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ABSTRACT
Entity alignment (EA), a crucial task in knowledge graph (KG) re-

search, aims to identify equivalent entities across different KGs

to support downstream tasks like KG integration, text-to-SQL,

and question-answering systems. Given rich semantic informa-

tion within KGs, pre-trained language models (PLMs) have shown

promise in EA tasks due to their exceptional context-aware en-

coding capabilities. However, the current solutions based on PLMs

encounter obstacles such as the need for extensive training, expen-

sive data annotation, and inadequate incorporation of structural

information. In this study, we introduce a novel zero-training EA

framework, ZeroEA, which effectively captures both semantic and

structural information for PLMs. To be specific, Graph2Prompt

module serves as the bridge between graph structure and plain

text by converting KG topology into textual context suitable for

PLM input. Additionally, in order to provide PLMs with concise and

clear input text of reasonable length, we design a motif-based neigh-

borhood filter to eliminate noisy neighbors. The comprehensive

experiments and analyses on 5 benchmark datasets demonstrate

the effectiveness of ZeroEA, outperforming all leading competitors

and achieving state-of-the-art performance in entity alignment.

Notably, our study highlights the considerable potential of EA tech-

nique in improving the performance of downstream tasks, thereby

benefitting the broader research field.
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Figure 1: Illustrating entity alignment with ZeroEA.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Nan-Huo/ZeroEA.

1 INTRODUCTION
Knowledge graph (KG), a popular format of knowledge bases [4,

23, 26, 36], has emerged as a crucial technique to store structural

and semantic information of large scale [21, 50, 65]. KGs have

been playing a pivotal role in powering intelligent systems with

knowledge-based reasoning [13, 14, 18, 19, 46, 62]. Entity alignment

(EA) is one of the critical tasks of KGs, aiming to identify and link

equivalent entities across different KGs. As the toy example shows

in Figure 1, EA aims to identify whether the entities “TDM” and

“Teledifusão de Macau” are equivalent in the real world and can link

them together for a more comprehensive neighborhood. Thus EA

can benefit downstream tasks such as KG integration [46, 62, 65],

recommender system [17, 21, 28], and Text-to-SQL [22, 57].

Most existing EA solutions encode the entities and relations

from different KGs into the same vector space through intensive

training and then make predictions based on similarity measure-

ments [46, 62]. The key to successful EA is encoding structural
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Figure 2: EA on knowledge graphs: (a) GNN encoder, wich
trains a GNN with word embeddings as initial input; (b) PLM
encoder, which trains a PLM and modifies it with with trans-
former variants; and (c) ZeroEA, which employs discrete
prompt generation with training-free PLM encoder.

information [3, 32, 54] and semantic information [47, 65] properly.

The two dimensions have formed the two main groups of existing

EA methods. Most existing EA methods belong to the structural-

based group, which carefully designs a graph topology encoder

such as TransE [3] and Graph Neural Networks (GNNs) [46, 54], as

shown in Figure 2(a).

On the other hand, the semantic-based group leverages the PLMs

(e.g., BERT [12]) to capture textual semantic information of KGs,

as shown in Figure 2(b). This group achieves state-of-the-art per-

formance among existing solutions. For example, BERT-INT [47]

fine-tunes (defined in section 2) the PLMs on KG semantic infor-

mation but fails to combine structural information. SDEA [65]

leverages a PLM to encode entity attribute information and train a

transformer-based [48] neural network to capture semantic infor-

mation of neighbors.

After a detailed investigation and comparison among popular

semantic-based methods, we have the following key observations.

(a) They highly depend on intensive training or fine-tuning on

PLMs and rely on vast data label annotation, which is costly in

web-scale KGs and even sometimes unavailable in the real world.

(b) Their definition of neighbors is based on edge connection. How-

ever, popular entity nodes have toomany edge-connected neighbors

in large-scale KGs, which distract the EA models and introduce

noise [32], leading to inferior performance. Furthermore, given

different neighbors contribute differently to the target node, they

should be assigned varying levels of focus, as suggested by recent

studies [65].

(c) In the existing literature, the impact of EA on downstream tasks

has not been investigated. In this work, we focus on text-to-SQL

as our primary downstream task, with the goal of bridging this

research gap and providing valuable insights for the development

of EA-enhanced downstream applications.

In this work, we propose ZeroEA, a novel zero-training EA

framework using PLMs, as shown in Figure 1(c), which gets rid

of the intensive fine-tuning process and data annotation by pro-

viding high-quality discrete prompt (i.e., input text sequence of

PLMs) to evoke the knowledge inherent in PLMs. ZeroEA adopts a

Graph2Promptmodule to transfer the KG topology information into

discrete prompts with plenty of contexts. As illustrated in Figure 1,

the target entity “TDM” and its two edges are transformed into

the discrete prompt of “TDM”. The Graph2Prompt module enables

graph techniques (e.g., frequent and small subgraphs, or motifs) to

be understandable and used by PLMs. As motifs can identify stable

structures (or higher-order structures) that are resistant to noise

[10, 39, 56], our proposed motif-based neighborhood filter can be

used with PLMs to remove noise and capture information precisely.

