
Window Function Expression: Let the Self-join Enter
Radim Bača

VSB - Technical Universitty of Ostrava
Ostrava, Czech Republic

radim.baca@vsb.cz

ABSTRACT
Window function expressions (WFEs) became part of the SQL:2003
standard, and since then, they have often been implemented in
database systems (DBS). They are especially essential to OLAP
DBSs, and people use them daily. Even though WFEs are a heavily
used part of the SQL language, the amount of research done on
their optimization in the last two decades is not significant.

WFE does not extend the expressive power of the SQL language,
but it makes writing SQL queries easier and more transparent.
DBSs always compile SQL queries with WFE using a sequence of
partition-sort-compute operators, which we call a linear strategy.
Plans resulting from the linear strategy are robust and, in many
cases, efficient.

This article introduces an alternative strategy using a self-join,
which is not considered in the current DBSs. We call it the self-join
strategy, and it is based on an SQL query transformation where
the result query uses a self-join query plan to compute WFE. One
output of this work is a tool that can automatically perform such
SQL query transformations.

We created a microbenchmark showing that the self-join strat-
egy is more effective than the linear strategy in many cases. We
also performed a cost-based experiment to evaluate the query opti-
mizers’ ability to select an appropriate strategy. The article’s main
aim is to show that usage of the self-join strategy for queries with
WFE is beneficial if selected in a cost-based manner.

PVLDB Reference Format:
Radim Bača. Window Function Expression: Let the Self-join Enter. PVLDB,
17(9): 2162 - 2174, 2024.
doi:10.14778/3665844.3665848

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/RadimBaca/SQL_window_function_rewrite.

1 INTRODUCTION
Today, we find dozens of DBSs implementing window function
expressions (WFEs). WFEs are especially popular among OLAP
DBSs where they are fully implemented and supported; however,
some other classical parts of SQL are not. For example, Impala [4]
and Hive [16] do not implement subqueries behind SELECT, but the
WFEs are implemented. Similarly, MySQL 8.0.0 [5] and DuckDB [3]

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.
doi:10.14778/3665844.3665848

implement WFEs; however, fetching first N records with ties is not
supported.

A growing interest in the WFE is also observed on websites like
StackOverflow. To gain some insight into this trend, we analyzed
SQL queries posted on StackOverflow 1 and counted the percentage
of queries with a WFE for each year. Figure 1 shows the results,
and we can observe that the percentage of such queries has steadily
increased since 2008.

2008 2010 2012 2014 2016 2018 2020 2022 2024
Year

0

2

4

6

8

Q
u
e
ri

e
s

w
it

h
 W

FE
 [

%
]

Figure 1: Percentage of SQL queries on StackOverflow that
contain a WFE for each year.

Even though WFEs are popular, the amount of research done
on their optimization in the last two decades is not significant. Ex-
isting papers [2, 11, 23, 30, 32] never treat the WFE as a part of a
bigger query but focus mainly on algorithms that enable efficient
computation of the WFE. However, our research shows that the sur-
rounding query context in which a WFE is used can be significant.
We propose transformations of a query with WFE whose conve-
nience depends on other parts of the query rather than focusing
on the efficiency of computing the WFE itself.

We see a motivational example in Listing 1. Let us have a large
table of temperature measurements from different places. Our query
retrieves the measurements for each place within the last day and
includes an additional column showing the temperature deviation
from the average place temperature.

A typical query plan for such a query [23] is a sequence of the
following operators: partition, sort, compute, and filter. Note that
filtering is performed as the last operation. We call this approach lin-
ear strategy. It is impossible to perform the predicate pushdown [24]
in such a query plan, which has two main negative effects if the
selectivity of the outer query predicate is high: 1) DBS sorts all the
data and computes deviation from the mean for a large number of
records that are of no interest, 2) The DBS fails to use a suitable
index on the mtime attribute.

The issue with the linear strategy is that it fails to consider the
larger context of the SQL query where the WFE is located. It is not
1https://github.com/RadimBaca/SO_sqlselect_extraction

2162

https://doi.org/10.14778/3665844.3665848
https://github.com/RadimBaca/SQL_window_function_rewrite
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665848
https://github.com/RadimBaca/SO_sqlselect_extraction
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SELECT ∗
FROM (

SELECT t e m p e r a t u r e −
AVG(t e m p e r a t u r e) over (

PARTITION BY p l a c e i d
) ,
p l a c e i d ,
mtime

FROM measurements
)
WHERE mtime > localtimestamp − INTERVAL ' 1 ␣ day '

Listing 1: Motivational query with WFE

difficult to see that we can transform this SQL query into a query
with a correlated self-join (see Listing 2). If the predicate condition
of the outer query is highly selective, the query plan based on self-
join may outperform the query plan based on the linear strategy. In
this transformation example, we must be careful with NULL values
since the rewrite is equivalent only if placeid cannot be NULL.

SELECT m1 . t e m p e r a t u r e −
(

SELECT AVG(t e m p e r a t u r e)
FROM measurements m2
WHERE m2 . p l a c e i d = m1 . p l a c e i d

) ,
m1 . p l a c e i d ,
m1 . mtime

FROM measurements m1
WHERE m1 . mtime > localtimestamp − INTERVAL ' 1 ␣ day '

Listing 2: Self-join query corresponding to the motivational
query

It is worth noting that modern DBSs do not use the self-join
strategy for queries with WFEs, even when there is potential for
significant performance improvements. To support this claim, we
tested PostgreSQL 14.2, Oracle 19c, SQL Server 2016, MySQL 8.0,
FireBird 3.0, SQLite 3, H2 1.4, and Hyper 0.0.18161 using a non-
trivial number of queries.

The contributions of this article are the following:

• We describe several transformations of a query with WFEs
into a self-join query. We introduce an SQL rewriting tool
capable of doing these transformations automatically.

• Introduction of two microbenchmarks that help us better
understand the settings under which the self-join strategy
is advantageous.

• We also perform a cost-based analysis of two query opti-
mizers with respect to both strategies.

Section 2 describes the basic syntax and semantics of WFEs.
Section 3 introduces several transformations of queries with the
WFE. Section 4 contains detailed experiments to help us better
understand situations where the self-join strategy is advantageous.
Section 5 deals with related work in the field.

2 WINDOW FUNCTION EXPRESSIONS
WFEs allow us to formulate complex queries that range from top-k,
time series analysis [17], sliding window calculations, gaps-and-
islands [22], and many more. It is a powerful tool that simplifies the
writing of such queries and allows the optimizer to use stable and
efficient query plans that would otherwise be difficult to create.

In this section, we briefly describe their basic syntax and seman-
tics. The WFE defines a new value in the SELECT result and is only
allowed in the SELECT or ORDER BY clauses. The value of the
WFE for a particular row 𝑟 is determined by:

• Rowset definition - We define a subset of rows (possibly
ordered) that are relevant to 𝑟 :
– PARTITION BY c - defines a partitioning of rows ac-

cording to attributes c. Therefore, 𝑟 ’s partition con-
tains rows with the same c value. Optional.

– ORDER BY o - defines ordering of rows in the partition
according to attributes o. Mandatory for some WFEs
(rank and analytical).

– RANGE/ROWS - defines a frame within 𝑟 ’s partition. See
Section 2.2 for more details. Optional.

• Window function - Defines a function applied on a specified
rowset relevant to 𝑟 .

Figure 2: Rowset definition

We can think of a rowset definition as a function that returns a
subset of rows for each row, which may also have a defined ordering.
Figure 2 visualizes this concept, where the grey area is a rowset for
the 𝑟 row.

