
Minimum Strongly Connected Subgraph Collection in Dynamic
Graphs

Xin Chen

The Chinese University of Hong Kong

xchen@se.cuhk.edu.hk

Jieming Shi
∗

Hong Kong Polytechnic University

jieming.shi@polyu.edu.hk

You Peng

The University of New South Wales

unswpy@gmail.com

Wenqing Lin

Tencent

edwlin@tencent.com

Sibo Wang

The Chinese University of Hong Kong

swang@se.cuhk.edu.hk

Wenjie Zhang

The University of New South Wales

wenjie.zhang@unsw.edu.au

ABSTRACT
Real-world directed graphs are dynamically changing, and it is

important to identify and maintain the strong connectivity infor-

mation between nodes, which is useful in numerous applications.

Given an input graph𝐺 , we study a new problem,minimum strongly
connected subgraph collection (MSCSC), which asks for a complete

collection of subgraphs, each of which contains a maximal set
of nodes that are strongly connected to each other via minimum
number of edges in 𝐺 .

MSCSC is NP-hard, and its computation and maintenance are

challenging, especially on large-scale dynamic graphs. Thus, we

resort to approximate MSCSC with theoretical guarantees. We

develop a series of approximate MSCSC methods for both static

and dynamic graphs. Specifically, we first develop a static MSCSC

method MSC that only needs one scan of the graph𝐺 , runs in linear

time w.r.t., the number of edges, and provides rigorous approxi-

mation guarantees. Then, based on MSC, we leverage a reduced

directed acyclic graph of 𝐺 to design incremental MSCSC method

MSCi with two variants to handle edge insertions efficiently. We

further develop MSCd that updates MSCSC under edge deletions

by efficiently scanning only locally affected subgraphs. Moreover,

to demonstrate the high utility, we conduct two use case studies

to apply our MSCSC methods to boost the efficiency of dynamic

strongly connected component (SCC) maintenance and dynamic

SCC-based reachability index maintenance. Extensive experiments

on 8 large graphs, including 3 billion-edge graphs, validate the

superior efficiency of our methods.

PVLDB Reference Format:
Xin Chen, Jieming Shi, You Peng, Wenqing Lin, Sibo Wang, and Wenjie

Zhang. Minimum Strongly Connected Subgraph Collection in Dynamic

Graphs. PVLDB, 17(6): 1324-1336, 2024.

doi:10.14778/3648160.3648173

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/jerchenxin/mscsc.

∗
Jieming Shi is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.

doi:10.14778/3648160.3648173

1 INTRODUCTION
In a directed graph 𝐺 , nodes 𝑢 and 𝑣 are strongly connected if

they are reachable from each other. Real-world graphs are often

dynamically changing. Identifying and maintaining the strong con-

nectivity information whenever graph 𝐺 changes with new edge

insertion or deletion is a challenging but important task, which is

useful in telecommunication networks [4], social community analy-

sis [17, 30, 35, 43], and the design of dynamic indexes for important

graph algorithms, e.g., dynamic reachability queries [50, 53, 56].

Given a directed graph𝐺 , a conventional way is to detect all the

strongly connected components (SCCs), each of which is amaximal
subgraph containing a set of nodes that are strongly connected

to each other and all the edges among the nodes. For an SCC, no

additional nodes from 𝐺 can be included in it without breaking its

strong connectivity. Though linear-time SCC detection algorithms

exist on static graphs [14, 42, 45], the dynamic maintenance of SCCs

is expensive for two reasons. First, an SCC may contain redundant
edges for strong connectivity, and updates on these redundant edges
require costly dynamic maintenance but actually do not affect the

strong connectivity between the nodes in the SCC. Further, it is

shown [2] that the problem of deciding whether there are more

than two SCCs in a fully dynamic graph cannot be solved with

𝑂 (𝑚1−𝜖) amortized time on sparse graphs for any 𝜖 > 0, where𝑚

is the number of edges, which theoretically indicates the expensive

overheads of dynamic SCC maintenance.

To address the aforementioned issues, instead of maintaining

SCC subgraphs, we propose a new problem, minimum strongly

connected subgraph collection (MSCSC), which extends and en-

hances the problem of minimum strongly connected subgraph

(MSCS) [48, 55]. Briefly, given a strongly connected graph, MSCS

finds a spanning subgraph that contains all nodes of the graph

and is strongly connected with the fewest edges. However, a real
graph 𝐺 may not be strongly connected, and contains multiple

MSCSs. Hence, in𝐺 , MSCSC finds a collection of all MSCSs, each

of which contains a maximal set of nodes that are strongly con-

nected via minimum number of edges in 𝐺 . For example, for the

graph in Fig. 1, the MSCSC is shown in red edges and it consists

of two MSCSs. One MSCS is formed by the red edges connecting

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, and the other is formed by the red edges connect-

ing 𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11, 𝑣12. The black edges are not in the MSCSC.

Applications. One important utility of MSCSC is to speed up fun-

damental graph processing tasks. As mentioned, given a graph

𝐺 , its SCCs may contain redundant edges for strong connectivity,

1324

https://doi.org/10.14778/3648160.3648173
https://github.com/jerchenxin/mscsc
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648173
https://www.acm.org/publications/policies/artifact-review-and-badging-current

𝑣1

𝑣2𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

𝑣8 𝑣9

𝑣10

𝑣11𝑣12

Figure 1: Red edges form the MSCSC containing two MSCSs

while MSCSC only maintains the fewest edges to preserve the same

strong connectivity. We have provided two use cases in Section

5.3 that leverages MSCSC to boost the efficiency of dynamic SCC

maintenance and dynamic SCC-based reachability index mainte-

nance, revealing the motivation of the study on MSCSC. Moreover,

MSCSC is expected to be useful in telecommunication network

monitoring and community analysis. For example, when Fig. 1 is

a telecommunication network with its MSCSC in red, since nodes

𝑣1 and 𝑣7 are not connected by any edge in the MSCSC, the con-

nection between 𝑣1 and 𝑣7 should be categorized as vulnerable to

network interruptions. Further, if a sudden network interruption

(edge deletion) happens on the red edge from 𝑣5 to 𝑣6, it will cause

disconnectivity on the left MSCS, and it should be classified as a

critical interruption to be fixed immediately. Contrarily, if a net-

work interruption happens on the black edge from 𝑣1 to 𝑣6, it does

not change the MSCSC (i.e., strong connectivity unchanged) and

can be regarded as a non-critical issue to save maintenance cost.

Challenges. MSCSC computation is challenging, especially on

massive dynamic graphs with millions of nodes and billions of

edges. We show that MSCSC is NP-hard on static graphs. A trivial

solution of MSCSC is to firstly detect the SCCs in graph 𝐺 by

SCC methods [14, 42, 45], then apply existing MSCS methods [48,

55] on every SCC to detect MSCS, and finally union all edges in

the detected MSCSs as 𝐸𝑛𝑒𝑐 . This solution requires scanning the

input graph at least twice, and in experiments it is inefficient to

maintain 𝐸𝑛𝑒𝑐 when graph𝐺 is dynamically changing. In literature,

there exist studies for SCC maintenance [5–7, 28, 37, 53]. As for

MSCS, existing studies mainly focus on static graphs to develop

approximate solutions with strong theoretical guarantees [48, 55],

while no dynamic MSCS methods exist. It is costly to re-identify

MSCSs on all SCCs from scratch whenever graphs change. To the

best of our knowledge, there exist no studies on dynamic MSCSC

maintenance, and existing SCC and MSCS studies are inefficient to

identify and maintain the MSCSC of dynamic graphs.

Contributions.To address the challenges, we define𝛼-approximate

MSCSC to find an edge set 𝐸𝑛𝑒𝑐 with size bounded by an approx-

imation factor 𝛼 on the size of the optimal solution in Section 2.

Then, we develop a new 2-approximate MSCSC method MSC that
needs only one scan of the input graph and provides rigorous ap-

proximation guarantees (Section 3). Further, we design dynamic

MSCSC maintenance methods to handle edge insertions and dele-

tions in Section 4. Specifically, in Section 4.1, we leverage a reduced

directed acyclic graph (DAG) of the input graph to design an incre-

mental MSCSC method MSCi that only works on the locally affected

subgraphs for MSCSC updates under new edge insertions. In partic-

ular, we develop two variants of MSCi with 2-approximation, one of

which is optimal in terms of the number of edges added into approx-

imate MSCSC 𝐸𝑛𝑒𝑐 and the other is practically efficient. To handle

Table 1: Frequently used notations.

Notation Description
𝐺 = (𝑉 , 𝐸) A directed graph𝐺 with vertex set𝑉 and edge set 𝐸

𝑛,𝑚 𝑛 = |𝑉 | ,𝑚 = |𝐸 |
𝐺 ′ = (𝑉 ′, 𝐸′) A reduced graph𝐺 ′ with node set𝑉 ′ and edge set 𝐸′

𝑓 (·) The mapping function between𝐺 and𝐺 ′

𝐸𝑛𝑒𝑐 , 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 An approximate MSCSC of𝐺 containing the neces-

sary edges, and the optimal MSCSC solution

𝛼 Approximation ratio

𝐺𝑆 , 𝑆 A strongly connected graph, and a strongly connected

component

⟨𝑢, 𝑣⟩ A directed edge from 𝑢 to 𝑣 in𝐺

⟨𝑢′, 𝑣′ ⟩ A directed edge from 𝑢′ to 𝑣′ in𝐺 ′

edge deletions, in Section 4.2, we design MSCd that updates MSCSC

by efficiently scanning only local subgraphs. All the methods run

in linear time w.r.t., graph size. Extensive experiments (Section 5)

on eight large graphs and two use cases demonstrate the superior

efficiency and approximation effectiveness of our methods.

To sum up, we make the following contributions in our paper.

• We introduce the problem of MSCSC maintenance on dynamic

graphs, which is useful in real applications. Given a directed

graph, MSCSC aims to find a collection of maximal subgraphs

each of which is strongly connected via the fewest edges.

• Wedevelop an approximate solution MSC that runs one scan of the
graph to identify approximate MSCSC with rigorous guarantees.

• We then present MSCi and MSCd that are efficient in maintain-

ing approximate MSCSC on dynamic graphs with edge updates,

including insertions and deletions.

• We apply our methods to two use cases, dynamic SCC mainte-

nance and dynamic reachability index maintenance, and conduct

extensive experiments to validate the superiority of our methods.

2 PRELIMINARIES
2.1 Problem Formulation
Let 𝐺 = (𝑉 , 𝐸) be a directed graph, where 𝑉 is the set of nodes

with cardinality 𝑛 = |𝑉 |, and 𝐸 is the set of edges with cardinality

𝑚 = |𝐸 |. Nodes 𝑢 and 𝑣 are strongly connected if there exist a path

from 𝑢 to 𝑣 and a path from 𝑣 to 𝑢 in 𝐺 .

A strongly connected component (SCC) of𝐺 is defined as a max-

imal subgraph of 𝐺 where any two nodes are reachable to each

other in the subgraph. There can be multiple SCCs in a graph 𝐺 .

Supposing that 𝐺 is a strongly connected graph (i.e., 𝐺 itself is

an SCC), the problem of minimum strongly connected spanning

subgraph (MSCS) is to find a strongly connected subgraph con-

taining all nodes in 𝐺 but with the fewest edges. A real graph 𝐺

may contain multiple SCCs. We extend MSCS to such real graphs,

and propose to study a new problem, minimum strongly connected
subgraph collection (MSCSC) defined below.

Definition 2.1 (MSCSC). Given an input graph 𝐺 , MSCSC aims

to find a collection of MSCSs, each of which is a subgraph that

contains a maximal set of nodes that are strongly connected from

each other via the fewest edges. Let 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 be the set of edges in the

optimal MSCSC solution for 𝐺 .

1325

Algorithm 1: Tarjan(𝐺)

1 𝑑𝑒𝑝𝑡ℎ ← 1, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] = 𝑓 𝑎𝑙𝑠𝑒 ∀ 𝑣 ∈ 𝑉
2 Initialize a global stack S and set 𝑆𝐶𝐶𝑠 ← ∅
3 for each vertex 𝑢 ∈ 𝑉 do
4 if visited[𝑢] = 𝑓 𝑎𝑙𝑠𝑒 then
5 𝐷𝐹𝑆 (𝑢)

6 return SCCs

7

8 Procedure 𝐷𝐹𝑆 (𝑢)
9 𝑙𝑜𝑤 (𝑢) ← 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑓 𝑛 (𝑢) ← 𝑑𝑒𝑝𝑡ℎ

10 S.𝑝𝑢𝑠ℎ (𝑢) , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1
11 for each outgoing edge ⟨𝑢, 𝑣⟩ of 𝑢 do
12 if visited[𝑣] = 𝑓 𝑎𝑙𝑠𝑒 then // case 1
13 𝐷𝐹𝑆 (𝑣)
14 𝑙𝑜𝑤 (𝑢) ←𝑚𝑖𝑛{𝑙𝑜𝑤 (𝑢), 𝑙𝑜𝑤 (𝑣) }
15 else if 𝑣 ∈ S then // case 2
16 𝑙𝑜𝑤 (𝑢) ←𝑚𝑖𝑛{𝑙𝑜𝑤 (𝑢), 𝑑 𝑓 𝑛 (𝑣) }

17 if 𝑙𝑜𝑤 (𝑢) = 𝑑𝑓 𝑛 (𝑢) then // create an SCC
18 Pop all elements in stack S until it reaches 𝑢 and add them to

an SCC 𝑆 . Add 𝑆 to 𝑆𝐶𝐶𝑠

19 Build the node-to-SCC mapping function 𝑓 (𝑤) = 𝑆 from every

node 𝑤 to 𝑆

The MSCSC in Fig. 1 is formed by the red edges. 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 is the set

of red edges. Intuitively, all edges in 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 are necessary to keep the

strong connectivity of all MSCSs in𝐺 . If two nodes are strongly con-

nected in 𝐺 , they are still strongly connected via edges in MSCSC

𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 . Naturally, these edges in MSCSC are called necessary edges.

