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ABSTRACT
Local differential privacy (LDP) is a strong privacy standard that

has been adopted by popular software systems, including Chrome,

iOS, MacOS, and Windows. The main idea is that each individual

perturbs their own data locally, and only submits the resulting

noisy version to a data aggregator. Although much effort has been

devoted to computing various types of aggregates and building

machine learning applications under LDP, research on fundamental

perturbation mechanisms has not achieved significant improve-

ment in recent years. Towards a more refined result utility, existing

works in the literature mainly focus on improving the worst-case
guarantee. However, this approach does not necessarily promise a

better average performance given the fact that the data in practice

obey a certain distribution, which is not known beforehand.

In this paper, we propose the advanced adaptive additive (AAA)
mechanism, which is a distribution-aware approach that addresses

the average utility and tackles the classical mean estimation prob-

lem. AAA is carried out in a two-step approach: first, as the global

data distribution is not available beforehand, the data aggregator

selects a random subset of individuals to compute a (noisy) quan-

tized data descriptor; then, in the second step, the data aggregator

collects data from the remaining individuals, which are perturbed

in a distribution-aware fashion. The perturbation involved in the

latter step is obtained by solving an optimization problem, which

is formulated with the data descriptor obtained in the former step

and the desired properties of task-determined utilities. We provide

rigorous privacy proofs and utility analyses, as well as extensive

experiments comparing AAA with state-of-the-art mechanisms.

The evaluation results demonstrate that the AAA mechanism con-

sistently outperforms existing solutions with a clear margin in

terms of result utility, on a wide range of privacy constraints and

real-world and synthetic datasets.
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1 INTRODUCTION
Differential privacy (DP) [19] is a strong and mathematically rig-

orous metric that evaluates the privacy guarantee provided by

randomization-based data-releasing mechanisms. The concept of

DP was first proposed for a centralized setting involving a trusted

data curator, which releases information (e.g., mean and heavy

hitters) derived from an underlying dataset consisting of sensi-

tive records. In such a setup, DP protects individuals’ privacy by

requiring that the data curator randomly perturbs the released in-

formation. In particular, the perturbation is carefully calibrated to

ensure that using the released noisy results, an adversary equipped

with arbitrary background knowledge can only have limited con-

fidence when inferring about the underlying sensitive individual

data records. Note that this centralized setting requires a trusted

data curator, who has direct access to all sensitive records in the

dataset. This might not be suitable for scenarios in which individu-

als do not want to expose their sensitive data to any party, including

such a data curator. Moreover, even if the data curator itself can be

trusted, it still faces the burden of protecting sensitive data against

malicious intruders. Failure to do so may lead to data breaches (e.g.,

in the recent incidents involving Optus
1
and Samsung

2
), which

violate the individuals’ privacy and damage the reputation of the

data curator.

Local differential privacy (LDP) [17, 22, 34] applies the notion
of DP to a different setting, in which each individual (i.e., data

owner) perturbs her data locally, and only submits the perturbed

version of her data to an untrusted data curator. Therefore, the data
curator only collects data that is already perturbed to satisfy the

rigorous LDP requirements, and malicious parties might be less

incentivized to intrude into such a data curator and steal the (less

sensitive) randomized dataset. Perhaps for these reasons, LDP has

gained adoption rapidly ever since its proposal. In particular, LDP

has been applied in common software systems that collect usage

information, which include Apple iOS and MacOS [4, 42], Microsoft

Windows [16], and Google Chrome [21]. LDP has also found appli-

cations in online services such as Facebook (for gathering users’

behavioral data for advertisement placements) [36], and Amazon

(for collecting users’ shopping preferences) [40].

1
https://www.acma.gov.au/optus-data-breach

2
https://www.securityweek.com/samsung-sued-over-recent-data-breaches
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Driven by its successful applications, LDP has attracted much re-

search attention in recent years. The majority of LDP-related papers

focus on computing various types of statistics from the collected

perturbed data, with the goal of maximizing result utility while sat-

isfying LDP for each participating individual. These include range

query [12, 14, 45], joint distribution [23, 50, 51] and marginal dis-

tribution estimation [13, 52], frequency/histogram [2, 6, 15, 35, 44],

heavy hitters [5, 10, 37, 46], etc. We note that there is no single

solution that consistently achieves high utility for all the tasks, as

the utility metric varies according to different tasks.

In this paper, we focus on the fundamental LDP task of mean es-
timation, for which unbiasedness and minimal variance are desired

utilities (see the detailed problem formulations in Section 3). Note

that within this scope (i.e. mean estimation), there is only a narrow

selection of works, including Duchi’s mechanism [18], piecewise

and hybrid mechanisms [43], that achieve consistently higher re-

sult utility than the classic LDP mechanisms, such as Laplace [19]

and randomized response [29, 47]. For achieving better result util-

ity, these works mainly focus on improving the worst-case utility
guarantee. However, this approach does not necessarily provide a

better average utility. For example, given an input data distribution

dense in the sub-optimal regime of the mechanism, the average

utility would be less ideal, even with a better worst-case guarantee.

When this is true, it is natural to consider a distribution-aware

approach that improves the average performance, instead of the

overly pessimistic worst-case guarantee. This observation has not

drawn sufficient attention in the literature, and motivates this work.

Our contributions: We propose the advanced adaptive additive
(AAA) mechanism that is adaptive to the global data distribution

while aiming to obtain high average result utility under strict LDP

constraints. Achieving such a goal, however, is challenging since

(i) the metric of utility varies according to the task, (ii) in the LDP

setting, the global data distribution is not known beforehand, (iii)

even when the data distribution is available, formulating and solv-

ing the distribution-aware data perturbation problem is still highly

non-trivial, as elaborated later in Sections 3 and 4.

The proposedAAAmechanism addresses these challenges through

a two-phase approach. In the first phase, the data curator randomly

selects a subset of all participating individuals to estimate (a quan-

tized representation of) the global data distribution, while LDP

is preserved for every individual. In the second phase, each of

the remaining individuals submits data perturbed by a calibrated

mechanism. In particular, the perturbation in the second phase

is carefully calibrated with the estimated global data distribution,

which involves solving a convex optimization problem formulated

for maximizing utility while enforcing LDP.

The most notable property of the perturbation noise in the sec-

ond phase of AAA is that the distribution of the noise applied on

the individual side depends on the value of her sensitive data. As a

consequence, the utility with respect to a single individual varies as

the input value varies. In particular, the more frequent data points

are perturbed with smaller noises whereas the others are perturbed

with larger noises, which is aligned with our goal of optimizing the

average-case utility with respect to a data distribution.

Figure 1 shows an example of conditional injected noise used in

AAA that is tailored for a specific input distribution. This differs

from the classic approaches such as the Laplace mechanism, where

Figure 1: The conditional probability 𝑃𝐴 |𝑋 that characterizes
the proposed AAA mechanism, which preserves 2-LDP and
is optimized for a specific global data distribution (truncated
Gaussian 𝑁 (0, 0.22) on X = [−1, 1]). Each horizontal banner
plots a probability density function of the additive noise
random variable 𝐴 conditioning on 𝑥 ∈ X.

the added noise is independent of the input. More detailed results

and explanations on AAA will be given in Section 4.

We provide rigorous analyses for the AAA mechanism. To com-

plement our theoretical analysis, we also conduct extensive experi-

ments using both real and synthetic data, demonstrating that AAA

consistently outperforms existing solutions by a wide margin. The

rest of this paper is organized as follows. Section 2 provides the

necessary background on LDP definitions as well as existing LDP

mechanisms. Section 3 formally defines the problem of distribution-

aware data perturbation under LDP, and Section 4 presents the

proposed AAA mechanism for this purpose. Section 5 establishes

the privacy guarantees and the utility analysis of AAA. Section 6

discuss the related works and Section 7 presents the experimental

evaluation results. Section 8 concludes the paper with directions

for future work.

2 BACKGROUND
2.1 Preliminaries
We consider the following scenario: there is an untrusted data

curator and a set of individual clients (i.e., data owners), where

the curator wishes to collect data from all clients. For example, the

Census Bureau, as a data curator, may want to survey the average

annual income of the entire adult population, who are the clients.

Following common practice in the LDP literature, we assume that

all parties are honest but curious, i.e., each party strictly follows the

protocol, and at the same time tries to infer sensitive information

from other parties. For simplicity, we assume that each client holds

a single (1-dimensional) numeric data item 𝑥 supported by a finite

interval X = [−𝛽, 𝛽], where 𝛽 ∈ R+.
Caveat. The above assumption can be made without loss of gen-

erality, as we can always rescale the values into a finite interval.