2.1 Window Functions
We can recognize several basic types of window functions. The
basic division can be based on whether or not a frame is considered.
Let us start with functions where the frame is not considered:

• Rank - The value of r’s WFE equals the order within the
rowset. There are several variations depending on duplicate
handling:
– RANK() - Rank of 𝑟 with gaps and duplicates
– DENSE_RANK() - Rank of 𝑟 without gaps and with du-

plicates
– ROW_NUMBER() - Order of the 𝑟 without duplicates

• Analytical functions:
– NTILE(N) - N-tile is assigned to row 𝑟 .
– PERCENT_RANK() - Percentile is assigned to row 𝑟 .
– LEAD(expr, offset, default) - Evaluate 𝑒𝑥𝑝𝑟 on

a row preceding 𝑟
– LAG(expr, offset, default) - Evaluate 𝑒𝑥𝑝𝑟 on a

row following 𝑟
There are also window functions that consider the frame:

2163

• Aggregate - The aggregate function (MIN, MAX, AVG, SUM,
COUNT) is computed on a frame.

• Analytical functions:
– FIRST_VALUE(expr) - Evaluate 𝑒𝑥𝑝𝑟 on the first row

of 𝑟 ’s rowset.
– LAST_VALUE(expr) - Evaluate 𝑒𝑥𝑝𝑟 on the last row of
𝑟 ’s rowset.

Example 1. Let’s show the differences between the individual rank
window functions. SQL query in Listing 3 computes the rank functions
on a measurements table with a temp column, and Table 1 shows the
result for sample data. Obviously, there is a difference between the
rank functions, especially in how they handle duplicates.

SELECT temp ,
RANK () over (ORDER BY temp) rank ,
DENSE_RANK () over (ORDER BY temp) dense ,
ROW_NUMBER () over (ORDER BY temp) rn ,

FROM measurement s

Listing 3: Rank window functions

Table 1: The result of Listing 3 query

temp rank dense rn
1 1 1 1
1 1 1 2
2 3 2 3

null 4 3 4

With this example, we can depict one more aspect that needs to be
considered in our paper. The ordering of records when they contain
a NULL value. PostgreSQL, Hyper, and Oracle sort the values as we
see them in the Table 1. However, some DBSs put NULL values at the
beginning of the sorted set, which may affect the final result in our
examples. Therefore, we have to be careful when proposing rewrites if
attributes may contain NULL values.

The occurrence of the most used window functions in StackOver-
flow SQL queries can be observed in Figure 3. Rank and aggregate
window functions represent the majority of window functions used
in those SQL queries (i.e., red and blue bar charts). That is why we
focus on these window functions in our article.

Some window functions mentioned in this section are not in
Figure 3 because the number of occurrences was close to zero.

2.2 Frame Definition
The frame defines a subset of rows in 𝑟 ’s partition. The 𝑟 ’s partition
is a sequence of rows, where the ordering is defined by the ORDER
BY o clause. The order within the sequence will be denoted as 𝑖 ,
and the value of 𝑟 ’s o attribute will be denoted as 𝑣𝑟 . A frame subset
may be defined in two different ways:

• ROWS BETWEEN 𝐾 AND 𝐿 - we select the rows where the
ordering of the row is in the interval (𝑖 − 𝐾, 𝑖 + 𝐿)

• RANGE BETWEEN𝑀 AND 𝑁 - we select the rows where value
of o attribute is in the interval (𝑣𝑟 −𝑀, 𝑣𝑟 + 𝑁)

ROW_N
UMBER

RA
NK

DEN
SE

_RA
NK

LA
G

LEA
D

MAX
MIN AV

G
SU

M
COUNT

FIR
ST

_VA
LU

E

LA
ST

_VA
LU

E

Window Function

0

2000

4000

6000

8000

10000

Oc
cu

re
nc

es

Figure 3: Occurence of different window functions in Stack-
Overflow SQL queries.

The 𝐾, 𝐿,𝑀, 𝑁 interval values may be positive and negative,
and their sign is specified using FOLLOWING or PRECEDING key-
word, which is mandatory. The interval values must be a constant
value, UNBOUNDED, or CURRENT ROW. However, the frame definition
is optional, and the implicit definition ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW is used in the case that the ORDER
BY o is specified in the WFE.

2.3 Normalized Query with WFEs
WFE often appear in uncorrelated subqueries. In other words, the
result of a subquery is not dependent on the outer query and can
be computed independently (see Listing 1). Due to this fact, we will
only consider this situation in our definitions and examples. How-
ever, it is also possible to consider rewriting dependent subqueries
with WFE.

Definition 2. Normalized Query with WFE (NQWF) Let us have
a SELECT statement T with a WFE W and an ordering expression
ORDER BY, where 𝛼 is any SELECT statement or table definition.

T := SELECT iattr, W
FROM 𝛼

ORDER BY expr

Let 𝛽search(T.iattr,T.W)(T) be a SELECT statement that uses T
as an input and may perform some search(T.iattr,T.W) selec-
tion operation. The search(T.iattr,T.W) is a predicate that uses
values returned by T.

Then we call T a normalized query with WFE (NQWF) and
𝛽search(T.iattr,T.W)(T) a query with nested NQWF.

It is not difficult to see that if a query with WFE is in an indepen-
dent (sub)query without LIMIT clause (or without TOP/FETCH NEXT
clause depending on DBS), then it can be rewritten into NQWF. We
show an example of such rewriting in Example 3. The main aim
of the NQWF definition is to show that we can isolate the WFE
computation from other parts of the query during a transformation.
It can be clearly seen in Figure 4, which shows an abstract syntax
tree corresponding to a query with nested NQWF.

2164

The NQWF can be anywhere in the query. In fact, in this paper,
we are particularly interested in situations where NQWF is a sub-
query in a larger query 𝛽 with a highly selective predicate (e.g., see
Example 1).

Figure 4: Abstract syntax tree for a query with nested NQWF.

Example 3. In Listing 4, we see an example of an SQL query with
a WFE. In Listing 5, we may see an equivalent NQWF where the 𝛼 is
a subquery behind FROM.

SELECT MIN (m. temp ∗ m. c h i l l f a c t o r) OVER (
PARTITION BY p l . p l a c e i d

) min_temp ,
p l . p l a c e i d ,
m. mtime

FROM measurement s m
JOIN p l a c e p l ON m. p l a c e i d = p l . p l a c e i d
JOIN p e r s o n pe ON p l . p l a c e i d = pe . p l a c e i d
WHERE p l . s t a t e = 'NY ' AND

pe . fname = ' JOHN '
ORDER BY p l . p l a c e i d , m. mtime

Listing 4: Lowest temperature per placeid

SELECT MIN (a l pha . temp) OVER (
PARTITION BY a lpha . p l a c e i d

) min_temp ,
a lpha . p l a c e i d ,
a l pha . mtime

FROM (
SELECT m. temp ∗ m. c h i l l f a c t o r temp ,

p l . p l a c e i d ,
m. mtime

FROM measurement s m
JOIN p l a c e p l ON m. p l a c e i d = p l . p l a c e i d
JOIN p e r s o n pe ON p l . p l a c e i d = pe . p l a c e i d
WHERE p l . s t a t e = 'NY ' AND

pe . fname = ' JOHN '
) a l pha
ORDER BY a lpha . p l a c e i d , a l pha . mtime

Listing 5: NQWF corresponding to the Listing 4 query

In this work, we recognize two different strategies that handle
queries with nested NQWF:

(1) Linear - a straightforward partition-sort-compute query
plan always used in modern DBSs. See the introduction for
a list of DBSs we tested to support this claim.

