
Everything You Always Wanted to Know About Storage
Compressibility of Pre-Trained ML Models but Were Afraid to Ask

Zhaoyuan Su∗
University of Virginia
acf7ea@virginia.edu

Ammar Ahmed
University of Minnesota
ahme0599@umn.edu

Zirui Wang
University of Virginia
eeb9sd@virginia.edu

Ali Anwar
University of Minnesota

aanwar@umn.edu

Yue Cheng
University of Virginia
mrz7dp@virginia.edu

ABSTRACT

As the number of pre-trained machine learning (ML) models is
growing exponentially, data reduction tools are not catching up.
Existing data reduction techniques are not specifically designed for
pre-trained model (PTM) dataset files. This is largely due to a lack of
understanding of the patterns and characteristics of these datasets,
especially those relevant to data reduction and compressibility.

This paper presents the first, exhaustive analysis to date of PTM
datasets on storage compressibility. Our analysis spans different
types of data reduction and compression techniques, from hash-
based data deduplication, data similarity detection, to dictionary-
coding compression. Our analysis explores these techniques at three
data granularity levels, from model layers, model chunks, to model
parameters. We draw new observations that indicate that modern
data reduction tools are not effective when handling PTM datasets.
There is a pressing need for new compressionmethods that take into
account PTMs’ data characteristics for effective storage reduction.

Motivated by our findings, we design Elf, a simple yet effective,
error-bounded, lossy floating-point compression method. Elf trans-
forms floating-point parameters in such a way that the common
exponent field of the transformed parameters can be completely
eliminated to save storage space. We develop Elves, a compression
framework that integrates Elf along with several other data reduc-
tion methods. Elves uses the most effective method to compress
PTMs that exhibit different patterns. Evaluation shows that Elves
achieves an overall compression ratio of 1.52×, which is 1.31×,
1.32× and 1.29× higher than a general-purpose compressor (zstd),
an error-bounded lossy compressor (SZ3), and the uniform model
quantization, respectively, with negligible model accuracy loss.

PVLDB Reference Format:

Zhaoyuan Su, Ammar Ahmed, Zirui Wang, Ali Anwar, and Yue Cheng.
Everything You Always Wanted to Know About Storage Compressibility of
Pre-Trained ML Models but Were Afraid to Ask. PVLDB, 17(8): 2036 - 2049,
2024.
doi:10.14778/3659437.3659456

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.
doi:10.14778/3659437.3659456

Figure 1: Increasing trend of model count (left 𝑌) and aggre-

gate storage size (right 𝑌) of Hugging Face. “Elves Compressed
Size” or “Elf Compressed Size” represents the storage trend after

Elves alone or Elf alone is applied to Hugging Face’s PTM storage.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/ds2-lab/ELF.

1 INTRODUCTION

As artificial intelligence (AI) and machine learning (ML) continue to
evolve at a fast pace, a plethora of diverse models are being created
and refined. These models reveal several emerging trends. First, the
sheer number of pre-trained models (PTMs) is skyrocketing. These
models are pre-trained to achieve a desirable accuracy for numerous
tasks. PTMs are further reused to build task-specific models, which
are fine-tuned with expertise [45, 51]. Typically, PTM datasets are
persistently stored and managed in the format of files by model
registry services such as Hugging Face [3] and TensorFlow Hub [7]
to facilitate model sharing. For example, Hugging Face hosts over
450𝐾 PTMs (1,486.72 TB in size) as of December 31, 2023, and this
number has been growing exponentially, as shown in Figure 1.

Second, the exponential growth of training datasets and the
vast range of problem domains lead to more complex model ar-
chitectures, enriched features, a significant rise in the number of
parameters, and as a result, increasingly large model sizes [4, 13, 57].
As of the fourth quarter of 2023, stored PTM datasets in Hugging
Face have already exceeded 1,400 TB (Figure 1) and the need for
storage is projected to continue in the foreseeable future. These
trends impose huge storage requirements for MLOps to store PTMs.

The extensive storage requirements associated with large pre-
trained ML models could theoretically be alleviated through data
reduction techniques. These techniques include general-purpose

2036

https://doi.org/10.14778/3659437.3659456
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659456
https://github.com/ds2-lab/ELF
https://www.acm.org/publications/policies/artifact-review-and-badging-current

lossless compression algorithms [1, 10], data deduplication meth-
ods for enterprise storage systems [23, 67], and floating-point com-
pression algorithms for scientific datasets [8, 65], time series (TS)
datasets [14, 33, 38, 47], and data lakes [32]. However, these strate-
gies are not effective when dealing with PTM datasets becasue:
(1) none of existing techniques are aware of the data patterns of

PTMs; and (2) there is a lack of understanding in those patterns, es-

pecially those relevant to data reduction and storage compressibility.
Model pruning and quantization techniques [18, 27, 34], on the

other hand, are typically used for reducing the memory and com-
putational requirements during training or inference, posing many
constraints and challenges in model integrity, usability, and accu-
racy when applied to PTM storage reduction.

To fill this gap, we present, to the best of our knowledge, the
first comprehensive study of a large, real-world dataset of PTMs
collected from Hugging Face on PTM storage compressibility. Our
analysis seeks comprehensiveness in three dimensions.

• Scale. We collected a total of 8, 238 PTMs from Hugging Face,
which include over 75𝐾 files and occupy around 13 TB storage
capacity. We performed the analysis on file formats, file storage
footprint, and model sizes under different model categories.

• Data reduction techniques.We sampled a representative set
of 900 models from our large-scale dataset and performed an
in-depth, what-if analysis of various widely used data reduction
techniques. We first studied hash-based deduplication at the
model layer level and chunk level. Then, we proceeded with
data similarity detection to see whether model layers or model
chunks are highly similar. Finally, we examine the dictionary
coding compression technique at the parameter level.

• Data granularity. Our analysis explored the aforementioned
techniques at three data granularity levels: model layers, model
data chunks, and model parameters.

Our multifaceted analysis induces the following observations.

• Real-world PTMs are large and deep.Our analysis shows that
65.97% of the 8, 238 models fall within the size range between
100 MB and 1,000 MB. 45.83% of models have 150-250 layers.

• Parameters of these models are highly concentrated. The
main contents of PTMs, model parameters, are predominantly
floating-point values, and most of these floating-point param-
eters are float32. Across all 900 sampled models, 98.91% of all
parameters fall within the range of (−1, 1).

• Most model layers and chunks are non-duplicate, nor are

they similar. Our analysis reveals that duplicate layers across
all different model categories constitute only 5.72% of the overall
storage footprint and our data similarity detection algorithm
uncovers that only 7.98% of all 512-byte model data chunks bear
any resemblance to each other.

• Amajority of models exhibit modest-to-high parameter

redundancy. About 48.94% of models have at least 50% of their
parameters repeated at least once. However, widely used general-
purpose dictionary coding compressors are generally not effec-
tive due to the limited length of floating-point parameters and
the long distance between duplicate parameters. Nonetheless,
dictionary coding is effective for 11.56% of models, where over
99% of their parameters are duplicated.

A high-level ramification of many of these observations is
a previously undisclosed insight: PTM storage compression is very

challenging and existing techniques are generally ineffective due to the

randomness of PTMs. There is a need for new compression methods
that account for PTMs’ data characteristics in order to extract most
of the compressibility from the datasets.

This paper makes the following contributions.
• We conduct the first, exhaustive study of the storage compress-

ibility of real-world pre-trained ML model datasets and make
key observations that motivate the design of new compression
methods for PTM storage.

• We propose Elf (Exponent-Less Float-point encoding), a new,
error-bounded, near-lossless floating-point compression method
motivated by the observations from our analysis. The idea of
Elf is simple yet effective: since most parameters in PTMs are
within (−1, 1), Elf maps all parameters ∈ (−1, 1) to [1, 2) so
that the common exponent field 0b01111111 can be completely
eliminated to save storage space. Elf is easily parallelizable and
has fast compression and decompression speed.

• We develop Elves, an offline compression framework for efficient
PTM storage. Elves incorporates Elf along with hash-based
deduplication, length-distance dictionary coding, and a general-
purpose lossless compressor. Our hybrid approach collectively
compresses PTM datasets that exhibit different data patterns.

• We develop a validation framework that generates random inputs
to validate the accuracy of Elves-decompressed models at scale.

• Experimental results show that: (1) Elves achieves the highest
compression ratio (1.52) for our collected dataset compared to
a wide range of 11 compression methods with near-zero model
accuracy loss; and (2) in terms of compression and decompression
speed, Elf outperforms all 13 selected baseline methods.
A CR of 1.52 might not appear remarkable if viewed in isolation.

However, this result is significant compared with the state-of-the-
art compression methods, a factor of 1.29× improvement compared
to the best baseline compressor zfp. A 34% reduction in storage will
translate to a cost reduction of hundreds of TBs of storage hardware:
if we apply Elves (or Elf) to Hugging Face’s PTM storage, it could
have saved 509 TB (369 TB) of storage by end of 2023 Q4 as shown
in Figure 1. The saved storage also means a potential improvement
in datacenter TCOs, encompassing benefits such as reduced cooling,
lower energy usage, and decreased carbon footprint [2].

2 RELATEDWORK

Model Pruning and Quantization. There is a large body of re-
search focusing on reducing the memory and computational

requirement of ML models for online tasks such as model serv-
ing [19–21, 24–26, 28, 35, 62, 63].
• Why pruning may not be ideal for PTM storage reduc-

tion: Pruning removes insignificant connections or layers in the
model, resulting in a smaller model representation [26]. Pruning
can be generally categorized into structured pruning [12, 56]
and unstructured pruning [24, 37, 54]. Structured pruning may
remove entire channels, filters, or layers, leading to significant
model size reduction. However, structured pruning impacts the
integrity of PTMs: (1) from a model provider perspective (e.g.,
Hugging Face), such irreversible changes are often not acceptable

2037

to those who share PTM datasets via model registries; (2) these
changes to model structures may affect subsequent MLOps oper-
ations. Unstructured pruning involves a trade-off: reducing the
model’s size requires a higher magnitude threshold, which can
potentially compromise model performance.

• Why quantization may not be ideal for PTM storage reduc-

tion: Quantization [21, 25, 31, 62, 63] involves representing the
parameters and activations of a model using fewer bits than the
original. Quantization methods can be generally categorized into
quantization-aware training [46], dynamic quantization [39], and
post-training quantization [44, 62, 63]. The first two are typically
not directly applicable to PTM storage. Post-training quantiza-
tion typically reduces the precision of model parameters, such as
converting from float32 to formats like float16, int8, or 3-bit
representation. However, this process introduces non-negligible
errors that build up across the neural network, potentially leading
to a significant deviation from the original model’s performance.

Pruned and quantized models cannot use re-training or fine-
tuning to “regain” the information loss for PTM storage, further
affecting the models’ accuracy, and diminishing their usability.

