constantinosskitsas/Space-Efficiency-in-Finite-

Horizon-MDPs.

1 INTRODUCTION
Markov Decision Processes (MDPs) [25] model real-world problems

where an agent learns [21] how to maximize a notion of reward

in a probabilistic environment. An MDP is defined by states and

available actions per state; each action yields a reward, which may

be positive or negative, and induces a transition to a new state with

some probability. Once MDP parameters are known, the agent may

use them to compute an optimal policy.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.

doi:10.14778/3561261.3561269

0 10,000 20,000 30,000

0

500

1,000

Execution time (sec)

M
e
m
o
r
y
(
M
B
)

Standard Radical Logarithmic

10
2

10
4

10
6

10
−1

10
1

10
3

Execution time (sec)

M
e
m
o
r
y
(
M
B
)

Figure 1: Memory vs. runtime; L: lin-lin plot; R: log-log plot.

Infinite-horizon MDPs model interactions that continue indef-

initely or terminate at a terminal state; finite-horizon MDPs (FH-

MDPs) terminate once the agent executes a fixed number of steps.

In both cases, the agent aims to maximize a reward its actions incur.

FHMDPs are used, e.g., to maximize battery life onmobile phones

by deciding when to perform background actions [8], to schedule

how patients use tomography scanner in a hospital [14], to plan

medical treatments [2], to decidewhich path to follow in car-sharing

services [7], and to plan airline meal provisioning [15].

Bellman’s algorithm [3] finds the exact solution to an FHMDP;

it has served as the standard since 1957; still, its space complexity
grows linearly in both the number of states and horizon length;

astoundingly, it remains unchanged since 1957 [25]. Still, several

FHMDP use cases [2, 7, 8, 14, 15, 29–31] raise high memory re-

quirements or run on constrained-memory devices [7, 8]. In these

circumstances, the standard algorithm cannot run within available

resources; it thus makes sense to trade off a drastic reduction in

space complexity for a minimal runtime overhead.

In this paper we introduce SIFTER: a suite of algorithms that

reduce the space-complexity of FHMDP value iteration [3] from

linear to radical or logarithmic in horizon length, via limited re-

computation. Despite the easing of memory needs, one algorithm

incurs no, and the other only a logarithmic, time-complexity over-

head. Table 1 reviews the time and space complexity of state-of-the-

art exact FHMDP methods and our proposals. Figure 1 shows how

our schemes treat the space-time complexity tradeoff compared to

the standard method, summing up results reported in Section 5.

Table 1: Complexity of exact FHMDP methods.

method Time Space
Standard O(|𝑆 |2 |𝐴|𝑁) O(|𝑆 |𝑁)
InPlace O(|𝑆 |2 |𝐴|𝑁 2) O(|𝑆 |)
Radical (ours) O(|𝑆 |2 |𝐴|𝑁) O(|𝑆 |

√
𝑁)

Logarithmic (ours) O(|𝑆 |2 |𝐴|𝑁 log𝑁) O(|𝑆 | log𝑁)

90

https://doi.org/10.14778/3561261.3561269
https://github.com/constantinosskitsas/Space-Efficiency-in-Finite-Horizon-MDPs
https://github.com/constantinosskitsas/Space-Efficiency-in-Finite-Horizon-MDPs
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561269
https://www.acm.org/publications/policies/artifact-review-and-badging-current

2 BACKGROUND AND RELATEDWORK
A Markov Decision Process (MDP) models a problem where a

decision-making agent interacts with a probabilistic environment.

Each decision of the agent triggers a response from the environ-

ment. The agent aims to make optimal decisions with regard to

some performance metric. Decisions take place over time, either

continuously, whereby the agent makes a decision when some event

occurs, or in discrete epochs. We focus on the discrete case. The

number of decision epochs, or horizon 𝑁 , could be finite or infinite.

A stationary Finite-Horizon MDP (FHMDP)𝑀 is specified by a

tuple𝑀 = (𝑆,𝐴, 𝑝, 𝑅, 𝑁) [25]; 𝑆 is a finite state space,𝐴 = ∪𝑠∈𝑆𝐴(𝑠)
a finite action space such that 𝐴(𝑠) is the set of actions available in
state 𝑠 ∈ 𝑆 , 𝑃 a Markovian (memory-less) transition function such

that for each 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠), 𝑝 (𝑠 ′ |𝑠, 𝑎) is the probability of

transiting to 𝑠 ′ when the agent chooses action 𝑎 at state 𝑠; thus,

𝑝 (·|𝑠, 𝑎) is a probability distribution over 𝑆 ,
∑
𝑠′∈𝑆 𝑝 (𝑠 ′ |𝑠, 𝑎) = 1; 𝑅

is a reward function such that executing action 𝑎 ∈ 𝐴(𝑠) in state

𝑠 yields a (possibly random) reward 𝑟 drawn from 𝑅(𝑠, 𝑎), i.e., 𝑟 ∼
𝑅(𝑠, 𝑎); lastly, 𝑁 denotes the finite horizon, assumed to be fixed.

The agent interacts with the environment 𝑀 in 𝑁 rounds (or

epochs). In each epoch 𝑡 ∈ [𝑁] B {1, . . . , 𝑁 }, the agent occupies
a state 𝑠𝑡 ∈ 𝑆 , fully observable to the agent, and chooses an ac-
tion 𝑎𝑡 ∈ 𝐴(𝑠𝑡) by some policy 𝜋 , to receive a reward 𝑟𝑡 ∼ 𝑅(𝑠𝑡 , 𝑎𝑡)
and transits to a state 𝑠𝑡+1 ∼ 𝑝 (·|𝑠𝑡 , 𝑎𝑡). The goal of the agent is to
maximize the expected total reward collected during the interaction,

i.e., to maximize E[∑𝑁
𝑡=1 𝑟𝑡], where the expectation is taken with re-

spect to the possibly random choice of the initial state, randomness

in the rewards and state transitions, and the possible randomization

in the action selection policy 𝜋 . By a slight abuse of notation, we

use 𝑅 to denote both a reward distribution and its mean.

2.1 Exact FHMDP Solution
Actions in MDPs are chosen according to policies. A randomized

(or stochastic) FHMDP policy is a mapping 𝜋 : 𝑆 × [𝑁] → Δ(𝐴),
where Δ(𝐴) is the set of all probability distributions over 𝐴. For

each state 𝑠 ∈ 𝑆 and remaining steps 𝑘 ∈ [𝑁], 𝜋 (𝑠, 𝑘) defines a
probability distribution over 𝐴(𝑠), according to which the agent

samples an action 𝑎 ∼ 𝜋 (𝑠, 𝑘). A deterministic policy 𝜋 prescribes

one action𝑎 = 𝜋 (𝑠, 𝑘) for each 𝑠 ∈ 𝑆 and𝑘 ∈ [𝑁]. The value function
of a policy 𝜋 is a function 𝑉 𝜋

: 𝑆 × [𝑁] → R such that 𝑉 𝜋 (𝑠, 𝑘)
corresponds to the expected sum of 𝑘 − 1 rewards received under

policy 𝜋 when starting from 𝑠𝑘 = 𝑠 . Formally, for 𝑠 ∈ 𝑆 and 𝑘 ∈ [𝑁],

𝑉 𝜋 (𝑠, 𝑘) B E
[∑︁𝑘−1

𝑡=1
𝑟𝑡

���𝑠𝑘 = 𝑠

]
,

where the expectation is taken with respect to the randomness

in the transitions, rewards, and possible randomization in 𝜋 . For

brevity, we define 𝑉 𝜋
𝑘
(𝑠) B 𝑉 𝜋 (𝑠, 𝑘).