(2) Self-join - we transform the query into a self-join query.
This transformation is the main topic of the following Sec-
tion 3.

3 SELF-JOIN STRATEGY
This section presents transformations of a query with nested NQWF
into a self-join query. In particular, we propose the relational algebra
logical tree after each transformation, and we also mention how
a rewritten self-join query should look to achieve the logical tree.
We describe in more detail a tool that automatically transforms the
SQL query for the desired self-join query in Section 4.1.

There are two reasons why we present a logical tree after trans-
formation instead of SQL: (1) the logical tree is much more concise
and clear, and (2) we believe that the WFE transformation should
be integrated into a cost-based query optimizer at the query alge-
bra level as it is typical for other transformation rules [1, 12, 13,
26, 27, 29]. Therefore, we use the terms "logical tree" and "query"
interchangeably in the following text.

Of course, given the declarative nature of SQL, one cannot be
sure that the compiler will start the optimization with the logical
tree under consideration for a given SQL query. However, the pro-
posed SQL transformations are so fundamental that the DBS always
produces a query plan corresponding to the query’s logical tree
in testing. It was verified manually by checking the query plans
on the eight DBS mentioned in the introduction for many queries.
This claim supports many documentation and blog posts [7, 31, 33]
suggesting rewriting the SQL query with a WFE into a self-join
query will lead to significantly different query plans.

3.1 Aggregate Window Functions
Let us consider a query with nested NQWF, aggregate window
function and without the explicit frame definition:

AGG(A) OVER (PARTITION BY B ORDER BY C) w

More precisely, it is a WFE with the implicit frame definition.
Figure 5 shows a logical tree named LateralAgg using the self-join
strategy to transform the query.

Please note that the logical tree contains 𝑑-join operator [24]
where 𝑑 stands for dependent, reflecting that the right branch is
correlated to the left branch. This operator corresponds to the so-
called JOIN LATERAL construct, which imposes a given logical tree
on DBS. Since we want to keep every tuple from 𝛼1, we use LEFT
JOIN LATERAL in the corresponding SQL query.

Whereas the 𝜎′ corresponds to the PARTITON BY clause of WFE,
the 𝜎′′ corresponds to the ORDER BY and implicit frame of WFE.
Both PARTITON BY and ORDER BY clauses are optional in the WFE, so
if any is missing in the WFE, we need to remove the corresponding
𝜎 operator from the LateralAgg. The top-most operator in the right
branch is the Γ𝐴𝐺𝐺 (𝐴) , which computes the aggregate function
AGG(A) and assigns w alias to the column. Grouping is unnecessary
in Γ since 𝜎′ and 𝜎′′ already select a set for aggregation.

2165

Figure 5: Logical tree named LateralAgg using the self-join
strategy.

Just as a reminder, there are two types of frame definition (i.e.,
RANGE and ROWS) when considering an explicit framing definition.
Accommodating RANGE in the self-join strategy is quite simple since
it just means adding another 𝜎 operator with corresponding bound-
ary specification into the LateralAgg logical tree. The situation is
more complicated with ROWS. However, the self-join strategy is
still possible using the appropriate TOP/LIMIT N operator and, in
some cases, UNION operator. Our SQL rewriting tool implements
rewriting support for such a feature (see Section 4.1).

The LateralAgg may look expensive at first. Remember, however,
that there may be predicates in the 𝛽 expression that propagate to
𝛼1. One example of such predicate is the mtime > localtimestamp
- INTERVAL ’1 day’ that we can see in Listing 1. If the predicate
is highly selective, the LateralAgg may significantly outperform
the linear strategy since it can lead to a nested-loop join query plan
with a few iterations.

3.2 Rank Window Functions
3.2.1 General Case. Let us consider a query with nested NQWF
and rank window function:
RANK() OVER (PARTITION BY B ORDER BY C) rn

In such case, we can use the LateralAgg logical tree where AGG
is COUNT(*) with a slight modification of 𝜎′′ having a condition
𝛼2 .C < 𝛼1 .C. The DENSE_RANK can be expressed using
COUNT(DISTINCT C). The only problem is the ROW_NUMBER win-
dow function.

Let a unique column combination (UCC) be a set of attributes
in a relation (it can also be a relation created as an intermediate
result) where there are no two records with the same values in all
these attributes. The critical aspect that influences the ability to use
LateralAgg in the case of ROW_NUMBER window function is whether
the combination of B and C is UCC or not:

(1) The combination of B and C is UCC - it is not difficult to
see that in this case, the ROW_NUMBER is equivalent to RANK
and DENSE_RANK.

(2) The combination of B and C is not UCC - then the result of
ROW_NUMBER is non-deterministic. In such case, the self-join
strategy is possible only if we add some unique attribute
into C set that specifies the ordering (e.g., physical row
location).

This influence of UCC knowledge is another example [18, 21]
of a situation where the knowledge of advanced metadata can be
helpful during query optimization.

3.2.2 Greatest per Group Case. Now let us consider a special case
of rank WFE: a query with nested NQWF 𝛽search(T.rn)(T) where
search(T.rn) is a predicate that compares T.rn to a positive con-
stant. In our article, we will discuss three basic types of predicates:

(1) T.rn = 1
(2) T.rn = N
(3) T.rn < N

This query is commonly encountered when we need to find the
greatest per group. Many occurrences of ROW_NUMBER in Figure 3
fall into this query type.

(a) (b)

Figure 6: (a) LateralLimitTies (b) JoinMin

In Figure 6, we introduce two logical trees that can be used for
the greatest per group case. While the LateralLimitTies can be used
for all three predicate types, the JoinMin logical tree is applicable
if we have the T.rn = 1 predicate and if C is a single not-nullable
attribute.

The T’ in the JoinMin uses ΓB,MIN(C) operator that corresponds
to the GROUP BY B construct with MIN(C) aggregation. The Later-
alLimitTies uses a djoin, expressed in SQL syntax by LEFT JOIN
LATERAL.

In addition to the type of rank function used, two other aspects
govern the suitability of each logical tree:

• The combination of B and C is UCC - again, it is an impor-
tant aspect since, in such case, all three rank functions are
equivalent and ROW_NUMBER is deterministic. If B and C are
not UCC, the JoinMin cannot be used with ROW_NUMBER.

2166

• The C attributes can be NULL - in some DBSs, NULL is
the lowest value in an ordered set; however, MIN() ignores
NULL values if there are other values in the ordered set.
That is a problem, and the JoinMin cannot be used. Sim-
ilarly, with MAX(), if NULL is the highest in an ordered
set. Therefore, the JoinMin is not applicable if C can be
NULL. This behavior is solvable using a special purpose
MIN/MAX aggregate function that returns a NULL value (see
Section 3.3.2 for details).

The JoinMin translates into a more efficient query plan than
the LateralAgg and the LateralLimitTies. It has just an equi join
with grouping, and some DBS even implement a special purpose
GroupJoin operator to speed up such plans [25].

The LateralLimitTies usually leads to query plans similar to the
LateralAgg, but the LateralLimitTies can be faster if an appropriate
index exists. The problem with both is that it repeats the compu-
tation (the T’ subplan) for the same 𝛼1 .B values. Some DBS solve
this problem by subplan result caching. We address this problem in
Section 3.3.

3.3 LateralLimitTies Optimization
This section introduces two possible solutions that avoid repeated
costly computations of the LateralLimitTies. The first solution adds
computation of distinct 𝐵 values into the T’ subtree. The second
solution is the introduction of a custom NMIN/NMAX aggregate oper-
ator.