Deleting a necessary edge may disconnect certain nodes in MSCSC,

while deleting any edge outside 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 will not affect the strong

connectivity information of the input graph 𝐺 .

MSCS itself is NP-hard [55]. For each SCC in𝐺 , MSCSC will find

an MSCS. Thus, it is NP-hard to find an optimal solution 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 of

MSCSC in 𝐺 . Hence, we focus on 𝛼-approximate MSCSC.

Definition 2.2 (𝛼-Approximate MSCSC). Given an input graph 𝐺 ,

an approximate MSCSC solution 𝐸𝑛𝑒𝑐 is a necessary edge set of size

bounded by an approximation factor 𝛼 over the size of the optimal

𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 , i.e., |𝐸𝑛𝑒𝑐 |/|𝐸

𝑜𝑝𝑡
𝑛𝑒𝑐 | ≤ 𝛼 .

On dynamic graphs that may have edge insertions and deletions,

we define dynamic MSCSC maintenance as follows.

Definition 2.3 (Dynamic MSCSC Maintenance). Given an input

graph𝐺 with an approximateMSCSC solution𝐸𝑛𝑒𝑐 , dynamicMSCSC

maintains the up-to-date 𝐸𝑛𝑒𝑐 when edges are inserted or deleted.

Tab. 1 displays the frequently used notations in this paper.

2.2 Existing Solutions on SCC and MSCS
In this section, we review existing SCC and MSCS methods.

Tarjan’s SCC algorithm [45]. There exist algorithms to efficiently

find SCCs [14, 42, 45]. Tarjan’s algorithm [45] is one representative

method, with its pseudo-code in Algo. 1. The whole algorithm runs

in a depth-first search (DFS) manner. Initially, at Line 1, it sets

𝑑𝑒𝑝𝑡ℎ to be 1, which is a global counter to be incremented by one

Algorithm 2: Zhao(𝐺)

Input: A strongly connected graph𝐺

Output: A minimum strongly connected subgraph MSCS

1 𝐺# ← 𝐺 , 𝐸′ ← ∅
2 while𝐺# contains a concealing cycle𝐶 of length at least 3 do
3 𝐸′ ← 𝐸′ ∪ 𝐸 (𝐶) ,𝐺# ← 𝐺# \𝑉 (𝐶)
4 𝐸′ ← 𝐸′ ∪ 𝐸 (𝐺#)
5 return a new graph𝐺∗ = (𝑉 , 𝐸′)

when a new node is visited, and maintains a flag 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 per node,

recording whether the node has been visited or not and initialized

to be false. A global stack S is used to detect SCCs (Line 2). For

every unvisited node𝑢, it triggers a DFS procedure to identify SCCs

(Lines 3-5). In the DFS procedure (Line 8 in Algo. 1), every node 𝑢

maintains a value 𝑑 𝑓 𝑛(𝑢), which records the visiting order of 𝑢 in

the DFS traversal. If 𝑢 is the 𝑖-th visited node during the DFS, then

𝑑 𝑓 𝑛(𝑢) = 𝑖 . Node𝑢 further has a value 𝑙𝑜𝑤 (𝑢) to record the current
smallest 𝑑 𝑓 𝑛(·) value among all nodes that are reachable from 𝑢.

At Line 9, initially, both 𝑙𝑜𝑤 (𝑢) and 𝑑 𝑓 𝑛(𝑢) are set to 𝑑𝑒𝑝𝑡ℎ, and 𝑢
is pushed into the stack S. The main idea is that if a node 𝑣 𝑓 𝑖𝑟𝑠𝑡 is

the first node visited among all nodes in an SCC, then node 𝑣 𝑓 𝑖𝑟𝑠𝑡
must have the smallest 𝑑 𝑓 𝑛(𝑣 𝑓 𝑖𝑟𝑠𝑡) value among all nodes in the

SCC, and 𝑑 𝑓 𝑛(𝑣 𝑓 𝑖𝑟𝑠𝑡) also equals to 𝑙𝑜𝑤 (𝑣 𝑓 𝑖𝑟𝑠𝑡), while the other
nodes 𝑣 in the SCC are with 𝑑 𝑓 𝑛(𝑣) > 𝑙𝑜𝑤 (𝑣). The global stack S
is used to find all nodes in the same SCC. In Tarjan’s algorithm, for

the nodes in the same SCC as 𝑣 𝑓 𝑖𝑟𝑠𝑡 , they will be on top of 𝑣 𝑓 𝑖𝑟𝑠𝑡
in the stack S. Then, we can retrieve the SCC containing 𝑣 𝑓 𝑖𝑟𝑠𝑡 via

popping all elements in S until 𝑣 𝑓 𝑖𝑟𝑠𝑡 is popped out. In particular,

after marking 𝑢 as visited and increasing 𝑑𝑒𝑝𝑡ℎ by 1 at Line 10, for

every out-neighbor 𝑣 of 𝑢 (Line 11), if 𝑣 is not visited yet, recursive

DFS is applied (Line 13), after which, the 𝑙𝑜𝑤 (𝑢) value is updated if
𝑙𝑜𝑤 (𝑣) is smaller (Line 14). Otherwise, 𝑣 has already visited, and if

𝑣 is already in S (Line 15), the 𝑙𝑜𝑤 (𝑢) value is also updated if the

𝑑 𝑓 𝑛(𝑣) value is smaller. After performing DFS of all out-neighbors

of 𝑢 from Lines 11 to 16, at Line 17, if 𝑢 is the first node visited in

an SCC (i.e., 𝑙𝑜𝑤 (𝑢) = 𝑑 𝑓 𝑛(𝑢)), then a new SCC 𝑆 is discovered and

all nodes above 𝑢 (including 𝑢) in S are popped out and added to 𝑆

(Lines 18-19). The time and space complexities of Algo. 1 are both

𝑂 (𝑛 +𝑚).
Dynamic SCCs. In literature, there exist studies for SCC mainte-

nance [5–7, 28, 37, 53]. As mentioned, the problem of whether there

are more than two SCCs in a fully dynamic graph cannot be solved

with 𝑂 (𝑚1−𝜖) amortized update and query times on sparse graphs

for any 𝜖 > 0 [2]. Thus, existing dynamic SCC studies mainly focus

on the partially dynamic setting: either the decremental setting,

where there are only edge deletions [7, 28], or the incremental

setting, where there are only edge insertions [5, 6].

MSCS. There exist several studies to find approximate MSCS [25,

26, 48, 55]. A super-linear-time 1.64-approximation algorithm is

presented in [25], and Khuller et al. [26] develop a super-linear-time

algorithm with an approximate ratio of about 1.61. Vetta et al. [48]

present a super-linear-time 3/2-approximation algorithm. Note that

all these three methods run in super-linear time that is higher than

linear time. Zhao [55] is a linear-time 5/3-approximation algorithm,

with pseudo-code shown in Algo. 2. This algorithm repeatedly

1326

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

1

2
3

4
7

8

9

6

5

(a) 𝐺

𝑣1

𝑣6

𝑣′

(b) 𝐺𝑧

Figure 2: Running Example of Zhao Method

contracts concealing cycles of length at least 3 until no such cycle

exists (Lines 2-3). A cycle 𝐶 in a graph 𝐺 is a concealing cycle if

there exists a node set𝑉 ′ ⊆ 𝑉 such that 𝛿+
𝐺
(𝑉 ′) ≠ ∅ and all edges in

𝛿+
𝐺
(𝑉 ′) will be removed by contracting 𝐶 , where 𝛿+

𝐺
(𝑉 ′) is the set

of outgoing edges of nodes in𝑉 ′. Fig. 2 presents a running example

of Zhao. Graph𝐺 contains two SCCs: {𝑣6} and {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. On
the large SCC, to detect MSCS, Zhao first finds a concealing cycle
formed by the red edges in Fig. 2(a), and each edge of this cycle

is marked as a necessary edge. Then Zhao contracts the cycle as a
node 𝑣 ′ and forms a graph𝐺𝑧 in Fig. 2(b), where ⟨𝑣1, 𝑣 ′⟩ and ⟨𝑣 ′, 𝑣1⟩
correspond to ⟨𝑣1, 𝑣2⟩ and ⟨𝑣3, 𝑣1⟩ in 𝐺 , respectively. As there is no
concealing cycle of length at least 3 in𝐺𝑧 , Zhao marks edges inside

all 2-cycles in𝐺𝑧 as necessary. In Fig. 2(b), there is a 2-cycle formed

by 𝑣1 and 𝑣 ′, and red edges inside this cycle become necessary.

Then, Zhao finds the necessary edges for the SCC, including ⟨𝑣1, 𝑣2⟩,
⟨𝑣2, 𝑣3⟩, ⟨𝑣3, 𝑣1⟩, ⟨𝑣3, 𝑣4⟩, ⟨𝑣4, 𝑣5⟩, and ⟨𝑣5, 𝑣2⟩.

Existing MSCS methods, e.g., [25, 55], can be extended to han-

dle MSCSC by first detecting all SCCs in 𝐺 and then finding the

MSCSC of each SCC, which requires scanning𝐺 at least twice and

is inefficient. Moreover, existing MSCS solutions are designed for

static graphs, and inefficient in maintaining dynamic MSCSC. Thus,

there is an urgent need for efficient dynamic MSCSC maintenance.

3 APPROXIMATE MSCSC
We first provide the definitions and conduct approximation analysis

in Section 3.1 to present our 2-approximation guarantee on MSCSC.

Then we develop the algorithmic details of the 2-approximate

method MSC in Section 3.2. MSC only needs one scan of𝐺 to identify

an approximate necessary edge set 𝐸𝑛𝑒𝑐 of MSCSC. MSC is the basis
of the dynamic methods developed later in Section 4.

3.1 Definitions and Approximation Analysis
To facilitate the designs in our method, we define two types of

edges, namely tree edges and dropping edges, which are essential to

get an approximate MSCSC 𝐸𝑛𝑒𝑐 of a graph 𝐺 .

For the ease of understanding, in the following, we focus on

the analysis on a strongly connected graph 𝐺𝑆 . The approximation

analysis is extended to graph𝐺 that may not be strongly connected

in Theorem 3.3. Definition 3.1 defines tree edges, which are the

edges in the DFS tree generated in the depth-first traversal process.

Definition 3.1 (Tree edge). Given a strongly connected graph 𝐺𝑆 ,

when performing DFS traversal from a visited node𝑢, an edge ⟨𝑢, 𝑣⟩
is a tree edge if 𝑢 reaches an unvisited node 𝑣 via edge ⟨𝑢, 𝑣⟩ and 𝑢
and 𝑣 are strongly connected.

Further, as shown in Algo. 1, an edge ⟨𝑢, 𝑣⟩ can cause the drop of

𝑙𝑜𝑤 (𝑢) value, if 𝑙𝑜𝑤 (𝑣) or 𝑑 𝑓 𝑛(𝑣) is smaller (Lines 14 or 16), which

indicates that 𝑢 can reach certain nodes 𝑣 that have already been

visited and they belong to the same SCC. Therefore, for each node𝑢,

we track those out-going edges ⟨𝑢, 𝑣⟩ that alter the value of 𝑙𝑜𝑤 (𝑢).
We denote such edges as dropping edges, defined as follows.

Definition 3.2 (Dropping edge). Given a strongly connected graph
𝐺𝑆 , we denote the edge ⟨𝑢, 𝑣⟩ that causes the drop of 𝑙𝑜𝑤 (𝑢) of node
𝑢 as a dropping edge of 𝑢.

Let 𝐸𝑡𝑟𝑒𝑒 (𝐺𝑆) and 𝐸𝑑𝑟𝑜𝑝 (𝐺𝑆) be the sets of tree edges and drop-

ping edges in𝐺𝑆 respectively. In Lemma 1, we prove that, the union

of all tree edges and dropping edges in 𝐺𝑆 preserves the strong

connectivity of any two nodes in𝐺𝑆 . All proofs can be found in the

full-version technical report [1].

Lemma 1. For a strongly connected graph𝐺𝑆 ,𝐸𝑡𝑟𝑒𝑒 (𝐺𝑆)∪𝐸𝑑𝑟𝑜𝑝 (𝐺𝑆)
preserves the strong connectivity between any nodes in 𝐺𝑆 .

However, note that 𝐸𝑡𝑟𝑒𝑒 (𝐺𝑆) ∪ 𝐸𝑑𝑟𝑜𝑝 (𝐺𝑆) does not have an

approximation guarantee with respect to the optimal solution of

𝐺𝑆 , since a node𝑢 can havemultiple dropping edges. In other words,

the value 𝑙𝑜𝑤 (𝑢) may be changed more than once. For example, in

Fig. 3, the value 𝑙𝑜𝑤 (𝑣4) is changed from 4 to 3 (due to edge ⟨𝑣4, 𝑣3⟩)
and then to 2 (due to edge ⟨𝑣4, 𝑣2⟩). In the worst case, a node 𝑢 may

have its 𝑙𝑜𝑤 (𝑢) value changed once for every out-going edge (i.e.,
all its out-going edges are dropping edges).

To address the issue, we propose to only consider the last drop-
ping edge of a node, which can reduce the number of necessary

edges significantly. Given a node 𝑢 with multiple dropping edges,

we only keep the last edge that changes the value of 𝑙𝑜𝑤 (𝑢). Hence
we maintain a last dropping edge set 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (𝐺𝑆), without losing
the strong connectivity information as proved in Lemma 2. Note

that tree edges are necessary to keep the full connectivity infor-

mation, and we will keep the tree edges as discarding any of them

might cause the loss of connectivity information. Also, if there is

a tree edge ⟨𝑢, 𝑣⟩ which produces the same 𝑙𝑜𝑤 (𝑢) value as the

last dropping edge of 𝑢, we can discard such a last dropping edge

without affecting the strong connectivity, and further reduce the

number of necessary edges maintained.