However, this is not always straightforward to do, as the data items

may be taken from a large or even unbounded domain (e.g., real
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numbers representing income data), since the existence of outliers

may lead to a rescaled distribution that is only dense in some small

intervals. In such cases, more sophisticated approaches such as

trimming and clipping [1, 11] might be needed.

Multi-dimensional data. In the case that each client holds multi-

dimensional data, i.e., a tuple of attributes x = (𝑥 (1) , . . . , 𝑥 (𝑑) )
where each data entry is from X, one could apply the standard

trick in [43] that each client proceeds with a randomly chosen data

entry, which reduces the problem to collecting one-dimensional

data. This is (roughly) equivalent to randomly partitioning all clients

into 𝑑 non-overlapping subsets, each of which reports one of the

𝑑 attributes. Detailed algorithm description and evaluation results

are provided in the full version [48]. In the rest of the paper, we

focus on the one-dimensional case where each client holds a single

numeric data item.

Following existing work [18, 43], we focus on the fundamental

problem of mean estimation, and the goal is to minimize the error

of the estimated mean computed at the data curator under local

differential privacy constraints. Such mechanisms typically consist

of two stages: i) Data Perturbation, i.e., each client 𝑖 perturbs her

local data (e.g., by injecting additive noise) before uploading it to the

curator to protect sensitive information, and ii) Data Aggregation,
i.e., the curator estimate the mean from the collected data. The

perturbation can be represented by a stochastic mappingM : X →
Y, which can also be seen as a conditional distribution 𝑃𝑌 |𝑋 .

In terms of the utility requirement for the perturbation mecha-

nism, we want (i) the output to remain unbiased, that is, the expec-

tation of the output and input needs to remain identical, and (ii) a

smaller output variance to minimize the error in practice. These re-

quirements form the utility metric of mean estimation tasks, which

will play an important role in subsequent discussions. Meanwhile,

regarding the privacy metric, we focus on the standard definition

of pure 𝜖-local differential privacy (LDP) [17].

Definition 1. For any non-negative 𝜖 , a perturbation mechanism
M is said to satisfy 𝜖-local differential privacy (LDP) if for any inputs
𝑥 ≠ 𝑥 ′ ∈ X and subset U ⊆ Y, it holds that

Pr[M(𝑥) ∈ U] ≤ 𝑒𝜖 · Pr[M(𝑥 ′) ∈ U] .
The level of privacy protection is quantified by the parameter

𝜖 . Roughly speaking, a smaller 𝜖 makes it more difficult for the

adversary (including the untrusted data curator) to infer the exact

input value given the perturbed version, and vice versa.

2.2 Data Perturbation Mechanisms under LDP
Classic Approaches. There are several classical data perturbation
mechanisms in the literature that can be used to enforce LDP. First,

we present the Laplace mechanism, assuming that each client’s

data item is within the interval [−𝛽, 𝛽] as described in the previous

subsection.

Lemma 1 (Laplace Mechanism [19]). The Laplace mechanism
that injects Laplace noise of location parameter 0 and scale parameter
2𝛽
𝜖 into 𝑥 satisfies 𝜖-local differential privacy, where the probability

density function of the Laplace noise of parameters 0 and 2𝛽
𝜖 is defined

as

𝑓 (𝑥) = 𝜖

4𝛽
exp

(
−𝜖 |𝑥 |

2𝛽

)
.

In case 𝑋 is not continuous but binary, i.e., X = {−𝛽, 𝛽}, one can
apply the classic randomized response mechanism to enforce LDP.

Lemma 2 (Randomized Response [29, 47]). Let 𝑥 ∈ {−𝛽, 𝛽} be
the sensitive attribute to protect. The randomized response mechanism
that randomly flips the sign of 𝑥 satisfies 𝜖-local differential privacy,
if the probability of flipping is as follows

𝑝𝑌 |𝑋 (𝑦 | 𝑥) =
{

𝑒𝜖

1+𝑒𝜖 , if 𝑦 = 𝑥,
1

1+𝑒𝜖 , otherwise.

The original randomized response mechanism is only discussed

for the case where the client’s data is binary. For mean estima-

tion over X = [−𝛽, 𝛽], an extension of the randomized response

mechanism proposed by Duchi et al. [18], presented next.

Duchi et al.’s Mechanism. Duchi et al. propose a mechanism to

perturb data under LDP [18]. Specifically, the algorithm takes as

input 𝑋 ∈ [−𝛽, 𝛽] and outputs a binary 𝑌 ∈
{
− 𝑒𝜖+1

𝑒𝜖−1
· 𝛽, 𝑒𝜖+1

𝑒𝜖−1
· 𝛽

}
with probabilities

𝑝𝑌 |𝑋 (𝑦 | 𝑥) =
{

𝑒𝜖−1

2𝑒𝜖+2
· 𝑥
𝛽
+ 1

2
, if 𝑦 = 𝑒𝜖+1

𝑒𝜖−1
· 𝛽,

− 𝑒𝜖−1

2𝑒𝜖+2
· 𝑥
𝛽
+ 1

2
, if 𝑦 = − 𝑒𝜖+1

𝑒𝜖−1
· 𝛽.

It is easy to verify that𝑌 is an unbiased estimator of𝑋 with variance

Var[𝑌 | 𝑋 = 𝑥] = 𝛽2 ·
(
𝑒𝜖 + 1

𝑒𝜖 − 1

)
2

− 𝑥2 ≤ 𝛽2 ·
(
𝑒𝜖 + 1

𝑒𝜖 − 1

)
2

. (1)

Piecewise Mechanism and Hybrid Mechanism. Wang et al.

propose the piecewise mechanism (PM) [43]. PM takes as input

some data 𝑋 ∈ [−1, 1]. For a more general case that 𝑋 ′ ∈ [−𝛽, 𝛽],
[43] shows that we can scale it to 𝑋 ∈ [−1, 1], apply PM, and

return the scaled result 𝛽 ·𝑦. Unlike Duchi’s mechanism, in PM the

support of the output is not discrete but a finite interval [−𝐶,𝐶]
where𝐶 = 𝑒𝜖/2+1

𝑒𝜖/2−1

. The probability density function of the piecewise

mechanism is a piecewise constant function

𝑓𝑌 |𝑋 (𝑦 | 𝑥) :=

{
𝑝, if 𝑦 ∈ [𝑙 (𝑥), 𝑟 (𝑥)],
𝑝
𝑒𝜖 , if 𝑦 ∈ [−𝐶, 𝑙 (𝑥)) ∪ (𝑟 (𝑥),𝐶] .

Here, 𝑝 = · 𝑒𝜖−𝑒𝜖/2

2𝑒𝜖/2+2

, 𝑙 (𝑥) = 𝐶+1

2
· 𝑥 − 𝐶−1

2
, and 𝑟 (𝑥) = 𝑙 (𝑥) +𝐶 − 1.

Accordingly, given any numeric data 𝑥 ∈ [−1, 1], [43] proves that
that 𝑌 is an unbiased estimate of 𝑋 , and the conditional variance

of 𝑌 is

Var[𝑌 | 𝑋 = 𝑥] = 𝑥2

𝑒𝜖/2 − 1

+ 𝑒𝜖/2 + 3

3(𝑒𝜖/2 − 1)2

≤ 4𝑒𝜖/2

3(𝑒𝜖/2 − 1)2

. (2)

In the general case that 𝑋 ∈ [−𝛽, 𝛽], the estimate remains unbi-

ased, and the variance of the output would be multiplied by 𝛽2
. In

the same paper [43], Wang et al. also propose a hybrid mechanism

(HM) that combines Duchi’s mechanism and PM above. Accord-

ing to the analysis in [43], HM achieves better worst-case perfor-
mance compared to both of its underlying components, i.e., Duchi’s

mechanism and PM. However, as our experiments in Section 7

demonstrate, the result utility of HM is often worse than PM, on

several real and synthetic datasets. This highlights the fact that

high worst-case performance does not necessarily indicate high

average performance, which is the focus of this paper.
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3 PROBLEM FORMULATION
3.1 Rationale
Recall from Section 2.2 that, regarding the classical mean estima-

tion task, the existing solutions for our problem setting perturb the

output regardless of the input value (or distribution). This misses

the opportunity of further improving result utility by performing

input-dependent perturbation, as is done in Laplace mechanism,

Randomized Response, Duchi’s mechanism (which generalizes Ran-

domized Response), PM, and HM. On the other hand, observe that

when the perturbation is input-dependent, the result utility can also

depend on the input value. For instance, the variance of the output

in Duchi’s mechanism reaches its worst case when the input 𝑥 = 0,

according to Eq. (1). This means that in the unfortunate case that

most clients hold a zero (or close to zero) value, Duchi’s mechanism

would perform poorly. Similarly, according to Eq. (2), the worst case

of PM occurs when the absolute value of 𝑥 is large (bounded by 𝛽

in our problem setting), meaning that PM would perform poorly

in the extreme case that most clients hold a value close to either 𝛽

or −𝛽 . This issue is recognized in [43], and the authors attempt to

address it with HM. However, HM focuses on optimizing worst-case

performance, and its result utility is lower than PM on real data

and synthetic data following common probability distributions, as

shown in our experiments. This leads to the question: regarding the

mean estimation task, can we design an adaptive LDP mechanism

that works well for the average case?