3.3.1 LateralDistinctLimitTies. Figure 7 shows the LateralDistinct-
LimitTies logical tree that introduces a distinct B values computa-
tion (see the T” subplan). The tree is universal, meaning it does not
have the restrictions on predicate use that the JoinMin has. As we
will see in the experimental section, this logical tree consistently
outperforms (or equals) the LateralLimitTies in all DBS used in our
experiments. That is valid despite the 𝛼 being three times in the
logical tree.

Figure 7: LateralDistinctLimitTies

3.3.2 Using New NMIN/NMAX Operator. Let us consider the exis-
tence of a special purpose operator NMIN and NMAX that returns Nth
lowest and Nth highest values, respectively. An algorithm imple-
menting such an operator on an unsorted set finds the result in
a single set scan. The algorithm keeps a set of N lowest/highest
values and updates it during every cursor advance. It is easy to
handle distinct values (if we compute DENSE_RANK) in NMIN and
NMAX operator.

The JoinNMin logical tree is a small modification of the JoinMin
where NMin is used instead of MIN. The JoinNMin can be used for
all three types of predicates. The only limitation is that we cannot
use the JoinNMin if we compute ROW_NUMBER and B and C is not
UCC.

The NMIN and NMAX functions are not in the arsenal of standard
DBS, but PostgreSQL allows a user to define its custom aggregate
function. Unfortunately, the NULL handling would require some
special symbol for "input set is empty" (see Section 3.4). Therefore,
we implement the NMIN in PostgreSQL, but we do not consider the
attributes with NULL values for simplicity.

3.4 NULL Values and Logical Tree Equivalence
If the B and C attributes contain NULL values, then we must be
careful about the linear and self-join strategy equivalence. The
linear strategy keeps rows with any such NULL value. On the other
hand, the self-join removes them if they are not adequately handled
in the 𝜎 or ⊲⊳ operators. If B can be NULL, then the 𝜎′ condition
has to be extended 𝛼2 .B = 𝛼1 .B ∨ (𝛼2 .B is null ∧ 𝛼1 .B is null) in
every logical tree to achieve the equivalence. Unfortunately, some
DBSs have difficulty using indexes on the B attribute in the case of
such an extended predicate. Therefore, we omit NULL values in our
experiments. Handling extended predicate and, therefore, NULL
values is a solvable problem at the query plan level since most DBS
do not have issues with it.

Ordering of sets with NULL values and their effect on possible
transformation was mentioned several times in Sections 3.2, and 3.3.
It affects the JoinMin since MIN and MAX return NULL values only
if the input set is empty. In other words, NULL is not returned
when it is the minimum/maximum value according to the DBS
set ordering. The most elegant solution is to use some custom
NMIN/NMAX aggregate functions (operators) that do not ignore NULL
values in such sets. However, as mentioned, we need another special
symbol for "input set is empty" if we do not ignore NULL.

Attentive readers may observe that we miss the precise rank
values in the greatest per group case result if we apply the self-
join strategy. We presume the SQL user no longer finds the rank
value significant after the row selection. Nevertheless, if required,
the rank value can be calculated after the row selection in most
scenarios, and the expense will be minimal since we already have a
much smaller set of relevant rows.

4 EXPERIMENTS
This section presents the structure and results of two microbench-
marks, one focusing on the greatest per group problem and the
second on the aggregate WFEs with a selective predicate. They al-
low in-depth testing of the profitability of the self-join strategy. We

2167

also show an experiment with selected TPC-H benchmark queries
that could be expressed using WFE.

We run our experiments on four different DBS. Specifically, on
Hyper [20]. PostgreSQL [6] and two commercial ones denoted
as DBMS1 and DBMS2. We ran the experiment in main memory
to avoid the non-deterministic loading of blocks from secondary
storage. Each query is executed three times during each test, and
we select the best time. We set a five-minute timeout for one query.

All experiments have been executed on a computer with two
Intel Xeon processors X6136@3.00GHz, 2.0 MB L2 cache per core,
and with 12 physical cores and 24 logical ones; Windows Server
2016 x64. The server has several hundreds of gigabytes of RAM
available, and we ensure all tests are held in main memory.

The microbenchmarks use our SQL rewriting tool (see Section 4.1).
The tool allows us to generate required self-join variants from a
query with nested NQWF and enables testing thousands of different
queries. Each microbenchmark is based on a few query templates
and SQL scripts, simplifying its future extension or DBS addition.

The microbenchmarks operate on two artificial tables RTab(A,B,C)
and PTab(A,B,C,Padding) containing one million rows in the case
of PostgreSQL, DBMS1 and DBMS2 and ten million rows in the
case of Hyper:

• The A attribute is a unique integer.
• The B attribute is an integer, where the number of unique

values varies in the experiments and takes values of 0.001,
0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, and 30 % of the total number
of records (this set is called BDistinct).

• The C attribute is a random integer from 0 to 10000.
• The Padding is a string 100 bytes long.

We avoid NULL values for reasons described in Section 3.4. In the
case of Hyper, we use ten million rows tables because the query
times were on the edge of measurability for one million rows.

The code used in this article, together with experimental re-
sults and code analyzing the results and generating the graphs, is
available on github 2.

4.1 SQL Rewriting Tool
One of the results of this work is a SQL rewriting tool that takes
a query with nested NQWF and rewrites it into an equivalent
SQL using a self-join strategy. The tool is an essential element of
the microbenchmarks and allows us to perform many tests with
different settings.

The tool allows us to select a logical tree and even handles NQWF
containing more than one WFE or aggregate window functions
with explicit framing. Explicit framing sometimes requires a UNION
operator, so the result query may be quite slow. We do not perform
explicit framing testing in our benchmarks.

4.2 Greatest Per Group Microbenchmark
We introduced four self-join logical trees in Section 3 that address
the greatest per group problem. The main aim of this microbench-
mark is to compare their performance.

We use the query from Listing 6 as a query processed by linear
strategy. We call it a linear strategy query in the following text. The

2https://github.com/RadimBaca/SQL_window_function_rewrite

SELECT A , B
FROM (

SELECT A , B ,
ROW_NUMBER () OVER (

PARTITION BY B
ORDER BY A

) RN
FROM RTAB

) T1
WHERE RN = 1

Listing 6: Greatest per group query used to compare different
logical trees

linear strategy query is then rewritten into four different self-join
queries, allowing us to compare them. We run comparisons with
various test settings:

(1) B uniqueness - using BDistinct values ranging from 0.001
to 3%.

(2) Padding - we slightly modify the query to work with PTab
and also return the padding attribute.

(3) Parallelization - we test the queries with parallel processing
enabled (8 threads) and disabled. Hyper is always paral-
lelized.

(4) Indexes - the data table is always a heap, and we apply
different physical designs:
• None - there is no index in the database. The only

option for Hyper.
• I(A) - secondary index on A.
• I(B) - secondary index on B.
• I(A);(B) - two secondary indexes on A and B.
• I(AB) - secondary indexes on A,B.
• I(BA) - secondary indexes on B,A.

Note that I(AB) and I(BA) are covering indexes in the case of
each query in this benchmark.

A test is a comparison of a self-join strategy query with a linear
strategy query using one combination of settings. Since we apply
each combination of settings, the final number of tests for one
self-join strategy on one DBS is 192, except Hyper, which does not
support indexes and single-threaded processing. We are mainly in-
terested in a ratio between linear strategy processing time (denoted
as 𝑇𝑙𝑖𝑛) and self-join strategy processing time (denoted as 𝑇𝑠 𝑗).