Hence, compared to other supervised semantic-based approaches,

ZeroEA is free from fine-tuning and can capture richer structural

information while not losing semantic information. Additionally,

we also observe that the accurate EA can benefit the downstream

tasks such as text-to-SQLs. To summarize, our contributions are:

(1) We propose ZeroEA, a novel zero-training entity alignment

framework via PLMs, which gets rid of the extensive PLM fine-

tuning and data annotation by using high-quality discrete prompts

to evoke the knowledge inherent in PLM.

(2) To capture richer structural information, we propose a motif-

based neighborhood filter, which filters out noisy neighbors and

captures higher-order KG structure information via motif.

(3) We conduct comprehensive experiments on five benchmark

datasets, which indicates that ZeroEA outperforms state-of-the-art

supervised approaches and significantly outperforms other unsu-

pervised solutions.

(4) Finally, We also adopt ZeroEA in one of the state-of-the-art

solutions in Text-to-SQL with impressive improvement.To do this,

we redefine schema-linking, a critical intermediate step in the text-

to-SQL process, as an EA problem. Our experimental results also

indicate that improving the accuracy of EA results in the enhance-

ment of text-to-SQL performance.

The remaining sections are organized as follows. Section 2 for-

mally defines the entity alignment problem. Section 3 describes

our ZeroEA framework for EA task. Section 4 provides the ex-

perimental results on benchmark datasets and downstream tasks.

Section 5 discussed related works. Section 6 concludes the paper.

2 PRELIMINARIES
Problem Formulation. We first introduce some necessary no-

tations. A KG consists of a collection of triples T with the format

of (head entity, relation, tail entity), an entity set E and a relation

set R. In the R = {𝑟1, ..., 𝑟𝑛}, any 𝑟𝑖 refers to a one-hop relation

between nodes and a multi-hop relation with 𝑙 hops is defined as

𝑟𝑚𝑢𝑙 = 𝑟1 ◦𝑟2 ◦ ... ◦𝑟𝑙 , which is the composition of one-hop relation.

A KG is formally defined as G = {E,R,T }.
Following the problem definition in [32], in the EA task, two

different KGs are given: G𝑠 = {E𝑠 ,R𝑠 ,T𝑠 } and G𝑡 = {E𝑡 ,R𝑡 ,T𝑡 }.
EA aims to find the equivalent entities from E𝑠 to E𝑡 and vice versa.
Finally, an alignment set S𝑠𝑡 between the entities of the two KGs is
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generated and defined in Eq. 1.

S𝑠𝑡 =
{
(𝑒𝑖 , 𝑒 𝑗 )

��𝑒𝑖 ∈ E𝑠 , 𝑒 𝑗 ∈ E𝑡 , 𝑒𝑖 ⇔ 𝑒 𝑗
}

(1)

where⇔ denotes equivalent entities in the real world, for example,

“Teledifusão de Macau” and “TDM” shown in Figure 1.

Masked Pre-trained Language Model. Masked Language

Models (MLMs), such as BERT [12] and RoBERTa [34], employ a

training strategy that involves masking specific tokens in input

sequences and replacing them with [MASK] tokens. The primary

goal of the MLM is to predict the original tokens at the masked

positions, thereby maximizing the likelihood of the correct tokens.

Given a textual input 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑛 , where the 𝑖-th token is

masked, the objective function can be expressed as:

− log

exp(𝑐 ([MASK]) · E𝑥𝑖 )∑
𝑣∈𝑉 exp(𝑐 ([MASK]) · E𝑣)

, (2)

where term E𝑣 in this study denotes the word embedding of 𝑣 ,

which belongs to the vocabulary set 𝑉 .

Tuning-free Prompt for MLMs. The approach of tuning-free

prompting for MLMs generates answers or embeddings directly by

freezing all parameters of MLMs. This is achieved simply based on

a given discrete prompt [30, 33], as outlined in the 4. In our method,

we directly extract 𝑐 ([MASK]) as contextualized representations of

entities.

Text-to-SQL and Schema-linking. Text-to-SQL aims to convert

natural language queries into SQLs, enabling the automatic return

of results from relational databases for data science applications. A

critical aspect of the text-to-SQL process is schema-linking, which

entails mapping question tokens to their corresponding schema el-

ements (tables or columns) resulting in more accurate SQL queries.

Consider a natural language question Q = {𝑞1, . . . , 𝑞 | Q | } and a

database schema S = ⟨C,T⟩, where C = {𝑐1, . . . , 𝑐 | C | } and T =

{𝑡1, . . . , 𝑡 | T | } denote the columns and tables, respectively. The text-

to-SQL task aims to generate a corresponding SQL query 𝑦 for a

given question Q in the context of schema S.
Schema linking is a crucial technique for text-to-SQL generation

since it can discriminate the relationship of arbitrary pairs of a

question token and a schema item [5, 31, 49]. We represent schema-

linking pairs as follows:

S𝑙 = {(𝑞𝑖 , 𝑠 𝑗 ) | 𝑞𝑖 ∈ Q, 𝑠 𝑗 ∈ ⟨C,T⟩, 𝑞𝑖 ⇔ 𝑠 𝑗 }. (3)

In our experiments, we observe that improved schema-linking

accuracy leads to generating more accurate SQL queries.