Elf is fundamentally different from pruning and quantization.
Elf supports both compression and decompression and, thus, is
capable of preserving model structures and recovering model pa-
rameters to their original data type, though with bounded loss. In
contrast, pruning and quantization are one-way processes, mean-
ing that once a model has undergone pruning and quantization,
it cannot be fully recovered to its original state due to a lack of
decompression. That is, quantization and pruning have irreversible
effects on model information, therefore hindering subsequent oper-
ations on PTMs. Due to these drawbacks, these two techniques do
not serve as ideal solutions for reducing the storage requirement

of persistently-archived PTMs [3, 7].
Data Reduction and Compression. Large-scale enterprise and
cloud storage systems often rely on data deduplication [23, 60,
67] and delta compression [11, 40, 64] to reduce storage costs, as
these data—documents, source code, binary executables, webpage
objects, and more—typically show high duplication rates or are
highly similar. General-purpose lossless compressors can reduce file
sizes by identifying redundant information and representing them
in a more compact form [1, 6, 10, 68]. However, these data reduction
techniques are not designed to handle floating-point-based datasets,
which renders them largely ineffective for PTM datasets. Floating-
point compression techniques for TS datasets [14, 16, 33, 38, 47]
exploit the temporal data patterns and redundancies of TS data
and use delta compression or XOR operations on successive values
to eliminate redundant information or resulting XOR’ed zeros for
space savings. Columnar storage formats [32, 55] are designed to
compress large column datasets efficiently in data lakes by utilizing
data-reduction and compression techniques, such as dictionary
encoding, bit packing, and novel floating-point encoding. Lossy
floating-point compression methods [17, 53] for scientific datasets
(e.g., visualizations), such as SZ3 [65] and zfp [8], encode floating-
point values by leveraging correlations among values. However,
these floating-point compressors are not effective when it comes
to PTM datasets since model parameters are cluttered, making it
impossible to extract correlations or patterns.

Table 1: Distribution of model categories (full dataset). NLP:

natural language processing. CV: computer vision. RL: reinforcement

learning. Uninformed: models with no category tag information.

Category Count (%) Total Size in GB (%)

NLP 6,220 (75.5%) 7,661.22 (78.82%)
Audio 430 (5.22%) 466.79 (4.8%)

Multimodal 394 (4.78%) 358.6 (3.69%)
CV 195 (2.37%) 134.62 (1.39%)
RL 1 (0.01%) 0.0062 (0.0001%)

Uninformed 998 (12.12%) 1,098.5 (11.3%)
Overall 8,238 (100%) 9,719.73 (100%)

Table 2: Distribution of model categories (sampled dataset).

Category Count (%) Total Size in GB (%)

NLP 300 (33.33%) 170.85 (29.67%)
Audio 150 (16.67%) 154.30 (26.79%)

Multimodal 150 (16.67%) 97.81 (16.99%)
CV 150 (16.67%) 58.74 (10.20%)

Uninformed 150 (16.67%) 94.18 (16.35%)
Overall 900 (100%) 575.88 (100%)

3 DATASET OVERVIEW

Full Dataset.We have downloaded pre-trained ML models from
a total of 8, 238 Hugging Face repositories as of October 20, 2022.
These repositories include 75, 871 files, accounting for around 13.2 TB
of storage space. .json files represent the largest proportion, com-
prising approximately 42.5% of all files. .bin files account for 16.5%
of all files and primarily contain the binary data of models. Regard-
ing the size distribution of different file formats, it is evident that
the .bin files, which store PTMs, occupy the largest portion (71.9%)
of the storage footprint. We obtained category tag information from
each model repository. Based on this information, we categorized
all collected models into six categories as shown in Table 1. Out of
all the 8, 238 models, 75.5% are NLP models, consuming 78.82% of
the storage size, highlighting the popularity of language models.
Sampled Dataset. We observe from the full dataset that .bin files
that store the binary data of PTMs predominantly occupy the stor-
age footprint, therefore, we focus on examining the characteristics
and compressibility of these binary data throughout the rest of the
paper. To do so, we use smaller samples of the full dataset that can
fit within the storage capacity of typical storage server machines.
The sampled dataset features a more balanced distribution of model
categories to avoid bias (Table 2). This dataset includes 150 models
each from the Audio, Multimodal, CV, and Uniformed categories.
The NLP category contains 300 models, reflecting its prominence
and prevalence in current applications. Unless stated otherwise, the
rest of the paper will be focused on the 900-model, sampled dataset.

4 ANALYSIS: SIZES AND CONTENTS

This section presents our model size and content analysis that aims
to answer the following research questions (RQs):
• RQ1:What are the sizes of PTMs in different categories?
• RQ2:What are the layer counts and sizes in these models?
• RQ3:What types of data (parameters) are stored in thesemodels?
Model Sizes. We first analyze model sizes. Figure 2 shows that
64.78% of models fall within the size range between 100 MB and
1,024 MB, with an additional 25.22% surpassing the 1 GB threshold.

2038

10−2 10−1 100 101 102 103 104

Model Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

nlp

audio

multimodal

cv

uninformed

all

Figure 2: Model size distribution of the

sampled dataset.

0 200 400 600 800 1000 1200
Layer Count

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F nlp

audio

multimodal

cv

uninformed

all

Figure 3: Model layer number CDF for

different categories.

10−5 10−3 10−1 101 103

Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

3 KB

4 KB

2.25 MB
4 MB

nlp

audio

multimodal

cv

uninformed

all

Figure 4: Model layer size CDF for differ-

ent categories.

Figure 5: Parameter value distribution.

Model Layers. We extract the layer information of all the 900
models in the sampled dataset and report the details in Figure 3–4.
The key observations are: (1) Around 75% of models have over 200
layers, likely because most models need a deep structure to capture
complex features. (2) In the audio category, about 70% of models
are very deep, with more than 400 layers. (3) Layer sizes exhibit a
step-like distribution, with 58% of layer sizes concentrated around
the scale of 3 KB, 4 KB, 2.25 MB, and 4 MB.

Table 3: Model layer data type distribution. Others include

float64, uint8, and int64.

Layer Type Count (%) Total Sz in GB (%) Avg Para # Avg Sz in MB

float32 240,966 (96.95%) 557.84 (96.87%) 621,421 2.37
float16 4,018 (1.62%) 14.51 (2.52%) 1,939,421 3.70
others 3,561 (1.43%) 3.53 (0.61%) 595,181 1.02
Overall 248,545 (100%) 575.88 (100%) 642,352 2.37

Model Data Types.Next, we examine the data types of the sampled
model dataset. We find that all parameters within an individual
layer are of the same data type. Thus, we break down all model
layers by data types and report the statistics of layer data types
in Table 3. Most layers are of float32 type with around 97% in
both count and storage footprint. Layers of type float16 and others
make up 2.52%, and 0.61% of the total storage space, respectively.
Model Parameters.We then analyze the distribution of parameter
values. As shown in Figure 5, 98.91% of all parameters fall within
the range of (−1, 1), with 50.50% in the interval (−1, 0] and 48.41%
in the interval (0, 1).

Implications

• Real-world, pre-trained ML models are considerably large in size.

The rapidly increasing number of ML models poses significant

challenges to MLOps for storing and managing the exponentially

increasing volume of model datasets.

• These models typically contain a massive number of layers, po-

tentially providing intriguing opportunities for data reduction us-

ing layer-based (or chunk-based) deduplication techniques and/or

similarity-based delta compression techniques.

• Parameter values are concentrated within a narrow range of

(−1, 1), implying potential opportunities for the application of

compression/encoding methods [1, 8, 16, 47, 65, 68]. These com-

pression methods use a combination of techniques including pre-

diction [36, 65], XOR-based zero encoding [16, 47], and error-

encoding [66] to compress floating-point model datasets.

5 ANALYSIS: COMPRESSIBILITY

In this section, we present our two-dimensional, what-if analysis
of model data reduction and compressibility. Along the data granu-
larity dimension, our analysis explores the potential data reduction
yield at three different levels: model layers, data chunks, and individ-
ual parameters. Along the data reduction and compression technique

dimension, we consider three widely used techniques: hash-based
deduplication [23], similarity-based delta compression [64], and
distance-encoding [68]. Specifically, our analysis aims to answer
the following RQs:
• RQ1: Does duplication exist among model layers or model data

chunks? If so, would data deduplication help in reducing the
model data storage footprint?

• RQ2: Are there any model layers or chunks that are highly
similar?

• RQ3: What is the repetition pattern of model parameters? If
parameter-level repetition exists, how can this redundancy be
eliminated or mitigated?

Table 4: Model layer duplication statistics based on data types.

The percentages in Columns 3 and 5 represent the proportion of the

total count and total size under that row.

Layer Type Count Dup % Total Sz in GB Dup Sz in GB (%)

float32 240,966 8.35% 557.84 30.14 (5.40%)
float16 4,018 3.61% 14.51 0.14 (0.96%)
float64 199 0% 0.81 0 (0%)
uint8 1,597 99.81% 1.75 1.74 (99.43%)
int64 1,765 96.77% 0.97 0.94 (96.91%)

Overall 248,545 9.48% 575.88 32.96 (5.72%)

5.1 Model Layer- and Chunk-level Duplication

Does Duplication Exist among Model Layers? Hash-based data
deduplication method partitions the target dataset into fine-grained
chunks, computes the hash values (i.e., fingerprints) of all data
chunks, scans the partitioned dataset, and performs deduplication
by removing duplicate chunks with identical fingerprints to save
storage space. To understand if there is any duplication among
model layers, we scanned the 900 models in the sampled dataset to

2039

Table 5: Distribution of duplicate chunks based on data type.

Columns 3 and 4 display the size of duplicate chunks using fixed-

size chunking (FSC) of 4 KB and 512 B, and Column 5 indicates the

total size of duplicate chunks determined by content-defined chunking

(CDC) with chunk sizes ranging from 128 B to 128 KB.

Data Type Total Sz (GB)

Size of Duplicates in GB (%)

4 KB (FSC) 512 B (FSC) CDC
float32 557.84 40.35 (7.23%) 42.92 (7.69%) 44.50 (8.16%)
float16 14.51 0.14 (0.96%) 0.14 (0.96%) 0.15 (1.03%)
float64 0.81 0 (0%) 0 (0%) 0 (0%)
uint8 1.75 1.74 (99.43%) 1.74 (99.43%) 1.74 (99.43%)
int64 0.97 0.94 (96.91%) 0.96 (98.97%) 0.96 (98.97%)

Overall 575.88 43.17 (7.50%) 45.76 (7.95%) 47.35 (8.22%)

compute the layer fingerprints. Our results are discouraging. The
analysis reveals that a mere 5.72% of the total storage footprint
for model layers is accounted for by duplication (see Table 4). For
float32-typed layers, duplicate layers only occupy 30.14 GB out of
a total of 557.84 GB. Although layers of type uint8 and int64 are
largely duplicate, their overall fraction is negligible.
Does Duplication Exist among Model Chunks? Next, we con-
duct chunk-based duplication analysis based on fixed-size chunk-
ing (FSC) and content-defined chunking (CDC) [49] approaches at
chunk granularity. Table 5 shows the results. With FSC, chunks
of 512 B exhibit a higher duplication ratio across the majority of
data types compared to chunks of 4 KB. We utilized FastCDC [59],
a widely used, state-of-the-art, gear-based CDC method, on our
dataset. We find that the size of the duplicates detected by FastCDC
is 47.35 GB, accounting for 8.22% of the total dataset size. This is
9.68% and 3.47% higher than FSC with a chunk size of 4 KB and
512 B, respectively. Nevertheless, both the FSC and CDC duplication

analysis shows similarly negative results, indicating that hash-based

data deduplication might not effectively reduce the storage size of

PTM datasets.