Solving an FHMDP calls for finding a policy of highest value, i.e.,

findingmax𝜋 𝑉
𝜋
𝑁
(𝑠) for each initial state 𝑠 ∈ 𝑆 . A fundamental result

in FHMDP theory states that there exists a deterministic policy 𝜋★

that is optimal for all initial states [25]. More precisely, there exists

𝑉 𝜋★
: 𝑆 × [𝑁] → R such that 𝑉 𝜋★

𝑁
(𝑠) = 𝑉★

𝑁
(𝑠) = max𝜋 𝑉

𝜋
𝑁
(𝑠) for

all 𝑠 . Furthermore, 𝑉 𝜋★
satisfies the Bellman optimality equation:

starting from 𝑉★
0

= 0, we have for all 𝑠 ∈ 𝑆 , 𝑘 ∈ [𝑁],

𝑉★
𝑘
(𝑠) = max

𝑎∈𝐴(𝑠)

(
𝑅(𝑠, 𝑎) +

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑉★
𝑘−1 (𝑠

′)
)
. (1)

Equation (1) computes 𝑉★
by dynamic programming perform-

ing backward induction [4], which resembles value iteration for

infinite-horizon MDPs; we use the term value iteration as an all-

encompassing term for such computations.

2.2 Turnpike Integers
A Finite-Horizon MDP problem becomes too memory-demanding

as the length of the horizon 𝑁 and the state space 𝑆 grow, as it

needs O(𝑁 |𝑆 |) space. On the other hand, an Infinite-Horizon MDP

is solved in O(|𝑆 |) space by value iteration on one in-place array.

Past works [20, 25, 26] proposed approximating finite-horizon solu-

tions via those for an infinite horizon. For an FHMDP and a discount

factor 𝛾 there exists a turnpike integer 𝑁 ∗ (𝛾), such that decisions

made in epochs 𝑡 ≥ 𝑁 ∗ (𝛾) are the same as in the infinite-horizon

case. Thus, the agent may follow a time-independent optimal policy

for a 𝛾-discounted infinite-horizon MDP for the first 𝑁 ∗ − 1 epochs
of 𝑁 to 𝑁 − 𝑁 ∗ + 1 remaining steps, coupled with a solution for an

(𝑁 − 𝑁 ∗)-horizon FHMDP for as many final steps. Yet finding a

turnpike integer is challenging, even while there are bounds there-

for [20, 25]. A heuristic is to solve an FHMDP for the whole horizon,

but only store and use the optimal policy for the full length 𝑁 .

2.3 Non-stationary MDPs
A Non-Stationary MDP (NSMDP) [19] is one whose transition and

reward functions depend on the decision epoch. Formally, it is spec-

ified as𝑀 = (𝑆,𝐴, {𝑝𝑡 }𝑡 ∈[𝑁] , {𝑅𝑡 }𝑡 ∈[𝑁] , 𝑁), where 𝑆 ,𝐴, and 𝑁 are

as in the case of FHMDP, and for each 𝑡 ∈ [𝑁] = {1, . . . , 𝑁 }, 𝑝𝑡 and
𝑅𝑡 denote the transition and reward function at step 𝑡 , respectively.

Executing action 𝑎 at state 𝑠 in round 𝑡 yields a reward 𝑟 ∼ 𝑅𝑡 (𝑠, 𝑎)
and a next-state sampled from 𝑝𝑡 (·|𝑠, 𝑎). NSMDPs find applications

in real-world problems, as described in Section 1. Assuming the

agent knows how functions change with time, FHMDP solutions

work in the non-stationary case.

2.4 Space Efficiency
Memory is a critical resource for a FHMDP. Some works reduce

MDP space requirements by aggregating states into bins [15]. Exter-
nal memory value iteration [12] utilizes external memory at the cost

of execution time; its partitioned variant [11] partitions the state

space into blocks and loads those to main memory, gaining in I/O

efficiency. However, these solutions are case-dependent heuristics

pertaining to the model’s memory footprint; they do not reduce the

algorithm’s space complexity requirements. By contrast, we aim

to reduce the space complexity of the dynamic-programming value
iteration algorithm for FHMDPs.

3 BASIC FHMDP SOLUTIONS
Unfortunately, existing algorithms that apply the Bellman equations

to solve FHMDPs are either time-efficient but space-demanding, or

space-efficient but time-demanding. Here, we present these solu-

tions; in the next section, we propose algorithms that achieve both

time- and space-efficiency, inspired by cost amortization techniques

used in synopsis construction [18] and graph processing [23].

91

3.1 Standard Solution
The standard FHMDP solution [3] computes and stores in memory

every policy for every decision epoch, i.e., number of remaining

finite-horizon steps.When the agent commences decisions, it recalls

the policy for the current number of available steps and uses it to

make its choice. The process is repeated until completing a number

of steps equal to the horizon.

Algorithm 1 Standard solution

1: procedure standardSolution(horizon)
2: 𝑉𝑡𝑚𝑝 ← []
3: for 𝑖 = 0 to ℎ𝑜𝑟𝑖𝑧𝑜𝑛 do
4: 𝑝𝑜𝑙𝑖𝑐𝑦𝐴𝑟𝑟𝑎𝑦 ← []
5: 𝑉𝑎𝑢𝑥 ← []
6: for 𝑠 ∈ 𝑆 do
7: for 𝑎 ∈ 𝐴(𝑠) do
8: 𝑄 (𝑠, 𝑎) ← 0

9: for 𝑠′ ∈ 𝑆 (𝑠) do
10: 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝑅 (𝑠, 𝑎) + 𝑝 (𝑠′ |𝑠, 𝑎)𝑉𝑡𝑚𝑝 (𝑠′)
11: 𝑉𝑎𝑢𝑥 (𝑠) ← max𝑎 𝑄 (𝑠, 𝑎)
12: 𝑝𝑜𝑙𝑖𝑐𝑦𝐴𝑟𝑟𝑎𝑦 [𝑠] = argmax𝑎 𝑄 (𝑠, 𝑎)
13: 𝑉𝑡𝑚𝑝 ← 𝑉𝑎𝑢𝑥
14: 𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑝𝑜𝑙𝑖𝑐𝑦𝐴𝑟𝑟𝑎𝑦)
15: for 𝑖 = 0 to ℎ𝑜𝑟𝑖𝑧𝑜𝑛 do
16: 𝑐ℎ𝑜𝑠𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 () [𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒]
17: 𝑡𝑎𝑘𝑒𝐴𝑐𝑡𝑖𝑜𝑛 (𝑐ℎ𝑜𝑠𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛)
18: 𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()

Algorithm 1 shows the pseudocode. We store policies, each rep-

resented as an array (𝑝𝑜𝑙𝑖𝑐𝑦𝐴𝑟𝑟𝑎𝑦) of length equal to the number

of states |𝑆 |, in a stack (𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑡𝑎𝑐𝑘). At any time, the top of the

stack returns the policy for the remaining number of steps. The

application-dependent 𝑡𝑎𝑘𝑒𝐴𝑐𝑡𝑖𝑜𝑛 function takes a chosen action

as argument and executes it, rewarding the agent and transferring

them to the next state in a probabilistic way. Time complexity is

dominated by the four nested loops iterating over the horizon 𝑁 ,

states 𝑆 , actions 𝐴(𝑠) available at the current state 𝑠 , and neighbor-

ing states accessible at 𝑠 , 𝑆 (𝑠), respectively. Thus, time complexity

is O(𝑁 |𝑆 |2 |𝐴|). Throughout its execution, the algorithm stores 𝑁

policy arrays of length |𝑆 |. Thus, its space complexity is O(𝑁 |𝑆 |),
growing linearly in the horizon’s length for a fixed state space.