3 METHODOLOGY
This ZeroEA framework consists of three main components: (i)

Prompt Generation Module (PGM), which transforms the KG topol-

ogy into textual discrete prompts with plenty of context information

from a filtered neighborhood. (ii) EmbeddingModule (EM) takes the

discrete prompts generated by the PGM as the input of a selected

PLM and outputs the context-aware embedding of each target entity.

(iii) EA Prediction Module, which calculates the similarity between

candidate entities and make alignment prediction based on it. The

general overview of our proposed ZeroEA is shown in Figure 3.

Remarks. In this work, we use BERT [12] as the encoder.

PLM: Entity Embedding Generation

Embedding 
Matrix

PLM

Entity Alignment Prediction

Similarity-based
Entity Ranking

Alignment
    Set:    

OUTPUT

Context-aware
Discrete Prompt

Prompt Generation

Top-K
Candidate

Translator

Similarity
or Distance

Web Search
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Filter

Embedding Module
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Auto Tool Use

Figure 3: Architecture of ZeroEA.

3.1 Prompt Generation Module (PGM)
As shown in Figure 3, the main components of PGM consist of the

motif-based neighborhood filter, Graph2Prompt, and optional auto

tool use, which are illustrated in the following parts.

3.1.1 Motif-based Neighborhood Filter. The neighborhood filter is

designed to filter out noisy neighbors of target nodes. The most

popular way to capture structural information is to aggregate infor-

mation from neighbors [32, 65]. However, “which neighbors should

be covered?” is still in dispute. Recently, many works have claimed

that it is beneficial to leverage multi-hop neighbors [53, 54]; how-

ever, other works find that one-hop neighbors can provide enough

information [32, 60]. As argued in SelfKG [32] and BERT-INT [47],

including multi-hop neighbors harms EA performance due to noisy

neighbors. Also, PLMs have an input length limitation. For example,

BERT [12] can only take input sequences up to 512 tokens in length,

which means if having too many neighbors, the input prompt will

exceed input limitation and harm the EA performance. To control

input length, BERT-INT [47] selects neighbors with high similar-

ity in BERT embedding, which is not sufficient if only semantic

similarity between neighbors is considered.

To filter out noise and control the input length of PLMs, we pro-

pose a motif-based neighborhood filter. A motif, or a “fundamental

building block” of a graph𝐺 , is a recurring and significant subgraph

pattern of𝐺 [10, 24, 27, 28, 35, 52]. In the literature, motifs are said

to express the higher-order relationship among nodes, and reduce

noise in graph analytics [2, 8, 38, 64]. Motif and motif instance

are defined in Def. 1 and 2 respectively, and a simple example of

the motif is shown in Figure 1, i.e., the triangles in bold color and

lines [64]. Note that the binary matrix𝑀 represents the adjacency
matrix, where each element𝑀𝑖, 𝑗 denotes the existence of edge (𝑖, 𝑗).
Thus, besides regular neighbors connected by edges, each node in

KGs also has its motif neighbors, which are connected by motif

instances. As the example shown in Figure 1, when the motif is a

triangle, node𝐶 and 𝐹 are both edge neighbors and motif neighbors.

However, node𝐶 and 𝐵 are edge neighbors but not motif neighbors
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Figure 4: Illustrating the prompt generation module (PGM), where solid line boxes denote the components in PGM, while dash
line boxes denote the optional tool use.

since there’s no shared triangle motif between them. Compared to

node pair 𝐶 and 𝐵, node pair 𝐶 and 𝐹 has a smaller chance to rise

from noise, because 𝐶 and 𝐹 constitute a motif instance, meaning

that 𝐶 and 𝐹 participate in a higher-order relationship dictated by

the motif, which occurs repeatedly in 𝐺 . Thus, there is a higher

confidence for 𝐹 to be a neighbor of 𝐶 [2, 39].

For the motif-based neighbor filter, we compute the embedding

of each graph node by (1) finding its motif neighbors and their edges;

(2) translating each of these edges to a sentence; and (3) combining

the sentences into a paragraph and (4) passing the paragraph to the

PLM model to generate an embedding for the node. To enumerate

motif instances, we have used E-CLoG [11], a state-of-the-art local

subgraph enumeration algorithm that can find instances for large

subgraphs efficiently, e.g., several minutes for all 𝑝-node motifs on

datasets of million scales, 𝑝 = 3, 4, 5 [11]. That algorithm is also

commonly used in big graph analytics (e.g., [25, 43, 51, 59]). Table 3

shows the overhead of motif enumeration for the datasets used in

our experiments. As we can see, the required time is not large, and

constitutes only 0.5% of the total running time of ZeroEA.

Definition 1 (Motif [64]). A motif H of 𝑖 nodes is defined as a
tuple (M, V), where 𝑉 ⊂ {1, 2, 3, ..., 𝑖} denotes a set of anchor nodes
which is the interested nodes set. AndM is a binary matrix of size 𝑖 · 𝑖
representing the edge pattern of H.