The answer to the above question is clearly positive, if each
client has a certain level of knowledge regarding the global data
distribution before the perturbation is performed. For example, if all

clients know that a good majority of data items are close to zero,

then it is probably best to avoid Duchi’s mechanism, whose worst-

case utility is reached when 𝑥 = 0, and instead apply a mechanism

that promises good utility for close-to-zero inputs such as PM,

according to Eq. (2). Meanwhile, observe that Duchi’s mechanism,

PM, and their combination HM are just three specific instances

in the vast design space of LDP mechanism that performs input-

dependent perturbation. In fact, even if all three methods have

rather poor performance, e.g., when half of the clients have close-to-

zero data values (worst case for Duchi’s method) and the other half

have close-to-𝛽 data values (worst case for PM), it is still possible

to design an effective data perturbation scheme for such a scenario

that exploits the knowledge of the global data distribution.
The above reasoning motivates a distribution-aware data pertur-

bation mechanism for enforcing LDP, in which the perturbation

depends on not only the input value, but also (an estimation of) the

input value distribution. In the following subsections, we formalize

this idea and define the optimization objective and constraints.

3.2 Optimization Problem Formulation
Motivated by the discussion in Section 2.1 and above, we start with

the following abstract problem definition, and gradually fill out the

mathematical details.

Problem 1 (Optimal Mean Estimation Mechanism under

LDP). Given D represents the set of numeric data items 𝑥 ∈ X =

[−𝛽, 𝛽] held by local clients, we want to design a mechanism M :

X → Y for the clients that satisfies the following requirements:

(1) Privacy-preserving: the mechanism M satisfies 𝜖-local dif-
ferential privacy for 𝜖 > 0.

(2) Bias-free: the mean of the outputs perturbed by mechanism
M is unbiased with respect to mean of the the original data.

(3) Minimized variance: the total variance of the perturbed output
𝑌 is minimized.

Privacy requirement. Recall from Section 2.1 that in LDP, each

client 𝑖 applies the mechanism M to perturb her private data 𝑥𝑖
independently, andM : X ↦→ Y can be represented as a conditional

probability density function 𝑓𝑌 |𝑋 , i.e., 𝑌 ∼ 𝑓𝑌 |𝑋 . By Definition 1,

for any valid data items 𝑥, 𝑥 ′ ∈ X, and any outputs 𝑦, mechanism

M should satisfy 𝑓𝑌 |𝑋 (𝑦 | 𝑥) ≤ 𝑒𝜖 · 𝑓𝑌 |𝑋 (𝑦 | 𝑥 ′).

Bias-free requirement. The mean of all samples in the dataset

is 𝑋 = 1

|D |
∑
𝑥 ∈D 𝑥 . Meanwhile, with the conditional 𝑓𝑌 |𝑋 , the

expected mean E[𝑌 ] = 1

|D | ·
∑
𝑥 ∈D E[𝑌 |𝑋 = 𝑥]. For ensuring the

estimated mean to be unbiased, i.e., E[𝑌 ] = 𝑋 , it suffices to require

E[𝑌 | 𝑋 = 𝑥] = 𝑥 for all 𝑥 ∈ X.

Minimized variance requirement. Problem 1 states that we aim

to minimize the total variance of 𝑌 , i.e. Var(𝑌 ). Next, we show that

minimizing the total variance of 𝑌 is equivalent to minimizing the

expected conditional variance E[Var(𝑌 | 𝑋 )]. By the law of total

variance [49], we have Var(𝑌 ) = E[Var(𝑌 | 𝑋 )] + Var(E[𝑌 | 𝑋 ]),
where the first term is the expected variance, and the second term

Var(E[𝑌 | 𝑋 ]) = E[E[𝑌 | 𝑋 ]2] − E[E[𝑌 | 𝑋 ]]2 = Var(𝑋 ) .

The equalities hold as we require 𝑌 to be bias-free, i.e., E[𝑌 | 𝑋 =

𝑥] = 𝑥 for all 𝑥 ∈ X. Note that Var(𝑋 ) is determined by the given

data distribution and the data domain. Thus, it can be considered as

a constant in the optimization problem. Accordingly, minimizing

the expected conditional variance E[Var(𝑌 | 𝑋 )] is equivalent to
minimizing the total variance Var(𝑌 ).

Optimization program. The above discussions lead to the follow-

ing optimization program:

minimize

𝑓𝑌 |𝑋
E[Var(𝑌 | 𝑋 )]

subject to E [𝑌 | 𝑋 = 𝑥] = 𝑥 for all 𝑥 ∈ X,

𝑓𝑌 |𝑋 (𝑦 | 𝑥) ≤ 𝑒𝜖 · 𝑓𝑌 |𝑋 (𝑦 | 𝑥 ′),∀𝑥, 𝑥 ′ ∈ X, 𝑦 ∈ Y .

(3)

While the constrained optimization program above is a valid

problem formulation, it is difficult to solve since (i) the global dis-

tribution of data held by local clients is not known beforehand, and

(ii) the problem is defined in a continuous domain, and it is unclear

how to solve for the optimal 𝑓𝑌 |𝑋 , which has a vast search space.

To make the problem tractable, we first quantize the representation

for the distribution of variable 𝑋 , explained in detail in the next

subsection.

3.3 Quantized Input Data Distribution
Recall from Section 2.1 that each client holds a private data item

𝑥 ∈ [−𝛽, 𝛽], to better capture the statistical characteristic of the

data collection, we provide a randomized rounding algorithm as

follows. First, we split the domain X into 𝑁 intervals such that the
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width of each interval is

𝜎 =
|𝛽 − (−𝛽) |

𝑁
=

2𝛽

𝑁
. (4)

Accordingly, using the quantization parameter 𝜎 defined above,

the edges of the intervals are

𝑥 𝑗 = −𝛽 + 𝑗 · 𝜎 for 𝑗 = 0, . . . , 𝑁 . (5)

Next, let 𝑟 (𝑥) be a randomized rounding scheme. For any sam-

ple 𝑥 ∈ D, assume 𝑥 falls into an interval [𝑥𝑖 , 𝑥𝑖+1], we define a
randomized rounding mechanism 𝑟 (𝑥) that 𝑥 would be rounded to

the nearest left index 𝑥𝑖 with probability𝑤𝑖 (𝑥) or the right index
𝑥𝑖+1 in probability

𝑟 (𝑥) =
{
𝑥𝑖 , with probability𝑤𝑖 (𝑥),
𝑥𝑖+1, with probability𝑤𝑖+1 (𝑥) .

Here, we define

𝑤𝑖 (𝑥) =
{

1 − |𝑥−𝑥𝑖 |
𝜎 , if 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖+1],

0, otherwise.
(6)

Eq. (6) implies that

∑𝑁
𝑖=0

𝑤𝑖 (𝑥) = 1 such that the randomized round-

ing mechanism is valid.

Thus, we derive a discrete probability mass function 𝑝𝑋 on {𝑥 𝑗 :

𝑗 = 0, . . . , 𝑁 } by rounding all the samples in D, and the probability

of having 𝑥𝑖 is:

𝑝𝑋 (𝑥𝑖 ) =
∑︁
𝑥 ∈D

Pr[𝑟 (𝑥) = 𝑥𝑖 |𝑋 = 𝑥] · Pr[𝑋 = 𝑥] = 1

|D|
∑︁
𝑥 ∈D

𝑤𝑖 (𝑥).

(7)

The validity of the function in Eq.(7) as a probability measure can

be easily justified, as Eqs. (6) and (7) imply

∑𝑁
𝑖=0

𝑝𝑋 (𝑥𝑖 ) = 1.