3.2 In-place Solution
Another way to solve a fully known FHMDP is the in-place solution,
whereby the agent repetitively recalculates the policy array from

scratch for each remaining number of steps, without storing it.

Space complexity is O(|𝑆 |), independent of the horizon, as one

policy array and at most two value function arrays (𝑉𝑡𝑚𝑝 , 𝑉𝑎𝑢𝑥)

of size |𝑆 | are in memory at any time. Nevertheless, the space

complexity advantage is counterbalanced in execution time. The

algorithm reiterates over four loops as in Algorithm 1 in each step;

each iteration needs O(𝑗 |𝑆 |2 |𝐴|) time, where 𝑗 is the number of

steps remaining, hence the total time complexity is O(𝑁 2 |𝑆 |2 |𝐴|).

4 SIFTER: ADVANCED FHMDP SOLUTIONS
The two basic solutions fail to resolve the tradeoff between time and

space efficiency. In this section, we introduce FHDMP solutions that

strike a balance between these two desiderata, achieving either the

same or slightly higher space complexity as the in-place solution

along with the same or slightly increased time complexity as that

of the state-of-the-art standard solution [3]. We emphasize that

these solutions retain all correctness and convergence properties

of the original dynamic programming solution, as they perform

the same computations [17]; they recompute some parts, yet these

re-computations produce the same results as the original, as all

steps of the dynamic programming algorithm are deterministic.

12 ...

13 ...

14 ...

15 ...

Step 1

12 ...

13 ...

14 ...

15 ...

Step 2

12 ...

13 ...

14 ...

15 ...

Step 3

12 ...

13 ...

14 ...

15 ...

Step 4

12 ...

13 ...

14 ...

Step 5

12 ...

13 ...

Step 6

12 ...

Step 7

Figure 2: Computations at indices 15 . . . 12; array 12 is stored
in advance; arrays 13, 14, 15 are stored temporarily and used.

4.1 Radical Solution
Our first solution improves on the state-of-the-art standard [3]

solution in terms of space complexity, while maintaining the same

time complexity. Instead of storing every policy and value function

array in memory, we store a few checkpoint arrays, recompute

intermediate ones when needed, and maintain arrays in the active
interval between checkpoints. We first calculate every array up

to the horizon’s end, storing those with indices that are multiples

of the horizon’s square root

√
𝑁 , hence O(

√
𝑁) arrays. Thereafter,

whenever the agent reaches a checkpoint, we compute and store

the

√
𝑁 arrays in the length-

√
𝑁 interval between that checkpoint

and the next. We use each of the inter-checkpoint arrays to obtain

optimal actions, and discard it. As we calculate each array at most

twice, we need O(
√
𝑁 |𝑆 |2 |𝐴|) time per intervals; as there are

√
𝑁

intervals, the total time complexity is O(𝑁 |𝑆 |2 |𝐴|). As no more

than 2

√
𝑁 arrays of length |𝑆 | are stored in memory at any time,

space complexity is O(
√
𝑁 |𝑆 |).

Figure 2 visualizes a snapshot of how arrays are stored for a

horizon of length 16. Starting from index 12, we compute each

of the arrays from index 13 to 15, and keep them in memory. The

agent uses the value function in each computed array, from index 15

downwards, to make decisions and execute actions and thereafter

discards it. We repeat this process at each interval of length

√
𝑁 .

Algorithm 2 Radical solution

1: procedure rootSolution(N)
2: 𝑉 ← 𝑧𝑒𝑟𝑜𝑠 (𝑁) ; 𝑠𝑡𝑒𝑝𝑠 = 𝑁

3: for 𝑖 = 0 to 𝑁 step ⌊
√
𝑁 ⌋ do

4: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑖 + ⌊
√
𝑁 ⌋, 𝑖,𝑉 , 𝑓 𝑎𝑙𝑠𝑒)

5: if 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 () < 𝑁 then
6: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑁, 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑡𝑟𝑢𝑒)
7: while 𝑠𝑡𝑒𝑝𝑠 > 0 do
8: if 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑒𝑚𝑝𝑡𝑦 () then
9: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑠𝑡𝑒𝑝𝑠, 0, 𝑧𝑒𝑟𝑜𝑠 (𝑁), 𝑓 𝑎𝑙𝑠𝑒)
10: else if ((𝑠𝑡𝑒𝑝𝑠 + 1)𝑚𝑜𝑑 ⌊

√
𝑁 ⌋) == 0 then

11: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑠𝑡𝑒𝑝𝑠, 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑡𝑟𝑢𝑒)
12: 𝑉 ← 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 ()
13: 𝑐ℎ𝑜𝑠𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛 (𝑉 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒])
14: 𝑡𝑎𝑘𝑒𝐴𝑐𝑡𝑖𝑜𝑛 (𝑐ℎ𝑜𝑠𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛)
15: 𝑠𝑡𝑒𝑝𝑠 = 𝑠𝑡𝑒𝑝𝑠 − 1

92

Algorithm 2 presents the pseudocode. The 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 func-

tion, in Algorithm 3, computes every value function array using the

index of the array to be computed, 𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 , the largest index of

a stored array 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 . The fourth argument (𝑡𝑟𝑒𝑒) is boolean;

when true, it causes the function to save every intermediate value

function in a stack 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘 ; when false, the function only stores

the final value function array. When a value function array is stored

in 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘 , its corresponding index is stored in 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘 . In

Algorithm 2, the first loop computes and stores the value function

arrays whose index is a multiple of ⌊
√
𝑁 ⌋. Variable steps indicates

the number of remaining steps; when that number is one less than

a multiple of ⌊
√
𝑁 ⌋, the situation is as that in Figure 2, hence we

calculate and store intermediate value functions. Otherwise, the re-

quired array is already in the stack. In each step, we get the optimal

policy from an array to decide on an action and proceed.

Algorithm 3 Auxiliary function calculating value functions

1: procedure calculateValues(targetIndex, startingIndex, V, tree)
2: 𝑉𝑡𝑚𝑝 ← 𝑉 ;𝑉𝑎𝑢𝑥 ← []
3: for 𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥 + 1 to 𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 + 1 do
4: for 𝑠 ∈ 𝑆 do
5: for 𝑎 ∈ 𝐴(𝑠) do
6: 𝑄 (𝑠, 𝑎) ← 0

7: for 𝑠′ ∈ 𝑆 (𝑠) do
8: 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝑅 (𝑠, 𝑎) + 𝑝 (𝑠′ |𝑠, 𝑎)𝑉𝑡𝑚𝑝 (𝑠′)
9: 𝑉𝑎𝑢𝑥 (𝑠) ← max𝑎 𝑄 (𝑠, 𝑎)
10: 𝑉𝑡𝑚𝑝 ← 𝑉𝑎𝑢𝑥
11: 𝑉𝑎𝑢𝑥 ← []
12: if tree then
13: 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑉𝑡𝑚𝑝)
14: 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑖)
15: 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑉𝑡𝑚𝑝)
16: 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑖)

4.2 Logarithmic Solution
Our second solution further lowers the memory needs to a loga-

rithmic factor of the horizon’s length. To illustrate this solution,

we visualize value function arrays as stored in a full binary search
tree [9], as in Figure 3. Tree nodes are ordered by keys, which cor-

respond to the value function array’s index 𝑘 , i.e., the number of

remaining epochs in the horizon. The root stands for the epoch in

the middle of the horizon, its left child to the epoch in the middle

of the first half of the horizon, its right child to the epoch in the

middle of the second half, and so on, recursively. Throughout the

algorithm’s execution, as we compute an array 𝑉 , we store only
those preceding arrays that lie along the path from the tree root

to the node of 𝑉 ; in the binary tree, those are ancestors associated

with a lower value of 𝑘 , hence lie on the leftward side of the node; in

Figure 3, for example, the stored ancestors of the node correspon-

ing to 𝑘 = 11 are those corresponding to 𝑘 = 10 and 𝑘 = 8. After

using 𝑉 , we backtrack to the nearest stored ancestor and use it to

derive the next action. As a path from the root to a node has length

at most log𝑁 , at most O(log𝑁) arrays are stored at any time.