4.2.1 Ratio Results. In Figure 8, we can observe the ratio between
𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 for different DBSs and test settings. We use boxplots
that summarize the ratio for all tests with selected settings. Value 1
(red line) represents a situation where 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 are equal, and
the ratios above represent a situation where the self-join strategy
is faster.

Let us first summarize the results of the greatest per group mi-
crobenchmark from the logical tree type perspective since it has a
major effect on the 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 ratio. In this paragraph, we answer
the question: into which self-join logical tree should we rewrite
an NQWF? The JoinMin is always the fastest option and should
be used if possible. The LateralDistinctLimitTies outperforms the

2168

https://github.com/RadimBaca/SQL_window_function_rewrite

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

10 4

10 3

10 2

10 1

100

101

102

103

T l
in

/T
sj

DBMS1

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

PostgreSQL

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

DBMS2

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

La
te

ra
lA

gg
La

te
ra

lLi
m

itT
ie

s
La

te
ra

lD
ist

in
ct

Lim
itT

ie
s

Jo
in

M
in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

NO
 IN

DE
X

SO
M

E
IN

DE
X

Hyper

Figure 8: Ratio between 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 for different DBSs and settings in greatest per group microbenchmark.

10 3 10 2 10 1 100 101

BDistinct [%]
10 4

10 3

10 2

10 1

100

101

T l
in

/T
sj

No index

DBMS1 JoinMin
PostgreSQL JoinMin
DBMS2 JoinMin
Hyper JoinMin
DBMS1 LateralDistinctLimitTies
PostgreSQL LateralDistinctLimitTies
DBMS2 LateralDistinctLimitTies
Hyper LateralDistinctLimitTies

10 3 10 2 10 1 100 101

BDistinct [%]
10 4

10 3

10 2

10 1

100

101
I(A);I(B) index

10 3 10 2 10 1 100 101

BDistinct [%]
10 4

10 3

10 2

10 1

100

101
I(BA) index

Figure 9: Ratio between 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 depending on BDistinct value for parallel tests without the padding attribute. The graph
focuses just on JoinMin and LaterDistinctLimitTies.

LateralLimitTies; therefore, the LateralDistinctLimitTies should al-
ways be used instead of the LateralLimitTies. Sometimes, we cannot
use the JoinMin or the LateralDistinctLimitTies, so only the Later-
alAgg remains. The LateralAgg is worth considering only if a high
selectivity predicate is in the 𝛽 that can be pushed down to 𝛼1 by a
query optimizer.

As mentioned, the selection of the logical tree type mainly influ-
ences the ratio. However, the ratio spans several orders of magni-
tude for individual logic plans since other aspects may also have
an effect, although not as significantly. Let us try to analyze this in
more detail:

(1) Parallelization - Multi-threaded processing is advantageous
for linear strategy in both commercial DBSs. That is influ-
enced by the fact that the sorting is more straightforward
to parallelize than a complex plan created by the self-join
strategy.

(2) Padding - When dealing with larger rows, the self-join
strategy is more beneficial than the linear strategy because
sorting can become challenging with the latter. This result
supports our hypothesis that sorting is a major issue in the
linear strategy.

(3) Indexes - The existence of indices increases the profitability
of the self-join strategy in most cases. In this case, DBS

can effectively use an indexed nested-loop join if selectivity
allows it.

(4) BDistinct - The self-join strategy tends to be faster at low
BDistinct values. We discuss this effect in more detail here.

Figure 9 shows the dependence of the ratio of 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 on
BDistinct where several parameters are fixed. We fixed the par-
allel processing and the padding attribute parameters. We use
BDistinct ranging from 0.001 to 30% for this experiment. The
plots show the JoinMin and the LateralDistinctLimitTies for several
index choices. Lower BDistinct values mean a smaller result size
and, therefore, an advantage for the self-join strategy.

In Figure 9 with I(A);I(B) indices, we observe an unusual jump
in the ratio of 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 for commercial DBSs. This is due to
the optimizer’s decision to (not) use indices for certain values of
BDistinct. The self-join strategy benefits from an index if the DBS
optimizer decides it is worth using. We can also notice that in
the case of the covering index I(BA), such jumps no longer occur
because the optimizer always uses the index.

More generally, the self-join strategy is advantageous if it leads
to a plan with an indexed nested-loop join with few repetitions.
The larger the intermediate result of the linear strategy compared
to the actual result, the more worthwhile it is to use the self-join

2169

strategy. This is because the main drawback of the linear strategy
is the expensive sorting.

Linear Self-joinLinear Self-joinLinear Self-joinLinear Self-join100

101

102

103

104

105

T
[m

s]

DBMS1

Linear Self-joinLinear Self-joinLinear Self-joinLinear Self-join

PostgreSQL

Linear Self-joinLinear Self-joinLinear Self-joinLinear Self-join

DBMS2

Linear Self-joinLinear Self-joinLinear Self-joinLinear Self-join

Hyper

Figure 10: Absolute query processing times for the linear and
self-join strategy.

4.2.2 AbsoluteQuery Processing Times Results. It is noticeable from
Figure 10 that the self-join queries reach much longer processing
times when compared to the linear strategy queries, which is an
obvious drawback of the self-join strategy. The main aim of this
article is to show that we can achieve significant speed-up using the
self-join strategy compared to the linear strategy; however, there is
a risk related to wrong cost estimation. We discuss the accuracy of
some cost-based optimizers in more detail in Section 4.4.

Table 2 summarizes the percentage of self-join queries reaching
the five-minute limit. The percent of such queries in the case of the
LateralAgg is significant in all DBS. Reaching the five-minute limit
means that the ratios of the LateralLimitTies and the LateralAgg
presented in Figure 8 are, in reality, lower in many cases. On the
other hand, ratios of the LateralDistinctLimitTies and the JoinMin
are accurate. The linear strategy queries never reach the five-minute
limit.

Table 2: Percent of self-join queries reaching the five-minute
limit

DBMS1 PostgreSQL DBMS2 Hyper
JoinMin 0 % 0 % 0 % 0%

LateralDistinctLimitTies 0 % 5.2 % 5.2 % 0%
LateralLimitTies 0 % 31.3 % 80 % 0%

LateralAgg 27.6 % 77 % 76 % 12.5 %

4.3 Aggregate Window Functions
Microbenchmark

In this section, we investigate the usefulness of the LateralAgg. As
is evident from results presented in Section 4.2, the LateralAgg can
be helpful only if there is a high selectivity predicate in 𝛽 that can
be propagated into 𝛼1. There is no such predicate in the greatest
per group microbenchmark, which is why LateralAgg performs so
poorly there. In this microbenchmark, we evaluate the situation
where 𝛽 contains such a predicate using the query from Listing 7.

SELECT A , B , AGG
FROM (

SELECT A , B ,
AGG_FUN () OVER (

PARTITION BY B
ORDER BY A

) AGG
FROM RTAB

) T1
WHERE C < SEL

Listing 7: Query template used in the aggregate window func-
tion microbenchmark

Similarly to the greatest per group microbenchmark, there are
various test settings:

• The selectivity of 𝛽 - it is set by the SEL constant, which
takes values of 1, 2, 4, 8, 16, and 32. A value of 1 for the SEL
constant corresponds to a selectivity of 0.1 h relative to
the total table size (i.e., 1 million rows).

• AGG_FUN() - we tested the COUNT(*) and MIN(A) aggrega-
tion functions.

• Constructs - we tested queries with both PARTITION BY
and ORDER BY constructs (denoted as PB_OB) and queries
with just PARTITION BY (denoted as PB).