In Lemma 2, we first prove that every node 𝑢 can reach the

first node 𝑟 starting the DFS in 𝐺𝑆 via last dropping edges only

𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (𝐺𝑆). Then it is natural to derive Lemma 3 that 𝐸𝑡𝑟𝑒𝑒 (𝐺𝑆)
and 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (𝐺𝑆) together can preserve the strong connectivity

of any two nodes in 𝐺𝑆 .

Lemma 2. Given a strongly connected graph 𝐺𝑆 , every node 𝑢 in
𝐺𝑆 can reach node 𝑟 that is the first node visited during DFS in 𝐺𝑆 ,
via the last dropping edges in 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (𝐺𝑆).

Lemma 3. 𝐸𝑡𝑟𝑒𝑒 (𝐺𝑆) ∪ 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (𝐺𝑆) preserves the strong con-
nectivity between any nodes in a strongly connected graph 𝐺𝑆 .

Finally, for any graph 𝐺 that may not be strongly connected, in

Theorem 3.3, we derive that the last dropping edges and tree edges

of a graph 𝐺 together form a 2-approximation MSCSC solution

𝐸𝑛𝑒𝑐 , w.r.t., 𝐸
𝑜𝑝𝑡
𝑛𝑒𝑐 .

Theorem 3.3. Given a graph 𝐺 , for every SCC with its tree edges
and last dropping edges in𝐺 , let necessary edge set 𝐸𝑛𝑒𝑐 be the union of
all tree edges and last dropping edges in𝐺 . 𝐸𝑛𝑒𝑐 is a 2-approximation
MSCSC w.r.t., the optimal, i.e., |𝐸𝑛𝑒𝑐 |/|𝐸𝑜𝑝𝑡𝑛𝑒𝑐 | ≤ 2 .

1327

Algorithm 3: Approximate MSCSC: MSC

Input: Directed graph𝐺

Output: Approximate MSCSC 𝐸𝑛𝑒𝑐

1 𝐸𝑡𝑟𝑒𝑒 ← ∅, 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ∅
2 𝑑𝑒𝑝𝑡ℎ ← 1, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← 𝑓 𝑎𝑙𝑠𝑒 ∀ 𝑣 ∈ 𝑉
3 for each node 𝑢 ∈ 𝑉 do
4 if visited[𝑢] = 𝑓 𝑎𝑙𝑠𝑒 then
5 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑜𝑑𝑒 (𝑢)

6 𝐸𝑛𝑒𝑐 ← 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ∪
(⋃
⟨𝑢,𝑣⟩∈𝐸𝑡𝑟𝑒𝑒 ,𝑓 (𝑢)=𝑓 (𝑣)

⟨𝑢, 𝑣⟩
)

3.2 Algorithm
Algo. 3 and 4 present the pseudo code of our 2-approximation

MSCSC solution MSC on static graphs. Remark that MSC also adopts

DFS traversal with similar symbols in Algo. 1, but with vital new

designs to efficiently achieve the approximation guarantees in The-

orem 3.3 based on the newly proposed tree edges and dropping

edges in Definitions 3.1 and 3.2, compared with Algo. 1.

After initialization (Lines 1-2 of Algo. 3), for every unvisited

node 𝑢, we perform procedure 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑜𝑑𝑒 (Algo. 4). In Algo. 4,

Lines 1-2 are with the same initialization as Algo. 1. At Line 3,

𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 represents the last dropping edge of node 𝑢 and is set to

empty initially. When node 𝑢 reaches an unvisited node 𝑣 (Lines

5-10 of Algo. 4), this edge will be temporarily marked as a tree edge

(note that edges that are not in the same MSCS will be excluded

from 𝐸𝑡𝑟𝑒𝑒 in the end at Line 6 of Algo. 3). After executing the

procedure recursively for 𝑣 at Line 7, if 𝑙𝑜𝑤 (𝑢) ≥ 𝑙𝑜𝑤 (𝑣) (Line 8),
indicating that we can produce the low value which is at least no

greater than the previous one, it then updates this tree edge as the

last dropping edge of node 𝑢 (Line 9). In Lines 11-13 of Algo. 4,

when node 𝑢 reaches a visited node 𝑣 which is still in the stack

and 𝑙𝑜𝑤 (𝑢) > 𝑑 𝑓 𝑛(𝑣), this edge is updated as the last dropping

edge 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 of 𝑢. At the end of Algo. 4, it adds the last dropping

edge into 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (Lines 14-15 of Algo. 4) and generates a new

MSCS (Line 16 of Algo. 4). At the end of Algo. 3 (Line 6), it collects

all necessary edges by first excluding false tree edges ⟨𝑢, 𝑣⟩ not in
the same MSCS (i.e., 𝑓 (𝑢) ≠ 𝑓 (𝑣)) from 𝐸𝑡𝑟𝑒𝑒 , and then taking the

union of 𝐸𝑡𝑟𝑒𝑒 and 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 (Line 6 of Algo. 3).

The time and space complexities of Algo. 3 are both𝑂 (𝑛 +𝑚), as
the graph traversal (procedure 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑜𝑑𝑒) visits each node and

edge exactly once, with a constant time/space cost per edge.

Example 3.4. Fig. 3 shows an example to get MSCSC by MSC (red
edges). Fig. 3(a) is the result after processing ⟨𝑣1, 𝑣2⟩, ⟨𝑣2, 𝑣3⟩ and
⟨𝑣3, 𝑣1⟩. ⟨𝑣1, 𝑣2⟩ and ⟨𝑣2, 𝑣3⟩ are added to 𝐸𝑡𝑟𝑒𝑒 as tree edges, while
⟨𝑣3, 𝑣1⟩ is a dropping edge since 𝑙𝑜𝑤 (3) is changed from 3 to 1. It
is now marked as the last dropping edge of 𝑣3. In Fig. 3(b), we visit
⟨𝑣3, 𝑣4⟩ and ⟨𝑣4, 𝑣3⟩. Edge ⟨𝑣3, 𝑣4⟩ is added to 𝐸𝑡𝑟𝑒𝑒 as it is a tree edge.
When we reach ⟨𝑣4, 𝑣3⟩, 𝑙𝑜𝑤 (𝑣4) is dropped and thus it is a dropping
edge of 𝑣4. We set ⟨𝑣4, 𝑣3⟩ temporarily as the last dropping edge of 𝑣4.
In Fig. 3(c), we deal with ⟨𝑣4, 𝑣2⟩. We will prune the previously stored
last dropping edge ⟨𝑣4, 𝑣3⟩ since 𝑙𝑜𝑤 (𝑣4) is now updated again and
edge ⟨𝑣4, 𝑣2⟩ becomes the new last dropping edge. After processing
⟨𝑣4, 𝑣5⟩ and ⟨𝑣5, 𝑣2⟩ in Fig. 3(d), ⟨𝑣4, 𝑣5⟩ is added to 𝐸𝑡𝑟𝑒𝑒 and ⟨𝑣5, 𝑣2⟩
is set as the last dropping edge of 𝑣5 since 𝑙𝑜𝑤 (𝑣5) is changed. Also,

Algorithm 4: ProcessNode

Input:𝐺 , 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑜𝑤, S, 𝐸𝑡𝑟𝑒𝑒 , 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 , 𝑢
Output: last dropping edges, temporary tree edges, and MSCSs

1 𝑙𝑜𝑤 (𝑢) ← 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑓 𝑛 (𝑢) ← 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1
2 Stack S.𝑝𝑢𝑠ℎ (𝑢) , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢] ← 𝑡𝑟𝑢𝑒

3 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ∅
4 for each outgoing edge ⟨𝑢, 𝑣⟩ of 𝑢 do
5 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] = 𝑓 𝑎𝑙𝑠𝑒 then // case 1
6 𝐸𝑡𝑟𝑒𝑒 .𝑎𝑑𝑑 (⟨𝑢, 𝑣⟩)
7 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑜𝑑𝑒 (𝑣)
8 if 𝑙𝑜𝑤 (𝑢) ≥ 𝑙𝑜𝑤 (𝑣) then
9 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ⟨𝑢, 𝑣⟩

10 𝑙𝑜𝑤 (𝑢) ← 𝑙𝑜𝑤 (𝑣)

11 else if 𝑣 ∈ S and 𝑙𝑜𝑤 (𝑢) > 𝑑𝑓 𝑛 (𝑣) then // case 2
12 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ⟨𝑢, 𝑣⟩
13 𝑙𝑜𝑤 (𝑢) ← 𝑑𝑓 𝑛 (𝑣)

14 if 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ≠ ∅ then
15 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 .𝑎𝑑𝑑 (𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝)
16 Repeat Lines 17-19 in Algo. 1 to create MSCSs instead of SCCs.

the last dropping edge of 𝑣4 is updated from ⟨𝑣4, 𝑣2⟩ to ⟨𝑣4, 𝑣5⟩ since
𝑙𝑜𝑤 (𝑣4) = 𝑙𝑜𝑤 (𝑣5) and ⟨𝑣4, 𝑣5⟩ is a tree edge. Finally, a new MSCS is
formed by 𝑣1, 𝑣2, 𝑣3, 𝑣4, and 𝑣5. Also, 𝑣6 forms another MSCS. And, we
have 𝐸𝑡𝑟𝑒𝑒 = {⟨𝑣1, 𝑣2⟩, ⟨𝑣2, 𝑣3⟩, ⟨𝑣3, 𝑣4⟩, ⟨𝑣4, 𝑣5⟩}. The set 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 of
last dropping edges is {⟨𝑣2, 𝑣3⟩, ⟨𝑣3, 𝑣1⟩, ⟨𝑣4, 𝑣5⟩, ⟨𝑣5, 𝑣2⟩}. Unioning
𝐸𝑡𝑟𝑒𝑒 and 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 , we get 𝐸𝑛𝑒𝑐 (red edges in Fig. 3(d)).

4 DYNAMIC MSCSC MAINTENANCE
In Section 4.1, we present two incremental maintenance methods

for edge insertions a 2-approximation, one is optimal in terms of

the number of edges added into approximate MSCSC 𝐸𝑛𝑒𝑐 and

the other is practically efficient. Then in Section 4.2, we develop a

decremental maintenance method to handle edge deletions.

4.1 Incremental Update
When edges are inserted into𝐺 , a way is to directly work on graph

𝐺 with the new edge to detect the new MSCSs, which is inefficient.

Instead, we leverage a reduced directed acyclic graph (DAG) 𝐺 ′

for efficient MSCSC maintenance. Given the input graph 𝐺 , after

getting approximate MSCSC 𝐸𝑛𝑒𝑐 (i.e., detecting all MSCSs), we

build a DAG𝐺 ′, where all nodes 𝑣𝑖 in an MSCS of𝐺 are mapped to

a single node 𝑓 (𝑣𝑖) in𝐺 ′, where 𝑓 is the mapping function between

𝐺 and 𝐺 ′ (i.e., an MSCS in 𝐺 is a node in 𝐺 ′). We use 𝑉 ′ and 𝐸′ to
represent the node set and edge set of 𝐺 ′ respectively. There is an
edge from 𝑢′ to 𝑣 ′ in𝐺 ′, if there is at least one edge from any node

in the MSCS of 𝑢′ to any node in the MSCS of 𝑣 ′ in 𝐺 .
Our incremental methods first work on 𝐺 ′ and then map back

on 𝐺 to maintain the approximate MSCSC 𝐸𝑛𝑒𝑐 . Given a new edge

⟨𝑢𝑖 , 𝑣𝑖 ⟩ inserted into 𝐺 , if 𝑢𝑖 and 𝑣𝑖 belong to the same MSCS (i.e.,
𝑓 (𝑢𝑖) = 𝑓 (𝑣𝑖)), then the approximate MSCSC 𝐸𝑛𝑒𝑐 does not change,

since 𝑢𝑖 and 𝑣𝑖 are already strongly connected via 𝐸𝑛𝑒𝑐 . If 𝑢𝑖 and

𝑣𝑖 belong to the different MSCSs (i.e., 𝑓 (𝑢𝑖) ≠ 𝑓 (𝑣𝑖)), then the

insertion of the new edge may cause the merge of MSCSs. Fig. 4

shows an example of DAG 𝐺 ′ obtained by reducing the MSCSC

1328

Stack S : {𝑣1, 𝑣2, 𝑣3}
𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 1

𝑙𝑜𝑤 : 2

𝑑𝑓 𝑛 : 2

𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 3

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

1

2
3

4
7

8

9

6

5

(a)

Stack S : {𝑣1, 𝑣2, 𝑣3, 𝑣4}
𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 1

𝑙𝑜𝑤 : 2

𝑑𝑓 𝑛 : 2

𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 3

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑙𝑜𝑤 : 3

𝑑𝑓 𝑛 : 4

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

1

2
3

4
7

8

9

6

5

(b)

Stack S : {𝑣1, 𝑣2, 𝑣3, 𝑣4}
𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 1

𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 2

𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 3

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑙𝑜𝑤 : 2

𝑑𝑓 𝑛 : 4

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

1

2
3

4
7

8

9

6

5

(c)

Stack S : {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}
𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 1

𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 2

𝑙𝑜𝑤 : 1

𝑑𝑓 𝑛 : 3

𝑙𝑜𝑤 : 2

𝑑𝑓 𝑛 : 5

𝑙𝑜𝑤 : 2

𝑑𝑓 𝑛 : 4

𝑙𝑜𝑤 : ?

𝑑𝑓 𝑛 : ?