Figure 3 illustrates a snapshot of the execution of this logarithmic
algorithm with horizon of length 15. A green node indicates that

the corresponding value function array is stored in memory, while

a yellow node indicates that the array is currently used to take an

action for the remaining number of steps. We always use the stored

array of highest index. Initially, we compute value function arrays

up to index 15, and store, in logarithmic intervals, those of index 8,

12, and 14. Thereafter, the agent sequentially uses the stored arrays

of index 15 and 14 to get the optimal policy for those numbers of

remaining steps. With 13 steps remaining, we start from the stored

array of index 12, compute that of index 13 and take the respective

actions. Similarly, we then start from the array of index 8, compute

up to that of index 11, while storing in memory those of index 10

and 11 which lie along the root-to-leaf path from 8 to 11 in the

tree; we use the arrays of index 11 and 10 to take actions for the

respective numbers of remaining steps. Next, we recompute the

array of index 9 using that of index 8, and use both of these to take

actions with such numbers of remaining steps. We proceed in the

same manner, storing in logarithmic intervals arrays of index 4,

6, and 7, using arrays at index 7 and 6, recompute and use that of

index 5 and then peruse the one of index 4. Lastly, we recompute

and store the arrays of index 2 and 3, to use them, discard them,

and recompute the array of index 1 to get the final action.

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Figure 3: Logarithmic solution progress sequence snapshot;
green nodes: in memory; yellow nodes: currently in use.

This algorithm stores at most ⌊log𝑁 ⌋ arrays of length |𝑆 | at
any time, yielding a space complexity of O(|𝑆 | log𝑁). Algorithm 4

shows the pseudocode. It uses the calculateValues function discussed
in Section 4.1, as well as a new auxiliary function (Algorithm 5),

which finds the indices of arrays to be stored at each step, using

variables 𝑙 and 𝑟 as indices for the left and right ends.

Algorithm 4 Logarithmic solution

1: procedure treeSolution(N)
2: 𝑠𝑡𝑒𝑝𝑠 ← 𝑁

3: 𝑉 ← []
4: while 𝑠𝑡𝑒𝑝𝑠 > 0 do
5: 𝑉 ← 𝑡𝑟𝑒𝑒𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 (𝑠𝑡𝑒𝑝𝑠, 𝑁)
6: 𝑐ℎ𝑜𝑠𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛 (𝑉 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒])
7: 𝑡𝑎𝑘𝑒𝐴𝑐𝑡𝑖𝑜𝑛 (𝑐ℎ𝑜𝑠𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛)
8: 𝑠𝑡𝑒𝑝𝑠 = 𝑠𝑡𝑒𝑝𝑠 − 1

Variable 𝑘 moves as the key in binary search. When an array is

already in the stack, we continue the search from this array’s index

(Line 13); if the top of the stack is the target value, the search is over

(Lines 8–11). Otherwise, if 𝑙 is no greater than 𝑟 , we proceed in one

of three ways: If 𝑘 is the target, we compute and return the value

function we need, starting from the last stored array. If 𝑘 is smaller
than the target, we calculate and store the array corresponding to 𝑘 ,

93

as it lies on the path from the root to the target and on the left of

the target, update 𝑙 to the successor of 𝑘 and 𝑘 to
𝑙+𝑟
2
; otherwise,

if 𝑘 is larger than the target, the array of 𝑘 needs no storing; we

update 𝑟 to the predecessor of 𝑘 and 𝑘 to
𝑙+𝑟
2
. The process reiterates

while 𝑙 ≤ 𝑟 , and returns array 𝑉𝑡𝑚𝑝 containing the target value

function. As Algorithm 4 shows, in each step, we compute the

requested value function and use it to get the optimal action.

By the arrangement of epochs (i.e., steps in the horizon) in tree

levels, tree level ℓ , counting from the top of the tree as 1, holds 2
ℓ−1

nodes. Each node at level ℓ stands for an epoch
𝑁
2
ℓ steps apart from

its nearest stored (i.e., leftward) ancestor or from the horizon’s start,

hence requires as many steps of re-computation starting therefrom.

In effect, the re-computation steps are

∑log𝑁

ℓ=1
2
ℓ−1 𝑁

2
ℓ = O(𝑁 log𝑁),

hence time complexity becomes O(|𝑆 |2 |𝐴|𝑁 log𝑁).

Algorithm 5 Auxiliary function to store value function arrays

1: function treeTraversal(𝑡𝑎𝑟𝑔𝑒𝑡 , N)

2: 𝑙 ← 0; 𝑟 ← 𝑁 ; 𝑘 ← 𝑙+𝑟
2

;𝑉𝑡𝑚𝑝 ← []
3: if 𝑛𝑜𝑡𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑒𝑚𝑝𝑡𝑦 () then
4: if indexStack.top() == 𝑡𝑎𝑟𝑔𝑒𝑡 then
5: 𝑉𝑡𝑚𝑝 ← 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 ()
6: 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()
7: 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()
8: return𝑉𝑡𝑚𝑝

9: else
10: 𝑘 ← 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 ()
11: while 𝑙 ≤ 𝑟 do
12: if 𝑘 == 𝑡𝑎𝑟𝑔𝑒𝑡 then
13: if 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑒𝑚𝑝𝑡𝑦 () then
14: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑘, 0, 𝑧𝑒𝑟𝑜𝑠 (𝑁), 𝑓 𝑎𝑙𝑠𝑒)
15: else
16: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑘, 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑓 𝑎𝑙𝑠𝑒)
17: 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()
18: 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()
19: 𝑉𝑡𝑚𝑝 ← 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 ()
20: break
21: else if 𝑘 < 𝑡𝑎𝑟𝑔𝑒𝑡 then
22: if 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑒𝑚𝑝𝑡𝑦 () then
23: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑘, 0, 𝑧𝑒𝑟𝑜𝑠 (𝑁), 𝑓 𝑎𝑙𝑠𝑒)
24: else if 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 ()! = 𝑘 then
25: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 (𝑘, 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑣𝑎𝑙𝑢𝑒𝑆𝑡𝑎𝑐𝑘.𝑡𝑜𝑝 (), 𝑓 𝑎𝑙𝑠𝑒)
26: 𝑙 = 𝑘 + 1; 𝑘 = 𝑙+𝑟

2

27: else
28: 𝑟 = 𝑘 − 1; 𝑘 = 𝑙+𝑟

2

29: return𝑉𝑡𝑚𝑝

4.3 Common Framework
While we presented the two SIFTER solutions as distinct, here we

sketch a framework that encompasses both. Consider a hierarchy

of depth log𝐿 𝑁 that splits the horizon in 𝐿 intervals of size
𝑁/𝐿 per

level. We traverse this hierarchy in an in-order fashion, keeping in

memory at all times the value arrays that correspond to ancestors

of the current array and up to 𝐿 − 1 of their interval peers; upon
request, we recompute an array not in memory from its nearest

predecessor that is in memory. Notably, for 𝐿 =
√
𝑁 we obtain

a hierarchy of depth log
√
𝑁
𝑁 = 2, i.e., the radical solution, and

for 𝐿 = 2 a hierarchy of depth log
2
𝑁 , i.e., the logarithmic solution.

Thus, our solutions correspond to the two extreme values of 𝐿.