3.4 Global Data Distribution Estimation
Next, we demonstrate how to obtain a quantized distribution de-

scriptor while enforcing LDP requirements. Clearly, this maps to

an LDP-compliant discrete distribution estimation problem, which

has been studied extensively in the LDP literature, e.g., in [2, 6, 15,

35, 44]. Typical solutions for locally differential private distribution

estimation usually consist of two steps: 1) let all clients perturb

the original data, e.g., using random-response-based perturbation

algorithms and 2) the curator collects all the perturbed data and re-

constructs the distribution. Note the quantization can be performed

either before the perturbation or after, it mainly depends on the

perturbation mechanism of choice. Existing solutions mainly differ

in the perturbation strategy and the reconstruction algorithms.

As distribution estimation is not the focus of this work, one can

freely apply any 𝜖-LDP distribution estimator. In our implementa-

tion, we use the classic randomized response mechanism, where

each client in the sample set reports truthfully to one of the 𝑁 + 1

edges with probability
exp(𝜖)

exp(𝜖)+𝑁 , and randomly picks one of the

rest 𝑁 edges otherwise. After collecting all the perturbed responses,

the server reconstructs an estimate for 𝑃𝑋 by solving a linear pro-

gramming problem. We provide the complete algorithm in the full

paper [48].

One may note that in our solution, instead of letting all clients

participate in the distribution estimation, we use a random subset

of the clients for this computation, as elaborated later in Section 4.1.

Lastly, with any distribution estimator, let 𝑝𝑋 be the result discrete

descriptor that estimates the quantized distribution, in the follow-

ing discussions, to provide a provable performance guarantee of

the result mechanism, we assume that 𝑝𝑋 satisfies the following

properties:

(1) Validity: 𝑝𝑋 is a valid probability mass function, i.e.,

0 ≤ 𝑝𝑋 (𝑥 𝑗 ) ≤ 1 and

𝑁∑︁
𝑗=0

𝑝𝑋 (𝑥 𝑗 ) = 1.

(2) Bounded relative error: The relative error of the estimated

probability mass associated with any index is no larger than

𝜓 ≥ 0, i.e.,

sup

𝑗=0,...,𝑁

����𝑝𝑋 (𝑥 𝑗 ) − 𝑝𝑋 (𝑥 𝑗 )
𝑝𝑋 (𝑥 𝑗 )

���� ≤ 𝜓 .

Remark. Beyond the discussion in Section 2, the achievability of

the second condition is subject to the rescaling process (which

determines the value domain and result distribution) as well as

the original data distribution. When the data distribution is highly

scattered, more sophisticated pre-processing techniques are needed

to derive provable error bounds. This is an orthogonal problem to

this paper, and we leave it as future work.

4 THE AAA MECHANISM
4.1 Solution Overview
As an adaptive mean estimation mechanism, our solution consists

of two phases, distribution estimation and mean estimation.
In the first phase, a random sample set of the clients jointly

participate in a quantized distribution estimation protocol that sat-

isfies 𝜖-LDP, as explained in Section 3.4. We separate the clients

into groups to ensure each client spends the same privacy budget

throughout the whole process. For instance, one way to perform

such sampling is to let each client perform a Bernoulli test with

probability 𝑠; if the test result is positive, then the client partici-

pates in the LDP-compliant distribution estimation protocol, and

vice versa. Here, the size of the sample set is decided by the ratio

parameter 𝑠 , which will be discussed more in Section 7. Note that

clients in the sample set have depleted their privacy budget, and,

thus, need to be excluded from the remaining procedures.

In the second phase, the remaining clients participate in the

sub-protocol for mean estimation, using the proposed AAA mecha-

nism explained in this section that solves the optimization program

defined in Eq. (3) under 𝜖-LDP, using the estimated global data

distribution descriptor 𝑝𝑋 obtained in the first phase. However, it is

still a challenging task to perform the second phase, which involves

solving the difficult optimization problem defined in Eq. (3). Next,

we discretize the optimization problem in Section 4.2, and then

convert the problem to a solvable form in Section 4.3.

4.2 Discretizing the Optimization Problem
In what follows, assume we have a distribution descriptor 𝑝𝑋 (or 𝑝𝑋
with LDP) on the discrete index set X = {𝑥0, . . . , 𝑥𝑁 } (as defined
in Eq. (5)), we reformulate the problem in Eq. (3) such that it can

be solved numerically.
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Similar to the classic additive solutions, the proposed AAAmech-

anism injects random noise into each client’s data value to obtain

the perturbed version. Let 𝐴 be the added noise, which is a random

variable obeying a conditional probability distribution character-

ized by the function 𝑝𝐴 |𝑋 . For any 𝑥 ∈ X, we denote the random

variable obtained by conditioning 𝐴 on 𝑋 = 𝑥 as (𝐴 | 𝑋 = 𝑥)
or simply 𝐴𝑥 . A sample from 𝐴𝑥 is later added to the output of

the query 𝑥 for perturbation. Accordingly, the perturbed output is

𝑌𝑥 = 𝑥 +𝐴𝑥 . Here, let 𝐴𝑥 be supported with alphabet A that

A ≜ { 𝑗 · 𝜎 : 𝑗 ∈ Z}, (8)

where 𝜎 is the quantization constant defined previously in (4). To

ensure the estimate remains unbiased, it suffices to require that

E[𝐴 | 𝑋 = 𝑥] =
∑︁
𝑎∈A

𝑎 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥) = 0 (9)

hold for any 𝑥 ∈ X, which implies E[𝑌 | 𝑋 = 𝑥] = 𝑥 and, thus,

E[𝑋 ] = E[𝑌 ]. While maintaining unbiasedness, our goal is to

minimize the conditional variance and it holds that

E[Var(𝑌 | 𝑋 )] =
∑︁
𝑥 ∈X

( ∑︁
𝑎∈A

𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥)
)
· 𝑝𝑋 (𝑥). (10)

See the full version [48] for a detailed derivation of Eq. (10). By

Eq. (10), Problem (3) reduces to the following optimization problem.

minimize

P𝐴|𝑋

∑︁
𝑥 ∈X

( ∑︁
𝑎∈A

𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥)
)
· 𝑝𝑋 (𝑥)

subject to 𝑝𝐴 |𝑋 (𝑦 − 𝑥 | 𝑥) ≤ 𝑒𝜖 · 𝑝𝐴 |𝑋 (𝑦 − 𝑥 ′ | 𝑥 ′)
∀𝑥 ≠ 𝑥 ′ ∈ X, 𝑦 ∈ Y,∑︁
𝑎∈A

𝑎 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥) = 0,∀𝑥 ∈ X.

(11)

The above discretized version of the optimization program is

still rather difficult to solve, since the alphabet A is unbounded as

defined in Eq. (8), leading to an infinite-dimensional search space.

In the next subsection, we deal with this tricky problem through a

novel definition of the conditional distribution P𝐴 |𝑋 , as well as a
series of mathematical transformations of the optimization problem,

arriving at a solvable form at the end of the section.

4.3 Solving the Optimization Problem
To address the problem that the alphabet A in Problem (11) is

unbounded, we restrict the conditional distribution P𝐴 |𝑋 to a special

form that involves a finite number of unknowns. This is a main

insight of the proposed AAA mechanism, and it is the key step

towards transforming the optimization problem into a solvable

form.

Specifically, given the quantization constant 𝑁 defined in Sec-

tion 3, for each 𝑥𝑖 ∈ X, we choose an integer 𝑀 ≥ 𝑁 , and define

a tunable vector Q = (q(0) , . . . , q(𝑁 ) ) where q(𝑖) = (𝑞 (𝑖)
𝑗

∈ R+ :

𝑗 = −𝑀, . . . , 𝑀). Note that a valid Q needs to make sure that the

induced vector defines a valid discrete distribution, i.e.,

𝑀−1∑︁
𝑗=−𝑀+1

𝑞
(𝑖)
𝑗

+ 1

1 − 𝑟
·
(
𝑞
(𝑖)
−𝑀 + 𝑞 (𝑖)

𝑀

)
= 1 for all 𝑖 = 0 . . . , 𝑁 . (12)

Here 𝑟 ≤ 1 is a positive geometric constant (we will discuss the

choice of 𝑟 later). Then, we define

𝑝𝐴 |𝑋 (𝑎 𝑗 | 𝑥𝑖 ) =


𝑞
(𝑖)
−𝑀 · 𝑟−𝑀−𝑗 , if 𝑗 ≤ −𝑀,

𝑞
(𝑖)
𝑗
, if | 𝑗 | < 𝑀,

𝑞
(𝑖)
𝑀

· 𝑟 𝑗−𝑀 , if 𝑗 ≥ 𝑀.