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

1

2
3

4
7

8

9

6

5

(d)

Figure 3: Running example for our method MSC.

of a graph 𝐺 . If a new edge ⟨𝑢𝑖 , 𝑣𝑖 ⟩ is inserted into 𝐺 and 𝑓 (𝑢𝑖) =
𝑣 ′
5
, 𝑓 (𝑣𝑖) = 𝑣 ′

1
in 𝐺 ′ (i.e., 𝑢𝑖 and 𝑣𝑖 are in different MSCSs), then it

means that a corresponding edge in blue ⟨𝑣 ′
5
, 𝑣 ′

1
⟩ is also inserted into

𝐺 ′. Observe that the edge may cause the merge of the MSCSs. We

first identify the strongly connected nodes in𝐺 ′, and consequently

obtain the MSCSs that should be merged in 𝐺 , and finally update

𝐸𝑛𝑒𝑐 accordingly in 𝐺 , after which, a new DAG 𝐺 ′ is also obtained.

Optimal 2-Approx Incremental MSCSC MSCi∗. MSCi∗ is optimal

in the sense that, given a new edge insertion, the number of edges

added in 𝐸𝑛𝑒𝑐 for the insertion is minimum. In other words, remov-

ing any one of these newly added edges will cause disconnectivity

of nodes in MSCSC. We first identify an SCC 𝑆 ′ in the new DAG𝐺 ′.
𝑆 ′ must contain the new edge ⟨𝑢′, 𝑣 ′⟩, where 𝑓 (𝑢𝑖) = 𝑢′, 𝑓 (𝑣𝑖) = 𝑣 ′
and ⟨𝑢𝑖 , 𝑣𝑖 ⟩ is the new edge in 𝐺 . Then denote 𝐺∗ = 𝑆 ′ \ ⟨𝑢′, 𝑣 ′⟩.
Apparently 𝐺∗ is a DAG. For instance, in Fig. 4, DAG 𝐺 ′ and the

new edge in blue form an SCC. In this example, 𝐺∗ is 𝐺 ′ itself
without the new edge. In DAG 𝐺∗, only node 𝑣 ′ (resp. 𝑢′) is with
zero in-degree (resp. out-degree), e.g., 𝑣 ′

4
and 𝑣 ′

5
respectively in Fig.

4. Further, all other nodes in 𝐺∗ are on the paths from 𝑣 ′ to 𝑢′. In
the optimal solution, we conduct traversal from 𝑣 ′ via all paths to
𝑢′, and develop a topological sort technique to only mark the edges

that are essential to maintain the connectivity of all nodes to 𝑢′. In
the traversal over 𝐺∗, for every node 𝑣 ′

𝑗
(except 𝑣 ′ and 𝑢′), it will

have only one incoming edge as well as only one outgoing edge

marked as necessary, which in the end will be combined as the

optimal necessary edge set 𝐸′𝑛𝑒𝑐 of𝐺
∗
. For every edge 𝑒′ ∈ 𝐸′𝑛𝑒𝑐 on

the reduced graph, there can be many edges in the original graph

𝐺 corresponding to it, among which, we simply choose one edge 𝑒

arbitrarily and add it into 𝐸𝑛𝑒𝑐 .

Algo. 5 presents the pseudo code of MSCi∗. The input includes
the reduced DAG 𝐺 ′, and a new edge ⟨𝑢′, 𝑣 ′⟩ (corresponding to a
new edge ⟨𝑢𝑖 , 𝑣𝑖 ⟩ in graph𝐺). The output is the updated 𝐸𝑛𝑒𝑐 and

DAG 𝐺 ′. Algo. 5 first detects if there is a new SCC 𝑆 ′ in the new

𝐺 ′ (Line 2). If no new SCC, then nothing needs to be performed

(Lines 3-4). Otherwise, we aim to identify the MSCS 𝐸′𝑛𝑒𝑐 of SCC 𝑆
′
.

Specifically, we first get 𝐺∗ at Line 5. 𝐺∗ is a DAG with paths from

𝑣 ′ to𝑢′, but not the other way around. Then for every node 𝑣 ′
𝑗
in𝐺∗,

we initialize a flag, 𝑟𝑒𝑎𝑐ℎ, to indicate whether it is reachable from 𝑣 ′

(Line 6). We then get the in-degree of every node 𝑣 ′
𝑗
in 𝐺∗ (Line 7).

We maintain a queue Q to start the traversal from 𝑣 ′ (Line 8). For
every node 𝑣 ′

𝑗
popped from Q (Lines 10-11), we first maintain a flag

𝑟𝑒𝑎𝑐ℎ𝑈𝑖 to indicate if it has any out-going edge added into 𝐸
′
𝑛𝑒𝑐 (i.e.,

marked as necessary), which is initialized as false (Line 11). Then at

Algorithm 5: Optimal Incremental MSCSC: MSCi∗

Input: Graph𝐺 with approximate MSCSC 𝐸𝑛𝑒𝑐 , and the

corresponding DAG𝐺 ′ , a new edge inserted into𝐺 that

maps to a new edge ⟨𝑢′, 𝑣′ ⟩ in𝐺 ′
Output: Updated 𝐸𝑛𝑒𝑐 and a new𝐺 ′

1 Add ⟨𝑢′, 𝑣′ ⟩ into𝐺 ′
2 Invoke the procedure 𝐷𝐹𝑆 (𝑣′) in Algo. 1 from root 𝑣′ in𝐺 ′ , to

detect if a new SCC is formed due to edge ⟨𝑢′, 𝑣′ ⟩
3 if no new SCC then
4 return

5 𝐺∗ ← 𝑆 ′ \ ⟨𝑢′, 𝑣′ ⟩, 𝐸′𝑛𝑒𝑐 ← {⟨𝑢′, 𝑣′ ⟩}
6 𝑟𝑒𝑎𝑐ℎ[𝑣′

𝑖
] = 𝑓 𝑎𝑙𝑠𝑒 ∀ nodes 𝑣′

𝑖
∈ 𝐺∗

7 Get 𝑑𝑖𝑛 [𝑣′𝑖] for each 𝑣′
𝑖
in𝐺∗

8 Queue Q.𝑝𝑢𝑠ℎ (𝑣′)
9 while Q is not empty do
10 pop 𝑣′

𝑗
from Q

11 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 ← 𝑓 𝑎𝑙𝑠𝑒

12 for each outgoing edge ⟨𝑣′
𝑗
, 𝑣′

𝑘
⟩ of 𝑣′

𝑗
in𝐺∗ do

13 𝑑𝑖𝑛 [𝑣′𝑘] ← 𝑑𝑖𝑛 [𝑣′𝑘] − 1

14 if 𝑑𝑖𝑛 [𝑣′𝑘] = 0 then
15 Q.𝑝𝑢𝑠ℎ (𝑣′

𝑘
)

16 if 𝑟𝑒𝑎𝑐ℎ[𝑣′
𝑘
] = 𝑓 𝑎𝑙𝑠𝑒 then

17 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 ← 𝑡𝑟𝑢𝑒

18 𝑟𝑒𝑎𝑐ℎ[𝑣′
𝑘
] ← 𝑡𝑟𝑢𝑒 , 𝐸′𝑛𝑒𝑐 .𝑎𝑑𝑑 (⟨𝑣′𝑗 , 𝑣′𝑘 ⟩)

19 if 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 = 𝑓 𝑎𝑙𝑠𝑒 then
20 let ⟨𝑣′

𝑗
, 𝑣′

𝑘
⟩ be one of outgoing edges of 𝑣′

𝑗

21 𝑟𝑒𝑎𝑐ℎ[𝑣′
𝑘
] ← 𝑡𝑟𝑢𝑒 , 𝐸′𝑛𝑒𝑐 .𝑎𝑑𝑑 (⟨𝑣′𝑗 , 𝑣′𝑘 ⟩)

22 Produce a new𝐺 ′ by shrinking 𝑆 ′ into a node

23 for each edge 𝑒′ ∈ 𝐸′𝑛𝑒𝑐 do
24 Add one of edges 𝑒 in𝐺 that maps to 𝑒′ into 𝐸𝑛𝑒𝑐

Line 12, we iterate every out-going neighbor 𝑣 ′
𝑘
of 𝑣 ′

𝑗
(i.e., out-going

edge) to check if the edge is the last-visited incoming edge of 𝑣 ′
𝑘
by

decreasing the indegree count of 𝑣 ′
𝑘
(Line 13). If the count becomes

zero, it means all incoming edges of 𝑣 ′
𝑘
have been traversed, and

⟨𝑣 ′
𝑗
, 𝑣 ′
𝑘
⟩ is the last one (Line 14). Consequently, we push 𝑣 ′

𝑘
into

the queue (Line 15). If 𝑣 ′
𝑘
is not determined as reachable from 𝑣 ′

(Line 16), we add the edge into 𝐸′𝑛𝑒𝑐 , and mark both 𝑟𝑒𝑎𝑐ℎ[𝑣 ′
𝑘
] and

𝑟𝑒𝑎𝑐ℎ𝑈𝑖 as true. After inspecting all outgoing edges of 𝑣 ′
𝑗
(Lines

12- 18), if 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 is still false (Line 19), it means that none of 𝑣 ′
𝑗
’s

1329

𝑣′
1

𝑣′
2

𝑣′
4

𝑣′
3

𝑣′
5

Figure 4: DAG 𝐺 ′

𝑣′
1

𝑣′
2

𝑣′
3

𝑣′
4

1
3 4

2
5

Figure 5: DAG 𝐺 ′; new edge in blue.

outgoing edges is added into 𝐸′𝑛𝑒𝑐 , then we just pick one outgoing

edge and added it to 𝐸′𝑛𝑒𝑐 as well as marking the corresponding

out-neighbor as reached at Lines 20-21. Then the nodes in 𝑆 ′ of 𝐺 ′

with the new edge shrink to a node such that we can get a new

DAG 𝐺 ′ (Line 22). For every edge 𝑒′ in 𝐸𝑛𝑒𝑐 , we choose one edge 𝑒
in 𝐺 that maps to 𝑒′ and insert 𝑒 into 𝐸𝑛𝑒𝑐 , which is the updated

MSCSC for inserting new edge ⟨𝑢𝑖 , 𝑣𝑖 ⟩ into 𝐺 (Lines 23-24).

Example 4.1. Suppose an edge ⟨𝑢𝑖 , 𝑣𝑖 ⟩ is added to the input graph
where 𝑓 (𝑢𝑖) = 𝑣 ′

5
and 𝑓 (𝑣𝑖) = 𝑣 ′

1
in Fig. 4. Then, we add edge ⟨𝑣 ′

5
, 𝑣 ′

1
⟩

(shown in blue) to the reduced graph 𝐺 ′. In 𝐺 ′, we first run Algo. 1
to find the new SCC, which consists of all nodes in Fig. 4 (i.e., 𝐺∗ is
the DAG without the blue edge). Then we start the topological sort
from 𝑣 ′

1
on 𝐺∗, since 𝑣 ′

1
is the only node with 𝑑𝑖𝑛 = 0. Initially, only

𝑣 ′
1
is in Q. Then, we pop 𝑣 ′

1
from Q and update 𝑑𝑖𝑛 of 𝑣 ′

4
, 𝑣 ′

2
and

𝑣 ′
3
. We find that 𝑑𝑖𝑛 [𝑣 ′

2
] (resp. 𝑑𝑖𝑛 [𝑣 ′

3
]) becomes zero. As 𝑣 ′

2
(resp.

𝑣 ′
3
) has only one incoming edge and 𝑟𝑒𝑎𝑐ℎ[𝑣 ′

2
] (resp. 𝑟𝑒𝑎𝑐ℎ[𝑣 ′

3
]) is

false, ⟨𝑣 ′
1
, 𝑣 ′

2
⟩ (resp. ⟨𝑣 ′

1
, 𝑣 ′

3
⟩) becomes necessary and 𝑟𝑒𝑎𝑐ℎ[𝑣 ′

2
] (resp.

𝑟𝑒𝑎𝑐ℎ[𝑣 ′
3
]) becomes true. Also, we push 𝑣 ′

2
(resp. 𝑣 ′

3
) into Q. Now, since

𝑟𝑒𝑎𝑐ℎ𝑈𝑖 of 𝑣 ′
1
becomes true, we can start the next iteration. Next, we

pop 𝑣 ′
2
from Q and update 𝑑𝑖𝑛 of 𝑣 ′

4
and 𝑣 ′

5
. Now 𝑑𝑖𝑛 [𝑣 ′

4
] = 0. Since

⟨𝑣 ′
2
, 𝑣 ′

4
⟩ is the only incoming edge of 𝑣 ′

4
and 𝑟𝑒𝑎𝑐ℎ[𝑣 ′

4
] = 𝑓 𝑎𝑙𝑠𝑒 , this

edge becomes necessary and 𝑟𝑒𝑎𝑐ℎ[𝑣 ′
4
] becomes true. Also, we push

𝑣 ′
4
into Q. Besides, since 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 of 𝑣 ′

2
becomes true, we can turn to

the next iteration. Next, we pop 𝑣 ′
3
from Q and update 𝑑𝑖𝑛 [𝑣 ′

5
] which

is not zero. We find that 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 of 𝑣 ′
3
is still false. Then we mark

one arbitrary outgoing edge, say ⟨𝑣 ′
3
, 𝑣 ′

5
⟩ as necessary and 𝑟𝑒𝑎𝑐ℎ[𝑣 ′

5
]

becomes true. Then, we pop 𝑣 ′
4
from Q and update 𝑑𝑖𝑛 [𝑣 ′

5
]. We find

that 𝑑𝑖𝑛 [𝑣 ′
5
] becomes zero. Though 𝑑𝑖𝑛 [𝑣 ′

5
] = 0, since 𝑟𝑒𝑎𝑐ℎ[𝑣 ′

5
] is

true, we will not immediately mark this edge as necessary in Line
14. Yet, since we find that 𝑟𝑒𝑎𝑐ℎ𝑈𝑖 of 𝑣 ′

4
is still false, we mark an

outgoing edge ⟨𝑣 ′
4
, 𝑣 ′

5
⟩ as necessary. Also, we push 𝑣 ′

5
into Q. At last,

the topological sort ends with popping 𝑣 ′
5
from Q. Finally, we get

𝐸′𝑛𝑒𝑐 = {⟨𝑣 ′
1
, 𝑣 ′

2
⟩, ⟨𝑣 ′

2
, 𝑣 ′

4
⟩, ⟨𝑣 ′

4
, 𝑣 ′

5
⟩, ⟨𝑣 ′

1
, 𝑣 ′

3
⟩, ⟨𝑣 ′

3
, 𝑣 ′

5
⟩, ⟨𝑣 ′

5
, 𝑣 ′

1
⟩}. For each

edge 𝑒′ ∈ 𝐸′𝑛𝑒𝑐 , we choose an arbitrary edge in𝐺 that maps to 𝑒′ and
add it to the 𝐸𝑛𝑒𝑐 of 𝐺 .