5.2 Model Layer- and Chunk-level Similarity

We next study whether PTMs contain data that is similar but not
exactly identical. In storage systems, delta compression often com-
plements deduplication as a data reduction technique in order
to eliminate redundancy among non-duplicate yet highly similar
chunks [11, 40, 60]. For example, if chunk 𝐷2 is similar to a base
chunk 𝐷1, a delta compressor will only store the differences, i.e.,
the delta, and the mapping between 𝐷2 and 𝐷1, by removing the
redundant data for improved storage efficiency.
How to Detect Data Chunk Similarity? Widely used data simi-
larity (resemblance) detection methods compute “super features”
(SFs) [15, 48] based on the Rabin fingerprints [50]1 of data chunks
and use the computed SFs to detect similar chunks. For example,
Finesse [64], a state-of-the-art method, works as follows. (1) The
base and target data chunks, 𝐷1 and 𝐷2, are partitioned into four
sub-chunks each, and a group of hash values based on Rabin fin-
gerprints are computed for all eight sub-chunks. (2) For both 𝐷1
and 𝐷2, three SFs are constructed. The first SF is constituted by
using the largest hash values from each of its four sub-chunks,
1Rabin fingerprints compute a group of hash values using a sliding window that
slides from the start to the end of the data chunk. The size of the sliding window is
configurable and is set to 48 bytes as per [64].

Table 6: Similarity ratios for different granularities. Similarity

ratio is defined as the size of similar layers/chunks divided by the

total size. (Note that the true similarity ratios are lower than reported

in this table as the entire sampled dataset includes duplicate data.)

Data Type Total Sz (GB)

Size of Similar Data in GB (%)

Layer 4 KB 512 B
float32 557.84 30.17 (5.41%) 40.39 (7.24%) 43.12 (7.73%)
float16 14.51 0.14 (0.96%) 0.14 (0.96%) 0.14 (0.96%)
float64 0.81 0 (0%) 0 (0%) 0 (0%)
uint8 1.75 1.74 (99.43%) 1.74 (99.43%) 1.74 (99.43%)
int64 0.97 0.94 (96.91%) 0.95 (97.94%) 0.96 (98.97%)

Overall 575.88 32.99 (5.73%) 43.22 (7.51%) 45.96 (7.98%)

the second SF from the second largest hash values from the four
sub-chunks, and the third SF from the third largest hash values
from the four sub-chunks. (3) A hash value based on SFs for 𝐷1 and
𝐷2 is computed. If the hash value of 𝐷1’s SFs is the same as that of
𝐷2, it indicates that 𝐷1 and 𝐷2 are highly similar.
Are Model Layers or Chunks Highly Similar? Methods like
Finesse introduce significant computational overhead. To explore
the potential of delta compression, we designed and implemented a
simple and efficient data similarity detection algorithm that approx-
imates Finesse. Our approximation algorithm samples a parameter
for every𝑁 parameters from eachmodel layer or model chunk, with
𝑁 setting to 32 in this method, computes the hashes of sampled pa-
rameters, and compares the hashes of two layers/chunks. Compared
to Finesse which uses a sliding window to compute SF hashes, our
algorithm reduces computational requirements by using sampling
and a sliding window of 1. A side effect of the approximation is a
potentially higher false positive rate, where two layers/chunks with
sparse similarities might be inaccurately detected as highly similar.
However, as shown in Table 6, the similarity ratios for model layers
and 4 KB/512 B chunks remain remarkably low. For example, for the
entire dataset, only 7.98% of 512 B blocks are identified as similar.
These negative results suggest that similarity-based delta compression

will not be effective for reducing the storage footprint of PTMs.

5.3 Model Parameter-level Duplication

What is the Repetition Pattern of Model Parameters? Recall
we have shown in §4 that the values of model parameters are con-
centrated within a small range of (−1, 1). Going one step deeper, we
study the repetition pattern of individual parameters by counting
the duplication ratio of parameters for each individual model from
our sampled dataset. Here the parameter duplication ratio for a
model is defined as the fraction of repetitive parameters. Figure 6
shows that 48.94% of models exhibit a parameter duplication ra-
tio of over 50%, meaning that these models have at least half of
their parameters duplicated at least once. Interestingly, 11.56% of
models have over 99% duplicated parameters. The high duplication
ratios imply potential opportunities for utilizing general-purpose
compression methods to reduce parameter redundancies.
Will Off-the-Shelf Dictionary Coding Work? The high param-
eter duplication ratio motivates us to conduct a what-if analysis to
study the feasibility of existing compression methods in reducing
the parameter-level redundancy. We first explore a compression
technique that is commonly used in today’s general-purpose com-
pressors, called dictionary coding [52]. Dictionary coding works

2040

0.0 0.2 0.4 0.6 0.8 1.0
Parameter Duplication Ratio

0.00

0.25

0.50

0.75

1.00

C
D

F

Figure 6: The parameter du-

plication ratio of all 900

models. Each data point in

the CDF curve represents a

model’s duplication ratio.

0.0 0.2 0.4 0.6
Storage Saving Ratio

0.00

0.25

0.50

0.75

1.00

C
D

F

Theoretical

Practical

Figure 7: Storage saving ra-

tios (% storage space saved) by

practical DE (with overhead

included) and theoretical DE

(without overhead).

by using an external macro scheme, i.e., a separately stored dic-
tionary data structure, to maintain a mapping between duplicated
sequence patterns, e.g., text strings, and codes that locate the se-
quences. Given the high duplication ratio of PTM datasets, it seems
that this might work. However, we found that, while most models
have duplicate parameters, the absolute amount of unique duplicate
parameters, i.e., the working set size of duplicate parameters, in a
model can be enormous, which makes the space complexity of the
dictionary extremely large. Worse, the average repetition frequency
for all duplicate parameters is on the lower end. For example, in our
dataset, 34.35% of models have over 60% of parameter duplicates;
however, these duplicate parameters have an average repetition
frequency of around 12, with a total unique parameter count ex-
ceeding 6.8 billion. This implies that at least 33 bits in the length
code would be required to encode the whole dictionary. Given this,
dictionary coding offers no data reduction benefit for PTM datasets.

We then consider a more efficient dictionary coding variant.
Without external macros, this method encodes duplicate sequence
patterns in pointers. A pointer is a length-distance (𝐷, 𝐿) pair [52,
68], where the “distance” 𝐷 tells the compressor (and the decom-
pressor) how far back to look for the start of the repeated sequence,
and the “length” 𝐿 tells the compressor how many characters make
up the repeated sequence. Real-world implementations such as
LZ77 [68] typically use a sliding window to provide a dynamic
dictionary of duplicate sequences that can be referred back to.

This general-purpose compression method can be more space-
efficient to store a short pointer that refers to an earlier occurrence
of a string than to store the whole string again, especially if the
string itself is long and/or repeated frequently. This method typi-
cally works well for text-based datasets [1, 9]. Dealing with floating-
point datasets such as PTM datasets, however, becomes challenging
due to the following reasons. (1) Unlike string-based text datasets
where duplicate sequences can be long, a duplicate model parameter
is short, e.g., the most common data type in PTM datasets—float32-
typed parameters (Table 3)—are only 4 bytes long. While the good
news, in our case, is that the length value can be omitted if we target
float32-typed parameters only, simply because float32 parame-
ters are of fixed length; the bad news is that the limited length of
duplicate parameters puts a hard constraint on the potential gain in
storage reduction. (2) Duplicate parameters are sparsely distributed
within a model, requiring a large sliding window size and relatively
long distance values. In a common implementation, the distance
values might be represented as 16-bit integers, which can encode a
distance of at most 216 = 65, 536. Unfortunately, for most models in

P0, P1, P2, P1000000, PN-1[]… …Original parameter array

Distinct parameter array

Distance bitmap

P0, P1, P2, P1000000, PN-1[]… …duplicate duplicate

0, 0, 0, 1 L D, 1 L D []… …

Flag bit Distinct

parameter

L bits of D (5 bits)

Duplicate

parameter

0b10100 = 20 bits

D bits (variable length) 0b11110100001001000000 = 1,000,000

C
o

m
p

re
ss

e
d

d
a

ta
 f

o
rm

a
t

Duplicate

parameter

Figure 8: An example of distance-encoding compression. L:

length. D: distance. The distinct parameter array does not store dupli-

cate parameters marked in dashed-line, shady boxes. In this example,

𝑃1000000 duplicates with 𝑃0. Therefore, DE toggles 𝑃1000000’s flag bit
as 1 and adds a length-distance pair (𝐿, 𝐷). The 5-bit 𝐿 field encodes

20, indicating that the bit length for 𝐷 is 20 bits. 𝐷 encodes a decimal

value of 1, 000, 000, meaning that this duplicate refers back to a pa-

rameter that is 1, 000, 000 float32 parameters ahead.

our dataset, the distance between two adjacent duplicate parame-
ters is longer than that. Of course, this problem can be addressed
by using longer distance values. However, the longer the distance
value, the less data reduction gains the compressor would achieve.
In theory, we need to control the distance value length to be shorter
than 4 bytes (232) in order to receive gains.
How to Minimize Model Parameter Redundancy? To verify
whether length-distance dictionary coding is effective, we designed
and implemented an efficient length-distance-based compression
method and data format, which we call distance-encoding (DE),
targeting float32-typed and float64-typed model parameters. Our
DE method stores a compressed model parameter file into two
logically decoupled arrays: a distinct parameter array that is used
to store duplicated and unique, and non-duplicate parameters and
a distance bitmap that is used to store metadata to keep track of the
pointers for duplicate parameters. Figure 8 gives an example of the
data format. To compress, our DE compressor takes a linear pass of
the model dataset. DE stores distinct parameters as is in the distinct
parameter array and records a flag bit of 0 in the distance bitmap.
DE skips a duplicate parameter in the distinct parameter array and
records a flag bit of 1 followed by an (𝐿, 𝐷) pair in the distance
bitmap. 𝐿 is a fixed-length, 5-bit field, which records the bit length
of the next field, distance 𝐷 , so that the decompressor knows how
many bits to read in order to decode 𝐷 . The 5 bits in 𝐿 can encode a
distance of at most 231 if all five bits are used (25 − 1 = 31). As such,
the 𝐷 field can have variable length, ranging from 1 to 31 bits. Note
that the fields of flag bit and 𝐿 bits introduce storage overhead.