One may apply this generic SIFTER solution, choosing the value

of 𝐿 that best resolves the space-time tradeoff for their needs. The

generic case has time complexity O(|𝑆 |2 |𝐴|𝑁 log𝐿 𝑁) and space

complexity O(|𝑆 |𝑁𝐿 log𝐿 𝑁).

5 EXPERIMENTAL STUDY
We conducted an experimental study to validate our theoretical

results. We measure collected reward, execution time, and memory

used. Our code, in C++ 11, is available
1
. Experiments ran on a 378GB

Linux server with Intel(R) Xeon(R) E5-2687W v3 @ 3.10GHz.

5.1 Use Case and Data Description
As a use case, we chose the problem studied in [22], which regards

an elastic computer cluster housing a distributed database. This

cluster constantly receives read requests, while the number of Vir-

tual Machines (VMs) it comprises can be changed depending on

system needs. The actions the agent can make are adding a VM, re-

moving a VM, or doing nothing. The number of states in the model

varies depending on the maximum and minimum allowed number

of VMs and the incoming load. The agent acts as a cluster coordi-

nator, adjusting the number of active VMs as needed to serve the

incoming load efficiently. Model states are expressed by a set of pa-

rameters, such as the total load and the number of VMs. Using that

information, the agent learns the system’s parameters and makes

the optimal decision every time it is required. In [22], the authors

compared four algorithms to solve the resulting MDP, including

classic infinite-horizon value iteration, Q-Learning, and versions

thereof using Decision Trees. While the model was treated as an

Infinite-Horizon MDP, it ran for a finite number of steps in practice,

while assuming that the agent did not know the horizon’s length in

advance. We apply our solutions on top of the classic MDP, while

properly treating the problem as a Finite-Horizon MDP, with the

agent knowing the number of steps they shouldmake. Moreover, we

treat the model as fully known, letting the agent learn the system’s

parameters during a training phase, and using them in evaluation pe-

riod. Following [22], we assume a cluster size that varies from 1 to 20

VMs, actions of increasing the cluster size by 1, decrease size by 1,

and no operation, available to the agent only when they can be per-

formed. The incoming load before training is a sinusoidal function,

𝑙𝑜𝑎𝑑 (𝑡) = 50 + 50 sin(2𝜋𝑡
250
); in the evaluation period its frequency

doubles. The percentage of the incoming load that is read requests is

given by a different sinusoidal function, 𝑟 (𝑡) = 0.75 + 0.25 sin(2𝜋𝑡
340
).

The RAM size is 1024 for the first 220 steps, then 2048 for the

next 220. This pattern continues for any number of steps. The

I/O operations per second are also given by a sinusoidal func-

tion, 𝑖𝑜 (𝑡) = 0.6 + 0.4 sin(2𝜋𝑡
195
). The capacity of the cluster at any

time 𝑡 is 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑡) = (10𝑟 (𝑡)−𝑖𝑜_𝑝𝑒𝑛𝑎𝑙𝑡𝑦−𝑟𝑎𝑚_𝑝𝑒𝑛𝑎𝑙𝑡𝑦)𝑣𝑚𝑠 (𝑡),
where 𝑣𝑚𝑠 (𝑡) is the number of VMs in the cluster at time 𝑡 ; the

parameter 𝑖𝑜_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is 0 when 𝑖𝑜 < 0.7, 10𝑖𝑜 (𝑡) − 0.7 when 0.7 ≤
𝑖𝑜 (𝑡) ≤ 0.9, and 2 otherwise; 𝑟𝑎𝑚_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0.3 when the RAM

size is 1024 and 0 otherwise. The reward for an action is:

𝑟𝑒𝑤𝑎𝑟𝑑 (𝑡) = min(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑡 + 1), 𝑙𝑜𝑎𝑑 (𝑡 + 1)) − 2𝑣𝑚𝑠 (𝑡 + 1)

Thus, the agent is rewarded when the capacity of the system suffices

to serve the load and penalized if it over- or under-delivers.

5.2 Compared Methods
We compare existing and proposed FHMDP methods, including

two approximations based on the Turnpike theorem (Section 2.2).

1
https://github.com/constantinosskitsas/Space-Efficiency-in-Finite-Horizon-MDPs

94

https://github.com/constantinosskitsas/Space-Efficiency-in-Finite-Horizon-MDPs

Infinite-horizon-based approximation. This approach ap-

proximates an FHMDP solution using an infinite-horizon MDP that

executes a single in-place value iteration with a discount factor 𝛾

until convergence, and uses the resulting values to make every

decision for a finite number of steps. Value iteration for discounted

MDPs computes a sequence

(
𝑉 (𝑛)

)
𝑛≥0

, with 𝑉 (0) chosen arbitrar-

ily (e.g., 𝑉 (0) = 0), and for all 𝑛 ≥ 0,

𝑉 (𝑛+1) (𝑠) = max

𝑎∈𝐴(𝑠)

(
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑉 (𝑛) (𝑠 ′)
)
, 𝑠 ∈ 𝑆.

If 𝛾 < 1, 𝑉 (𝑛+1) converges to a 𝑉★
𝛾 that satisfies, for all 𝑠 ∈ 𝑆 ,

𝑉★
𝛾 (𝑠) = max𝑎∈𝐴(𝑠)

(
𝑅(𝑠, 𝑎) + 𝛾 ∑𝑠′ 𝑝 (𝑠 ′ |𝑠, 𝑎)𝑉★

𝛾 (𝑠 ′)
)
. This method

has time complexity O(|𝑆 |2 |𝐴|) and space complexity O(|𝑆 |). As 𝛾
approaches 1, accuracy should improve, as the operation resembles

a finite-horizon MDP iteration with horizon tending to infinity.

However, the rate of convergence gets significantly slower as 𝛾

approaches 1. This method is expected to not yield good results in

the case of Non-Stationary MDPs, as it returns a stationary policy

without taking the time dependence into account.

Turnpike-based approximation. This method lets the agent

calculate the policy up to the horizon’s length 𝑁 and then use this

last policy array (of index 𝑁) in every step. With a sufficiently

large horizon and stationary MDP, we expect the total reward

collected to be slightly less than that collected by an FHMDP. This

algorithm has the same time complexity as the exact, state-of-the-

art, standard finite-horizon solution [3], O(|𝑆 |2 |𝐴|𝑁), but space
complexity O(|𝑆 |). It is expected to yield suboptimal results in the

case of Non-Stationary MDPs, as it calculates a stationary policy.

Standard solution [3]. This method (Section 3.1) saves every

list of values for every number of remaining steps, yielding space

complexity O(|𝑆 |𝑁) and time complexity O(|𝑆 |2 |𝐴|𝑁); it is the
sate-of-the-art value iteration method for finite-horizon MDPs.

InPlace solution. This algorithm (Section 3.2) calculates val-

ues and actions to be made for the FHMDP problem utilizing the

least possible space (Section 3.2), by recalculating arrays when

needed, with each new array overwriting the previous. The space

complexity is O(|𝑆 |) and time complexity O(|𝑆 |2 |𝐴|𝑁 2).
Radical solution. This approach (Section 4.1) stores arrays

corresponding to multiples of the square root of the horizon 𝑁

and treats each interval of length ⌊
√
𝑁 ⌋ as the state-of-the-art

standard solution [3]; it lowers space complexity toO(|𝑆 |
√
𝑁) while

retaining time complexity O(|𝑆 |2 |𝐴|𝑁).
Logarithmic solution. This algorithm (Section 4.2) achieves

greater space complexity reduction at a small time complexity

overhead; it stores arrays along a hierarchy to the index needed.

Space is O(|𝑆 | log
2
𝑁) and time O(|𝑆 |2 |𝐴|𝑁 log

2
𝑁).