Definition 2 (Motif-instance [1]). Given a graph 𝐺 = (𝑉 , 𝐸)
and a motif 𝐻 = (𝑉𝐻 , 𝐸𝐻 ), the motif-instance𝑚 = (𝑉𝑚, 𝐸𝑚) of 𝐻 is
a subgraph of 𝐺 which is isomorphic to 𝐻 , denoted as𝑚 ≃ 𝐻 .

To maintain a high-quality neighborhood with reasonable size,

we assign different importance values to neighbors and select the

top 𝑘 important neighbors. we adopt IND as one of the baselines in

this module, where a higher node degree means higher importance

value [63].

As mentioned, motifs have the ability to reduce noise and capture

higher-order relations compared with edge-based relations [64]. In

this module, to make the most use of motifs, we explore different

ways to use motifs to help us select top 𝑘 important neighbors,

where 𝑘 is an integer decided by users. We have the following

baseline methods to select neighbors in the neighborhood filter

module:

(1) 𝑛-hop neighbors: all 𝑛-hops neighbors are selected, where 𝑛

is an integer decided by users.

(2) 𝑛-hop motif neighbors: all 𝑛-hop motif neighbors (i.e., all
neighbors that have a 𝑛-hop motif-path to target node, where a

motif-path is a concatenation of one or more motif instances) are

selected.

(3) IND [63]: edge-based neighbors are ranked based on node

degrees.

(4) M-IND: motif neighbors are ranked based on motif degree

(i.e., the number of motif instances including the given node) values.

However, IND and M-IND focus on the popularity of each neigh-

bor and neglect measuring the interconnection between neighbors

and the target node. To capture different interconnection levels

between different neighbors and the target node, we propose a

motif-relevance neighborhood filter where the importance value

of each neighbor is measured by the number of shared motifs

with the target node. After that, all neighbors are ranked based

on the importance value, and we select top 𝑘 important neigh-

bors. The selected neighbor set 𝑆𝑛𝑒 with 𝑘 neighbors of given node

𝑒𝑖 in KG G𝑎 is defined as: 𝑆𝑛𝑒 = Neighborhood-Filter(𝑒𝑖 ,G𝑎) =

{(𝑒𝑖 , 𝑟1, 𝑒1), (𝑒𝑖 , 𝑟2, 𝑒2), ..., (𝑒𝑖 , 𝑟𝑛, 𝑒𝑛)}.

3.1.2 Graph2Prompt. After applying the Graph2Prompt operation,

the selected top 𝑘 neighbors from the neighborhood filter are con-

catenated together to be the discrete prompt, then can be input to

PLMs. The discrete prompt is defined as:

Prompt𝑒𝑖 = Concat( [[MASK]is equivalent to [𝑒𝑖 ],
[𝑒𝑖 ] is in [𝑟1] relation with [𝑒1],
... ...

[𝑒𝑖 ] is in [𝑟𝑛] relation with [𝑒𝑛]] )

(4)

where “[MASK]” is a special token in BERT and “Concat(·)” denotes
concatenate operation. 𝑟𝑛 is the relation between the target entity

𝑒𝑖 and the 𝑛-th selected neighbor 𝑒𝑛 .

If the Web Search tool is applied based on the percipient strategy

defined in Section 3.1.5, the short external knowledge about 𝑒𝑖 is

injected, as shown in equation 5.

Prompt𝑒𝑖 = Concat(WebSearch(𝑒𝑖 ), Prompt𝑒𝑖 ) (5)
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An illustration of this process can be found in Figure 4.

3.1.3 Embedding Module (EM). The embedding (i.e., semantic rep-

resentation) of the input token list𝑇 is first encoded by amulti-layer

bidirectional Transformer [48]. Each Transformer layer has two

sub-layers, i.e., a Multi-Head self-Attention network (MHA) and

a Fully-connected Forward Network (FFN). In summary, The last

layer of BERT semantic hidden states of the entity 𝑒𝑖 can be acquired

as shown in Eq. 6.

E𝑒𝑖 = EncΘ (Prompt𝑒𝑖 ) (6)

where Enc denotes the PLM encoder, which is BERT in this work.

And Θ is the original parameter of the PLM encoder.

And the final entity embedding of given entity 𝑒𝑖 is the hidden

states of the special token “[MASK]” which represent the context-

aware embedding of 𝑒𝑖 , and “[CLS]” which is usually recognized

as the embedding of the whole input prompt [12], as formulated in

Eq. 7:

c([MASK]) = E𝑒𝑖 ([MASK]) + E𝑒𝑖 ([CLS])
2

(7)

3.1.4 Entity Alignment Prediction. After acquiring all the entity

embeddings, the similarity score between the target entity embed-

ding E𝑡 and a candidate entity embedding E𝑐 can be measured by

cosine similarity as follows:

cos(E𝑡 , E𝑐 ) =
E𝑡 · E𝑐

∥E𝑡 ∥∥E𝑐 ∥
(8)

The higher similarity score means the target entity and the candi-

date entity are more likely to be aligned.