We evaluated DE on our 900-model dataset. Figure 7 plots the
storage saving ratios achieved by: (1) a theoretical compressor with-
out adding the flag bit and 𝐿-field overhead, representing a best-case
baseline, and (2) a practical compressor that includes the extra over-
head. DE, in theory, can achieve at least 10% storage savings for
83.67% of 900 models. However, this comes with the catastrophic
consequence of being not decompressible due to the absence of
metadata. Taking into account the extra metadata overhead, DE’s
efficacy decreases dramatically—it can only provide the same space
savings for 13.22% of the models, which corresponds to the vertical
curve at the top-right corner of Figure 6. But the good news is that

2041

the average storage saving ratio for these models is remarkable,
at about 33%. This is because these models have over 99% of pa-
rameters duplicated, representing a best-case scenario for DE to
be effective. This mixed result suggests that general-purpose length-

distance-based compression methods can achieve a reasonably high

compression ratio only if model parameters are highly duplicated.

Implications

• The effects of hash-based data deduplication approaches are

double-edged. First, duplicate layers in our sampled dataset make

up only 5.72% of the storage size. Both the FSC-based and CDC-

based deduplication see a very limited duplication ratio. We thus

expect hash-based data deduplication approaches to be generally

ineffective in reducing storage costs. Second, a much higher level of

layer duplication exists in the integer-typed model layers, suggest-

ing a potential avenue for future research. Overall, the effectiveness

of data deduplication for PTM datasets appears to be minimal.

• Our approximation data similarity detection algorithm reveals

that only 7.98% of all 512 B model chunks, including duplicate

chunks, bear resemblance to each other. This result suggests that

there is limited similarity within PTM datasets that could be lever-

aged by delta compression techniques.

•Model parameter-level duplication is virtually universal—with all

900 models in our dataset having duplicate parameters. However,

this does not imply that widely used, general-purpose compression

algorithms, such as length-distance-based dictionary coding, will

be effective for PTMs. Two main reasons contribute to such lack of

compressibility. First, the unit of the duplicate sequence—floating

point numbers—is short and most duplicate parameters repeat in-

frequently. Second, the distance between duplicate parameters is

typically long, requiring lengthy bits to encode the distance. On a

positive note, though, 11.56% of models have over 99% duplicated

parameters, and therefore, could benefit from high storage savings

by using general-purpose compressors.

6 ELF AND ELVES DESIGN

In this section, we first introduce a new, error-bound, lossy floating-
point compression method Elf (Exponent-Less Float-point encod-
ing), motivated by the observations from §4 and §5. We then present
a compression framework named Elves, which integrates two main
compression methods, Elf (§6.1) and DE (§5.3), along with several
other data reduction methods, to compress pre-trained ML model
datasets. Elf compresses models that primarily consist of floating-
point parameters that fall within the range of (−1, 1), while DE
targets models that have a significant proportion of out-of-range
parameters. These two methods complement each other, thereby
maximizing overall storage efficiency.

6.1 The Elf Compression Algorithm

Two key observations motivate the design of Elf. (1) Recall we have
observed in §4 that around 99% parameters in our model dataset fall
within the range of (−1, 1). (2) Take the single-precision floating-
point (float32) format as an example: In accordance with IEEE 754
Standard [30], a float32 value 𝑝 is stored with 32 binary bits, where
1 bit is for the sign 𝑠 , 8 bits for the exponent 𝑒 = ⟨𝑒1, 𝑒2, 𝑒3, . . . , 𝑒8⟩,
and 23 bits for the mantissa 𝑚⃗ = ⟨𝑚1,𝑚2,𝑚3, . . . ,𝑚23⟩ (there is a

1 01111111 00011001010010001010101

e1 e2 e3 e8… m1 m2 m3 … m23

Mantissa (23 bits)

Exponent (8 bits)

Sign (1 bit)

Less significantMore significant

Record sign s of p

p’ = |p|+1

0 01111100 00100001111110110100111

0 01111111 00100100001111110110101
Remove e, apply s 0 01111111 00100100001111110110101removed

float32 format

Record sign s of p

p’ = |p|+1

1 01111011 10010100100010101001110

0 01111111 00011001010010001010101
Remove e, apply s 1 01111111 00011001010010001010101removed

… …
…

000100100001111110110101
100011001010010001010101ELF bit array

0 01111111 00100100001111110110101

Insert e -> p’ 0 01111111 00100100001111110110101

Record sign s of cp

0 01111100 00100001111110110101000Apply s to (p’ - 1)

Insert e -> p’

Record sign s of cp

Apply s to (p’ - 1)

0 01111111 00011001010010001010101

1 01111011 10010100100010101010000

Co
mp

re
ss

De
co
mp

re
ss

p = 0.1415926069021…

p = -0.0987650007009…

p’ = 1.1415926218032…

p’ = 1.0987650156021…

p’ = 1.1415926218032�

p’ = 1.0987650156021…

p = 0.1415926218032…

p = -0.0987650156021…

s

24 bits

24 bits

Figure 9: IEEE 754 Standard float32 format and examples of

the Elf compression process marked using blue arrows and

the decompression process marked using red arrows. Take

parameter 𝑝 = 0.1415926069021 . . . (binary machine representation)

as an example, the compression process follows: transform 𝑝 to the

intermediate value 𝑝′ = 1.1415926218032 . . . ; take the sign bit of

𝑝 and the 23-bit mantissa of 𝑝′ to construct the 24-bit compressed

parameter 𝑐𝑝 , and finally, append it to Elf’s binary bit array. The

decompression process is the inverse of the compression process.

default bit, 0b1, which is hidden on the most significant side of the
23-bit mantissa), as shown in Figure 9 (top). 𝑝’s value satisfies:

𝑝 = (−1)𝑠 × 2𝑒−127 × (1.𝑚1𝑚2 . . .𝑚23)2

= (−1)𝑠 × 2𝑒−127 × (1 +
23∑︂
𝑖=1

𝑚𝑖 × 2−𝑖)
(1)

where 𝑒 is the decimal value of 𝑒2. Equation 1 decides that, for all
𝑝 where 𝑝 ∈ [1, 2), the binary representation of 𝑝 has the same
exponent bits 0b01111111 with a decimal representation of 127. This
is because, when 𝑠 is 0 and 𝑒 is 0b01111111 (which equals 127 in
decimal), the value of the exponent field of 𝑒 − 127 = 127 − 127 = 0.
This means that this float32 parameter is positive and its value is
(−1)0 × 1 × (1.𝑚1𝑚2 . . .𝑚23)2 ∈ [1, 2).

Elf is based on these two observations. The main idea of Elf
is to map all floating-point parameters 𝑝 where 𝑝 ∈ (−1, 1) to 𝑝′
where 𝑝′ ∈ [1, 2), so that the common exponent field 0b01111111,
in case of float32, can be eliminated in order to save storage cost.
Figure 9 illustrates Elf’s compression and decompression using
simple float32 examples.
Compression.A sequential version of Elf scans model parameters
linearly, and for each floating-point parameter 𝑝 where 𝑝 ∈ (−1, 1),
the Elf compression performs the following three steps:

2042

Hash-based
Layer Deduplication

 Distance Encoding
(DE)

 Exponent-Less FP
Encoding (ELF)

Distinct Para Arrays
+ Distance Bitmaps

Exponent-Less Bitstrings +
Non-compressible Para Arrays

1-D Parameter
Arrays

Structure MetadataPre-Trained
Model Files

1
1a 1b

1c

2a

2b

3

Compressed
Dup Layer Files

Compressed
Model FilesNon-FP Layers

Ge
ne

ra
l-P

ur
po

se

Co
mp

re
ss

or

Duplicate Layers

Figure 10: The Elves workflow. Boxes with solid lines represent the stages of Elves, and boxes with dashed lines denote intermediate data.

(1) Record the sign bit 𝑠 of 𝑝 for later use in Step (3).
(2) Convert 𝑝 where 𝑝 ∈ (−1, 1) to 𝑝′ where 𝑝′ ∈ [1, 2).
(3) Remove the exponent bits 𝑒 of 𝑝′, concatenate the 23-bit

𝑚⃗ of 𝑝′ after the recorded sign bit 𝑠 , and append the 24-bit
compressed parameter 𝑐𝑝 to the end of the bit array file.

Decompression. The decompression process of a sequential ver-
sion of Elf reads the compressed bit array file and restores all 24-bit
compressed parameters sequentially. To restore a 24-bit unit 𝑐𝑝 to
𝑝 , the Elf decompression performs the following three steps:

(1) Record the first bit 𝑠 (sign bit) of 𝑐𝑝 for later use in Step
(3), and take the next 23 bits as the mantissa to restore an
intermediate representation 𝑝′.

(2) Set the sign bit of 𝑝′ with 0b0 and insert the exponent bits
0b01111111 between the sign bit and the 23-bit mantissa 𝑚⃗
of 𝑝′ to restore 𝑝′ so that 𝑝′ ∈ [1, 2).

(3) Construct a new intermediary 𝑝′′ where 𝑝′′ = 𝑝′ − 1 ∈
[0, 1), and apply the recorded sign bit 𝑠 to 𝑝′′ to restore the
original parameter 𝑝 where 𝑝 ∈ (−1, 1).

Generality and Storage Savings. Elf can be applied to all three
types of floating-point values: float32, float16, and float64, al-
though the storage efficiency varies depending on the data type.
The storage savings of Elf come entirely from the removal of 𝑒
from the binary representation of each floating-point model param-
eter. For float32 data, Elf can yield a 25% (832) reduction in storage
space. For float16 and float64, the storage savings are 31.25% (516)
and 17.19% (1164), respectively. According to Table 3, over 99% of
parameters of our PTM dataset are composed of float32 or float16,
making these datasets particularly well-suited for Elf’s utility.
Parallelizability and Performance. Elf is easily parallelizable
as it is embarrassingly parallel via data parallelism: a PTM dataset
can be divided into chunks and each chunk can be compressed
independently using a thread or a CPU core. Similarly, Elf’s de-
compression process can be easily parallelized using data parallel
as well. This property guarantees Elf’s superior compression and
decompression speed, which we evaluate in §7.3.
Compression Loss. Since Elf involves data transformation and
encoding for all floating-point parameters that fall within (−1, 1),
this transforming process introduces bounded errors and the error
bound varies depending on the data type. Before giving Elf’s error
bound, we briefly discuss the process of converting a float32 𝑝 ∈
(−1, 1) to 𝑝′ ∈ [1, 2) in Elf. There is no information loss when
obtaining 𝑝’s absolute value |𝑝 |. Then for 1 + |𝑝 |, the exponent 𝑒 of
|𝑝 | needs to be shifted right (by adding the difference of 127 − 𝑒)
so that the exponents of |𝑝 | and 1 equal. This operation results in
a right shift of the mantissa of |𝑝 |. After aligning and adding the
mantissas of |𝑝 | and 1, the result is normalized and rounded, and
this process is where the error occurs. In other words, only the

information from |𝑝 | ∈ [0, 1) captured by the first 23 bits of its
mantissa is retained in 𝑝′ ∈ [1, 2), after that the less significant
bits are rounded and discarded. Therefore, the maximum error
introduced by Elf for float32 parameters is 5.96046448 × 10−8, or
2−24. Similarly, the error bound is 4.8828125 × 10−4 or 2−11 for
float16 and 1.110223 × 10−16 or 2−53 for float64, respectively.
Storage Overhead. Elf stores out-of-range, non-compressible pa-
rameters 𝑝 ∉ (−1, 1) separately and uses an external table to keep
track of the positions of these parameters. This extra storage over-
head might outweigh the storage reduction obtained from Elf’s
transformation and encoding, especially if the percentage of these
out-of-range parameters is considerable. We address this problem
using a hybrid approach, Elves, which will be described in §6.2.