• B uniqueness - different BDistinct values.
• Padding - we slightly modify the query to work with PTab

and also return the padding attribute.
• Parallelization - we test the queries with parallel processing

enabled (8 threads) and disabled.
• Indexes - we use twelve different index configurations since

the C attribute is added compared to the greatest per group
microbenchmark. However, in tests without ORDER BY
constructs, we only use four index configurations because
the A attribute is missing in predicates, making indexes
with the A attribute useless.

All these settings give a total of 7,680 different tests.

4.3.1 Ratio Results. Figure 11 summarizes ratios of this microbench-
mark for different DBSs. Similarly to the greatest per group mi-
crobenchmark, some settings make the self-join strategy more prof-
itable:

(1) Single-threaded processing,
(2) larger rows (with padding),
(3) and usage of indexes.

We can also observe that the WFE constructs have an impact as
well. For example, the WFE without ORDER BY (PB) and the window
function with MIN make the self-join strategy more advantageous
in all DBSs.

The diagrams in Figure 12 show the effect of selectivity on the
ratio of𝑇𝑙𝑖𝑛 and𝑇𝑠 𝑗 for different indices. We fixed other parameters
such as parallel execution, omitted padding, chose the MIN window
function, and used the PB_OB constructs. Each graph contains two
rows for each DBS: (1) for BDistinct 0.001 and (2) for BDistinct 3.

First, we examine Figure 12 from the BDistinct perspective. BDis-
tinct does not determine the size of the result as in the case of the
greatest per group microbenchmark. In these tests, a low BDistinct

2170

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

10 3

10 2

10 1

100

101

102

103

104

T l
in

/T
sj

DBMS1

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

PostgreSQL

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

DBMS2

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

AL
L

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D
PA

DD
IN

G
NO

 PA
DD

IN
G

CO
UN

T
M

IN PB
PB

_O
B

NO
 IN

DE
X

SO
M

E
IN

DE
X

Hyper

Figure 11: Ratio between 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 for different DBS and settings in aggregate window functions microbenchmark.

100 101 102 103

Selectivity
10 3

10 2

10 1

100

101

102

103

T l
in

/T
sj

No index
DBMS1, bdistinct: 0.001
PostgreSQL, bdistinct: 0.001
DBMS2, bdistinct: 0.001
Hyper, bdistinct: 0.001
DBMS1, bdistinct: 3
PostgreSQL, bdistinct: 3
DBMS2, bdistinct: 3
Hyper, bdistinct: 3

100 101 102 103

Selectivity
10 3

10 2

10 1

100

101

102

103 I(A);I(B) index

100 101 102 103

Selectivity
10 3

10 2

10 1

100

101

102

103 I(BA) index

Figure 12: Ratio between 𝑇𝑙𝑖𝑛 and 𝑇𝑠 𝑗 depending on selectivity of 𝛽 for parallel tests, without the padding attribute, using
PARTITION BY, ORDER BY, and MIN function.

has a rather negative effect because it can give us a large inter-
mediate result for each attribute B value. For some DBS, it then
leads to execution plans that sort the intermediate result, which
subsequently slows down the execution of the self-join query signif-
icantly. An important factor is using an appropriate index instead
of sorting. Ideally, the self-join strategy again leads to an indexed
nested-loop join with a few iterations.

If we look at Figure 12 from the selectivity of 𝛽 perspective,
higher selectivity results in a greater advantage of the self-join strat-
egy. This result is consistent with expectations. For this experiment,
we extended the range of SEL values up to 2048, corresponding to
20% selectivity. As we can see, in the case of a suitable index, some
DBSs can construct a favorable self-join plan even for such low
selectivity. We observe unusual jumps in the ratio for commercial
DBSs, again due to the optimizer’s decision to (not) use indices in
certain cases.

In contrast to the greatest per group microbenchmark, the five-
minute limit was rarely reached in this microbenchmark. That
shows that the highly selective condition from 𝛽 was successfully
pushed down and used to achieve more efficient query plans.

4.4 Cost-based Strategy
Cost-based strategy means that for an SQL query 𝑄𝑙𝑖𝑛 with WFE,
we do the following:

(1) We create𝑄𝑠 𝑗 , which is a transformed version of𝑄𝑙𝑖𝑛 using
the self-join strategy.

(2) We let the DBS query optimizer optimize both queries, and
we read the estimated cost for each query.

(3) We select the query with the lower cost.

We only present results for DBMS1 and PostgreSQL, from which
we could extract estimated plan cost information within our Java
code that runs all tests. Additionally, we only present the results for
tests that ran within five minutes since we were actually collecting
the cost information after a query run.

Table 3 compares query processing average times for both mi-
crobenchmarks, two DBSs, and all strategies. Table 3 also includes
an optimal strategy as a baseline. The optimal strategy represents a
hypothetical case where we always choose the faster strategy. We
see the average query times of the linear and self-join strategies in
the first two rows. The optimal strategy average query time follows,
and the most important is the bolded fourth row, which shows the
average query time of the cost-based strategy. The main result of
this test is that the cost-based strategy outperforms the linear strategy
in every column.

Interesting for us are the tests where the self-join strategy is a
false positive (SJSFP tests) since we want to know the ratio between
the strategies’ times when the cost estimation is wrong. Table 3
shows the average and minimum ratios for the SJSFP tests. These

2171

Table 3: Cost-based strategy selection statistics

Greatest per group Aggregate WF
Microbenchmark Microbenchmark

DBMS1 PostgreSQL DBMS1 PostgreSQL
Linear strategy 2735 2171 5098 2467average time [ms]

Self-join strategy 11525 18812 1909 18297average time [ms]
Optimal strategy 1651 1005 1608 1330average time [ms]

Cost-based strategy 1884 1082 2152 1596average time [ms]
SJSFP tests 0.71 - 0.98 -average ratio
SJSFP tests 0.41 - 0.96 -minimum ratio

tests 715 550 7680 7578
Linear strategy 20.7 6.5 21.4 20false positives [%]

Self-join strategy 2 0 0.35 0false positives [%]

ratios are not significantly bad in the case of these tests. A few tests
with the LateralDistinctLimit algorithm have more than twice the
𝑇𝑠 𝑗 time; however, most SJSFP tests have nearly identical times for
both strategies, so the ratio is close to one. Moreover, in the case of
PostgreSQL, there are no SJSFP tests.

The last two rows in the table show how often the optimizer
makes a mistake when estimating the cost. That is, how often the
plan selected based on estimated cost is slower. The penultimate
and last rows indicate how often a false selection of the linear and
self-join strategies occurs, respectively. The optimizer favors the
linear strategy (see the higher linear strategy false positives values
in Table 3). It is good since the linear strategy is more conservative
and does not tend to lead to extreme query plans, as mentioned in
Section 4.2.2.

The experiment in this section shows we get better times on
average if we use the SQL query transformation combined with the
built-in cost mechanism.

4.5 NMIN Experiment
In Section 3.3.2, we introduced the NMIN function, which enables
usage of the JoinNMin logical tree when the predicate in 𝛽 is other
than T.rn = 1. We implement the NMIN function in PostgreSQL,
which allows the implementation of a custom aggregation function.

We perform the same test as in Section 4.2 but use the T.rn =
5 predicate this time and compare only the JoinNMin and the Lat-
eralDistinctLimitTies. That is because the LateralDistinctLimitTies
outperforms the remaining lateral logical trees in the greatest per
group microbenchmark.