Analysis of MSCi∗. We prove that for DAG 𝐺 ′ with new edge

⟨𝑢′, 𝑣 ′⟩, if there is a new SCC 𝑆 ′ formed, the 𝐸′𝑛𝑒𝑐 identified by

Algo. 5 is actually an optimal MSCS of 𝑆 ′, which is achieved by

leveraging the DAG property of 𝐺 ′. As 𝐸′𝑛𝑒𝑐 is an optimal MSCS in

𝐺 ′, it indicates that the number of edges added into the updated

𝐸𝑛𝑒𝑐 is minimum. Then in Theorem 4.2, we prove the approximate

guarantee in terms of incremental MSCSC maintenance. The time

and space complexities are both 𝑂 (𝑛′ +𝑚′), where 𝑛′ and𝑚′ are
the number of nodes and edges in𝐺 ′, as Algo. 5 firstly needs to run
Algo. 1 to find the new SCC in𝐺 ′ and then conduct the topological

sort to locate necessary edges, which indicates that it needs to

traverse 𝐺 ′ twice. Even so, this method is still more efficient than

building from scratch, since this method only works in 𝐺 ′ whose

Algorithm 6: Incremental MSCSC: MSCi

Input: Graph𝐺 with approximate MSCSC 𝐸𝑛𝑒𝑐 , and the

corresponding DAG𝐺 ′ , a new edge inserted into𝐺 that

maps to a new edge ⟨𝑢′, 𝑣′ ⟩ in𝐺 ′
Output: Updated 𝐸𝑛𝑒𝑐 and a new𝐺 ′

1 𝑎𝑓 𝑓 ← ∅, 𝐸′𝑛𝑒𝑐 ← ∅
2 if 𝑀𝑒𝑟𝑔𝑒𝑀𝑆𝐶𝑆 (𝑣′) then
3 Merge vertices in 𝑎𝑓 𝑓 into a new MSCS

4 Produce a new𝐺 ′ by shrinking 𝑆 ′ into a node

5 𝐸′𝑛𝑒𝑐 .𝑎𝑑𝑑 (⟨𝑢′, 𝑣′ ⟩)
6 for each edge 𝑒′ ∈ 𝐸′𝑛𝑒𝑐 do
7 Add one of edges 𝑒 in𝐺 that maps to 𝑒′ into 𝐸𝑛𝑒𝑐

8

9 Procedure𝑀𝑒𝑟𝑔𝑒𝑀𝑆𝐶𝑆 (𝑣′
𝑗
)

10 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣′
𝑗
] ← 𝑡𝑟𝑢𝑒

11 if 𝑣′
𝑗
= 𝑢′ then // reach 𝑢′

12 𝑎𝑓 𝑓 .𝑎𝑑𝑑 (𝑣′
𝑗
)

13 return 𝑡𝑟𝑢𝑒

14 R ← 𝑓 𝑎𝑙𝑠𝑒

15 for each edge ⟨𝑣′
𝑗
, 𝑣′

𝑘
⟩ ∈ 𝐺 ′ (𝑣′

𝑗
) do

16 if visited[𝑣′
𝑘
] = 𝑡𝑟𝑢𝑒 then // case 1

17 if 𝑣′
𝑘
∈ 𝑎𝑓 𝑓 then

18 R ← 𝑡𝑟𝑢𝑒

19 if 𝑣′
𝑗
∉ 𝑎𝑓 𝑓 then

20 𝑎𝑓 𝑓 .𝑎𝑑𝑑 (𝑣′
𝑗
) , 𝐸′𝑛𝑒𝑐 .𝑎𝑑𝑑 (⟨𝑣′𝑗 , 𝑣′𝑘 ⟩)

21 else if 𝑀𝑒𝑟𝑔𝑒𝑀𝑆𝐶𝑆 (𝑣′
𝑘
) then // case 2

22 R ← 𝑡𝑟𝑢𝑒

23 𝑎𝑓 𝑓 .𝑎𝑑𝑑 (𝑣′
𝑗
) , 𝐸′𝑛𝑒𝑐 .𝑎𝑑𝑑 (⟨𝑣′𝑗 , 𝑣′𝑘 ⟩)

24 return R

size is much smaller than 𝐺 . Besides, building from scratch with

Algo. 5 can not provide an exact MSCSC solution, since Algo. 5 only

guarantees that the number of edges added into 𝐸𝑛𝑒𝑐 is minimum.

Lemma 4. In the DAG 𝐺 ′, supposing that there is a new SCC 𝑆 ′

after inserting an edge ⟨𝑢′, 𝑣 ′⟩, then the output edge set 𝐸′𝑛𝑒𝑐 identified
by Algo. 5 is an optimal MSCS of 𝑆 ′.

Theorem 4.2. Given a graph 𝐺 with 2-approximate MSCSC 𝐸𝑛𝑒𝑐 ,
after inserting an edge, suppose that the optimal solution before and
after this update is 𝐸∗𝑛𝑒𝑐 and 𝐸

∗′
𝑛𝑒𝑐 , respectively, the number of edges

added into the updated 𝐸𝑛𝑒𝑐 is minimum and equals to |𝐸∗′𝑛𝑒𝑐 − 𝐸∗𝑛𝑒𝑐 |.
And, the updated 𝐸𝑛𝑒𝑐 by Algo. 5 is 2-approximate.

2-Approx IncrementalMSCSC MSCi. In the following, we present
a more efficient 2-approximate solution MSCi in Algo. 6. MSCi does
not require SCC detection. The method leverages the DAG prop-

erties of 𝐺 ′. The idea is that, any circle that makes any two nodes

in 𝐺 ′ ∪ ⟨𝑢′, 𝑣 ′⟩ to be strongly connected must go through the new

edge. Hence, if we find all paths from 𝑣 ′ to 𝑢′ in DAG 𝐺 ′, then we

can locate all nodes in the paths in 𝐺 ′ to be merged. In this way,

we do not need to maintain auxiliary information like 𝑙𝑜𝑤 , 𝑑 𝑓 𝑛,

and the stack S in previous methods. Algorithms 6 provides the

pseudo code of MSCi, which performs in a DFS manner starting

from 𝑣 ′. Specifically, at Line 1 in Algo. 6, 𝑎𝑓 𝑓 is initialized to store

1330

Algorithm 7: Decremental MSCSC: MSCd

Input:𝐺 , deleted edge ⟨𝑢𝑑 , 𝑣𝑑 ⟩, 𝐸𝑡𝑟𝑒𝑒 , 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 , 𝐸𝑛𝑒𝑐
Output: Updated MSCSC 𝐸𝑛𝑒𝑐

1 Delete this edge from𝐺

2 if ⟨𝑢𝑑 , 𝑣𝑑 ⟩ ∉ 𝐸𝑛𝑒𝑐 then
3 return

4 Get the all nodes in the same MSCS of 𝑓 (𝑢𝑑) , and retrieve the

induced subgraph of the nodes, i.e., an SCC𝐺𝑆 , from𝐺

5 𝑑𝑒𝑝𝑡ℎ ← 1, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] = 𝑓 𝑎𝑙𝑠𝑒 ∀ 𝑣 ∈ 𝑉 (𝐺𝑆) , 𝑟𝑒𝑑𝑜 ← 𝑓 𝑎𝑙𝑠𝑒

6 if 𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 (𝑢𝑑) = 𝑓 𝑎𝑙𝑠𝑒 then
7 Go to Line 11

8 for each vertex 𝑢 ∈ 𝐺𝑆 do
9 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢] = 𝑓 𝑎𝑙𝑠𝑒 then
10 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑜𝑑𝑒 (𝑢)

11 𝐸𝑛𝑒𝑐 ← 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ∪
(⋃
⟨𝑢,𝑣⟩∈𝐸𝑡𝑟𝑒𝑒 ,𝑓 (𝑢)=𝑓 (𝑣)

⟨𝑢, 𝑣⟩
)

the nodes in𝐺 ′ to be merged (the nodes correspond to the MSCSs to

be merged in 𝐺), and 𝐸′𝑛𝑒𝑐 contains the identified necessary edges

in 𝐺 ′, which are going to be mapped back to the edges in 𝐺 to

update 𝐸𝑛𝑒𝑐 . Procedure𝑀𝑒𝑟𝑔𝑒𝑀𝑆𝐶𝑆 is called at Line 2 in Algo. 6 to

obtain 𝑎𝑓 𝑓 and 𝐸′𝑛𝑒𝑐 for updates at Lines 3-7. Specifically, at Line
10, initially, node 𝑣 ′

𝑗
is marked as visited. If the current node 𝑣 ′

𝑗
is𝑢′,

which is the starting node of the new edge, then we add 𝑣 ′
𝑗
into 𝑎𝑓 𝑓

and return true as the termination condition of recursion. A flag R
indicating to merge or not is initialized as false at Line 14. For every

outgoing edge ⟨𝑣 ′
𝑗
, 𝑣 ′
𝑘
⟩ of 𝑣 ′

𝑗
in DAG 𝐺 ′ (Line 15), if out-neighbor

𝑣 ′
𝑘
has been visited (Line 16, case 1) and is in 𝑎𝑓 𝑓 (Line 17), but 𝑣 ′

𝑗

is not in 𝑎𝑓 𝑓 yet, then we add 𝑣 ′
𝑗
into 𝑎𝑓 𝑓 and add the edge into

𝐸′𝑛𝑒𝑐 . Case 1 is designed to facilitate Lemma 5 presented later. If 𝑣 ′
𝑗

is not visited, then procedure MergeMSCS is invoked for 𝑣 ′
𝑘
(Line

21 case 2), after which, R is set to true and 𝑣 ′
𝑗
is added into 𝑎𝑓 𝑓 and

𝐸′𝑛𝑒𝑐 is updated accordingly (Lines 22-23).

Example 4.3. Fig. 5 shows an example of MSCi, with new edge
in blue ⟨𝑣 ′

4
, 𝑣 ′

1
⟩. The number on each edge represents the DFS or-

der by Algo. 6. The red edges are the necessary edges in 𝐸′𝑛𝑒𝑐 af-
ter applying the algorithm. In the first two steps, we find a path
⟨𝑣 ′
1
, 𝑣 ′

2
, 𝑣 ′

4
⟩, indicating the MSCSs that need to merge in 𝐺 . Conse-

quently edges in this path are added into 𝐸′𝑛𝑒𝑐 , and 𝑣
′
1
, 𝑣 ′

2
and 𝑣 ′

4

are added into 𝑎𝑓 𝑓 . Then, we find nodes and locate necessary edges
in other paths from 𝑣 ′

1
to 𝑣 ′

4
. A path ⟨𝑣 ′

1
, 𝑣 ′

3
, 𝑣 ′

2
⟩ is found where 𝑣 ′

3

is not in 𝑎𝑓 𝑓 . Then we add 𝑣 ′
3
into 𝑎𝑓 𝑓 and edges in this path be-

come necessary. When we reach ⟨𝑣 ′
3
, 𝑣 ′

4
⟩, since 𝑣 ′

3
and 𝑣 ′

4
are both in

the 𝑎𝑓 𝑓 , then this edge is unnecessary. We can see that the nodes in
𝑎𝑓 𝑓 , {𝑣 ′

1
, 𝑣 ′

2
, 𝑣 ′

3
, 𝑣 ′

4
}, represent the MSCSs to merge, and the necessary

edges in 𝐺 ′ are 𝐸′𝑛𝑒𝑐 = {⟨𝑣 ′
1
, 𝑣 ′

2
⟩, ⟨𝑣 ′

2
, 𝑣 ′

4
⟩, ⟨𝑣 ′

1
, 𝑣 ′

3
⟩, ⟨𝑣 ′

3
, 𝑣 ′

2
⟩, ⟨𝑣 ′

4
, 𝑣 ′

1
⟩}.

For each edge 𝑒′ ∈ 𝐸′𝑛𝑒𝑐 , we choose an arbitrary edge 𝑒 in 𝐺 that
maps to 𝑒′ and add 𝑒 to the updated 𝐸𝑛𝑒𝑐 .

Analysis of MSCi. In Lemma 5, we prove that Algo. 6 finds a 2-

approximate MSCS 𝐸′𝑛𝑒𝑐 of the SCC formed in 𝐺 ′ with a new edge.

Then Theorem 4.4 states the 2-approximation guarantee of Algo. 6,

for the updated 𝐸𝑛𝑒𝑐 obtained for graph𝐺 with a new edge insertion.