6.2 The Elves Compression Framework

We present the design of our offline compression framework Elves.
Elves incorporates the insights of Elf and a series of data reduction
methods that we have explored in §5. Potential use case of Elves is
to run Elves as a background process to scan all the PTM datasets
that have already been written to storage [41, 58] and select the
most effective methods for data reduction.

Figure 10 depicts the stages of Elves. In Stage 1 , Elves performs
a scan over the entire PTM file dataset to compute the fingerprint
of each model layer (§5.1). The fingerprint is computed based on
the content of the layer by using a cryptographic hash function
and is stored in a table that maps the layer ID to its fingerprint.
When a new layer is encountered, its fingerprint is computed and
compared with the fingerprints of existing layers in the table. If
a matching fingerprint is found in the table, Elves detects that
this layer is a duplicate, and instead of storing the layer again, a
reference to the existing layer (stored as a separate layer file) is
recorded. If no match is found, the new layer is unique, and it is
stored along with its fingerprint. By the end of this stage, Elves
stores all duplicate layers exactly once (intermediate output 1a in
Figure 10) and continues to compress the rest of the non-duplicate
layers (intermediate output 1b) in next stages.

Non-duplicate layers are flattened to 1-dimensional (1-D) arrays
of parameters of different floating-point types, which are streamed
to our DE (distance-encoding) compressor (§5.3) in Stage 2a and
Elf for exponent-less floating-point encoding (§6.1) in Stage 2b
for parameter-level compression. Elves applies both DE and Elf to
intermediate data 1b and chooses the compressor with better effect.
The rationale is that, for models that have a substantial proportion
of parameters 𝑝 ∉ (−1, 1), Elf might not be beneficial as it needs to
keep track of these non-compressible parameters, which introduces
extra storage overhead. Thus, for these models, Elves opts to use
DE over Elf, or the other way around, depending on which is more

2043

effective. Elves then deletes the intermediate files generated by
the less effective compressor. In Stage 3 , the outputs of DE or
Elf, together with the duplicate layers (the intermediate output
1a), model structure metadata files, and non-floating-point model
layers (the intermediate output 1c) are further compressed by a
general-purpose lossless compressor Zstandard (zstd) [10].

The decompression process for Elves is the inverse of the com-
pression process. (1) Compressed files are decompressed by zstd to
restore model structure metadata, non-floating-point layer files, du-
plicate layers, and DE-compressed / Elf-compressed intermediate
files. (2) DE-compressed / Elf-compressed intermediate files are de-
compressed by Elves to obtain the 1-D parameter arrays. (3) Layers
of the original models are recovered based on the model structure
metadata. For each layer, there are three possibilities: (𝑖) a duplicate
layer will be retrieved from the corresponding decompressed dupli-
cate layer file referenced by its fingerprint; (𝑖𝑖) a floating-point layer
will be restored from the 1-D array, based on the model structure
specified by the model structure metadata; (𝑖𝑖𝑖) a non-floating-point
layer will be restored from the non-floating-point layer file. Upon
completing these steps, the model dataset is decompressed.

7 EVALUATION

Setup and Dataset. We performed all of our tests on a server
with 56 Intel(R) Xeon(R) Gold 6330 CPU cores and 256 GB memory
running Ubuntu 20.04 with a kernel version of 5.4.0. Our evaluation
is focused on our sampled dataset of 900 real-world pre-trained
ML models (§3) collected from Hugging Face. The total size of the
binary format of the models that we tested is 575.88 GB.
Baselines and Configurations. We selected a total of 11 repre-
sentative compressors divided into four categories.

• General-purpose lossless compressors: Gzip [1] and zstd [10].
Both are based on LZ77 [68]. They operate at the binary byte
level and look for repetitive patterns among the bytes. We tested
zstd’s compression levels from 3 (default) to 19 (highest com-
pression ratio). We found that all configurations led to the same
compression ratio, but level 19 had extremely slow compression
speed. Thus, we chose to use a compression level of 3 for zstd.

• Time series and data lake compressors: Sprintz [14], Buff [38],
Chimp [33] and Gorilla [47] for TS datasets, and BTRBLOCKS [32]
for data lakes. Sprintz uses a lookup table to predict values based
on preceding entries and encodes the delta between predicted
and original values. Buff divides the sign, exponent, andmantissa,
and tailors the storage scheme based on the specific bounds and
precision requirements of the dataset. Chimp and Gorilla exploit
the TS predictability, XOR successive values with previous ones,
and compress away redundant zeros. BTRBLOCKS uses Pseudodec-
imal Encoding to convert float64 into two integers, significant
digits with the sign and the exponent, to save storage. We used
the default settings that their GitHub repositories specified for
Sprintz, Chimp, and Gorilla, and matched the delta precision of
Buff with the error bound of Elf. For BTRBLOCKS we used the
single-column configuration given by its examples.

• Error-bounded, lossy compressors for floating-point, scientific
datasets: SZ3 [65] and zfp [8]. SZ3 is a modular, error-bounded
lossy compression framework for scientific datasets. SZ3 uses
Lorenzo predictor [29] and regression predictor [36] to predict

next parameters. SZ3 relies on the quantizer [66] to enable er-
ror control for prediction. zfp is designed for multidimensional
numerical datasets. zfp uses transform to reduce the dynamic
range of the floating-point data and then quantizes the trans-
formed data. Since integer-typed and boolean-typed layers in
PTMs might be involved in mission-critical functionality, such
as input layers, where no information loss is allowed, we tested
SZ3 and zfp on floating-point layers of all models only. The error
bound for SZ3 and zfp was set to match that of Elf.

• Model pruning and quantization methods: global magnitude
pruning (Global MP) [24], and Gaussian and outliers uniform
quantization (GOUQ) based on GOBO [62]. Global MP prunes pa-
rameters based on their magnitude while preserving the original
model structure. Its parameter error can be controlled by a thresh-
old. GOUQ is modified from GOBO, a cutting-edge quantization
method for NLP inference. GOUQ categorizes parameters into a
“Gaussian” (G) and an “Outliers” (O) group. Parameters in the O
group retain their original format (e.g., float32), while parame-
ters of the G group are quantized to a small set of representative
values for space saving. GOUQ reduces the errors introduced
by GOBO by increasing the number of representatives in the G
group, which introduces a tradeoff in storage saving and model
accuracy. We set the error bound of these two methods to align
with the maximum error potentially introduced by Elf.

Goals. Our evaluation aims to answer the following questions:

• How does Elves compare to other baseline compressors in terms
of compression ratio (§7.1)?

• How does each stage of Elves contribute to storage saving (§7.2)?
• What is the compression and decompression speed of Elf (§7.3)?
• What is the impact of the lossiness of error-bounded Elf on the

model accuracy (§7.4)?

7.1 Comparison with Baselines

First, we compare the 11 baseline methods with Elves. Figure 11
and 12 show the compression ratio (CR)2 statistics.
General-Purpose Compressors. As Figure 11 shows, Gzip and
zstd perform almost the same, with an overall CR of 1.16×. zstd
outperforms Gzip slightly on maximum CR (see Figure 12). Both of
them are able to reduce the model file sizes for almost all models,
with around 72% of models having file sizes reduced by 10% (a CR
of 1.1×). The modest data reduction is due to that general-purpose
compressors like Gzip and zstd are not specifically optimized for
compressing floating-point datasets. However, it is noteworthy that
for about 11% of models, Gzip and zstd still achieve a good CR of
1.5×. This is because thesemodels have nearly 100% parameter-level
duplication, a pattern that can be exploited by dictionary coding.
State-of-the-Art, Encoding-based, Floating-Point Compres-

sors. TS data compressors perform poorly on our PTM dataset.
Specifically, Sprintz, Chimp, and Gorilla yield a CR of less than
one—indicating an increase in file size after compression—for 98.54%,
74.77%, and 75.23% of models, respectively. Approximately 82% of
models can save an average of 5% storage space with Buff, but poor
CR is achieved for about 11% of the models with a minimum CR of

2CR is defined as the ratio between the size of the original, uncompressed dataset and
the size of the compressed dataset. The higher, the better.

2044

1 2 3 4 5
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Gzip

zstd

Chimp

Gorilla

Sprintz

Buff

btrblocks

SZ3

zfp

Global MP

GOUQ

ELVES

Figure 11: Compression ratio compar-

ison of different compressors for the

600-model dataset. Each data point in a

curve is the CR of a model.

Max Avg Median Min Overall
Compression Measurement

0

1

2

3

4

5

Co
m

pr
es

sio
n

Ra
tio

Gzip
zstd
Chimp
Gorilla
Sprintz
Buff

btrblocks
SZ3
zfp
Global MP
GOUQ
ELVES

Figure 12: Compression ratio break-

down. Overall CR: the aggregate size of the

original, uncompressed dataset divided by

that of the compressed dataset.

1 2 3 4 5
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

HD
HD+DE
HD+ELF
HD+DE+ELF
HD+DE+ELF+zstd

Stage 0.0

0.5

1.0

1.5

2.0

Ov
er

al
l C

om
pr

es
sio

n
Ra

tio

HD

HD+
DE

HD+
ELF

HD+
DE+
ELF

HD+
DE+
ELF+zstd

Figure 13: Compression ratio CDF (left) and

the cumulative fraction of overall compres-

sion ratio (right) for different Elves setups.

0.78×. The ineffectiveness of these TS compressors stems from sig-
nificant differences in data characteristics. In TS data, two notable
characteristics are often observed: (1) the precision of the data may
be relatively low, and (2) there is typically a predictable trend or
correlation among adjacent values. In PTM datasets, however, these
features no longer exist. Floating-point parameters come with high
precision and adjacent parameters are randomly different. In terms
of the overall CR, Sprintz, Buff, Chimp, and Gorilla achieve 0.96×,
1.03×, 1.02×, and 1.03× for the entire dataset, respectively.