3.1.5 Auto Tool Use Strategy: Percipient. Similar to the use of lin-

guistic translation tool in [32, 53, 54], to address the limitations of

PLMs, e.g., inability to access the up-to-date knowledge, we propose
a novel tool-based framework under which ZeroEA can automat-

ically use tools to expand its capacities. In this work, we propose
the percipient strategy to use tools that should fulfill the following
requirements: (1) The use of tools should be in an automatic way

without any human supervision of annotations. (2) The use of tools

should be in an on-demand manner and decide when and how to

use tools instead of using all tools everywhere.

We take the Web Search tool as an example in this section. Intu-

itively, this tool should be applied when the quality of translation is

unsatisfying or the node degree of a specific entity is low. To mea-

sure the quality of the translation, we adopt the Rouge-L score [29],

which is one of the most widely used metrics in the machine trans-

lation field.

As for the translation quality measurement process, when given

the source text sequence 𝑆 of length𝑚 and target text sequence𝑇 of

length𝑛, the Rouge-L score is measured as follows: where 𝐿𝐶𝑆 (𝑆,𝑇 )
denotes the common sub-sequence with maximum length of 𝑆 and

𝑇 , and 𝛽 = 𝑃𝑙𝑐𝑠/𝑅𝑙𝑐𝑠 .
Let 𝐹𝑙𝑐𝑠 denote the Rouge-L score, 𝛼 represents the Rouge-L

threshold, and 𝛾 indicates the entity degree threshold set by the

users. If 𝐹𝑙𝑐𝑠 is lower than 𝛼 or the entity degree is less than 𝛾 ,

the Web Search tool is applied. In this case, the Web Search tool

outputs additional information to enhance the entity representation.

Mathematically, the objective function can be expressed in Eq. 9:

WebSearch(𝑒𝑖 ) =
{
𝐾𝐸 , if 𝐹𝑙𝑐𝑠 < 𝛼 or degree(𝑒𝑖 ) < 𝛾
None, otherwise

(9)

where: WebSearch(𝑒𝑖 ) is the output of the Web Search tool for

entity 𝑒𝑖 . 𝐾𝐸 represents the external knowledge retrieved through

the Web Search tool, including the correct entity name in English

and a brief introduction or definition, as the highlighted text in

Figure 4. degree(𝑒𝑖 ) is the degree of entity 𝑒𝑖 in the KG, indicating

its connectedness within the graph. 𝛼 is the Rouge-L threshold set

by users, indicating the minimum acceptable translation quality. 𝛾

is the entity degree threshold set by users, indicating the minimum

acceptable entity degree. Limited by space, we report the strategy

to prevent information leakage in tool use, which rarely happens,

in our GitHub repository.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets (1) The DBP15K dataset [44] is a well-recognized bench-

mark for entity alignment, containing three smaller subsets for

cross-lingual EA, each with 15,000 aligned entity pairs. (2) The

DWY100K dataset [16] comprises two subsets of a medium scale

for monolingual EA, with each subset including 100,000 aligned

entity pairs and around one million triples. (3) The DBP1M
dataset [15] is among the largest EA benchmarks to date, featur-

ing two cross-lingual subsets, each with over one million entities

and nearly ten million triples. (4) SPIDER [57]: In our work, we

consider text-to-SQL as the primary downstream task in our study,

aiming to study the impact of entity alignment on the performance

of downstream applications. The SPIDER is a large-scale, complex,

and cross-domain text-to-SQL dataset. It contains 10,181 questions,

5,693 unique SQL queries, over 200 databases across 138 domains.

EvaluationMetrics: Consistent with benchmark works [46, 62],

we adopt two evaluation metrics: hits@K and mean reciprocal rank

(MRR). Higher hits@K and MRR mean better performance.

In SPIDER, Exact Match (EM) and Execution Accuracy (EX)

are the two primary metrics used to evaluate the end text-to-SQL

performance [41]. In addition, we employ the precision, recall, and

f1 scores to measure the effectiveness of Schema Linking supported

by Entity Alignment (EA) models. The correlation between Entity

Alignment EA-enhanced schema linking and its subsequent text-

to-SQL performance can reveal that more accurate EA can benefit

downstream tasks.

Experimental Settings:We follow the original split of datasets,

where 70% of seed alignment data is used as test data, and the other

30% is used as the training data and validation data for supervised

methods. In our text-to-SQL implementation, we employ the tech-

nique outlined in [22]. Graphix-T5, a state-of-the-art model, treats

question tokens and schema items as two small KGs and performs

schema linking via string-matching techniques. In the default graph

constructed within Graphix-base, the newly added relationships

through EA are labeled as semanticmatch. Due to the high compu-

tational cost of text-to-SQL, we perform our comparative analysis

of EA methods to the base version of Graphix-T5.

Compared Methods: We compare our ZeroEA with: 1. Su-

pervised methods that need to use 100% training set data of EA.
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Table 1: Recent results on DBP15K and DWY100K. ZeroEA(dir) means adopting directed KGs and (undir) means undirected KGs.

Model

DBP15K
zh_en

DBP15Kja_en DBP15K
fr_en

DWY100K
dbp_wd

DWY100K
dbp_yg

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

Supervised

Trans.