5.3 Reward Comparison, Stationary Case
Here, we compare approximations of the FHMDP solution to the

exact one with regard to the total reward collected.We use a random

number generator whenever needed for the training and decision-

making purposes. In every execution, we provide a seed to the

model to ensure result consistency. Naturally, for a particular seed,

all exact finite-horizon solutions (i.e., in-place, standard, square-

root, and logarithmic) collect the same total reward. Therefore, we
present one representative for all finite-horizon solutions.

The reward collected in practice may differ from its expected
value. To attenuate this effect, we evaluate rewards over 20 runs

with different seeds. Further, we use 10,000 training steps, 1–20

VMs with initial value 10, hence 200 states, and e-probability 0.7,

500 steps before next value iteration during training, 𝛾 in {0.1, 0.3,

0.99} and horizon in geometric growth {100, 200, 400, . . . 819200}.

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
7

Horizon’s Length (steps)

T
o
t
a
l
R
e
w
a
r
d
C
o
l
l
e
c
t
e
d

Approx, 𝛾 = 0.1

Approx, 𝛾 = 0.3

Approx, 𝛾 = 0.99

Turnpike

Finite-Horizon

10
2

10
3

10
4

10
5

0.6

0.7

0.8

0.9

1

1.1

1.2

Horizon’s Length (steps)

N
o
r
m
a
l
i
z
e
d
T
o
t
a
l
R
e
w
a
r
d
C
o
l
l
e
c
t
e
d

Approx, 𝛾 = 0.1

Approx, 𝛾 = 0.3

Approx, 𝛾 = 0.99

Turnpike

Finite-Horizon

Figure 4: L: average total reward; R: collected over expected.

Figure 4 presents the actual rewards measured. The highest total

reward arises using a Finite-Horizon algorithm. Approximation

with low 𝛾 (i.e., 0.1 and 0.3) yield lower rewards than those with

high 𝛾 . They achieve best results for low values of the horizon, as

the normalized results on the right figure show. Yet, with high 𝛾 the

approximation obtains results almost identical to those of the exact

solution. This result is in accordance with the turnpike theorem,

which states that there exists a time step 𝑛, after which the policy

is stationary, which depends on 𝛾 . Besides, the turnpike approxi-

mation achieve high quality. This result suggests that the policy

of this model is almost stationary, as there are many states and a

small number of available actions (at most 3).

These results suggest that approximations can yield good results

while consuming less resources, especially as a long horizon is

likely to contain the turnpike integer. Indeed, a good way to solve

an FHMDP would be to use the turnpike approximation up to the

turnpike integer and the standard solution in remaining steps, if we

could calculate the turnpike integer; in cases of large horizon, we

may simply use the turnpike approximation in all steps. However,

as we will see next, this approach falters in non-stationary MDPs.

5.4 Reward Comparison, Non-stationary Case
We saw that a turnpike approximation can be as good as an exact

solution when the MDP is stationary. Here, we examine the non-
stationary case. We simulate variable rewards as follows: in each

time step 𝑛, state 𝑠 , and (available) action 𝑎, the reward the agent

receives after transiting to a neighboring state 𝑠 ′ is zero if the index
of 𝑠 ′ is 𝑛 mod |𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 |. In each time step, only one reward is

affected. The model parameters are otherwise as before.

The left side in Figure 5 presents the average reward collected

for each horizon value over 20 runs, for the exact solution, infinite-
horizon-based approximations with 𝛾 ∈ {0.1, 0.3, 0.99} and the turn-

pike approximation. As the difference between exact and approx-

imate solutions appears small, we normalize them by the corre-

sponding average expected reward by the exact solution, shown
on the right in Figure 5. The exact solution outperforms others,

with reward almost identical to expectation. Contrary to results

95

with constant rewards, the approximation with 𝛾 = 0.99 cannot

hanlde reward variability and thus collects a total below 90% of the

optimal. The turnpike approximation oscillates at around 75% of

the optimal, even worse than the approximation with 𝛾 =0.99.

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
7

Horizon’s Length (steps)

T
o
t
a
l
R
e
w
a
r
d
C
o
l
l
e
c
t
e
d

Approx, 𝛾 = 0.1

Approx, 𝛾 = 0.3

Approx, 𝛾 = 0.99

Turnpike

Finite-Horizon

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Horizon’s Length (steps)

N
o
r
m
a
l
i
z
e
d
T
o
t
a
l
R
e
w
a
r
d
C
o
l
l
e
c
t
e
d

Approx, 𝛾 = 0.1

Approx, 𝛾 = 0.3

Approx, 𝛾 = 0.99

Turnpike

Finite-Horizon

Figure 5: Reward collected, non-stationary case.

Next, we increase the maximum number of VMs to 40 and the

number of VMs that can be added or removed per action to 10,

yielding approximately 21 actions per state vs. the initial 3. We sim-

ulate variable rewards in a round-robin fashion, conferring a bonus
reward if the selected action ID 𝛼 equals the time step 𝑛 mod the

total number of actions at that state 𝑆𝛼 . Figure 6 presents our results

on the ratio of cumulative reward collected by the 𝛾 = 0.99 and

turnpike approximations over that of the exact solution, with bonus

rewards ∈ [10, 25, 50, 100]. Notably, approximation algorithms can-

not adapt to the non-stationary model, whereas the exact solution

benefits from the situation, especially as the bonus reward grows.

10
2

10
2.2

10
2.4

10
2.6

10
2.8

10
3

10
3.2

10
3.4

10
3

10
4

Horizon’s length (steps)

T
o
t
a
l
R
e
w
a
r
d
C
o
l
l
e
c
t
e
d

Approx, 𝛾 = 0.99, R=10

Approx, 𝛾 = 0.99, R=25

Approx, 𝛾 = 0.99, R=50

Approx, 𝛾 = 0.99, R=100

Turnpike, R = 10

Turnpike, R = 25

Turnpike, R = 50

Turnpike, R = 100

10
2

10
2.2

10
2.4

10
2.6

10
2.8

10
3

10
3.2

10
3.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Horizon’s length (steps)

N
o
r
m
a
l
i
z
e
d
T
o
t
a
l
R
e
w
a
r
d
C
o
l
l
e
c
t
e
d

Approx, 𝛾 = 0.99, R=10

Approx, 𝛾 = 0.99, R=25

Approx, 𝛾 = 0.99, R=50

Approx, 𝛾 = 0.99, R=100

Turnpike, R = 10

Turnpike, R = 25

Turnpike, R = 50

Turnpike, R = 100

Figure 6: Reward by stationary policy over optimal, 400 states.

We conclude that, on NSMDPs, the exact finite-horizon solution

yields results no approximation can provide; this finding exemplifies

the necessity for practicable, space-efficient exact FHMDP solutions.

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

Horizon’s length (steps)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Standard/Turnpike

Radical

Logarithmic

InPlace

Approx, 𝛾 = 0.99

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

Horizon’s length (steps)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Standard/Turnpike

Radical

Logarithmic

InPlace

Approx, 𝛾 = 0.99

Figure 7: Execution time. Left: 200 states. Right: 2000 states.

5.5 Execution Time
Here, we assess the runtime for policy evaluation. The parame-

ters of the model are as before, while we try 200 and 2000 states.

Figure 7 presents, in logarithmic scales, results for four exact so-
lutions, in-place, standard, radical, and logarithmic, and the two

approximations, approximate and turnpike. The in-place algorithm

yields unscalable runtime, while the approximate ones run in time

independent of the horizon; turnpike requires the same time as the

standard solution, hence we present them as one curve. As we have

established, these approximations yield suboptimal reward. Our

results verify the analysis in Section 3: the radical solution shows

the same runtime behavior as standard, while logarithmic exhibits

a negligible overhead due to its logarithmic time complexity factor.