The columnar compressor, BTRBLOCKS, yields an overall CR of
1.12. Specifically, it exhibits a CR of precisely 1.0 for 74.67% of
the models, indicating its ineffectiveness for PTM datasets. Further-
more, BTRBLOCKS attains a CR of 1.1 or less for 80.11% of the models;
and a mere 18.56% of PTMs achieving a CR of 1.3 or higher, with
the maximum CR at 3.65×. The reason is that the Pseudodecimal
Encoding algorithm is more effective on the floating points with
fixed, low precision—take 3.25 for example, BTRBLOCKS encodes
3.25 as (+325, 2), where 325× 10−2. However, most if not all param-
eters of PTMs exhibit a higher degree of precision (e.g., 1.0389173),
rendering the encoding scheme of BTRBLOCKS ineffective.
State-of-the-Art, Error-Bound, LossyCompressors. SZ3 attains
a CR of 1.1× for 76.78% of models, which is slightly higher than
that of Gzip and zstd, since SZ3 is a prediction-based compressor
that is specifically designed and optimized for floating-point-based
scientific datasets that exhibit relatively “smooth” data patterns.
But for PTMs that contain mostly trend-cluttered parameters, SZ3
requires a larger overhead to store points that fall outside the range
that can be encoded through quantization and predictions. zfp gen-
erally performs better than the other baselines, with a CR ranging
from 1.1× to 1.3× for 93.78% of models. But it produces a CR greater
than 1.3× on only 3% of the models. zfp achieves an overall CR of
1.18× for the entire dataset, which is marginally elevated than that
of zstd due to a lack of parameter correlations in model datasets.
Model Pruning and QuantizationMethods. The storage savings
achieved by Global MP on the PTM dataset are negligible. A signifi-
cant majority of PTMs, about 98.11%, exhibit a CR between 1.0× and
1.05×, with an overall CR of 1.02×. To ensure the model integrity,
Global MP preserves the original model structure by exploiting a
bit string consisting of 0 and 1 indicating whether a parameter is
removed or retained, which introduces a storage overhead. Fur-
thermore, to prevent significant accuracy loss from pruning, even

without re-training or fine-tuning, the magnitude threshold must be
kept relatively low, which means only a minor portion of the model
parameters are eligible for pruning, leading to modest compres-
sion results. The quantization method, GOUQ, slightly outperforms
Global MP, achieving a CR ranging from 1.15× to 1.19× for 97.51%
of the models, with an overall CR of 1.18×. However, 1.22% of the
models exhibit a CR below 1, attributed to a considerable proportion
of parameters being classified as outliers; and the overhead caused
by the bit table distinguishing parameters as either Gaussian or
outliers, surpasses the storage savings achieved from parameter
mapping to representative values. Similarly, to ensure the accu-
racy of quantized models, parameter errors introduced during the
quantization are strictly controlled.
Comparing with Elves. Figure 11 shows a big margin between
Elves and the baselines, because Elves’ hybrid approach is designed
based on the data characteristics of PTMdatasets. Specifically, Elves
achieves 28.81%, 47.57%, and 28.81% higher overall CR than zfp (the
best in the error-bounded, lossy compressor set), Gorilla (the best
in the TS data compressor set) and GOUQ (the best in the model
quantization and pruning set), respectively, as shown in Figure 12.

7.2 Evaluating Elves Stages

One way to understand the differences among hash-based layer
deduplication (HD), distance-encoding (DE) compression, and Elf
is to view the effectiveness of Elves’ individual stages in terms of
CR. The CR distribution and cumulative improvement of overall
CR are depicted in Figure 13.
HD (Hash-based Deduplication). In this test we only enabled
Stage 1 of Elves (Figure 10). While for most models the storage
savings from HD are quite limited due to a low duplication ratio
and small sizes of duplicate layers, around 5.33% of models exhibit a
substantial level (CR ≥ 2) of data reduction, with a CR of up to 5.21×.
We anticipate that as the number of PTMs in real-world production
environments continues to increase (Figure 1), the proportion of
duplicate layers among models will also grow. This, in turn, will
likely amplify the effectiveness of HD.
HD + DE (Distance-Encoding). In this test we enabled Stage 1
and 2a of Elves. Figure 13 (left) shows that DE results in a CR
of 1.5× and more for about 11% models due to the fact that these
models have close to 100% of their parameters duplicated. Enabling
DE atop HD improves the overall CR for all models by 6.55%.

2045

0.9 1.0 1.1 1.2 1.3 1.4

Compression Ratio

0

600

1200

1800

2400

3000

C
o
m

p
re

s
s
io

n
 T

h
ro

u
g
h
p
u
t

(M
B

/s
)

zstd

Chimp

Sprintz

Buff
SZ3 zfp

Global MP

ELF

GOUQ

pigz

SZx
Gzip

Gorilla
btrblocks

better

Figure 14: CR vs. compres-

sion throughput.

0.9 1.0 1.1 1.2 1.3 1.4

Compression Ratio

0

200

400

600

800

1000

D
e
c
o
m

p
re

s
s
io

n
 T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Gzip

zstd

Chimp

Gorilla

Sprintz

Buff

btrblocks

SZ3 zfp

Global MP

ELF

GOUQ
pigz

SZx

better

Figure 15: CR vs. decompres-

sion throughput.

HD + Elf (Exponent-Less Floating-Point Encoding). Then,
we enabled Stage 1 HD and 2b Elf. Elf is generally effective for
floating-point models. Elf has a significant CR boost: for over 87%
of models where HD yields close-to-zero CRs, enabling Elf achieves

an average CR of 1.35×, and improves the overall CR by 31.32%.
HD + DE + Elf. Next, we combined Stage 1 , 2a and 2b together.
The compression strategies used by DE and Elf capitalize on differ-
ent data patterns, rendering them complementary for some PTMs.
As shown in the left subfigure of Figure 13, Elf guarantees an effec-
tive CR for a broad range of PTMs, while DE achieves better CRs on a
small set of selected models. Integrating the three approaches yields
enhancements in compression efficiency, outperforming HD+DE
and HD+Elf by 27.06% and 3.11%, respectively.
HD + DE + Elf + zstd (Zstandard). Finally, by enabling Stage
3 zstd to compress all intermediate data generated by previous
stages, we observe an additional CR improvement of 8.69%.

In summary, our ablation test demonstrates that: (1) Elf has
the greatest impact on reducing dataset sizes compared to other
techniques, accounting for 65.46% of the end-to-end, overall CR
improvement enabled by all stages. (2) Elves’ hybrid design is aware
of the diverse data patterns of PTMs. Elves effectively tailors the
best compression method when compressing models with different
patterns, yielding an overall CR of 1.52× for the whole dataset.
Moreover, 99% of models (891 of 900) see a CR of over 1.35×, and
24.44% of them achieve a CR ≥ 1.5× with the highest CR of 5.21×.

7.3 Evaluating Elf Performance

We have implemented the core compression and decompression
algorithm of Elf using C++ and pthread. Next, we compare the
compression and decompression speed of Elf with 13 baselines.
To ensure the best throughput performance, we enabled multi-
threading configuration for those baselines with data parallelism
support: zstd, pigz (parallel Gzip) [5], BTRBLOCKS, and SZx [61].

Figure 14 and 15 show the results. The throughput was calculated
using the ratio of the aggregate size of the whole dataset and the to-
tal compression (or decompression) time. Note that, since we target
storage compression and decompression, our throughput metric
includes the I/O time each method took for reading files from the
disk and writing files to the disk. We used a 1.6TB Intel Optane DC
P5800X SSD, which provides a sequential read (write) throughput
of 4.2 GB/s (938 MB/s). This is to ensure that the compression and

decompression processes are not bottlenecked by the disk I/O. From
Figure 14 and 15 we can see that Elf significantly outperforms all
other baselines in compression throughput, and also has the fastest
decompression speed among all 14 compressors. By using all the

Table 7: Accuracy degradation of different model task cate-

gories. % in Column 2 represent the proportion of all tested models.

Model Task (Category) Count (%) Accuracy Degradation

Image Classification (CV) 69 (23.00%) 0.87%
Text Generation (NLP) 68 (22.67%) 0%
Text Classification (NLP) 60 (20.00%) 0%
Token Classification (NLP) 30 (10.00%) 0%
Translation (NLP) 25 (8.33%) 0.4%
Question Answering (NLP) 24 (8.00%) 0%
Audio Classification (Audio) 9 (3.00%) 0%
Summarization (NLP) 9 (3.00%) 1.11%
Speech Recognition (Audio) 6 (2.00%) 0%
Overall 300 (100%) 0.27%

available 56 CPUs, Elf achieves an average compression (decom-
pression) throughput of 2,170.56 MB/s (653.58 MB/s), respectively.
zstd with multi-thread setting using all 56 CPUs is still 3.6× (1.89×)
slower in compression (decompression) speed, compared to Elf.
While BTRBLOCKS exhibits a comparable decompression throughput
with Elf, Elf achieves a compression throughput that is 35.29×
greater than BTRBLOCKS’s. With a single thread, Elf achieves a
compression and decompression throughput of 121.68 MB/s and
135.02 MB/s, respectively, still competitive compared to baselines
such as Gzip, Buff, zfp, Chimp, and Gorrila. The strong performance
results indicate that Elf can serve as a practically useful tool for
PTM storage compression.

7.4 Quantifying Impact on Model Accuracy

This section evaluates the impact of Elf on model accuracy using
two methods: fuzz-testing-inspired validation (§7.4.1) and bench-
mark validation (§7.4.2).

7.4.1 Fuzz-Testing-Inspired Validation. Elf introduces bounded
errors for floating-point parameters during compression. We evalu-
ated the impact of Elf on model accuracy using a dataset compris-
ing 300 out of 900 models from 9 different tasks, ranging from image
classification to text generation, across three model categories.

We quantify the impact of compression on model accuracy using
a metric called accuracy degradation (AD) for a given task and
dataset, which is defined as follows:

AD =

∑︁𝑁
𝑖=1 Δ𝐴𝑖

𝑁
=

∑︁𝑁
𝑖=1

∑︁𝑀
𝑗=1 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑂𝑖,𝑗 ,𝑂

′
𝑖,𝑗

)
𝑁 · 𝑀 (2)

where Δ𝐴𝑖 represents the difference between the original model
and the decompressed model for the same task and under the same
dataset. 𝑁 is the total number of models tested this time. 𝑂 is the
output of the original model and𝑂

′
is the output of the model after

decompression. Each model, original or decompressed, generates an
output tensor that consists of𝑀 float numbers. We use𝑀 to define
the size of the output and use a function 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 () to compare the
outputs of two models under a defined output precision. In the case
of the fuzz-testing validation, we compare each bit of two floats.
Here is how we make the comparison: for a tensor with an output
length of 1,000, we compare the float numbers at the corresponding
positions of the two tensors. If the floats are consistent within all
digits, we consider the two model outputs to be the same, and
𝑐𝑜𝑚𝑝𝑎𝑟𝑒 () outputs 0; otherwise, it outputs 1. If 999 out of 1,000
floats are the same, then we obtain an AD of 0.1%.