(13)

Intuitively, in the above definition of the conditional distribution

P𝐴 |𝑋 , only the middle section involves a finite number of unknowns

(i.e., elements of Q), and the two edge sections are simply modeled

by geometric series. Based on this definition, next we transform

the infinite-dimensional problem defined in Eq. (11) to a finite-

dimensional one.

In what follows, for simplicity, we denote 𝑝𝑋 (𝑥𝑖 ) as 𝑝𝑖 . The
objective function in Eq. (11) under our setting can be restated as

minimize

Q

𝑁∑︁
𝑖=0

𝑝𝑖 · ©­«
−𝑀∑︁
𝑗=−∞

𝑎2

𝑗 · 𝑞
(𝑖)
−𝑀𝑟 | 𝑗 |−𝑀

+
𝑀∑︁

𝑗=−𝑀+1

𝑎2

𝑗 · 𝑞
(𝑖)
𝑗

+
∞∑︁
𝑗=𝑀

𝑎2

𝑗 · 𝑞
(𝑖)
𝑀

𝑟 | 𝑗 |−𝑀ª®¬ .
Recall that 𝑎 𝑗 = 𝜎 · 𝑗 , so

∞∑︁
𝑗=𝑀

𝑎2

𝑗 · 𝑞
(𝑖)
𝑀

𝑟 𝑗−𝑀 = 𝜎2 · 𝑞 (𝑖)
𝑀

∞∑︁
𝑗=0

( 𝑗 +𝑀)2𝑟 𝑗

= 𝜎2 · 𝑞 (𝑖)
𝑀

·
(
𝑀2

1 − 𝑟
+ (2𝑀 − 1)𝑟

(1 − 𝑟 )2
+ 2𝑟

(1 − 𝑟 )3

)
.

(14)

Please see the full version [48] for a detailed derivation of Eq. (14).

Finally, we obtain an optimization problem as follows:

minimize

Q

𝑁∑︁
𝑖=0

𝑝𝑖 ·


𝑀−1∑︁
𝑗=−𝑀+1

𝑎2

𝑗 · 𝑞
(𝑖)
𝑗

+
(
𝑀2

1 − 𝑟
+ (2𝑀 − 1)𝑟

(1 − 𝑟 )2
+ 2𝑟

(1 − 𝑟 )3

)
· 𝜎2

(
𝑞
(𝑖)
−𝑀 + 𝑞 (𝑖)

𝑀

)]
subject to 𝑞

(𝑖)
𝑗

≤ 𝑒𝜖 · 𝑞 (𝑖
′)

𝑗 ′

for all (𝑖, 𝑗) ≠ (𝑖 ′, 𝑗 ′) that 𝑎 𝑗 + 𝑥𝑖 = 𝑎 𝑗 ′ + 𝑥𝑖′,

𝑀−1∑︁
𝑗=−𝑀+1

𝑞
(𝑖)
𝑗

+ 1

1 − 𝑟
·
(
𝑞
(𝑖)
−𝑀 + 𝑞 (𝑖)

𝑀

)
= 1

for all 𝑖 ∈ {0, . . . , 𝑁 },

𝑞
(𝑖)
𝑗

≥ 0, for all 𝑗 ∈ {−𝑀, . . . , 𝑀}.
(15)

Cost. The computation cost for solving the linear programming

problem of Eq. (15) is independent of the number of clients (namely,

the scale of data). Instead, the cost for most of the existing solvers

of linear problems is in polynomial with respect to the total number
of unknowns, which is (𝑁 + 1) · (2𝑀 + 1), a polynomial of 𝑁 , as we

set𝑀 to small multiples of 𝑁 (see Section 7 for more details).
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Figure 2: The optimized noise distribution of the AAA mechanism for several common data distributions (all truncated within
the interval [−1, 1]). The bar plots on the top show the (quantized) data distribution for the data evaluations 𝑋 , while the
depth maps below represent the conditional distributions. Each column in the depth maps represents the discrete distribution
conditioning on𝑋 . The brightness of the color is associated with the weight of the probability mass, as indicated by the color bar
to the right of the figure. As we can see from the plots, the optimized noise distribution varies according to the data distribution.

4.4 Result Perturbation Mechanism
Let Q∗

denote the solution to the Problem (15) with respect to

privacy parameters 𝜖 . It is then fed to the algorithm to compute the

conditional distribution P∗
𝐴 |𝑋 for the added noise.

Based on P∗
𝐴 |𝑋 , recall that A is a discrete set, we define a per-

turbation mechanismM : X → Y as follows. Assuming an input

value 𝑥 fall in the interval [𝑥𝑖 , 𝑥𝑖+1] where 𝑥𝑖 as defined as of Eq. (5),

M(𝑥) =
{
𝐴𝑥𝑖 + 𝑥𝑖 , with probability𝑤𝑖 (𝑥) = 1 − |𝑥−𝑥𝑖 |

𝜎 ,

𝐴𝑥𝑖+1
+ 𝑥𝑖+1, otherwise.

(16)

Here 𝐴𝑥𝑖 ∼ 𝑝∗
𝐴 |𝑋 (𝑎 |𝑥𝑖 ).

This completes the proposed AAA mechanism. We provide for-

mal proofs and utility analyses of AAA in the next section. Figure 2

visualizes the optimized conditional noise distribution with respect

to several common types of data distributions, in which the pro-

posed AAA mechanism satisfies 2-LDP. As one can observe from

Figure 2, in spite of the non-smoothness caused by the numerical

solver, not surprisingly, given symmetric data distributions, the

resulting noises are also symmetric, and vice versa. Moreover, to

minimize the variance, the solver tends to concentrate the resulting

noise around zero, with negative noise skew on positive valued in-

puts and vice versa. Meanwhile, there are probability masses on the

tail ends to enforce unbiasedness, which results in an imbalanced

multi-peak shape.

Privacy enhancing after local perturbation. A standard ap-

proach for LDP mean estimation follows the pattern of perturb-

collect-aggerate, and existing LDP mechanisms mainly differ on

the perturbation stage (including the proposed AAA mechanism).

One can also apply privacy-enhancing techniques at other stages

to improve overall privacy protection. For example, secure shuf-

fling [7, 20] protects the individual’s identity at the collecting stage

by randomly reordering the perturbed data. With secure shuffling,

the privacy protection of the LDP mechanism is enhanced roughly

by a factor of 1/
√︁
|D|, where |D| represents the scale of the dataset

(namely, the number of clients). Similarly, the clients could also ag-

gregate their perturbed values prior to releasing them to the server

using SecAgg [8]. Here, the DP guarantee for the noisy sum is pro-

vided by the sum of independent contributions of DP noises on the

client side. However, in the case when some participating clients do

not perturb their local data (or opt to drop off), the overall privacy

guarantee degrades. In the strict LDP setting of our AAA, on the

other hand, the privacy guarantee regarding any individual client is

provided by his/her own perturbation, which is independent of the
activities of other clients. Compared to the hybrid approach, such

a (more) strict local DP approach might be preferable in scenarios

where clients are not trustworthy.

5 THEORETICAL ANALYSES
5.1 Privacy Analysis
Before demonstrating that the perturbation of AAA satisfies 𝜖-LDP,

we present a useful lemma.

Lemma 3. Assume we have real values 𝑎1, 𝑎2, 𝑎3, 𝑎4,𝑤1,𝑤2 ∈
[0, 1] where for any pair (𝑎𝑖 , 𝑎 𝑗 ) that 𝑖 ≠ 𝑗 we have 𝑎𝑖 ≤ 𝑘 · 𝑎 𝑗
for 𝑘 > 1, then it holds that

𝑤1 · 𝑎1 + (1 −𝑤1) · 𝑎2 ≤ 𝑘 · (𝑤2 · 𝑎3 + (1 −𝑤2) · 𝑎4) . (17)
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Lemma 3 is straightforward and can be easily proved by linearity.

The complete proof is given in the full version [48].

Claim 1. The perturbation mechanism M defined in Section 4.4
satisfies 𝜖-local DP.