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

10
3

10
4

Number of States

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Standard/Turnpike

Radical

Logarithmic

Approx, 𝛾 = 0.99

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

10
1

10
2

10
3

10
4

Total number of Qstates

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Standard/Turnpike

Radical

Logarithmic

Approx, 𝛾 = 0.99

Figure 8: Time vs. states, available actions; horizon 1600.

Next, we fix horizon length to 1600 and increase states under 5

actions, and actions under 400 states; to increase actions, we set the

maximum number of VMs to 40 and vary the maximum number of

VMs that can be added or removed per action ∈ [1, 10, 20, 30, 40],
yielding 1180 to 16000 Qstates (state-action pairs). The runtime

results in Figure 8 shows similar growth trends for all methods.

5.6 Memory Consumption
We have established that SIFTER solutions yield superior rewards,

especially in non-stationary problems, with no major runtime dis-

advantage. Now we turn to our main focus, space efficiency. We

measure and compare the memory needs of all exact and approxi-

mate solutions, using the same model parameters as before.

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Horizon’s length (steps)

U
s
e
d
M
e
m
o
r
y
(
M
B
)

Standard

Radical

Logarithmic

InPlace/Approx/Turnpike

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Horizon’s length (steps)

E
x
p
e
c
t
e
d
M
e
m
o
r
y
U
s
e
(
M
B
)

Standard

Radical

Logarithmic

InPlace/Approx/Turnpike

Figure 9: Memory use. L: actual. R: expected. 200 states.

Figure 9 reports on a model with 200 states. The graph on the

left shows memory consumption, and the one on the right shows

expected memory needs. Practical measurment agrees with the-

ory, apart from a few flat points. This is because memory is as-

signed by the system in the form of pages; occasionally, the ex-

tra memory required is available within the same page. With the

logarithmic solution, memory use appears constant, with a slight

increase from 𝑁 = 3200 to 𝑁 = 6400; this result indicates that,

until 𝑁 = 3200 a constant number of pages is sufficient, while

at 𝑁 = 6400, another page is needed. The standard solution re-

quires the highest memory, growing linearly with the horizon, even

while its execution time is matched by the logarithmic solution, as

we observed. The radical solution stands between those two, raising

96

lower memory needs than the standard solution, while requiring

asymptotically the same execution time. The in-place, approximate,

and turnpike solutions have constant space complexity vs. horizon

length. However, as we have seen, approximate and turnpike yield

suboptimal reward, while in-place is highly unscalable in runtime.

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Horizon’s length (steps)

U
s
e
d
M
e
m
o
r
y
(
M
B
)

Standard

Radical

Logarithmic

InPlace/Approx/Turnpike

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Horizon’s length (steps)

E
x
p
e
c
t
e
d
M
e
m
o
r
y
U
s
e
(
M
B
)

Standard

Radical

Logarithmic

InPlace/Approx/Turnpike

Figure 10: Memory use. L: actual; R: expected. 2000 states.

Figure 10 presents results on 2000 states. Now the horizon’s

growth induces greater growth in memory needs, hence the mem-

ory curves of the standard and radical solutions grow smoothly.

Logarithmic still requires tiny amounts of memory, almost indepen-

dent of the horizon. A constant amount of pages appears to suffice

when the horizon ranges from 100 to 25,600 steps. Thereafter, new

pages are required, but their number stabilizes again.

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of states

U
s
e
d
M
e
m
o
r
y
(
M
B
)

Standard

Radical

Logarithmic

InPlace/Approx/Turnpike

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Total number of Qstates

U
s
e
d
M
e
m
o
r
y
(
M
B
)

Standard

Radical

Logarithmic

InPlace/Approx/Turnpike

Figure 11: Memory vs. states, available actions; horizon 1600.

Figure 11 reports memory consumption with increasing num-

ber of states and actions, under the configuration of Section 5.5;

unsurprisingly, the advantage of SIFTER methods remains.

𝑠𝐿𝑠𝐿−1

0.6
(𝑟 = 1)0.55

0.4

1

0.4

0.05

1

0.4

𝑠1

0.6

0.4

0.05

1

0.55

1

(𝑟 = 0.01)

𝑠2

0.4

0.05

1

𝑠3

0.55

0.4

0.05

1

Figure 12: The RiverSwim MDP [27].

5.7 RiverSwim-based MDPs
FHMDPs are most relevant when confronting a dilemma between

a low, easily accessible reward and a high, far-reach one. Such

scenarios arise in healthcare (e.g., waiting queues in hospitals),

transportation (e.g., choosing among transportation means under

time constraints), IoT systems (e.g., managing sensor data under

battery constraints). Decisions may be repeated in episodes [1, 24],

thus even a small loss of reward may yield significant cumulative

loss, as in regret minimization [5, 6, 10, 16] where performance is

measured against an oracle following an optimal policy.

We report on an experiment that simulates the aforementioned

scenarios based on the RiverSwimMDP [27], a reinforcement learn-

ing benchmark [5, 13, 24, 28] shown in Figure 12: in each out

of |𝑆 | ≥ 2 states, the agent may swim right (against a current) or
left. Transitions are shown in solid arrows for right actions and

dashed for left; left always succeeds, while right in 𝑠 ≠ 𝑠1, 𝑠𝐿 fails

with probability (w.p.) 0.55 and relapses backwards w.p. 0.05, oth-

erwise succeeds; right in 𝑠 = 𝑠1 succeeds w.p. 0.6; the bank 𝑠𝐿
is slippery, hence right may lead back into the river w.p. 0.4.

The agent starts in 𝑠1 and executes 𝑁 steps, accruing reward 0.01

in 𝑠1 and 1 in 𝑠𝐿 . We experimented with |𝑆 | = 1000 and hori-

zon 𝑁 ∈ [2000, 4000]. Figure 13 depicts the memory-time trade-

off and the ratio of the expected accumulated reward under the

turnpike approximation over the exact solution. Remarkably, the

advantage of the exact solution over turnpike exceeds 38% for hori-

zon 𝑁 = 2870, whereas the memory-time tradeoff reconfirms that

the logarithmic solution raises practically constant memory needs

with a manageable runtime overhead. We also tried a variant where,

upon a right action, the agent moves backwards w.p. 0.04 (instead

of 0.05) and relapses to state 𝑖/2 w.p. 0.01. Figure 14 shows the trade-
off and reward ratio in this case; the deviation is even more striking,

further verifying the need for exact solutions.

10
1.4

10
1.6

10
1.8

10
2

10
2.2

10
2.4

10
−1

10
0

10
1

Execution time (seconds)

M
e
m
o
r
y
(
M
B
)

Standard

Radical

Logarithmic

2,500 2,600 2,700 2,800 2,900 3,000 3,100 3,200 3,300 3,400 3,500
0.7

0.75

0.8

0.85

0.9

0.95

1

Horizon

R
e
w
a
r
d
R
a
t
i
o

Turnpike

Figure 13: RiverSwim MDP, 1000 states.

10
1

10
2

10
−2

10
−1

10
0

10
1

Execution time (seconds)

M
e
m
o
r
y
(
M
B
)

Standard

Radical

Logarithmic

2,000 4,000 6,000 8,000 10,000 12,000
0.7

0.75

0.8

0.85

0.9

0.95

1

Horizon’s length (steps)

R
e
w
a
r
d
R
a
t
i
o

Turnpike

Figure 14: RiverSwim variant, 200 states.