2046

Table 8: Accuracy degradation (AD) of all loss compression frameworks with the benchmark datasets. Benchmark validation

has been evaluated on a total of 46 models across 9 tasks in 4 domains. The error bound of Elves is denoted with 𝑒 . All tested baselines and

their abbreviations are as follows: SZ3, zfp, Global MP (mp), Global MP with 2× error bound (mp2e), GOUQ (gouq), GOUQ with 2× error bound

(gouq2e), and half-precision quantization (half). The overall AD is averaged across all tasks for a particular compression method, while the overall

CR is calculated by dividing the combined size of the original models by the total size of the compressed models.

Domain Task(# of tested model) Dataset

Accuracy Degradation

Elves SZ3 zfp mp mp2e gouq gouq2e half

CV

image classification(4)

mini_imagenet 0.2% 0.3% 0.2% 0.1% 0.2% 0.4% 1.1% 65.0%
cifar100 0.2% 0.3% 0.1% 0.2% 0.2% 0.4% 1.2% 48.4%

object detection(4)

detection-datasets/coco 0.1% 0.2% 0.2% 0.1% 0.2% 0.2% 0.2% 1.6%
cppe-5 0.2% 0.3% 0.2% 0.2% 0.3% 0.2% 0.3% 2.6%

image segmentation(6)

scene_parse_150 0.2% 0.6% 0.4% 0.1% 0.2% 0.2% 0.8% 38.6%
sidewalk-semantic 0.3% 1.4% 0.5% 0.2% 0.3% 0.2% 0.7% 35.1%

Multimodal

feature extraction(7)

Open-Orca/OpenOrca 0.1% 0.2% 0.1% 0.1% 0.1% 0.2% 0.3% 18.1%
imdb-movie-reviews 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.5% 24.5%

image-to-text(4)

conceptual_captions 0% 0% 0% 0% 0% 0% 0% 0%
red_caps 0% 0% 0% 0% 0% 0% 0% 0%

Audio speech recognition(5)

librispeech_asr_dummy 0% 0% 0% 0% 0% 0% 0% 0%
lj_speech 0% 0% 0% 0% 0% 0% 0% 0%

NLP

sentiment classification(7)

glue-sst2 0% 0% 0% 0% 0% 0% 0% 0%
imdb 0% 0% 0% 0% 0% 0% 0% 0%

sentence similarity(5)

glue-stsb 0% 0% 0% 0% 0.1% 0.1% 0.2% 3.6%
paws-x 0% 0% 0% 0% 0.1% 0.1% 0.2% 4.2%

Fill-mask(4)

wikitext 0% 0% 0% 0% 0.1% 0.1% 0.1% 0.1%
ptb_text_only 0% 0% 0% 0% 0.1% 0.1% 0.1% 0.1%

Overall AD 0.07% 0.18% 0.1% 0.06% 0.22% 0.13% 0.32% 13.44%

(Overall CR) (1.52) (1.16) (1.18) (1.00) (1.01) (1.18) (1.20) (1.99)

Testing Methodology. Our methodology for evaluating the model
accuracy degradation is inspired by fuzz testing [22, 42, 43]. In fuzz
testing, random inputs are generated and fed to a program to verify
the correctness. Here, we generate random inputs for the original
and decompressed models and compare the outputs from them.

In the text generation task, the model behaves like a chatbot,
producing outputs based on the training data for any given prompt.
Due to the inherent randomness in the search algorithms, these
models are intended to generate non-repeated text for the same
inputs. The non-deterministic nature of the outputs makes it chal-
lenging to evaluate the accuracy degradation. Thus, we modified
the 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 () to calculate the cosine similarity of the embeddings
and attention weights generated by the model. If the cosine simi-
larity of the embeddings is exactly 1, it produces 0 else 1. Cosine
similarity for output {Oi, Oj} from two models is defined as:

𝐶𝑠𝑖𝑚 (𝑂𝑖 ,𝑂 𝑗) =
Oi · Oj

∥Oi ∥ ∥Oj ∥
(3)

To fuzz test classification models, we generated images and text
based on random noise and content, fed them into the networks,
and compared the top 𝑘 labels predicted by the original and de-
compressed models. We here define the 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 () function as let
𝑌𝑘 be the set of the top 𝑘 labels predicted by model𝑚, so that we
compare the output of these models and produce 0 if and only if
𝑌𝑘𝑚 −𝑌𝑘

𝑚′ = ∅ where 𝑌𝑘𝑚, 𝑌𝑘𝑚′ are top 𝑘 labels output by the original
model𝑚 and decompressed model𝑚′.
Validation Results. Even with the rigorous definition of model
accuracy comparison, we were able to achieve an AD of 0% (0%
indicates that every decompressed model for the given task gen-
erates the exact same output as its original version) for 6 out of
the 9 tasks, and < 1.2% for remaining tasks, leading to an overall
accuracy degradation of 0.27% (Table 7).

7.4.2 Benchmark Validation. While our large-scale fuzz-testing-
based accuracy validation in §7.4.1 covers a broad set of 300 models,

standard benchmark datasets offer a more comprehensive way of
validating the model accuracy. We conducted benchmark tests on
a total of 9 tasks across 4 domains. Table 8 shows the results. We
see that Elves is the only method that achieves both an overall
accuracy degradation close to zero (0.07%) and a high CR. This
result demonstrates that Elves has negligible influence on the per-
formance of models and all outputs generated using decompressed
models are almost identical to those generated by the original ones.

8 CONCLUSION

This paper dissects the data characteristics of real-world pre-trained
ML model datasets and studies their compressibility across various
dimensions. Our analysis considers different representative data
reduction and compression techniques and spans three data granu-
larities: model layers, model chunks, and model parameters. Our
thorough analysis reveals that PTM dataset compression is notably
challenging, with existing data reduction and compression methods
generally ineffective for reducing the storage size of PTM datasets.
Based on the observations, we have proposed Elf, a simple and
effective, near-lossless floating-point compression algorithm and
developed Elves, a compression framework that integrates Elf and
several other techniques. Elves achieves an overall compression ra-
tio of 1.52×, which is up to 1.32× higher than state-of-the-art lossy
floating-point compressors, while introducing near-zero model ac-
curacy loss. We hope that our study will provide valuable insights
into the design, implementation, and optimization of data reduction
techniques and systems for efficient storage of PTM datasets.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valuable
feedback and comments. This work was sponsored in part by NSF
grants: CCF-2318628, CCF-1919113, CNS-2322860, OAC-2106446,
and CMMI-2134689.

2047

REFERENCES

[1] [n.d.]. gzip. https://www.gzip.org/.
[2] [n.d.]. HowMuch EnergyDoData Centers Really Use? . https://energyinnovation.

org/2020/03/17/how-much-energy-do-data-centers-really-use/.
[3] [n.d.]. Hugging Face: The AI community building the future. https://huggingface.

co/.
[4] [n.d.]. Introducing LLaMA: A foundational, 65-billion-parameter large language

model. https://ai.meta.com/blog/large-language-model-llama-meta-ai/.
[5] [n.d.]. pigz: A parallel implementation of gzip for modern multi-processor,

multi-core machines. https://zlib.net/pigz/.
[6] [n.d.]. Snappy, a fast compressor/decompressor. https://github.com/google/

snappy.
[7] [n.d.]. TensorFlow Hub. https://www.tensorflow.org/hub.
[8] [n.d.]. zfp. https://computing.llnl.gov/projects/zfp.
[9] [n.d.]. zip. https://www.iana.org/assignments/media-types/application/zip.
[10] [n.d.]. Zstandard. https://facebook.github.io/zstd/.
[11] 2012. Delta Compressed and Deduplicated Storage Using Stream-Informed

Locality. In 4th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 12). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage12/workshop-program/presentation/Shilane

[12] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. 2017. Structured pruning of
deep convolutional neural networks. ACM Journal on Emerging Technologies in

Computing Systems (JETC) 13, 3 (2017), 1–18.
[13] Guangji Bai, Zheng Chai, Chen Ling, Shiyu Wang, Jiaying Lu, Nan Zhang,

Tingwei Shi, Ziyang Yu, Mengdan Zhu, Yifei Zhang, Carl Yang, Yue Cheng, and
Liang Zhao. 2024. Beyond Efficiency: A Systematic Survey of Resource-Efficient
Large Language Models. arXiv:2401.00625 [cs.LG]

[14] Davis Blalock, Samuel Madden, and John Guttag. 2018. Sprintz: Time series
compression for the internet of things. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 1–23.
[15] A.Z. Broder. 1997. On the resemblance and containment of documents. In Pro-

ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).
21–29. https://doi.org/10.1109/SEQUEN.1997.666900

[16] Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Com-
pression of Double-Precision Floating-Point Data. In 2007 Data Compression

Conference (DCC’07). 293–302. https://doi.org/10.1109/DCC.2007.44
[17] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,

Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. 2019.
Use cases of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Computing Applications 33, 6 (2019),
1201–1220.

[18] Xuepeng Chang, Huihui Pan, Weiyang Lin, and Huijun Gao. 2021. A mixed-
pruning based framework for embedded convolutional neural network acceler-
ation. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 4 (2021),
1706–1715.

[19] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.
2015. Compressing neural networks with the hashing trick. In International

conference on machine learning. PMLR, 2285–2294.
[20] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.

2014. Exploiting Linear Structure within Convolutional Networks for Efficient
Evaluation. In Proceedings of the 27th International Conference on Neural Infor-

mation Processing Systems - Volume 1 (Montreal, Canada) (NIPS’14). MIT Press,
Cambridge, MA, USA, 1269–1277.

[21] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. {Check-N-Run}: A checkpointing system for training
deep learning recommendation models. In 19th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 22). 929–943.
[22] Justin Forrester and Barton Miller. 2000. An Empirical Study of the Robustness

of Windows NT Applications Using Random Testing. In 4th USENIX Windows

Systems Symposium (4th USENIX Windows Systems Symposium). USENIX Associ-
ation, Seattle, WA.

[23] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Yucheng Zhang,
and Yujuan Tan. 2015. Design Tradeoffs for Data Deduplication Performance in
Backup Workloads. In 13th USENIX Conference on File and Storage Technologies

(FAST 15). USENIX Association, Santa Clara, CA, 331–344. https://www.usenix.
org/conference/fast15/technical-sessions/presentation/fu

[24] Manas Gupta, Efe Camci, Vishandi Rudy Keneta, Abhishek Vaidyanathan, Ritwik
Kanodia, Chuan-Sheng Foo, Wu Min, and Lin Jie. 2022. Is complexity required
for neural network pruning? a case study on global magnitude pruning. arXiv
preprint arXiv:2209.14624 (2022).

[25] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[26] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the

28th International Conference on Neural Information Processing Systems - Volume

1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143.
[27] Benjamin Hawks, Javier Duarte, Nicholas J Fraser, Alessandro Pappalardo, Nhan

Tran, and Yaman Umuroglu. 2021. Ps and qs: Quantization-aware pruning for
efficient low latency neural network inference. Frontiers in Artificial Intelligence

4 (2021), 676564.
[28] Tianxing He, Yuchen Fan, Yanmin Qian, Tian Tan, and Kai Yu. 2014. Reshaping

deep neural network for fast decoding by node-pruning. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 245–249.