MTransE [7] 0.308 0.614 0.364 0.279 0.575 0.349 0.244 0.556 0.335 0.281 0.520 0.362 0.252 0.493 0.376

JAPE [44] 0.412 0.745 0.490 0.363 0.685 0.476 0.324 0.667 0.430 0.318 0.589 0.378 0.236 0.484 0.364

BootEA [45] 0.629 0.848 0.703 0.622 0.854 0.701 0.653 0.874 0.731 0.748 0.791 0.898 0.761 0.894 0.818

TransEdge [3] 0.735 0.919 0.801 0.719 0.932 0.795 0.710 0.941 0.796 0.788 0.938 0.832 0.792 0.936 0.889

GNN

GCN-Align [53] 0.413 0.744 - 0.399 0.745 - 0.373 0.745 - 0.477 0.562 0.514 0.601 0.642 0.623

MuGNN [6] 0.494 0.844 0.611 0.501 0.857 0.621 0.495 0.870 0.621 0.616 0.897 0.732 0.741 0.937 0.856

RDGCN [54] 0.708 0.846 0.746 0.767 0.895 0.812 0.886 0.957 0.911 0.902 0.954 0.923 0.864 0.889 0.973

CEAFF [58] 0.795 - - 0.860 - - 0.964 - - 1.000 - - 1.000 - -

MEAformer [9] 0.949 0.993 0.965 0.978 0.999 0.986 0.991 1.00 0.995 - - - - - -

PLM

BERT-INT [47] 0.968 0.990 0.977 0.964 0.991 0.975 0.995 0.998 0.995 0.992 0.999 0.999 0.999 0.999 0.999

SDEA [65] 0.870 0.966 0.910 0.848 0.952 0.890 0.969 0.995 0.980 0.980 0.996 0.990 0.999 1.0 1.0

Unsupervised & Self-supervised

Trans. MultiKE [61] 0.509 0.576 0.532 0.393 0.489 0.432 0.639 0.712 0.665 0.915 0.974 0.932 0.880 0.962 0.916

GNN SelfKG [32] 0.829 0.919 - 0.890 0.953 - 0.959 0.992 - 0.983 0.998 - 0.998 1.000 -

PLM

ZeroEA(dir) 0.972 0.990 0.981 0.975 0.992 0.981 0.983 0.992 0.988 0.986 0.991 0.988 0.999 1.000 0.999

ZeroEA(undir) 0.985 0.993 0.991 0.982 0.995 0.989 0.998 0.999 0.998 0.998 0.999 0.996 0.999 1.000 0.999
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Figure 5: Ablation study on neighborhood filter of ZeroEA.

Supervised methods are further grouped into (1) translation-based

methods (“Trans.” in Table 1, which are variants of TransE [3]. (2)

GNN-based methods (“GNNs” in Table 1), which are variants of

GNNs. (3) PLM-based methods(“PLM” in Table 1), which using a

PLM as the encoder. Group (1), (2) are the structure-based methods

and group (3) are semantic-based methods. 2. Unsupervised and

self-supervised that don’t need to utilize any training set data of

EA. They are grouped similarly to the supervised group above. In

text-to-SQL settings, we select Graphix-T5-base as the baseline

model. We enhance schema linking via these EA methods and the

ZeroEA with different thresholds.

4.2 Experimental Results
4.2.1 Overall Results. Results on multi-lingual datasets: As
shown in Table 1, ZeroEA outperforms both supervised and unsu-

pervised & self-supervised baselines groups by a significant margin.

(1) Comparedwith the supervised group ZeroEA outperforms the

best baseline by 1.9%, 2.1% and 0.5% (ZeroEA achieves 99.9% already)

on ZH-EN, JA-EN, and FR-EN respectively, which demonstrates

that intensive training is not a necessity and the PLMs’ capability to

deal with structured KG data is outstanding with proper contextual

information. As argued in BERT-INT, the supervised state-of-the-

art model in EA, semantic information is even more important than

structural information of KGs [47], which is also demonstrated
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Figure 6: Ablation study on translator of ZeroEA.
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Figure 7: Ablation study on neighborhood filter and
Graph2Prompt of ZeroEA.

by the performance of our ZeroEA. It reveals that the semantic-

information-based embedding method, especially the PLM-based

one, is a promising way in EA task, which is not a well-explored

solution compared with numerous GNN-based methods.

(2) In the unsupervised & self-supervised group ZeroEA out-

performs the SelfKG, the novel GNN-based unsupervised solution,

by 16.2%, 7.7% and 3.8% (ZeroEA achieves 99.9% already) on ZH-

EN, JA-EN, and FR-EN respectively, which indicates ZeroEA can

encode the structural and semantic information of KGs in a more

effective way under the same low-resource condition. And ZeroE-

Abecomes the new state-of-the-art model in EA and doesn’t even
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Table 2: Ablation study on DBP15K.