Proof. Given the definition of the mechanism M, it is worth

noting that the random choice between 𝐴𝑥𝑖 + 𝑥𝑖 and 𝐴𝑥𝑖+1
+ 𝑥𝑖+1

in Eq. (16) can be interpreted by conditional probabilities 𝑝 (𝑥𝑖 |
𝑥) = 𝑤𝑖 (𝑥) and 𝑝 (𝑥𝑖+1 | 𝑥) = 𝑤𝑖+1 (𝑥). Meanwhile, for any output

𝑦, as 𝑦 = 𝐴𝑥𝑖 + 𝑥𝑖 given some 𝑥𝑖 , it holds that the function 𝑝 (𝑦 |
𝑥𝑖 ) = 𝑝 (𝑎 | 𝑥𝑖 ) for 𝑎 = 𝑦 − 𝑥𝑖 (as 𝑥𝑖 is considered constant here).

After all, from any any inputs 𝑥 ≠ 𝑥 ′ to any output 𝑦, assuming

𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1] and 𝑥 ′ ∈ [𝑥 𝑗 , 𝑥 𝑗+1], the stochastic mapping can be

characterized by

𝑝𝑌 |𝑋 (𝑦 | 𝑥) = 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 ) ·𝑝 (𝑥𝑖 | 𝑥) +𝑝𝐴 |𝑋 (𝑎′ | 𝑥𝑖+1) ·𝑝 (𝑥𝑖+1 | 𝑥),

and

𝑝𝑌 |𝑋 (𝑦 | 𝑥 ′) = 𝑝𝐴 |𝑋 (𝑎 | 𝑥 𝑗 )·𝑝 (𝑥 𝑗 | 𝑥)+𝑝𝐴 |𝑋 (𝑎′ | 𝑥 𝑗+1)·𝑝 (𝑥𝑖+1 | 𝑥)

where 𝑎 + 𝑥𝑖 = 𝑎′ + 𝑥𝑖+1 = 𝑎 + 𝑥 𝑗 = 𝑎′ + 𝑥 𝑗+1 = 𝑦. Also, by our

definitions, we have 𝑝 (𝑥𝑖 | 𝑥) = 𝑤𝑖 = 1 −𝑤𝑖+1 = 1 − 𝑝 (𝑥𝑖+1 | 𝑥)
and both𝑤𝑖 ,𝑤𝑖+1 ∈ [0, 1].

For any𝑦 and𝑥 ≠ 𝑥 ′ (assuming𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1] and𝑥 ′ ∈ [𝑥 𝑗 , 𝑥 𝑗+1])
that M(𝑥) = M(𝑥 ′) = 𝑦, by our discussions above, that implies

there exists 𝑎, 𝑎′, 𝑎, 𝑎′ such that 𝑎+𝑥𝑖 = 𝑎′+𝑥𝑖+1 = 𝑎+𝑥 𝑗 = 𝑎′+𝑥 𝑗+1.

Recall that 𝑝𝐴 |𝑋 (𝑎 | 𝑥) ≤ 𝑒𝜖 · 𝑝𝐴 |𝑋 (𝑎′ | 𝑥 ′) for all the pairs

(𝑎, 𝑥) ≠ (𝑎′, 𝑥 ′) (which is enforced by the solver regarding the op-

timization problem), all conditions in Lemma 3 are satisfied. There-

fore, it holds immediately that 𝑝𝑌 |𝑋 (𝑦 | 𝑥) ≤ 𝑒𝜖 · 𝑝𝑌 |𝑋 (𝑦 | 𝑥 ′) for
any 𝑥 ≠ 𝑥 ′ and the proof is complete. □

5.2 Utility Analysis
First, we formally justify that the derived mechanism preserves un-

biasedness, which is the key utility of a mean estimator. Although

the AAA mechanism is optimized for some specific data distribu-

tions, the unbiasedness would not be affected when being applied

to any other data distribution, as proven in the following claim.

Claim 2. Given a perturbation mechanismM defined as in Sec-
tion 4.4, it holds that E[M(𝑥)] = 𝑥 for any 𝑥 .

Here we provide a sketch of the proof. By the definition of M
in Eq. (16), given any 𝑥 ∈ X, assuming 𝑥 falls into an interval

[𝑥𝑖 , 𝑥𝑖+1], by the formulation of our optimization problem, it is

enforced that E[𝐴𝑥𝑖 ] = E[𝐴𝑥𝑖+1
] = 0 which implies E[𝐴𝑥𝑖 + 𝑥𝑖 ] =

𝑥𝑖 and E[𝐴𝑥𝑖+1
+ 𝑥𝑖+1] = 𝑥𝑖+1. Also, our definition of M implies

E[M(𝑥)] = 𝑤𝑖 (𝑥) · E[𝐴𝑥𝑖 + 𝑥𝑖 ] (𝑥) +𝑤𝑖+1 (𝑥)E[𝐴𝑥𝑖+1
+ 𝑥𝑖+1]. Thus,

E[M(𝑥)] = 𝑥𝑖+1 − 𝑥

𝜎
· 𝑥𝑖 +

𝑥 − 𝑥𝑖

𝜎
· 𝑥𝑖+1 = 𝑥,

and completes the proof.

Next, let’s discuss the error. Being consistent with existing no-

tations. Recall 𝑝𝑋 , 𝑝𝑋 to be quantized distribution descriptors of

D with randomized rounding and privacy-preserving mechanisms,

and let p𝐴 |𝑋 be an optimization solution subject to 𝑝𝑋 , which de-

fines the mechanismM. In what follows, let the output variance

ofM on D be 𝑉 (which is the real performance), and the expected

variance subjects to 𝑝𝑋 be 𝑉 (which is known to us). We define the

relative error 𝜙 ≜ 𝑉̂−𝑉
𝑉̂

.

Assuming the error for the estimated distribution is bounded (as

in Section 3.4), we make the following claim regarding the error on

the output variance (which has a direct impact on the utility).

Claim 3. If it holds that����𝑝𝑋 (𝑥) − 𝑝𝑋 (𝑥)
𝑝𝑋 (𝑥)

���� ≤ 𝜓 for any 𝑥 ∈ X, (18)

then we have |𝜙 | ≤ min

{
𝜓

1+𝜓 ,
𝜓

1−𝜓

}
.

Proof. Given the estimate 𝑝𝑋 , we obtain an optimized condi-

tional noise distribution p𝐴 |𝑋 which minimizes the total variance

of the output subjects to 𝑝𝑋 , which is defined as

𝑉 =

𝑁∑︁
𝑖=1

𝑝𝑋 (𝑥𝑖 ) ·
( ∑︁
𝑎∈A

𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 )
)
.

As defined in (16), for any sample 𝑥 from D (assuming 𝑥 ∈
[𝑥𝑖 , 𝑥𝑖+1]), M returns values with mean 𝑥𝑖 or 𝑥𝑖+1 in probability.

Therefore, it can be shown that the output variance

𝑉 =

𝑁∑︁
𝑖=1

𝑝𝑋 (𝑥𝑖 ) ·
( ∑︁
𝑎∈A

𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 )
)
. (19)

Please see the full version [48] for detailed derivation. As 𝑉 > 0,

we have

𝜙 =

∑𝑁
𝑖=1

(𝑝𝑋 (𝑥𝑖 ) − 𝑝𝑋 (𝑥𝑖 )) ·
∑
𝑎∈A 𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 )∑𝑁

𝑖=1
𝑝𝑋 (𝑥𝑖 ) ·

∑
𝑎∈A 𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 )

. (20)

By Eq.(18), it always holds that

− 𝜓

1 +𝜓 ≤ 𝑝𝑋 (𝑥) − 𝑝𝑋 (𝑥)
𝑝𝑋 (𝑥) ≤ 𝜓

1 −𝜓
. (21)

By Eq.(20) and RHS of Eq.(21),

𝜙 ≤
∑𝑁
𝑖=1

𝜓

1−𝜓 · 𝑝𝑋 (𝑥) · ∑𝑎∈A 𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 )∑𝑁
𝑖=1

𝑝𝑋 (𝑥𝑖 ) ·
∑
𝑎∈A 𝑎2 · 𝑝𝐴 |𝑋 (𝑎 | 𝑥𝑖 )

=
𝜓

1 −𝜓
(22)

Similarly, it is easy to show 𝜙 ≤ 𝜓/(1 +𝜓 ), which completes the

proof. □

6 RELATEDWORKS
Data perturbation under central DP. The notion of central and

local DP are conceptually similar, perturbation algorithms used for

central DP can often be applied in the contexts of local DP and

vice versa, e.g., the Laplace mechanism plays important roles in the

contexts of local and central DP protection. However, the threat

models for the central setting are radically different from those

for local DP. In the central DP setting, the trusted data curator can

directly access all the original (and sensitive) records, which is not

granted in local DP settings. Thus, despite the conceptual similarity,

central DP and local DP are metrics in orthogonal contexts and it

would be inappropriate to directly compare the local and central

differential privacy-enhancing approaches. Unless otherwise stated,

the solutions reviewed next do not apply to our target problem

setting, and, thus, are orthogonal to this work. In the following, we

review several notable fundamental perturbation mechanisms in
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(c) Beta Distribution.