The time and space complexities of MSCi are both 𝑂 (𝑛′ +𝑚′) as it

Algorithm 8: SplitMSCS

Input:𝐺 , deleted edge ⟨𝑢𝑑 , 𝑣𝑑 ⟩, 𝑙𝑜𝑤, 𝑑𝑒𝑝𝑡ℎ, S,𝐺𝑆 , 𝐸𝑡𝑟𝑒𝑒 ,

𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 , 𝑟𝑒𝑑𝑜 , 𝑢

Output: new necessary edges

1 if 𝑢 = 𝑣𝑑 then
2 if |𝐸𝑛𝑒𝑐 | > 2 |𝑉 (𝐺𝑆) | − 2 then
3 𝑟𝑒𝑑𝑜 ← 𝑡𝑟𝑢𝑒

4 return 𝑓 𝑎𝑙𝑠𝑒

5 𝑙𝑜𝑤 (𝑢) ← 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑓 𝑛 (𝑢) ← 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1
6 Stack S.𝑝𝑢𝑠ℎ (𝑢) , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢] ← 𝑡𝑟𝑢𝑒

7 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ∅
8 for each out-going edge ⟨𝑢, 𝑣⟩ of 𝑢 in𝐺𝑆 do
9 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 .𝑟𝑒𝑚𝑜𝑣𝑒 (⟨𝑢, 𝑣⟩) , 𝐸𝑡𝑟𝑒𝑒 .𝑟𝑒𝑚𝑜𝑣𝑒 (⟨𝑢, 𝑣⟩)

10 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] = 𝑓 𝑎𝑙𝑠𝑒 then // case 1
11 𝐸𝑡𝑟𝑒𝑒 .𝑎𝑑𝑑 (⟨𝑢, 𝑣⟩)
12 if 𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 (𝑣) = 𝑓 𝑎𝑙𝑠𝑒 and 𝑟𝑒𝑑𝑜 = 𝑓 𝑎𝑙𝑠𝑒 then
13 return 𝑓 𝑎𝑙𝑠𝑒

14 if 𝑙𝑜𝑤 (𝑢) ≥ 𝑙𝑜𝑤 (𝑣) then
15 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ⟨𝑢, 𝑣⟩
16 𝑙𝑜𝑤 (𝑢) ← 𝑙𝑜𝑤 (𝑣)

17 else if 𝑣 ∈ 𝑆𝑡𝑎𝑐𝑘 and 𝑙𝑜𝑤 (𝑢) > 𝑑𝑓 𝑛 (𝑣) then // case 2
18 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ← ⟨𝑢, 𝑣⟩
19 𝑙𝑜𝑤 (𝑢) ← 𝑑𝑓 𝑛 (𝑣)

20 if 𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 ≠ ∅ then
21 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 .𝑎𝑑𝑑 (𝑒𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝)
22 Repeat Lines 17-19 in Algo. 1 to create SCCs

23 return 𝑡𝑟𝑢𝑒

visits every edge in 𝐺 ′ at most once (procedure𝑀𝑒𝑟𝑔𝑒𝑀𝑆𝐶𝑆) with

constant cost per edge, where 𝑛′ and𝑚′ are the number of nodes

and edges in 𝐺 ′.

Lemma 5. In the DAG 𝐺 ′, suppose that there are cycles formed
after inserting an edge ⟨𝑢′, 𝑣 ′⟩, the necessary edge set 𝐸′𝑛𝑒𝑐 of 𝐺 ′

returned by Algo. 6 is 2-approximate.

Theorem 4.4. Given a graph 𝐺 with 2-approximate MSCSC 𝐸𝑛𝑒𝑐 ,
after inserting an edge, the updated 𝐸𝑛𝑒𝑐 by Algo. 6 is 2-approximate.

4.2 Decremental Update
When deleting edge ⟨𝑢𝑑 , 𝑣𝑑 ⟩ in graph 𝐺 , obviously, approximate

MSCSC 𝐸𝑛𝑒𝑐 is affected only when the edge is in 𝐸𝑛𝑒𝑐 . If 𝑢𝑑 and 𝑣𝑑
are from different MSCSs, or 𝑢𝑑 and 𝑣𝑑 are in the same MSCS but

⟨𝑢𝑑 , 𝑣𝑑 ⟩ is not in 𝐸𝑛𝑒𝑐 , then nothing needs to be done to maintain

𝐸𝑛𝑒𝑐 . If edge ⟨𝑢𝑑 , 𝑣𝑑 ⟩ is in 𝐸𝑛𝑒𝑐 (i.e.,𝑢𝑑 and 𝑣𝑑 are in the sameMSCS),

the deletion may cause the split of the MSCS. However, if we can

find another path in𝐺 from 𝑢𝑑 to 𝑣𝑑 and the path does not contain

edge ⟨𝑢𝑑 , 𝑣𝑑 ⟩, then the MSCS does not need to split and we only

need to update the relevant necessary edges in the path into 𝐸𝑛𝑒𝑐 . If

there exists no path from 𝑢𝑑 to 𝑣𝑑 after deleting the edge in𝐺 , then

the MSCS splits, and we need to identify the resulted new MSCSs.

A naïve method is to invoke Algo. 3 to find new MSCSs and

update necessary edges inside the MSCS, with which 𝐸𝑛𝑒𝑐 is a

2-approximate. However, this method is inefficient since we can

actually terminate immediately when another path from 𝑢𝑑 to 𝑣𝑑

1331

𝑣1

𝑣2

𝑣3

𝑣4

(a) 𝐺1

𝑣1

𝑣2

𝑣3

𝑣4

(b) 𝐺2

Figure 6: An example of decremental maintenance of 𝑬𝒏𝒆𝒄 .

is found in the updated 𝐺 , indicating that this MSCS will not split.

Thus, we should first determine whether the MSCS will split or

not, and then locate new necessary edges to be updated in 𝐸𝑛𝑒𝑐 .

Therefore, we present a decremental update method MSCd (Algo.

7) that starts DFS from 𝑢𝑑 in 𝐺 , and traverses every edge at most

once. If the edge is not in 𝐸𝑛𝑒𝑐 , we can simply return at Line 3 after

deleting the edge. Then we retrieve the induced subgraph𝐺𝑆 that is

an SCC containing all nodes in the same MSCS as 𝑢𝑑 at Line 4. The

subsequent operations are operated on𝐺𝑆 . (Note that subgraph𝐺𝑆

is virtually induced in pseudo code for the ease of presentation. In

our implementation, there is no need to actually extract 𝐺𝑆 from

𝐺 .) We set 𝑑𝑒𝑝𝑡ℎ to 1, mark all nodes unvisited, and initialize a

redo flag to be false at Line 5. At Line 6 of Algo. 7, a procedure

𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 (Algo. 8) is invoked to determine if the MSCS splits or

not and update necessary edges. If there is a split, we need to detect

the new MSCSs by Algo. 4 for every node𝑢 to get them (Lines 8-10).

Finally, 𝐸𝑛𝑒𝑐 is updated at Line 11.

As mentioned, procedure 𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 (Algo. 8) determines if the

MSCS splits or not (i.e., if there is another path from 𝑢𝑑 to 𝑣𝑑) and

updates necessary edges simultaneously. If such a path is found,

then 𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 marks edges in this path as necessary to keep

the connectivity from 𝑢𝑑 to 𝑣𝑑 , and returns immediately, to save

computational costs (Lines 1-4). If no such path is found, from

Lines 5 to 19, we continue the traversal and make this decremental

procedure perform like conducting Algo. 3. To tackle both scenarios

simultaneously, a vital step in 𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 different from Algo. 3 is

that we must mark a newly visited edge as unnecessary whenever

we reach it, and then decide if it is necessary later on. Specifically,

we initialize and set the 𝑙𝑜𝑤 , 𝑑 𝑓 𝑛, 𝑑𝑒𝑝𝑡ℎ values, as well as stack S
and visited flags, at Line 5-6. Then for every out-neighbor 𝑣 of node

𝑢 in 𝐺𝑆 , we remove the edge from 𝐸𝑙𝑎𝑠𝑡𝑑𝑟𝑜𝑝 and 𝐸𝑡𝑟𝑒𝑒 first at Line

9, and will decide to add it back or not later at Lines 11, 15, and

18. Lines 10-19 are similar to Algo. 4, except Lines 12-13, where it

recursively decides if no split occurs and redo is necessary or not.

We find the new MSCSs and return at Lines 22-23. Whenever a path

to 𝑣𝑑 is found at Line 1, to ensure 2-approximation, we verify if the

number of edges in 𝐸𝑛𝑒𝑐 exceeds 2|𝑉 (𝐺𝑆) | − 2, the max possible

number of necessary edges for 2-approximation in 𝐺𝑆 , at Lines

2-3. If yes, we set the redo flag to be true, which will lead to the

execution of Lines 8-10 in Algo. 7 to get new 𝐸𝑛𝑒𝑐 .

Example 4.5. Fig. 6 shows an example of decremental necessary
edge maintenance. The red edges indicate the necessary edges in
𝐸𝑛𝑒𝑐 . Suppose that ⟨𝑣3, 𝑣2⟩ in Fig. 6(a) is deleted. Since this edge is
a necessary edge, we need to check whether there is an alternative
path from 𝑣3 to 𝑣2 in the updated graph as shown in Fig. 6(b). A path
⟨𝑣3, 𝑣4, 𝑣1, 𝑣2⟩ can be found, which indicates that this MSCS will not
split. Then to maintain the connectivity of vertices in this path, edges
{⟨𝑣3, 𝑣4⟩, ⟨𝑣4, 𝑣1⟩, ⟨𝑣1, 𝑣2⟩} in this path are added into 𝐸𝑛𝑒𝑐 (Fig. 6(b)).

Table 2: Statistics of Datasets. (𝐾 = 10
3,𝑀 = 10

6, 𝐵 = 10
9)

Name Dataset V E 𝒅 = |𝑬 |

|𝑽 |

EP Epinions 75.9K 509K 6.7

YT Youtube 1.14M 4.94M 4.3

IN IN-2004 1.38M 16.5M 12

WF Wikifr 3.33M 124M 37.1

EU EU-2005 11.3M 380M 33.7

IT IT-2004 41.3M 1.14B 27.5

T3W TwitterWWW 41.7M 1.47B 35.3

FS Friendster 68.3M 2.59B 37.8

Then, we terminate traversal without visiting ⟨𝑣1, 𝑣3⟩ and ⟨𝑣2, 𝑣4⟩.
The final necessary edges are in red in Fig. 6(b).

Correctness andComplexityAnalysis. If the deleted edge ⟨𝑢𝑑 , 𝑣𝑑 ⟩
is not in 𝐸𝑛𝑒𝑐 , then nothing needs to do. Otherwise, there are two

cases. The first case is that the corresponding MSCS splits. In this

case, MSCd performs like Algo. 3 inside the induced graph 𝐺𝑆 . The

second case is that the MSCS will not split, and we find another

path from𝑢𝑑 to 𝑣𝑑 and insert the edges on the path into 𝐸𝑛𝑒𝑐 , which

maintains the connectivity from 𝑢𝑑 to 𝑣𝑑 . Thus, 𝐸𝑛𝑒𝑐 updated by

Algo. 7 maintains the strong connectivity of 𝐺 . The time and space

complexities of Algo. 7 are both 𝑂 (|𝑉 (𝐺𝑆) | + |𝐸 (𝐺𝑆) |). It visits
every edge in 𝐺𝑆 at most once by procedure 𝑆𝑝𝑙𝑖𝑡𝑀𝑆𝐶𝑆 with con-

stant cost per edge. Since 𝐺𝑆 is a subgraph of 𝐺 , the complexity is

rewritten as𝑂 (𝑛 +𝑚). Additionally, it can terminate early once the

deleted edge is not necessary (Lines 2-3 in Algo. 7), or the MSCS will

not split (Lines 1-4 and 12-13 in Algo. 8). As a result, its practical

performance is better than its worst-case complexity.

Theorem 4.6. Given a graph 𝐺 with 2-approximate MSCSC 𝐸𝑛𝑒𝑐 ,
after deleting an edge, the updated 𝐸𝑛𝑒𝑐 by Algo. 7 is 2-approximate.

5 EXPERIMENTS
We conduct experiments on a Linux machine with an Intel Xeon

2.10GHz CPU and 504GB memory. All algorithms are in C++ and

compiled via g++ with full optimization. Our code is at [1].

5.1 Experimental Setup
Datasets. We test on 8 real graph datasets with statistics in Tab. 2.

All datasets are publicly available from SNAP [29], KONECT [27],

and WebGraph [8]. IT, T3W and FS contain billions of edges, and

FS is the largest directed graph available in KONECT [27]. For each

graph, we remove self-loops and multi-edges.

Competitors. Zhao [55] is a linear-time MSCS method, while the

other methods [25, 26, 48] run in super-linear time. Khuller [25]
runs in a near-linear time and is 7/4-approximate. Therefore, we

extend Khuller and Zhao to MSCSC. For static graphs, Khuller
and Zhao first apply Algo. 1 to detect SCCs and then detect MSCS

of each SCC. For dynamic graphs, Khullerdyn and Zhaodyn first

identify if MSCS split or merge happens, and then update MSCSs

only when necessary. A method will be terminated after running

24 hours without returning results, i.e., OOT.

Evaluation Metrics. For approximation performance, since the

ground truth is hard to obtain, we calculate a necessary ratio

𝑅𝑛𝑒𝑐 = |𝐸𝑛𝑒𝑐 |/|𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑆𝐶𝐶𝑠 |, i.e., the ratio of the number of edges

in approximate 𝐸𝑛𝑒𝑐 over the number of all edges in SCCs of 𝐺 . A

lower necessary ratio 𝑅𝑛𝑒𝑐 indicates a tighter approximation.

1332

MSC
d

Zhaodyn MSC
i

MSC
i
+MSC

d
Khullerdyn

10
0

10
1

10
2

10
3

10
4

EP YT IN WF EU IT T3W FS

running time(ms)

(a) Average deletion time (Lower is better.)

10
-2

10
-1

10
0

10
1

10
2

10
3

EP YT IN WF EU IT T3W FS

running time(ms)

(b) Average insertion time (Lower is better.)

10
-1

10
0

10
1

10
2

10
3

10
4

EP YT IN WF EU IT T3W FS

running time(ms)

(c) Average mixed update time (Lower is better.)

Figure 7: Dynamic MSCSC with edge deletion and insertion.

Table 3: Necessary edge ratio under update.