Model

DBP15K
zh_en

DBP15Kja_en DBP15K
fr_en

macro Hit@1

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

ZeroEA 0.985 0.993 0.991 0.982 0.995 0.989 0.998 0.999 0.998 0.988
-Neighborhood Filter 0.950 0.978 0.968 0.956 0.978 0.963 0.969 0.999 0.979 0.958

-Graph2Prompt 0.478 0.736 0.518 0.492 0.768 0.532 0.795 0.826 0.831 0.686

-Web Search 0.837 0.885 0.891 0.879 0.933 0.913 0.923 0.976 0.986 0.881

-Translator 0.253 0.291 0.313 0.265 0.301 0.275 0.724 0.839 0.788 0.589

have a training process, demonstrating the strong generalization

ability of ZeroEAin zero-shot condition.

4.2.2 Ablation Study. (1) Without Graph2Prompt, the foundation

of our proposed model, the performance declines sharply by ap-

proximately 50%. This suggests that Pre-trained Language Models

(PLMs) excel in handling textual data rather than structured graph

data. In the absence of Graph2Prompt, our model would underper-

form in Entity Alignment tasks. (2) When removing the neighbor-

hood filter module, the performance is reduced from 2.7% to 3.8%,

shows that higher-order information brought by motifs is very

beneficial for EA task. (3) The reduction of the Web Search tool’s

performance ranging from 4.6% to 15% demonstrates its strong abil-

ity to handle noise from low-quality translations and the substantial

proportion of entities possessing limited structural and semantic

information. As noted in [65], approximately 40% of entities in

DBP15k exhibit degrees less than 5, thereby possessing limited

structural information. This observation highlights the significance

of leveraging external knowledge to supplement incomplete infor-

mation within a single Knowledge Graph (KG), ultimately bene-

fiting tasks that rely on such knowledge. (4) When removing the

Translator tool, the performance undergoes a great drop, even more

than 70%. The reduction is correlated with the similarity between

2 languages. It indicates the limited ability of BERT to process

low-resource (i.e., non-English) languages.

4.2.3 Auto tool use. (1) As mentioned before, we adopt the Rouge

score to measure translation quality. Figure 6 shows the perfor-

mance trend with the increase of Rouge threshold, and the turning

point is at 0.5, which means that it is the most efficient to set Rouge

threshold to be 0.5 when applying web search on fewer entities but

have similar performance. (2) As Figure 6 shows, when using small-

scale transformer-based machine translation, the performance is

extremely low because it can translate most entities; however, when

adopting Google translation, which can generate translation to any

text, the performance becomes reasonable.

4.2.4 Error Analysis. We conducted a detailed investigation into

the errors of ZeroEA using the challenging ZH-EN DBP15K dataset.

Out of 136 errors, three main types were identified. The major-

ity, wrong translation (68.5%), leads to significant deviations in

embeddings and incorrect predictions. For instance, "Divas in Dis-

tress" was mistranslated as "wanna mama...", and "Sukhoi PAK FA"

as "KAI T50 Golden Eagle". The second type, Low degree enti-
ties (18%), struggle with encoding due to web search discrepancies

and sparse structural information. An example is "Teledifusão de

Macau S.A.", with an aligned entity name "TDM", requiring more

structural context for accurate recognition. The third error type

Table 3: The frequency and counting time (C.Time) by ES-
CAPE [40], with the sum of local motif enumerating time (E.
Time) for each node by E-CLoG [11], with triangle motif.

Datasets Frequency C.Time E.Time

DBP15KZH−EN
ZH 21,514 0.979s 0.073s

EN 39,654 1.040s 0.131s

DBP15KJA−EN
JA 37,036 1.021s 0.091s

EN 45,250 1.084s 0.166s

DBP15KFR−EN
FR 76,813 1.070s 0.210s

EN 68,393 1.197s 0.344s

DWYDBP−YG
DBP 179,813 1.367s 1.797s

YG 185,724 1.489s 3.025s

DWYDBP−WD

DBP 161,124 1.608s 1.355s

WD 125,722 1.187s 1.106s

DBP1MFR−EN
FR 1,105,683 4.070s 154.658s

EN 778,216 2.644s 146.525s

DBP1MDE−EN
DE 786,579 3.202s 101.882s

EN 331,686 2.502s 51.690s

is wrong label (6%), such as the misalignment of "Kvitrafn" and

"Einar Selvik". Lastly, bad WebSearch calls (11%) can introduce

irrelevant data, increasing uncertainty for models. And the last type

is bad WebSearch calls (11%). The bad WebSearch calls can inject

irrelevant knowledge, thus increase the uncertainty of entities to

models.

4.2.5 Neighborhood Filter. As mentioned in Section 3.1.1, we have

four baselines and our proposed method of neighborhood filter. In

this study, we compare our motif-relevance neighborhood filter to

four baselines on five benchmark datasets. Our findings indicate

that motif-based 𝑛-hop neighbors and selecting 𝑛-hop neighbors

exhibit comparable performance. The superior performance of IND

and M-IND can be ascribed to their capacity to handle lengthy PLM

inputs by selecting the 𝑘 neighbors with the highest importance

values. Our motif-relevance strategy consistently outperforms the

baselines, supporting the hypothesis that contribution value should

be determined by the correlation between two nodes. In all our

datasets, we use a “triangle” as our motif (△). This is because the
instances of △ are abundant, as shown in Table 3. Moreover, the

overhead for counting △ instances, based on the algorithm in [40],

is little, just taking 1 to 4 seconds (Table 3). We also remark that △ is

commonly used in motif-based analytics [2, 8, 25, 38, 39, 42, 43, 64].