Figure 3: Comparisons of the expected variance on different input data distributions.

the central setting that (often) outperform the Laplace mechanism

and the Gaussian mechanism.

Ghosh et al. [28] propose the geometric mechanism for enforcing

𝜖-DP, for which the distribution of the injected noise is formulated

as a two-sided geometric series with tunable parameters and can

be viewed as an optimized variant of the Laplace mechanism. In

particular, [28] obtains improved result utility under the Bayesian

optimization model, in which the privacy practitioner has prior

knowledge of the input distribution to calibrate the randomization

mechanism. This assumption is fundamentally different from our

setting, where no prior knowledge about the input distribution is

given.

Another notable series of works that achieve a certain notion of

optimality is the staircase mechanisms [25–27]. Specifically, these

methods assume that the query (i.e., statistics to be released un-

der DP) is a real-valued function, and the mechanism design aims

to minimize the worst-case utility loss for the perturbed output

subject to the privacy constraints, which can be formulated as an

optimization problem. Specifically, the optimization objective is

formulated as a piecewise constant probability density function,

which is symmetric to the origin and decreases geometrically, lead-

ing to noise distribution with a symmetric staircase shape. It is

worth mentioning that the idea of this work is remotely related to

the Cactus mechanism [3], which works towards the optimal noise

injection mechanism for large-composition, i.e., answering a large

number of queries, under the central DP setting through numerical

optimization.

The interactive LDP model. The notion of interactive DP model

can be traced back to the classical [19]. There are a few works in the

scope of LDP setting [24, 30–32, 39]. Regarding an interactivemodel,

clients respond to the data curator’s queries in a sequential manner,

and clients are permitted to observe the preceding responses from

other clients which affect the perturbation applied to their own data.

AAA mechanism falls into this category as we apply a two-step

approach, where the responses from a randomly selected portion

of clients directly affect the perturbation mechanism applied to

the rest of the clients. It has been shown that interactive LDP

mechanisms are stronger than the non-interactive ones for tasks

such as population quantiles, logistic regression, supporting vector

machine, and estimating an unknown Gaussian distribution [24, 30,

31, 39]. On the contrary, the problem of empirical mean estimation

for a given set of data points, which is the focus of this paper, has not

been investigated under the interactive LDP framework. Our work

fills this gap by showing that AAA, which is interactive, achieves

better utility than the existing (non-interactive) solutions.

Interactive model is also applied in other contexts of privacy, for

example, protecting Geo-Indistinguishability [9], an adaptation of

differential privacy to the domain of geographic locations. Sim-

ilar to our proposed mechanism, [9] proposes to formulate an

optimization problem with a prior, and the objective is to find

a location-randomization mechanism that minimizes the expected

distance between original and perturbed locations while preserv-

ing geo-indistinguishability. However, it is worth noting that even

reducing the problem to one dimension (location-based data are

2-dimensional) and adjusting the constraints according to local DP,

the optimized mechanism still fails to serve as a mean estimation

mechanism, as the objectives of the problems are different.

7 EXPERIMENTS
In this section, we compare the proposed AAA mechanism with

several benchmark private mean estimation mechanisms in the

literature, i.e., the Laplace mechanism, Duchi’s mechanism [18], and

piecewise/hybridmechanisms [43]. In addition, we also compare the

squared wave (SW) mechanism [35], as an example that is designed

for a different task. Note that the aforementioned estimators take a

similar approach - let local clients perturb the original data, collect

the perturbed data, and output themean. Therefore, the randomness

of the perturbation mechanisms would directly impact the final

result. Accordingly, our experimental evaluation and comparison of

the mechanisms consists of two phases. In Section 7.1, we compare

the expected output variances regarding various data distributions,

which is the prime target optimization objective of our mechanism.

In Section 7.2, we compare the practical performances on various

synthetic and real datasets regarding the mean estimation task,

which is the ultimate objective of this work.

7.1 Evaluating the Expected Variance
In this section, assuming the data distribution 𝑓𝑋 is accessible,

we compare the expected variance E[Var(𝑌 | 𝑋 )] =
∫
X 𝑓𝑋 (𝑥) ·∫

Y 𝑓𝑌 |𝑋 (𝑦 | 𝑥) · (𝑦 − 𝑥)2𝑑𝑦𝑑𝑥 . We test the following three types

of data distributions: (1) Gaussian distribution N(0, 0.12), which is

symmetric to the center of the sample domain (origin). (2) Shifted

Exponential distribution, which shifts the distribution function of
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Exp(6) to the left by 𝛽 , and has probability mass accumulating on

one side of the sample domain. (3) Beta distribution Beta(0.5, 0.5),
whose probability mass concentrates on both ends of the domain.

For fitting to our setting, all distributions are truncated (with nec-

essary normalization) to the range [−1, 1].
Under the metric of pure-LDP, we vary the privacy parameter 𝜖

in the range (0, 4]. For AAA mechanism, when solving the discrete

optimization problem of Eq. (15), we set the quantization parameter

𝜎 = 0.02 (i.e., 𝑁 = 100), the noise value range parameter𝑀 = 𝑘 · 𝑁
for 𝑘 = 3 (such that 𝑞

(𝑖)
𝑗

spans between [−3, 3]), the geometry series

parameter 𝑟 = 0.5. Through the experiments, we find that the choice

of 𝑟 has a negligible impact as long as 𝑟 < 0.6. We will discuss the

choice of these parameters in greater detail in Section 7.3.

We plot the expected (average) variance as a function of the

privacy parameter 𝜖 for each of the mechanisms given the ground

truth data distributions in Figure 3. Clearly, the proposed AAA

mechanism significantly outperforms all of its competitors in all

cases. For example, as depicted in Figure 3(a), it is easy to observe

that at 𝜖 = 1, AAAmechanism’s expected variance is approximately

half of the best result from its competitors. When 𝜖 → 0, the

performance between AAA and other solutions expands rapidly

for all three data distributions.

Another interesting observation from the evaluation results is

that although the hybrid mechanism is designed to be an optimized

combination of Duchi’s mechanism and the piecewise mechanism,

its performance under the three data distributions evaluated is

sometimes lower than that of the piecewise mechanism, e.g., in

Figure 3(a). This confirms our conjecture that high worst-case per-

formance does not necessarily lead to high average-case perfor-

mance, motivating the usage of our AAA mechanism, which aims

to achieve high average-case performance.

7.2 Evaluating the Mean Estimation Error
Next, we present the experimental evaluation results with respect to

the main task: mean estimation under LDP constraints. We consider

the error as the squared difference between the estimated mean and

the ground truth mean. That is, let D be the collection of all local

data and Dmean be the (1 − 𝑠) portion of the data used for mean

estimation, Error =
(∑

𝑥 ∈Dmean
M(𝑥)/|Dmean | −

∑
𝑥 ∈D 𝑥/|D|

)
2

.

This error is then averaged over 100 independent runs.

We consider synthetic datasets where 𝑛 samples are drawn from

each of the following distributions, with 𝑛 ∈ {10
3, 10

4, 10
5}. Results

on higher values of 𝑛 lead to similar conclusions, and are omit-

ted. Gaussian: Samples from the standard Gaussian distribution

N(0, 1) is are clipped to the range of [−5, 5]. Exponential: Sam-

ples from the Exponential distribution Exp(1) are clipped to the

range of [0, 5]. Bernoulli: Samples from Bernoulli distribution

Ber(0.5) remain.

We also consider three real-world datasets that were used in the

previous work [35], described as follows. Taxi [41]: This dataset

contains the duration of trips (in seconds) from 2018 January New

York green taxi data. The range of the data is from 0 to 202989.

There are 𝑛 = 792744 samples. Income [38]: This dataset contains
income information from the 2018 American Community Survey.

The range of the income attribute is from −11200 to 1423000. There

are 𝑛 = 3236107 samples. Retirement [33]: This dataset contains

the employee compensation from San Francisco. The range of the

data is from −30621.43 to 121952.52. There are 𝑛 = 683277 samples.