Dataset 𝑹𝒏𝒆𝒄

MSCd MSCi Khullerdyn Zhaodyn MSCi +MSCd

EP 12.65% 12.60% 13.91% 12.03% 14.60%

YT 20.73% 20.71% 22.97% 19.84% 20.75%

IN 10.21% 10.21% 11.49% 10.07% 10.21%

WF 3.95% 3.95% 3.48% 2.81% 3.97%

EU 3.30% 3.30% 3.29% 2.92% 3.43%

IT 5.10% 5.10% 5.73% 5.00% 5.12%

T3W 4.07% 4.07% 5.17% 3.87% 5.53%

FS 5.42% 5.42% OOT OOT 5.07%

5.2 MSCSC Evaluation
We evaluate the performance under three workloads: edge deletion,

edge insertion and mixed workload. We also report the MSCSC

construction performance and the scalability on synthetic graphs.

Edge Deletion. Given a graph𝐺 , we select 10K edges uniformly at

random and delete them from 𝐺 . For every edge deletion, we run

a method to update the MSCSC 𝐸𝑛𝑒𝑐 . Fig. 7(a) reports the average

MSCSC maintenance time in milliseconds (ms) on all edge deletions

over all datasets of our method MSCd, Khullerdyn, and Zhaodyn. Ob-

serve that MSCd is consistently faster than Zhaodyn and Khullerdyn,
often by an order of magnitude. For instance, on T3W, a large graph

with billions of edges, MSCd updates MSCSC in 960𝑚𝑠 per edge dele-

tion, which is 10 times faster than Zhaodyn that costs 9200𝑚𝑠 and 20
times faster than Khullerdyn that takes 17800𝑚𝑠 . Moreover, on the

largest FS graph, MSCd is efficient, while Khullerdyn and Zhaodyn
run OOT. The speedup of MSCd over the competitors validates the

efficiency of the techniques proposed in Section 4.2 for dynamic

MSCSC under edge deletion. MSCd only needs to focus on the local

subgraph affected and scans the edges in the subgraph only once,

while Khullerdyn and Zhaodyn need to compute from scratch and

scan the subgraph twice. Further, in the second col umn of Tab. 3,

after massive edge deletions, the necessary ratios of MSCd remain

stable on all datasets with a negligible increase compared with

Khullerdyn and Zhaodyn, validating the effectiveness of our tech-
niques for dynamic MSCSC under edge deletions, and indicating

the better trade-off for efficiency achieved by MSCd in Fig. 7(a).

Edge Insertion.We then regard the deleted edges above as new

edges to insert back into the graph, and evaluate the efficiency

of MSCSC maintenance under edge insertions as reported in Fig.

7(b). Observe that MSCi consistently outperforms Zhaodyn and

Khullerdyn by a significant margin, often in orders of magnitude.

On IT with 1.14 billion edges, MSCi runs in 2𝑚𝑠 to maintain MSCSC

per edge insertion, while Zhaodyn requires 370𝑚𝑠 , which is 135 times

Table 4: Construction time and necessary edge ratio.

Dataset CT (seconds) 𝑹𝒏𝒆𝒄

MSC Khuller Zhao MSC Khuller Zhao

EP 0.014 0.0571 0.0386 13.30% 12.59% 11.95%

YT 0.313 1.39 0.852 22.55% 20.71% 19.82%

IN 0.236 1.43 0.735 11.47% 10.17% 10.07%

WF 3.27 12.9 8.72 3.42% 2.97% 2.81%

EU 6.02 29.5 18.3 3.30% 3.05% 2.92%

IT 12.8 88.6 40.7 5.73% 5.10% 5.00%

T3W 53.6 538 181 5.26% 4.07% 3.87%

FS 110 797 566 5.97% 5.07% 4.96%

slower and Khullerdyn requires 836𝑚𝑠 , which is 418 times slower.

On the largest FS graph with 68.3 million nodes and 2.59 billion

edges, Khullerdyn and Zhaodyn run OOT. For edge insertions, MSCi

works on the reduced DAG 𝐺 ′ to identify the MSCSs that need to

merge and then update 𝐸𝑛𝑒𝑐 in 𝐺 accordingly, which explains its

superiority compared with Khullerdyn and Zhaodyn. Tab. 3 shows

the necessary ratios 𝑅𝑛𝑒𝑐 of MSC
i
that is close to Khullerdyn and

Zhaodyn, which validates the effectiveness of our techniques in

Section 4.1 for dynamic MSCSC under edge insertions.

Mixed Workload. In a mixed workload, for every graph, we ran-

domly generate 10K edge deletions, and also randomly generate

10K edge insertions (we delete these edges from the graph before

the update starts), and then obtain the mixed workload with 20K

edge updates by combining and randomly shuffling the 10K edge

deletions and 10K edge insertions. For our method (MSCi +MSCd),
Fig. 7(c) shows the average update time and the last column in Tab.

3 reports 𝑅𝑛𝑒𝑐 under the mixed workload. In Fig. 7(c), MSCi +MSCd

is 6X-7X faster than Zhaodyn in six datasets (EP, YT, IN, WF, EU,

and IT), and one order of magnitude faster in T3W, and Zhaodyn
runs OOT in FS, while Khullerdyn is even slower. Moreover, in Tab.

3, observe that 𝑅𝑛𝑒𝑐 of all methods remain close to each other on

all datasets. Hence, we conclude that we achieve a better trade-off

between efficiency and effectiveness.

MSCSC Construction Time and Approximate Ratio. We eval-

uate the efficiency of MSC in Algo. 3, Khuller and Zhao to build

MSCSC 𝐸𝑛𝑒𝑐 (i.e., efficiency on static graphs), and compare their

practical approximation performance. The second, third, and fourth

columns of Tab. 4 report the construction time of MSC, Khuller, and
Zhao on all datasets. MSC is nearly 3 times faster than Zhao on most

datasets and 5 times faster than Zhao on FS, since our method only

needs to traverse each edge once. Further, MSC is much faster than

Khuller, e.g., almost 10 times faster on T3W dataset. The last three

columns of Tab. 4 report the necessary ratio 𝑅𝑛𝑒𝑐 . Observe that

𝑅𝑛𝑒𝑐 of MSC is close to that of Khuller and Zhao, indicating that

1333

Update Rnec

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1M 2M 4M 8M 16M
 0

 1

 2

 3

 4

 5
running time(ms) Rnec(%)

number of nodes

 80

 85

 90

 95

 100

4 8 16 32 64
 0

 10

 20

 30

 40

 50
running time(ms) Rnec(%)

average degree

(a) Vary graph size (b) Vary graph density

Figure 8: Scalability on Synthetic Graphs

MSC
i
+MSC

d
DAGGER

10
-1

10
0

10
1

10
2

10
3

10
4

EP YT IN WF EU IT T3W FS

running time(ms)

Figure 9: Fully Dynamic SCC Maintenance.

our method provides close practical approximation, which certifies

the small theoretical guarantee gap among these methods.

Comparison on MSCi∗ in Algo. 5 and MSCi in Algo. 6. Recall
that in Sec. 4.1, we first develop an optimal solution for incremental

MSCSC maintenance (Algo. 5), and then present a more practical

solution (Algo. 6). We use the same 10K edge insertions above for

evaluation and report the average runtime in Tab. 5 as well as the

differences (Δ) in the number of edges in their respective MSCSC

solutions after handling all edge insertions. The observation is

that MSCi yields higher efficiency with a significant speedup ratio

over MSCi∗. The number of edges in 𝐸𝑛𝑒𝑐 of the optimal incremental

solution MSCi∗ is always smaller than that of MSCi, but they are close
with small Δ values, indicating that MSCi in Algo. 6 is practically

effective in maintaining tight 𝐸𝑛𝑒𝑐 , while being much more efficient.

Scalability. We vary graph size and density to evaluate the scal-

ability of our approach. To vary graph size, we generate random

graphs using the generator in [53] with the number of nodes in

{1M, 2M, 4M, 8M, 16M}, while keeping average node degree as 16,

so as to scale the number of edges proportional to the number of

nodes. Then, on each graph, we run MSCi +MSCd to handle a mixed

workload with 10K edge insertions and 10K edge deletions, and

report the average update time and necessary ratio 𝑅𝑛𝑒𝑐 in Fig.

8(a). Observe that the running time increases, since there are more

nodes to handle and more necessary edges to detect. Meanwhile,

as the number of nodes doubles, the number of necessary edges

and edges in SCCs both increase proportionally and thus, 𝑅𝑛𝑒𝑐 re-

mains relatively stable. To vary graph density, we generate graphs

with average node degree in {4, 8, 16, 32, 64}, while keeping the

number of nodes as 𝑛 =1M. Then we run MSCi +MSCd on the mixed

workloads of these graphs and report running time and 𝑅𝑛𝑒𝑐 in Fig.

8(b). Observe that 𝑅𝑛𝑒𝑐 decreases as density increases. With higher

graph density, the number of edges in 𝐸𝑛𝑒𝑐 remains relatively stable

and is bounded by 2𝑛−2, but the number of edges in SCCs increases,

resulting in the decrease of 𝑅𝑛𝑒𝑐 . Specifically, when the average

degree varies from 4 to 64, the number of edges in 𝐸𝑛𝑒𝑐 is {1.18M,

Table 5: The update time of MSCi and MSCi∗ in ms, and the
difference on the number of edges in their MSCSC answers.

Dataset Time of MSCi Time of MSCi∗ Speedup 𝚫

EP 0.0262 0.103 3.94 5

YT 1.9 15.3 8.1 3

IN 0.173 1.4 8.1 2

WF 0.0274 0.167 6.1 0

EU 2.68 19.1 7.1 4

IT 1.99 21.1 10.6 2

T3W 3.85 15.3 4 0

FS 13.8 79.4 5.8 0

1.24M, 1.21M, 1.16M, 1.12M}, while the number of edges in SCCs

is {3.64M, 7.86M, 15.9M, 32M, 64M}. Running time also reduces

as graph density increases. With higher density, more edges are

redundant for strong connectivity. That is, in a denser graph, more

edges to be deleted are not in 𝐸𝑛𝑒𝑐 , and nothing needs to be done.

Similarly, in a denser graph, edge insertions may happen between

nodes in the same MSCS, and 𝐸𝑛𝑒𝑐 does not need to be updated.

5.3 Use Case Studies
We present two use cases to demonstrate that our MSCSC meth-

ods can readily speed up dynamic SCC maintenance and dynamic

reachability index maintenance, which are two important process-

ing tasks in graph systems [32, 38], revealing the potential of our

methods to be adopted into these systems.

Use Case 1: Applying MSCSC for Fully Dynamic SCC Main-
tenance. We apply our MSCSC solutions to improve the efficiency

of fully dynamic SCC maintenance under edge insertions and dele-

tions. Existing studies for dynamic SCC maintenance mainly focus

on reducing the theoretical bound on time complexity. Given a

graph with 𝑛 nodes, a recent method AdamSCC [24] theoretically

achieves state-of-the-art worst-case time complexity𝑂 (𝑛1.529), which
however is not practical with immense memory consumption. In

experiments, AdamSCC runs out of memory (OOM) even for the

smallest data EP. To achieve the time complexity, AdamSCC needs to
create more than 4 · log3 𝑛 copies of the input graph, e.g., more than

106K copies of EP (with 54 billion edges in total). Then, we choose to

compare with the SCC maintenance method in the paper of DAGGER
[53], which can scale to large graphs. With a mixed workload of 10K

edge insertions and 10K edge deletions on each graph, we report

the running time in Fig. 9. Our method (MSCi +MSCd) consistently
achieves higher efficiency than the competitor in terms of average

update time, specifically, 2X-3X faster in EP, YT and IN, 4X faster

in EU and T3W, and 6X-7X faster in WF and IT, and the competitor

runs OOT on FS. The results show that our method can significantly

accelerate fully dynamic SCC maintenance.

Use Case 2: Applying MSCSC to Dynamic Reachability Index
Maintenance. We apply our MSCSC solutions to an important

use case: improving the efficiency for maintaining dynamic SCC-
based reachability index by replacing SCCs with MSCSC. Note

that our MSCSC is capable for efficient dynamic SCC-based index

maintenance, such as TOL [56] and DAGGER [53], but not for non-
SCC reachability methods [33, 39, 40]. Specifically, TOL refers to the

Total Ordering Labeling (TOL) framework [56] that works on the

corresponding DAG 𝐺 ′ reduced from the input graph 𝐺 , either by

1334

DAGGERIP TOL+SCC TOL+MSCSCDBL

10
-1

10
0

10
1

10
2

10
3

10
4

EP YT IN WF EU IT T3W FS

running time(ms)

Figure 10: Reachability Index Maintenance Efficiency.

MSCSs or SCCs. Since TOL only supports vertex insertion/deletion,

we extend it into supporting edge insertion/deletion. In particular,

TOL+MSCSC adopts our dynamicMSCSC solutions and builds a 2-hop

index for dynamic reachability query processing, TOL+SCC adopts
dynamic SCCs and the same 2-hop index, and DAGGER is an existing

dynamic solution for reachability queries. We also compare with

DBL [33] that is a recent dynamic non-SCC reachability index on

general graphs, and IP [50] that is a dynamic randomness-based

reachability index. Note that DBL only supports edge insertions,

and we extend it to support edge deletions; IP is designed for DAG,
and we extend its capability to handle general graphs.

To evaluate the dynamic maintenance efficiency of reachability

indices, we employ the same mixed workload in Section 5.2. Fig.

10 shows the average time to maintain reachability indices per

update in milliseconds. We can observe that TOL+MSCSC is at least

two orders of magnitude faster than DBL, IP, and DAGGER, and these
three competitors run out of time after 24 hours onWF, EU, IT, T3W,

and FS. Compared with TOL+SCC, TOL+MSCSC is nearly 2X faster in

EP and YT, 3X faster in IN and FS, 5X faster in EU and T3W, and

8X faster in WF and IT. TOL+MSCSC only maintains necessary edges

𝐸𝑛𝑒𝑐 instead of every edge in an SCC as TOL+SCC does, and thus,

TOL+MSCSC is more efficient. To evaluate query time, we follow

the setting in [50] to randomly generate 10K queries and calculate

the average query time of every method on every dataset. Table 6

reports the query time results. We can conclude that TOL+MSCSC is

six orders of magnitude faster than DAGGER as TOL+MSCSC adopts

the 2-hop index to accelerate the query processing. The query

time of TOL+MSCSC and TOL+SCC is similar to each other since both

of them build the same 2-hop index in the reduced graph. Note

that our focus is on the efficiency of dynamic reachability index

maintenance, rather than query efficiency. IP has similar query

performance as TOL, and DBL has competitive query performance

on EP and WF, while being worse on other datasets.