4.2.6 Scalability and Efficiency. One of the major contributions of

ZeroEA comes from its model scalability. To convincingly demon-

strate the scalability of ZeroEA, we have conducted extensive ex-

periments across datasets of varying sizes, including one of the
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Table 4: Experimental results on schema linking of Spider.

Model Recall Precison F1

Graphix-base 0.683 0.594 0.635

Graphix-TransE 0.756 0.708 0.731

Graphix-GCN 0.791 0.732 0.760

Graphix-ZeroEA 0.902 0.883 0.892
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Figure 8: Experimental results on Text-to-SQL. EMZeroEA

shows the trend of EM across different ZeroEA settings.

largest EA datasets, known as DBP1M [15]. This dataset is notably

from ten to a hundred times larger than other datasets used. The

experiments cover three distinct levels of dataset magnitude.

By employing datasets that span small, medium, and large scales,

as well as both monolingual and cross-lingual contexts, we are able

to thoroughly evaluate the robustness of ZeroEA in scaling to dif-

ferent data volumes. All the other EA baselines either fail to operate

due to exceeding GPU memory limitations (12G) or require more

than three days of computation time. Moreover, these methods

are generally incapable of handling large knowledge graphs (KGs)

because their training procedures have to load the entire graph into

memory. In contrast, ZeroEA is designed to bypass these limitations

by avoiding the training phase altogether and instead loading only

small subgraphs that correspond to the selected one-hop neigh-

borhood for one target entity each time. This approach effectively

decouples the performance of ZeroEA from the size of the KG, thus

affirming its scalability to very large KGs without the common

constraints faced by other models. Also, ZeroEA performs well on

these large datasets for accuracy evaluation. On DBP1MFR−EN ,

ZeroEA obtains Hit@1= 0.594, Hit@10=0.635, and MRR=0.400; on

DBP1MDE−EN , ZeroEA obtains Hit@1= 0.616, Hit@10=0.648, and

MRR=0.395, which are also state-of-the-art [37]. These results show

that ZeroEA not only scales effectively but also maintains state-of-

the-art performance across various dataset categories, including

cross-lingual, monolingual, and very large-scale subsets.

4.3 Downstream Task Application: Text-to-SQL
Figure 8 presents the text-to-SQL performance on the SPIDER

dataset, equipped with various EA-enhanced schema linkings. The

Base denotes the vanilla model known as Graphix-base, whereas

ZeroEA_𝛼 represents the Graphix-base model with a 𝛼 threshold

for the inclusion of new relationships. Our results demonstrate that

(a) The Graphix-base model with ZeroEA outperforms the standard

Graphix-base model in downstream tasks, achieving optimal per-

formance when the threshold is set to 0.6.

(b) Furthermore, Table 4 shows that EA offers the most significant

enhancement to schema linking for the Graphix-base model.

(c) It is worth noting that a clearly positive correlation exists be-

tween the schema-linking F1 and the performance in the end text-

to-SQLs, as illustrated in Figure 8. This demonstrates that EA can

benefit downstream tasks, thus motivating further exploration of

its impact on various downstream tasks.

5 RELATEDWORKS
Entity alignment research in recent decades can be grouped into

rule-based[62], crowdsourcing-based[46], deep learning (DL)[32,

53, 54], and PLM-based approaches[47, 65]. DL-based methods, par-

ticularly embedding-based strategies, have shown superior perfor-

mance. These methods often use TransE [3] to train KG embeddings,

but newer approaches consider KG structures and use graph neural

networks [53] or attention-based mechanisms [32]. Some recent

work focus on multi-modal EA, for example MEAformer [9]. Some

also incorporate semantic information [53–55, 58, 61] or attribute

values [47] for improved performance. However, PLM training is

costly and time-consuming, so our work aims to use structural and

semantic information from KGs without extensive training.

Despite the progress in Entity Alignment (EA) tasks, their im-

pact on downstream tasks like schema-linking in text-to-SQL and

Knowledge Graph-based Question Answering (KGQA) [20, 55] is

underexplored. EA is crucial for these complex tasks, which can be

significantly improved with precise entity alignment. We are the

first to investigate EA’s effects on downstream tasks.

6 CONCLUSION
We introduce ZeroEA, a novel zero-training framework for entity

alignment (EA) that adeptly harnesses the contextual encoding ca-

pabilities of pre-trained language models. ZeroEA can adeptly incor-

porate both semantic and structural information from knowledge

graphs via the Graph2Prompt module and the motif-based neigh-

borhood filter. The experimental results achieved on five bench-

mark datasets not only position ZeroEA as a cutting-edge solution,

but also highlight its potential to enhance complex downstream

tasks and contribute to the ongoing progress in knowledge graph

research. In the future, we plan to develop a trained version of

ZeroEA, which can obtain higher performance at the cost of longer

training time. We report preliminary results in our GitHub reposi-

tory and plan to further develop it in the future.
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