[29] L Ibarria, P Lindstrom, J Rossignac, and A Szymczak. 2003. Out-of-core Com-
pression and Decompression of Large n-dimensional Scalar Fields. 22, 3 (2 2003).
https://doi.org/10.1111/1467-8659.00681

[30] William Kahan. 1996. IEEE Standard 754 for Binary Floating-Point Arithmetic.
Lecture Notes on the Status of IEEE 754 (1996).

[31] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv:1806.08342 [cs.LG]

[32] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–26.

[33] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: Efficient Lossless Floating Point Compression for Time Series Databases.
Proc. VLDB Endow. 15, 11 (jul 2022), 3058–3070. https://doi.org/10.14778/3551793.
3551852

[34] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[35] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[36] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-Controlled Lossy Compression Opti-
mized for High Compression Ratios of Scientific Datasets. In 2018 IEEE Inter-

national Conference on Big Data (Big Data). 438–447. https://doi.org/10.1109/
BigData.2018.8622520

[37] Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. 2023. Can Un-
structured Pruning Reduce the Depth in Deep Neural Networks?. In Proceedings

of the IEEE/CVF International Conference on Computer Vision. 1402–1406.
[38] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J Elmore. 2021. Decom-

posed bounded floats for fast compression and queries. Proceedings of the VLDB
Endowment 14, 11 (2021), 2586–2598.

[39] Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and Wen Gao. 2022. Instance-
aware dynamic neural network quantization. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 12434–12443.
[40] Dirk Meister and André Brinkmann. 2009. Multi-Level Comparison of Data

Deduplication in a Backup Scenario. In Proceedings of SYSTOR 2009: The Israeli

Experimental Systems Conference (Haifa, Israel) (SYSTOR ’09). Association for
Computing Machinery, New York, NY, USA, Article 8, 12 pages. https://doi.org/
10.1145/1534530.1534541

[41] Dutch T. Meyer and William J. Bolosky. 2011. A Study of Practical Deduplication.
In 9th USENIX Conference on File and Storage Technologies (FAST 11). USENIX
Association, San Jose, CA. https://www.usenix.org/conference/fast11/study-
practical-deduplication

[42] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (dec 1990), 32–44.
https://doi.org/10.1145/96267.96279

[43] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz revisited: A re-

examination of the reliability of UNIX utilities and services. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.

[44] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Ban-
ner, Alex M Bronstein, and Avi Mendelson. 2021. Loss aware post-training
quantization. Machine Learning 110, 11-12 (2021), 3245–3262.

[45] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, LukeMiller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language
models to follow instructions with human feedback. arXiv:2203.02155 [cs.CL]

[46] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. 2018. Value-aware quantization
for training and inference of neural networks. In Proceedings of the European

Conference on Computer Vision (ECCV). 580–595.
[47] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin

Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, in-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (aug 2015), 1816–1827. https:
//doi.org/10.14778/2824032.2824078

[48] University of Massachusetts Purushottam Kulkarni, Fred Douglis, Jason LaVoie,
and John M. Tracey. 2004. Redundancy Elimination Within Large Collections of
Files. In 2004 USENIX Annual Technical Conference (USENIX ATC 04). USENIX As-
sociation, Boston, MA. https://www.usenix.org/conference/2004-usenix-annual-
technical-conference/redundancy-elimination-within-large-collections

2048

https://www.gzip.org/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://huggingface.co/
https://huggingface.co/
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://zlib.net/pigz/
https://github.com/google/snappy
https://github.com/google/snappy
https://www.tensorflow.org/hub
https://computing.llnl.gov/projects/zfp
https://www.iana.org/assignments/media-types/application/zip
https://facebook.github.io/zstd/
https://www.usenix.org/conference/hotstorage12/workshop-program/presentation/Shilane
https://www.usenix.org/conference/hotstorage12/workshop-program/presentation/Shilane
https://arxiv.org/abs/2401.00625
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/DCC.2007.44
https://www.usenix.org/conference/fast15/technical-sessions/presentation/fu
https://www.usenix.org/conference/fast15/technical-sessions/presentation/fu
https://doi.org/10.1111/1467-8659.00681
https://arxiv.org/abs/1806.08342
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.1109/BigData.2018.8622520
https://doi.org/10.1109/BigData.2018.8622520
https://doi.org/10.1145/1534530.1534541
https://doi.org/10.1145/1534530.1534541
https://www.usenix.org/conference/fast11/study-practical-deduplication
https://www.usenix.org/conference/fast11/study-practical-deduplication
https://doi.org/10.1145/96267.96279
https://arxiv.org/abs/2203.02155
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/redundancy-elimination-within-large-collections
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/redundancy-elimination-within-large-collections

[49] Sean Quinlan and Sean Dorward. 2002. Venti: A new approach to archival data
storage. In Conference on file and storage technologies (FAST 02).

[50] Michael O. Rabin. 1981. Fingerprinting by random polynomials. Note: Harvard
Aiken Computational Laboratory TR-15-81.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.
Improving language understanding by generative pre-training. (2018).

[52] James A. Storer and Thomas G. Szymanski. 1982. Data Compression via Textual
Substitution. J. ACM 29, 4 (oct 1982), 928–951. https://doi.org/10.1145/322344.
322346

[53] Zhaoyuan Su, Sheng Di, Ali Murat Gok, Yue Cheng, and Franck Cappello. 2022.
Understanding Impact of Lossy Compression on Derivative-related Metrics in
Scientific Datasets. In 2022 IEEE/ACM 8th InternationalWorkshop on Data Analysis

and Reduction for Big Scientific Data (DRBSD). 44–53. https://doi.org/10.1109/
DRBSD56682.2022.00011

[54] Saeed Vahidian, Mahdi Morafah, and Bill Lin. 2021. Personalized federated
learning by structured and unstructured pruning under data heterogeneity. In
2021 IEEE 41st international conference on distributed computing systems workshops

(ICDCSW). IEEE, 27–34.
[55] Deepak Vohra and Deepak Vohra. 2016. Apache parquet. Practical Hadoop

Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools (2016),
325–335.

[56] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. Structured pruning of large
language models. arXiv preprint arXiv:1910.04732 (2019).

[57] BigScience Workshop and Scao et al. 2023. BLOOM: A 176B-Parameter Open-
Access Multilingual Language Model. arXiv:2211.05100 [cs.CL]

[58] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu,
Yucheng Zhang, and Yukun Zhou. 2016. A Comprehensive Study of the Past,
Present, and Future of Data Deduplication. Proc. IEEE 104, 9 (2016), 1681–1710.
https://doi.org/10.1109/JPROC.2016.2571298

[59] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu,
and Yucheng Zhang. 2016. {FastCDC}: A fast and efficient {Content-Defined}
chunking approach for data deduplication. In 2016 USENIX Annual Technical

Conference (USENIX ATC 16). 101–114.
[60] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and Gregory R. Ganger. 2017.

Online Deduplication for Databases. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD

’17). Association for Computing Machinery, New York, NY, USA, 1355–1368.
https://doi.org/10.1145/3035918.3035938

[61] Xiaodong Yu, Sheng Di, Kai Zhao, Jiannan Tian, Dingwen Tao, Xin Liang, and
Franck Cappello. 2022. Ultrafast Error-Bounded Lossy Compression for Sci-
entific Datasets. In Proceedings of the 31st International Symposium on High-

Performance Parallel and Distributed Computing (Minneapolis, MN, USA) (HPDC
’22). Association for Computing Machinery, New York, NY, USA, 159–171.
https://doi.org/10.1145/3502181.3531473

[62] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
Gobo: Quantizing attention-based nlp models for low latency and energy ef-
ficient inference. In 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 811–824.
[63] Shuyu Zhang, DongleiWu, Haoyu Jin, Xiangyu Zou,Wen Xia, and Xiaojia Huang.

2021. QD-Compressor: a Quantization-based Delta Compression Framework for
Deep Neural Networks. In 2021 IEEE 39th International Conference on Computer

Design (ICCD). IEEE, 542–550.
[64] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang, Yu Hua, and Qiang Wang.

2019. Finesse: Fine-Grained Feature Locality based Fast Resemblance Detection
for Post-Deduplication Delta Compression. In 17th USENIX Conference on File

and Storage Technologies (FAST 19). USENIX Association, Boston, MA, 121–128.
https://www.usenix.org/conference/fast19/presentation/zhang

[65] Kai Zhao, Sheng Di, MaximDmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen,
and Franck Cappello. 2021. Optimizing Error-Bounded Lossy Compression for
Scientific Data by Dynamic Spline Interpolation. In 2021 IEEE 37th International

Conference on Data Engineering (ICDE). 1643–1654. https://doi.org/10.1109/
ICDE51399.2021.00145

[66] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and
Franck Cappello. 2020. Significantly Improving Lossy Compression for HPC
Datasets with Second-Order Prediction and Parameter Optimization. In Pro-

ceedings of the 29th International Symposium on High-Performance Parallel and

Distributed Computing (Stockholm, Sweden) (HPDC ’20). Association for Com-
puting Machinery, New York, NY, USA, 89–100. https://doi.org/10.1145/3369583.
3392688

[67] Benjamin Zhu, Kai Li, and Hugo Patterson. 2008. Avoiding the Disk Bottle-
neck in the Data Domain Deduplication File System. In 6th USENIX Confer-

ence on File and Storage Technologies (FAST 08). USENIX Association, San Jose,
CA. https://www.usenix.org/conference/fast-08/avoiding-disk-bottleneck-data-
domain-deduplication-file-system

[68] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory 23, 3 (1977), 337–343. https://doi.org/
10.1109/TIT.1977.1055714

2049

https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346
https://doi.org/10.1109/DRBSD56682.2022.00011
https://doi.org/10.1109/DRBSD56682.2022.00011
https://arxiv.org/abs/2211.05100
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1145/3035918.3035938
https://doi.org/10.1145/3502181.3531473
https://www.usenix.org/conference/fast19/presentation/zhang
https://doi.org/10.1109/ICDE51399.2021.00145
https://doi.org/10.1109/ICDE51399.2021.00145
https://doi.org/10.1145/3369583.3392688
https://doi.org/10.1145/3369583.3392688
https://www.usenix.org/conference/fast-08/avoiding-disk-bottleneck-data-domain-deduplication-file-system
https://www.usenix.org/conference/fast-08/avoiding-disk-bottleneck-data-domain-deduplication-file-system
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Overview
	4 Analysis: Sizes and Contents
	5 Analysis: Compressibility
	5.1 Model Layer- and Chunk-level Duplication
	5.2 Model Layer- and Chunk-level Similarity
	5.3 Model Parameter-level Duplication

	6 Elf and Elves Design
	6.1 The Elf Compression Algorithm
	6.2 The Elves Compression Framework

	7 Evaluation
	7.1 Comparison with Baselines
	7.2 Evaluating Elves Stages
	7.3 Evaluating Elf Performance
	7.4 Quantifying Impact on Model Accuracy

	8 Conclusion
	Acknowledgments
	References