6 RELATEDWORK
In addition to existing studies onMSCS and SCC reviewed in Section

2, we review the related work on reachability queries here, and a sur-

vey is in [54]. There exists a plethora of reachability query methods

on directed graphs [3, 9–13, 13, 18, 20, 22, 23, 36, 40, 41, 44, 46, 47, 49–

52, 52, 53, 56], which can be divided into three categories: (i) index-

free methods [15, 36, 40] that directly conduct online breath-first,

depth-first, or random walk traversals on graphs for reachability

query processing; (ii) index-only solutions [11, 13, 19, 46, 47, 49, 51,

56], which build efficient indices and reachability query processing

is all handled with the index only; (iii) index+traversal methods

[31, 41, 44, 50, 52, 52, 53], which also build indices, but leverage

both the indices and graphs to process reachability queries.

Table 6: Reachability Query Time in nanoseconds.

Dataset DBL IP DAGGER TOL+SCC TOL+MSCSC
EP 25 188 3.23M 61 61

YT 132 117 78.1M 122 122

IN 26.2K 201 16.9M 114 114

WF 100 189 9.25M 180 180

EU 602 197 609M 241 241

IT 8K 119 483M 152 152

T3W 2.38K 121 817M 169 169

FS 5.96K 210 2.64B 241 241

Depending on whether transforming the original graph into a

DAG or not, reachability indexes can be divided into SCC-based

indexes [16, 21, 34, 41, 44, 47, 50, 52, 53, 56] and non-SCC indexes

[13, 21, 33, 39, 46, 51]. A main methodology for SCC-based indexes

is to first transform the input𝐺 into a DAG 𝐺 ′, which is a reduced

graph by shrinking each SCC of 𝐺 into a single node in 𝐺 ′, and
then perform reachability query processing with the assistance of

𝐺 ′. The reduced graph is typically one to two orders of magnitude

smaller than the original input graph, which can help significantly

reduce the online traversal costs and reduce the index size and con-

struction cost. Dynamic SCC-based index methods include DAGGER
[53], TOL [56] and IP [50]. For example, DAGGER extended from

GRAIL [52] is a dynamic method with an interval labeling index

and SCC maintenance to handle reachability queries on dynamic

graphs. TOL [56] adopts 2-hop indexing techniques over a reduced

DAG graph, and supports node insertion and node deletion. IP [50]
explores the randomness to answer reachability queries. It needs

to be mentioned that TOL and IP assume that there are no SCC

merges or splits. For non-SCC indexes, DBL [33] is a recent method

on dynamic graphs. It builds on two complementary indexes: Dy-

namic Landmark (DL) label and Bidirectional Leaf (BL) label. In our

use case study, we extend TOL to handle edge updates including

insertions and deletions, and our methods are readily applicable

to extend TOL and boost its index update efficiency on dynamic

graphs with a mixed workload of edge insertions and deletions.

7 CONCLUSION
We propose a new problemMSCSC to find a collection of subgraphs,

each of which is maximal in terms of nodes and are strongly con-

nected via the fewest edges. We develop efficient approximate so-

lutions for both static and dynamic graphs. In particular, we first

present MSC which is a static MSCSC method and performs only

one scan of graph 𝐺 with linear time complexity to get approxi-

mate MSCSC with rigorous approximation guarantees. We then

develop efficient MSCi and MSCd to maintain dynamic MSCSC with

edge insertions and deletions, respectively. Extensive experiments

and use cases validate the high efficiency of our methods on large-

scale graphs. Our future work is to consider property graphs with

properties on nodes and edges to formulate a property-constrained

MSCSC problem. We will investigate how to extend the proposed

techniques to handle such property graphs.

ACKNOWLEDGMENTS
This work was supported by Hong Kong RGC GRF (Grant No.

14217322), Hong Kong ITC ITF (Grant No.MRP/071/20X), Hong

Kong RGC ECS (No. 25201221), NSFC 62202404, and ARC Future

Fellowship FT210100303.

1335

REFERENCES
[1] 2023. Our Implementation and Technical Report. https://github.com/jerchenxin/

mscsc.

[2] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures

Imply Strong Lower Bounds for Dynamic Problems. In FOCS. 434–443.
[3] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. 1989. Efficient Man-

agement of Transitive Relationships in Large Data and Knowledge Bases. In

SIGMOD. 253–262.
[4] Yash P. Aneja, Ramaswamy Chandrasekaran, Xiangyong Li, and K. P. K. Nair.

2010. A branch-and-cut algorithm for the strong minimum energy topology in

wireless sensor networks. Eur. J. Oper. Res. 204, 3 (2010), 604–612.
[5] Michael A Bender, Jeremy T Fineman, Seth Gilbert, and Robert E Tarjan. 2015. A

new approach to incremental cycle detection and related problems. TALG 12, 2

(2015), 1–22.

[6] Aaron Bernstein, Aditi Dudeja, and Seth Pettie. 2021. Incremental SCC Mainte-

nance in Sparse Graphs. In ESA. 14:1–14:16.
[7] Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. 2019. Decre-

mental strongly-connected components and single-source reachability in near-

linear time. In STOC. 365–376.
[8] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compres-

sion Techniques. InWWW. 595–601.

[9] Ramadhana Bramandia, Byron Choi, and Wee Keong Ng. 2010. Incremental

Maintenance of 2-Hop Labeling of Large Graphs. TKDE 22, 5 (2010), 682–698.

[10] Yangjun Chen and Yibin Chen. 2008. An Efficient Algorithm for Answering

Graph Reachability Queries. In ICDE. 893–902.
[11] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-Label:

a topological-folding labeling scheme for reachability querying in a large graph.

In SIGMOD. 193–204.
[12] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S. Yu. 2006.

Fast Computation of Reachability Labeling for Large Graphs. In EDBT, Vol. 3896.
961–979.

[13] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
[14] Edsger Wybe Dijkstra. 1976. A discipline of programming.
[15] Igor Gorodezky and Igor Pak. 2014. Generalized loop-erased random walks and

approximate reachability. Random Struct. Algorithms 44, 2 (2014), 201–223.
[16] Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2022. O’Reach:

Even Faster Reachability in Large Graphs. ACM J. Exp. Algorithmics 27 (2022),
4.2:1–4.2:27.

[17] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On fast parallel

detection of strongly connected components (SCC) in small-world graphs. In SC.
92:1–92:11.

[18] H. V. Jagadish. 1990. A Compression Technique to Materialize Transitive Closure.

TODS 15, 4 (1990), 558–598.
[19] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. 2010. Com-

puting label-constraint reachability in graph databases. In SIGMOD. 123–134.
[20] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-tree: An

efficient reachability indexing scheme for large directed graphs. TODS 36, 1

(2011), 7:1–7:44.

[21] Ruoming Jin and Guan Wang. 2013. Simple, Fast, and Scalable Reachability

Oracle. Proc. VLDB Endow. 6, 14 (2013), 1978–1989.
[22] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: a high-

compression indexing scheme for reachability query. In SIGMOD. 813–826.
[23] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently

answering reachability queries on very large directed graphs. In SIGMOD. 595–
608.

[24] Adam Karczmarz and Marcin Smulewicz. 2023. On Fully Dynamic Strongly

Connected Components. In ESA (LIPIcs), Vol. 274. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 68:1–68:15.

[25] Samir Khuller, Balaji Raghavachari, and Neal E. Young. 1995. Approximating the

Minimum Equivalent Digraph. SICOMP 24, 4 (1995), 859–872.

[26] Samir Khuller, Balaji Raghavachari, and Neal E. Young. 1996. On Strongly

Connected Digraphs with Bounded Cycle Length. DAM 69, 3 (1996), 281–289.

[27] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In WWW.

1343–1350.

[28] Jakub Łącki. 2013. Improved deterministic algorithms for decremental reachabil-

ity and strongly connected components. TALG 9, 3 (2013), 1–15.

[29] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[30] Guohui Li, Zhe Zhu, Cong Zhang, and Fumin Yang. 2014. Efficient decomposition

of strongly connected components on GPUs. JSA 60, 1 (2014), 1–10.

[31] Lei Li, Wen Hua, and Xiaofang Zhou. 2017. HD-GDD: high dimensional graph

dominance drawing approach for reachability query. WWW 20, 4 (2017), 677–

696.

[32] Wenjie Li, Lei Zou, Peng Peng, and Zheng Qin. 2021. NREngine: A Graph-

Based Query Engine for Network Reachability. In Database Systems for Advanced
Applications. DASFAA 2021 International Workshops: BDQM, GDMA, MLDLDSA,
MobiSocial, and MUST, Taipei, Taiwan, April 11–14, 2021, Proceedings 26. Springer,
90–106.

[33] Qiuyi Lyu, Yuchen Li, Bingsheng He, and Bin Gong. 2021. DBL: Efficient Reach-

ability Queries on Dynamic Graphs. In DASFAA (Lecture Notes in Computer
Science), Vol. 12682. Springer, 761–777.

[34] Florian Merz and Peter Sanders. 2014. PReaCH: A Fast Lightweight Reachability

Index Using Pruning and Contraction Hierarchies. InAlgorithms - ESA 2014 - 22th
Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings
(Lecture Notes in Computer Science), Andreas S. Schulz and Dorothea Wagner

(Eds.), Vol. 8737. Springer, 701–712.

[35] Mark Newman. 2018. Networks. Oxford university press.

[36] Yue Pang, Lei Zou, and Yu Liu. 2023. IFCA: Index-Free Community-Aware

Reachability Processing Over Large Dynamic Graphs. In ICDE. IEEE, 2220–2234.
[37] Liam Roditty and Uri Zwick. 2008. Improved Dynamic Reachability Algorithms

for Directed Graphs. SICOMP 37, 5 (2008), 1455–1471.

[38] Mohamed Sarwat, Sameh Elnikety, Yuxiong He, and Mohamed F Mokbel. 2013.

Horton+ a distributed system for processing declarative reachability queries over

partitioned graphs. Proceedings of the VLDB Endowment 6, 14 (2013), 1918–1929.
[39] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. 2005. Efficient Creation

and Incremental Maintenance of the HOPI Index for Complex XML Document

Collections. In ICDE. 360–371.
[40] Neha Sengupta, Amitabha Bagchi, Maya Ramanath, and Srikanta Bedathur. 2019.

ARROW: Approximating Reachability Using Random Walks Over Web-Scale

Graphs. In ICDE. 470–481.
[41] Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum.

2013. FERRARI: Flexible and efficient reachability range assignment for graph

indexing. In ICDE. IEEE Computer Society, 1009–1020.

[42] Micha Sharir. 1981. A strong-connectivity algorithm and its applications in data

flow analysis. Computers & Mathematics with Applications 7, 1 (1981), 67–72.
[43] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS

and Coloring-Based Parallel Algorithms for Strongly Connected Components

and Related Problems. In IPDPS. 550–559.
[44] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. 2017. Reachability Querying:

Can It Be Even Faster? TKDE 29, 3 (2017), 683–697.

[45] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.

SICOMP 1, 2 (1972), 146–160.

[46] Silke Trißl and Ulf Leser. 2007. Fast and practical indexing and querying of very

large graphs. In SIGMOD. 845–856.
[47] Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira Jr., and Mohammed J. Zaki.

2014. Reachability Queries in Very Large Graphs: A Fast Refined Online Search

Approach. In EDBT. OpenProceedings.org, 511–522.
[48] Adrian Vetta. 2001. Approximating the minimum strongly connected subgraph

via a matching lower bound. In SODA. 417–426.
[49] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. 2006. Dual

Labeling: Answering Graph Reachability Queries in Constant Time. In ICDE. 75.
[50] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability querying:

an independent permutation labeling approach. VLDB J. 27, 1 (2018), 1–26.
[51] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and

scalable reachability queries on graphs by pruned labeling with landmarks and

paths. In CIKM. 1601–1606.

[52] Hilmi Yildirim, Vineet Chaoji, andMohammed Javeed Zaki. 2010. GRAIL: Scalable

Reachability Index for Large Graphs. Proc. VLDB Endow. 3, 1 (2010), 276–284.
[53] Hilmi Yildirim, Vineet Chaoji, andMohammed J. Zaki. 2013. DAGGER: A Scalable

Index for Reachability Queries in Large Dynamic Graphs. CoRR abs/1301.0977

(2013).

[54] Chao Zhang, Angela Bonifati, and M. Tamer Özsu. 2023. An Overview of Reach-

ability Indexes on Graphs. In SIGMOD Conference Companion. ACM, 61–68.

[55] Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. 2003. A linear time 53-

approximation for the minimum strongly-connected spanning subgraph problem.

Information processing letters 86, 2 (2003), 63–70.
[56] Andy Diwen Zhu, Wenqing Lin, SiboWang, and Xiaokui Xiao. 2014. Reachability

queries on large dynamic graphs: a total order approach. In SIGMOD. 1323–1334.

1336

https://github.com/jerchenxin/mscsc
https://github.com/jerchenxin/mscsc
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Existing Solutions on SCC and MSCS

	3 Approximate MSCSC
	3.1 Definitions and Approximation Analysis
	3.2 Algorithm

	4 Dynamic MSCSC Maintenance
	4.1 Incremental Update
	4.2 Decremental Update

	5 Experiments
	5.1 Experimental Setup
	5.2 MSCSC Evaluation
	5.3 Use Case Studies

	6 RELATED WORK
	7 conclusion
	Acknowledgments
	References