For all datasets, we further linearly transform each data point

to the range [−1, 1]. For estimating the input distribution, we use

the generalized randomized response with a portion 𝑠 = 0.1 of the

private input data to obtain a noisy histogram, detailed in the full

version. Then, we use the estimated input distribution to instantiate

AAA mechanism, and inject the additive noise to the remaining

(1 − 𝑠) portion of the private data. For the AAA mechanism, we set

the bin size to 0.125 when 𝑛 = 10
5
and 𝑛 = 10

4
for synthetic data

drawn from Gaussian and Exponential as well as for the relatively

large-scale real-world datasets while for relatively small synthetic

datasets with 𝑛 = 10
3
, we set the bin size to 0.25. For synthetic

data drawn from the Bernoulli distribution, we choose a larger bin

size of 1 as the data domain is only of size 2. We fix 𝑞 =
|A |
|X | to 4

for all experiments. More experiments on the hyperparameters are

deferred to Section 7.3. We report the average error under different

𝜖’s in Figures 4 (for synthetic data) and 5 (for real-world data).

Synthetic data. First, we note that AAA consistently achieves the

best performance for all synthetic datasets under all privacy con-

straints. Comparing the performance of AAA across data drawn

from different distributions (namely, Gaussian, Exponential, and

Bernoulli), we can see that AAA achieves the lowest error on Gauss-

ian, whereas for Exponential and Bernoulli, the error is slightly

higher. Intuitively, Gaussian distribution is rather concentrated

towards the mean, and hence, it is easier to obtain an accurate his-

togram estimate by querying only a portion 𝑠 of the data (especially

when 𝜖 is large), which, in turn, sets up the stage for optimizing

the noise distribution, the key component of AAA. We can also see

that for Gaussian data, the improvement of AAA over the baselines

becomes higher as 𝜖 increases as it is easier to obtain an accurate es-

timate for the histogram under these settings. On the other hand, it

is more difficult to accurately estimate the histogram for the heavy-

tailed Exponential. Finally, for the Bernoulli distribution, which

has the largest variance itself (namely, error due to sampling), it is

naturally more difficult to obtain an accurate mean estimate with a

small error, compared with Gaussian and Exponential data.

We next investigate the utility improvement of AAA over the

baselines. We can see that the relative improvement achieves the

highest for the Gaussian distribution (under large 𝑛 and 𝜖’s) and the

Exponential distribution. For Gaussian, as we have explained, it is

because the task of histogram estimation is easier. For Exponential,

there are more insights. Recall that Exp(1) is more skewed toward

the left end and as a result, AAA is able to learn “roughly” that the

noise distribution should also be skewed toward the left end due to

the optimization goal (despite the restrictive privacy constraints).

On the other hand, the competitors are not distribution-aware and

hence, perform much worse than AAA. Among these competitors,

the hybrid mechanism and the piecewise mechanism achieve the

lowest error, the reason being that both mechanisms are optimized

for the worst-case scenarios (see [43] for more details) and these

scenarios happen more often in the heavy-tailed Exponential dis-

tributions than the other two.

Regarding the Bernoulli distribution, Duchi’s mechanism per-

forms the best among the competitors, and the performance gap

between Duchi’s and our AAA is less significant, compared with
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Figure 4: Performance on synthetic data following different distributions with varying privacy parameters.
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Figure 5: Performance on real-world datasets under varying privacy parameters.

the other two distributions. The reason is that, for Bernoulli data,

an intuitively good perturbation strategy is to perturb the data to

the boundaries, which resembles Duchi’s mechanism. As a result,

the improvement of AAA on Bernoulli is not as significant as in

the previous two data distributions (Gaussian and Exponential).

Finally, SW performs the best among the competitors for data

drawn from the Gaussian distribution, which is the “smoothest” dis-

tribution among the three and is naturally in linewith the smoothen-

ing step of SW to post-process the collected data.

Real-world data. In Figure 5, AAA mechanism significantly out-

performs its competitors on Green Taxi and Retirement under all

privacy constraints. For Income, the improvement of AAA is less

significant when 𝜖 is large, while the performance of hybrid and

piecewise mechanisms is pretty good. The reason is similar to what

we have explained above–the Income data is skewed towards the

left end while having a heavy tail, which is more favorable to the

hybrid and piecewise mechanism, and in the meantime, it is difficult

to estimate the histogram accurately for AAA.
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Figure 6: Effect of hyperparameters on AAA.

7.3 Effect of Hyperparameters
We investigate the split ratio 𝑠 that quantifies the portion of data

used for distribution estimation; the number of bins 𝑁 that parti-

tions the input data range, and the ratio 𝑞 = |A|/|X| that quantifies
the ratio between the value ranges of the conditional additive noise

and the input data. We study the impact of the hyperparameters on

the utility using the synthetic data of varying size 𝑛 drawn from

Ber(0.5) andN(0, 1), following with the same pre-processing steps

as in Section 7.2. Experiments on Exponential data are omitted as

they lead to similar conclusions.

Split ratio. As depicted in Figure 6(a), We present the error versus

split ratios from 0.05 to 0.4 while fixing the bin size to 0.125 for

Gaussian and 1 for Bernoulli, with 𝑞 = 4. In general, we prefer rela-

tively small 𝑠 (e.g., 0.1). However, we notice that the performance of

AAA is more sensitive to 𝑠 on Bernoulli-distributed data. Perhaps

the presented robustness of AAA is because Gaussian data is more

concentrated, such that a larger 𝑠 gains limited improvement on

the sampling error, resulting in similar final performance. However,

for the less concentrated Bernoulli, we need more data (i.e. larger

𝑠) to estimate the mean.

Bin size. One may choose a smaller bin size to better capture the

data distribution. However, in practice, it may involve a larger rela-

tive error for the distribution estimation, which would eventually

impact the result utility. In Figure 6(b), we present the error versus

varying quantization parameters (interval width) 𝜎 from 0.125 to 2

while fixing 𝑠 = 0.05 and 𝑞 = 4. As we can see from the figure, for

relatively large values of 𝜖 (e.g., 4), a small 𝜎 results in better utility,

whereas for moderate 𝜖 , the impact of 𝜎 is less significant. This is

mainly due to the trade-off between the granularity of distribution

estimation versus its error. For small values of 𝜖 (e.g., 0.5), the opti-

mal choice of bin size is also larger. Comparing the results between

𝑛 = 10
3
and 𝑛 = 10

4
, we notice that the optimal choice of bin size

varies as 𝑛 varies. When 𝑛 = 10
3
, the optimal 𝜎 under 𝜖 = 1 is 0, 5.

Whereas when 𝑛 = 10
4
, the optimal choice is around 0.125, which

is much smaller. The reason is similar: when 𝑛 is small, decreasing

𝜎 does not help with the histogram estimation, but rather, increases

the error. Similar conclusions also apply for Bernoulli and Expo-

nential distrubitons. In general, we would recommend moderated

choices when either 𝑛 or 𝜖 is small. For large 𝑛 and 𝜖 , we suggest

relatively small 𝜎 . More results are in the full version [48].

Noise range. Parameter 𝑞 controls the relative range ratio be-

tween the noise versus the input data. While a larger value of 𝑞

requires higher computation costs, it may provide better condi-

tional noise distribution as the solution space is larger (assuming

that the estimate for the histogram is accurate). We vary the value

of 𝑞 = 2, 4, 8, 16 while fixing the bin size to 0.125 for Gaussian and

1 for Bernoulli, with 𝑠 to 0.05 and report the results in Figure 6(c).

We observe that except for small 𝜖 (e.g., 0.5), the impact of 𝑞 on the

utility of AAA is negligible. Overall, we suggest small 𝑞 to avoid op-

timizing the noise distribution towards the wrong direction (under

restrictively small 𝜖) and to save up the computational costs.

8 CONCLUSION
In this work, we present a local differentially private mechanism

that adapts to the underlying data distribution, whose main com-

ponent is an algorithm that generates additive noise that is care-

fully calibrated to achieve an optimal trade-off between privacy

guarantee and utility. The proposed AAA mechanism outperforms

previous methods in terms of practical performance on common

data distributions according to our extensive experiments.

Regarding future work, an interesting direction is to investi-

gate adapting the AAA framework to other data aggregations, e.g.

variance estimation, distribution estimation, or federated learning.

These tasks require rigorous analysis of the desired characteris-

tics, and we intend to update the AAA mechanism to these more

complex LDP applications to obtain improved result utility.
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