Summarized results of this test are shown in Figure 13, and
they correspond to the previous results presented in Section 4.2.
The results show that the JoinNMin outperforms the LateralDis-
tinctLimitTies significantly. We can observe that JoinNMin’s results

are just as good as JoinMin’s. So, the JoinNMin, in particular, in-
creases the number of situations where we can use the very efficient
self-join strategy.

AL
L

La
te

ra
lD

ist
in

ct
Lim

itT
ie

s
Jo

in
M

in

PA
RA

LL
EL

IZ
ED

SI
NG

LE
 T

HR
EA

D

PA
DD

IN
G

NO
 PA

DD
IN

G

NO
 IN

DE
X

SO
M

E
IN

DE
X

0.001

0.01

0.1

1.0

10.0

100.0

T l
in

/T
sj

PostgreSql

Figure 13: Ratio between𝑇𝑙𝑖𝑛 and𝑇𝑠 𝑗 for PostgreSQL using the
greatest per group microbenchmark and with the JoinNMin

.

4.6 TPC-H Benchmark
In the list of 22 TPC-H queries, three can be expressed using the
WFE: Q2, Q15, and Q17. So, we do not use the original TPC-H SQL
query notation in this experiment, but we have rewritten them into
equivalent ones using WFE.

TPC-H is still one of the most relevant database benchmarks [14]
almost three decades after its introduction. We used a TPC-H with
a scale factor of 10, where many tables are an order of magnitude
bigger than the table used in our microbenchmark.

We processed the queries with default parallelization (i.e., more
threads can be used if the optimizer finds them suitable). We did
not create any indexes. We leave the default physical design created
by a popular benchmark testing software HammerDB [28], which
already contains appropriate indexes. Table 4 briefly summarises
TPC-H queries and the logical tree applied to each query.

Table 4: Description of three tested TPC-H queries.

Query Description Logical tree
Q2 Greatest per group query with ties. Expressed

using RANK window function with PARTITION
BY and ORDER BY.

JoinMin

Q15 Query consists of two parts: 1) computation of
aggregate for certain groups, and 2) searching
for rows with the greatest aggregate. We keep
the view expressing the first part and use the
RANK window function with ORDER BY for the
second part.

JoinMin

Q22 Aggregate value computation with a highly
selective condition (1 per mille) in the outer
query. Expressed using SUM window function
with PARTITION BY.

LateralAgg

2172

DBMS1 PostgreSQL DBMS2 Hyper

100

101

102
T

[m
s]

Q2
Tlin

Tsj

DBMS1 PostgreSQL DBMS2 Hyper
10 1

100

101

Q15
Tlin

Tsj

DBMS1 PostgreSQL DBMS2 Hyper

10 1

100

101

102
Q17

Tlin

Tsj

Figure 14: Results of different compilation strategies for the selected TPC-H queries.

Figure 14 summarizes the measured results. Q2 is a model ex-
ample of a query, as seen in Listing 6. We can use the JoinMin
logical tree; therefore, the self-join strategy outperforms (or is ap-
proximately equal to) the linear strategy in every DBSs. The Q15
contains rn = 1 predicate as well; however, the computation of
the 𝛼 dominates the query, and no index or nested-loop join can
be used to speed up the query. Therefore, the 𝛼 (i.e., the first part
of the Q15 query) is computed twice, and the self-join strategy is
twice as slow. Q17 is another example of a model query, as seen in
Listing 7. We can see that the self-join strategy is more efficient in
the case of Q17. That is caused mainly because the selectivity of the
𝛽 condition is very high. In the case of Q17, we can see an improve-
ment of several orders of magnitude even though the LateralAgg
logical tree transformation is used.

The Q15 shows a limitation of our greatest per group microbench-
mark, which concluded that the JoinMin should consistently outper-
form the linear strategy. The 𝛼 is a single table in the microbench-
mark, enabling many query plan optimizations. Even having more
joined tables with selections is not a big problem, as we can see
in Q2. However, the 𝛼 in Q15 is a query with aggregations that
needs to be fully materialized before it can be further handled in
the self-join. Therefore, the advantages of the JoinMin are limited
in the case of Q15, and the linear strategy is more efficient.

5 RELATED WORK
Even though WFEs are popular, the amount of research that has
been done on their optimization in the last two decades [2, 11, 23,
30, 32] is not significant. Works describe efficient parallelized lin-
ear strategy operator [23], resource sharing during computation of
many queries with WFE [2], or efficient implementation of WFEs
with framing that is not part of the SQL:2003 standard [30]. Some
works aim to solve different range problems [9, 10, 15, 19], which is
a name in the algorithm community for problems represented by
WFEs. The range problem works usually focus on efficient compu-
tation of a particular WFE (e.g., percentiles or medians).

Some papers focus on transforming the entire SQL query [8, 34].
Zuzarte et al. [34] describe a WinMagic transformation rule that
proceeds in the opposite direction to the one we propose. Thus,
the rule searches for and replaces self-join using a WFE. A similar
approach can be found in the paper [8]. These works are based
on the assumption that WFEs are always a better option than a
self-join query plan. We show in our paper that this assumption is
not correct.

Work [1] summarizes a number of different heuristic and cost-
based SQL transformations and shows how to apply them in a query

optimizer. Our transformation can be incorporated into a query
compiler in the same way.

Surprisingly, as far as we know, no existing work indicates that
the self-join strategy can be more effective than the linear strategy
under certain conditions.

6 CONCLUSION AND FUTUREWORK
This article proposes a holistic view of a compilation of SQL queries
with WFEs. We presented several transformations for SQL queries
with rank and aggregate window functions and compared their
effectiveness. We created two microbenchmarks showing the in-
fluence of different DBSs and query aspects, such as usage of par-
allelization, data row size, selectivity of important query parts,
and the existence of different indexes. Our experiments show that
achieving more than one order of magnitude better query times is
possible using the self-join strategy in all tested DBSs. We proposed
and tested the NMIN aggregation function that extends the number
of situations where the most efficient JoinMin logical tree can be
used. Our experiment with several TPC-H queries shows that the
model situations described in our paper are not marginal but can
be observed even in such a popular benchmark.

We have added an experiment that shows that existing cost-
based optimizers are, in many cases, able to select the faster of the
two strategies based only on the built-in plan cost estimation. We
show that the cost-based strategy outperforms the linear strategy
on average query processing time, and at least one-third of the total
time can be saved on average.

In our article, we have focused on only the two most basic and
most used categories of WFEs (rank and aggregate). However, the
self-join strategy can be applied to other WFEs we have not consid-
ered in this article.

Applying our transformation into a query optimizer is not com-
plicated and does not require complex query matching. Transforma-
tion of an SQL query using a self-join strategy is straightforward.
As our experiments suggest, incorporating such transformation
into a DBS query optimizer on a query algebra level is possible and
would be beneficial.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic (SGS, No. SP2024/100). We thank
Michal Krátký for reading the article and valuable comments. Fi-
nally, we are grateful for the opportunity to use modern AI tools
such as chatGPT and Grammarly, as without them, the whole work
would have taken incomparably more time.

2173

REFERENCES
[1] Rafi Ahmed, Allison Lee, Andrew Witkowski, Dinesh Das, Hong Su, Mohamed

Zait, and Thierry Cruanes. 2006. Cost-based Query Transformation in Oracle. In
VLDB, Vol. 6. 1026–1036.

[2] Arvind Arasu and Jennifer Widom. 2004. Resource Sharing in Continuous Sliding-
window Aggregates. In Proceedings of the Thirtieth international conference on
Very large data bases, Vol. 4. 336–347.