6 CONCLUSION
We studied the question of space efficiency in optimization with

finite-horizon MDPs. We proposed SIFTER, a suite of two algo-

rithms that require drastically lower memory with no or negligi-

ble runtime overhead. We examined the behavior of the SIFTER

algorithms in terms of collected reward under diverse settings,

compared with infinite-horizon-based and turnpike-based approxi-

mations. Our results show that, while approximations may yield

viable solutions on stationary finite-horizon models, they fail to do

so on non-stationary ones, rendering exact solutions for FHMDPs

a necessity. SIFTER algorithms provide such exact solutions while

conferring scalability in terms of memory requirements that the

state of the art had been wanting since 1957.

97

REFERENCES
[1] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. 2017. Minimax

Regret Bounds for Reinforcement Learning. In ICML (Proc. of Machine Learning
Research, Vol. 70). 263–272.

[2] Nazila Bazrafshan and M. M. Lotfi. 2020. A finite-horizon Markov decision

process model for cancer chemotherapy treatment planning: an application to

sequential treatment decision making in clinical trials. Annals of Operations
Research 295, 1 (2020), 483–502.

[3] Richard E. Bellman. 1957. A Markovian Decision Process. Journal of Mathematics
and Mechanics 6, 5 (1957), 679–684.

[4] Dimitri P. Bertsekas. 2017. Dynamic programming and optimal control (4th ed.).

Vol. 1. Athena Scientific.

[5] Hippolyte Bourel, Odalric Maillard, and Mohammad Sadegh Talebi. 2020. Tight-

ening Exploration in Upper Confidence Reinforcement Learning. In ICML (Proc.
of Machine Learning Research, Vol. 119). 1056–1066.

[6] Apostolos N. Burnetas and Michael N. Katehakis. 1997. Optimal adaptive policies

for Markov decision processes. Mathematics of Operations Research 22, 1 (1997),

222–255.

[7] Dan Calderone and S. Shankar Sastry. 2017. Markov Decision Process Routing

Games. In 8th Intl Conf. on Cyber-Physical Systems (ICCPS). 273–279.
[8] Tang Lung Cheung, Kari Okamoto, Frank Maker, Xin Liu, and Venkatesh Akella.

2009. Markov Decision Process (MDP) Framework for Optimizing Software on

Mobile Phones. In 7th ACM Intl Conf. on Embedded Software (EMSOFT). 11–20.
[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3rd ed.). The MIT Press.

[10] Wesley Cowan andMichael N. Katehakis. 2020. Exploration–exploitation policies

with almost sure, arbitrarily slow growing asymptotic regret. Probability in the
Engineering and Informational Sciences 34, 3 (2020), 406–428.

[11] Peng Dai, Daniel S Weld Mausam, and Daniel S Weld. 2008. Partitioned External-

Memory Value Iteration.. In AAAI. 898–904.
[12] Stefan Edelkamp, Shahid Jabbar, and Blai Bonet. 2007. External Memory Value

Iteration. In 17th Intl Conf. on Automated Planning and Scheduling (ICAPS). 128–
135.

[13] Sarah Filippi, Olivier Cappé, and Aurélien Garivier. 2010. Optimism in reinforce-

ment learning and Kullback-Leibler divergence. In 48th Annual Allerton Conf. on
Communication, Control, and Computing (Allerton). 115–122.

[14] Yasin Gocgun, Brian W. Bresnahan, Archis Ghate, and Martin L. Gunn. 2011.

A Markov decision process approach to multi-category patient scheduling in a

diagnostic facility. Artificial Intelligence in Medicine 53, 2 (2011), 73–81.

[15] Jason H. Goto, Mark E. Lewis, and Martin L. Puterman. 2004. Coffee, Tea, or . . . ?:

A Markov Decision Process Model for Airline Meal Provisioning. Transportation
Science 38, 1 (2004), 107–118.

[16] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal Regret

Bounds for Reinforcement Learning. J. Mach. Learn. Res. 11 (2010), 1563–1600.
[17] Lodewijk Kallenberg. 2020. Lecture Notes Markov Decision Problems. https:

//www.math.leidenuniv.nl/~kallenberg/Lecture-notes-MDP.pdf

[18] Panagiotis Karras and Nikos Mamoulis. 2008. Hierarchical synopses with optimal

error guarantees. ACM Trans. Database Syst. 33, 3 (2008), 18:1–18:53.
[19] Erwan Lecarpentier and Emmanuel Rachelson. 2019. Non-Stationary Markov

Decision Processes, a Worst-Case Approach using Model-Based Reinforcement

Learning. In NeurIPS. 7214–7223.
[20] Mark E. Lewis and Anand A. Paul. 2019. Uniform Turnpike Theorems for Finite

Markov Decision Processes. Math. Oper. Res. 44 (2019), 1145–1160.
[21] Yuxi Li. 2019. Reinforcement Learning Applications. arXiv:1908.06973 [cs.LG]

[22] Konstantinos Lolos, Ioannis Konstantinou, Verena Kantere, and Nectarios Koziris.

2017. Elastic management of cloud applications using adaptive reinforcement

learning. In IEEE Intl Conf. on Big Data (BigData). 203–212.
[23] Sadegh Nobari, Panagiotis Karras, HweeHwa Pang, and Stéphane Bressan. 2014.

𝐿-opacity: Linkage-Aware Graph Anonymization. In EDBT. 583–594.
[24] Ian Osband, Daniel Russo, and Benjamin Van Roy. 2013. (More) Efficient Rein-

forcement Learning via Posterior Sampling. In NeurIPS. 3003–3011.
[25] Martin L. Puterman. 2014. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

[26] Jeremy F. Shapiro. 1968. Turnpike Planning Horizons for a Markovian Decision

Model. Management Science 14, 5 (1968), 292–300.
[27] Alexander L. Strehl and Michael L. Littman. 2008. An analysis of model-based

interval estimation for Markov decision processes. J. Comput. System Sci. 74, 8
(2008), 1309–1331.

[28] Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. 2018. Variance-Aware

Regret Bounds for Undiscounted Reinforcement Learning in MDPs. In Algorith-
mic Learning Theory (Proc. of Machine Learning Research, Vol. 83). 770–805.

[29] Immanuel Trummer, Samuel Moseley, Deepak Maram, Saehan Jo, and Joseph

Antonakakis. 2018. SkinnerDB: Regret-Bounded Query Evaluation via Reinforce-

ment Learning. Proc. VLDB Endow. 11, 12 (2018), 2074–2077.
[30] Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Mose-

ley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. SkinnerDB:

Regret-bounded Query Evaluation via Reinforcement Learning. ACM Trans.
Database Syst. 46, 3 (2021), 9:1–9:45.

[31] D. J. White. 1993. A Survey of Applications of Markov Decision Processes. The
Journal of the Operational Research Society 44, 11 (1993), 1073–1096.

98

https://www.math.leidenuniv.nl/~kallenberg/Lecture-notes-MDP.pdf
https://www.math.leidenuniv.nl/~kallenberg/Lecture-notes-MDP.pdf
https://arxiv.org/abs/1908.06973

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Exact FHMDP Solution
	2.2 Turnpike Integers
	2.3 Non-stationary MDPs
	2.4 Space Efficiency

	3 Basic FHMDP Solutions
	3.1 Standard Solution
	3.2 In-place Solution

	4 SIFTER: Advanced FHMDP Solutions
	4.1 Radical Solution
	4.2 Logarithmic Solution
	4.3 Common Framework

	5 Experimental Study
	5.1 Use Case and Data Description
	5.2 Compared Methods
	5.3 Reward Comparison, Stationary Case
	5.4 Reward Comparison, Non-stationary Case
	5.5 Execution Time
	5.6 Memory Consumption
	5.7 RiverSwim-based MDPs

	6 Conclusion
	References