[3] DuckDB authors. 2023. DuckDB - Window Functions. Retrieved July 8, 2023.
https://duckdb.org/docs/sql/window_functions

[4] Impala authors. 2023. Subqueries in Impala SELECT Statements. Retrieved
August 22, 2023. https://impala.apache.org/docs/build/html/topics/impala_
subqueries.html

[5] MySQL authors. 2023. MySQL - Window Functions. Retrieved July 8, 2023.
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html

[6] PostgreSQL authors. 2023. PostgreSql 14.2. Retrieved August 20, 2022. https:
//www.postgresql.org/docs/14/release-14.html

[7] Guilherme Banhudo. 2020. SQL Performance Tips 1. Retrieved January 2, 2024.
https://towardsdatascience.com/sql-performance-tips-1-50eb318cd0e5

[8] Srikanth Bellamkonda, Rafi Ahmed, Andrew Witkowski, Angela Amor, Mohamed
Zait, and Chun-Chieh Lin. 2009. Enhanced Subquery Optimizations in Oracle.
Proceedings of the VLDB Endowment 2, 2 (2009), 1366–1377.

[9] Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders.
2011. Towards Optimal Range Medians. Theoretical Computer Science 412, 24
(2011), 2588–2601.

[10] Gerth Stølting Brodal and Allan Grønlund Jørgensen. 2009. Data Structures for
Range Median Queries. In International Symposium on Algorithms and Computa-
tion. Springer, 822–831.

[11] Yu Cao, Chee-Yong Chan, Jie Li, and Kian-Lee Tan. 2012. Optimization of Analytic
Window Functions. Proceedings of the VLDB Endowment 5, 11 (2012).

[12] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational Sys-
tems. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems. ACM, 34–43.

[13] Umeshwar Dayal. 1987. Of Nests aud Trees: A Untied Approach to Process-
ing Queries That Contain Nested Subqueries, Aggregates, and Quantifiers. In
Proceedings of the VLDB Conference. VLDB Endowment, 197–208.

[14] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proceedings of the
VLDB Endowment 13, 8 (2020), 1206–1220.

[15] Sariel Har-Peled and S Muthukrishnan. 2008. Range Medians. In European
Symposium on Algorithms. Springer, 503–514.

[16] 2023 Hive authors. Retrieved August 22. 2023. Language Manual Sub-
Queries. https://cwiki.apache.org/confluence/display/Hive/LanguageManual+
SubQueries

[17] Silu Huang, Erkang Zhu, Surajit Chaudhuri, and Leonhard Spiegelberg. 2023.
T-Rex: Optimizing Pattern Search on Time Series. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–26.

[18] Yannis E Ioannidis. 1996. Query Optimization. ACM Computing Surveys (CSUR)
28, 1 (1996), 121–123.

[19] Allan Grønlund Jørgensen and Kasper Green Larsen. 2011. Range Selection
and Median: Tight Cell Probe Lower Bounds and Adaptive Data Structures. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 805–813.

[20] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory snapshots. In 2011
IEEE 27th International Conference on Data Engineering. IEEE, 195–206.

[21] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data Depen-
dencies for Query Optimization: a Survey. The VLDB Journal 31, 1 (2022), 1–22.

[22] Alexander Kozak. 2006. Islands and Gaps in Sequential Numbers. Retrieved Jan-
uary 2, 2024. https://learn.microsoft.com/en-us/previous-versions/sql/legacy/
aa175780(v=sql.80)

[23] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neumann. 2015.
Efficient Processing of Window Functions in Analytical SQL Queries. Proceedings
of the VLDB Endowment 8, 10 (2015), 1058–1069.

[24] Guido Moerkotte. 2023. Building Query Compilers. Retrieved October 10, 2023.
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf

[25] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with Group-
by and Join by GroupJoin. Proceedings of the VLDB Endowment 4, 11 (2011),
843–851.

[26] M. Muralikrishna. 1992. Improved Unnesting Algorithms for Join Aggregate
SQL Queries. In Proceedings of the 18th International Conference on Very Large
Data Bases, Vol. 92. Morgan Kaufmann Publishers Inc., 91–102.

[27] Praveen Seshadri, Joseph M Hellerstein, Hamid Pirahesh, TY Cliff Leung, Raghu
Ramakrishnan, Divesh Srivastava, Peter J Stuckey, and S Sudarshan. 1996. Cost-
based optimization for magic: Algebra and implementation. In Proceedings of
the 1996 ACM SIGMOD international conference on Management of data. ACM,
435–446.

[28] Steve Shaw. 2012. HammerDB: the Open Source Database Load Test Tool. Re-
trieved June 1, 2021. https://www.hammerdb.com/

[29] Ruby Y Tahboub, Grégory M Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In Proceedings of the 2018 International Conference
on Management of Data. ACM, 307–322.

[30] Adrian Vogelsgesang, Thomas Neumann, Viktor Leis, and Alfons Kemper. 2022.
Efficient Evaluation of Arbitrarily-framed Holistic SQL Aggregates and Window
Functions. In Proceedings of the 2022 International Conference on Management of
Data. ACM, 1243–1256.

[31] Richard Wesley. 2021. Windowing in DuckDB. Retrieved January 2, 2024. https:
//duckdb.org/2021/10/13/windowing.html

[32] Richard Wesley and Fei Xu. 2016. Incremental Computation of Common Win-
dowed Holistic Aggregates. Proceedings of the VLDB Endowment 9, 12 (2016),
1221–1232.

[33] Wenjun Zhou. 2014. Window Function vs. Self-join in SAP HANA. Retrieved
January 2, 2024. https://blogs.sap.com/2014/10/04/window-function-vs-self-
join-in-sap-hana/

[34] Calisto Zuzarte, Hamid Pirahesh, Wenbin Ma, Qi Cheng, Linqi Liu, and Kwai
Wong. 2003. Winmagic: Subquery Elimination Using Window Aggregation. In
Proceedings of the 2003 ACM SIGMOD international conference on Management of
data. 652–656.

2174

https://duckdb.org/docs/sql/window_functions
https://impala.apache.org/docs/build/html/topics/impala_subqueries.html
https://impala.apache.org/docs/build/html/topics/impala_subqueries.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html
https://www.postgresql.org/docs/14/release-14.html
https://www.postgresql.org/docs/14/release-14.html
https://towardsdatascience.com/sql-performance-tips-1-50eb318cd0e5
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://learn.microsoft.com/en-us/previous-versions/sql/legacy/aa175780(v=sql.80)
https://learn.microsoft.com/en-us/previous-versions/sql/legacy/aa175780(v=sql.80)
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://www.hammerdb.com/
https://duckdb.org/2021/10/13/windowing.html
https://duckdb.org/2021/10/13/windowing.html
https://blogs.sap.com/2014/10/04/window-function-vs-self-join-in-sap-hana/
https://blogs.sap.com/2014/10/04/window-function-vs-self-join-in-sap-hana/

	Abstract
	1 Introduction
	2 Window Function Expressions
	2.1 Window Functions
	2.2 Frame Definition
	2.3 Normalized Query with WFEs

	3 Self-join Strategy
	3.1 Aggregate Window Functions
	3.2 Rank Window Functions
	3.3 LateralLimitTies Optimization
	3.4 NULL Values and Logical Tree Equivalence

	4 Experiments
	4.1 SQL Rewriting Tool
	4.2 Greatest Per Group Microbenchmark
	4.3 Aggregate Window Functions Microbenchmark
	4.4 Cost-based Strategy
	4.5 NMIN Experiment
	4.6 TPC-H Benchmark

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

