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ABSTRACT
We study index-based processing for connectivity queries within

sliding windows on streaming graphs. These queries, which deter-

mine whether two vertices belong to the same connected compo-

nent, are fundamental operations in real-time graph data processing

and demand high throughput and low latency.While indexingmeth-

ods that leverage data structures for fully dynamic connectivity

can facilitate efficient query processing, they encounter significant

challenges with deleting expired edges from the window during

window updates. We introduce a novel indexing approach that elim-

inates the need for physically performing edge deletions. This is

achieved through a unique bidirectional incremental computation

framework, referred to as the BIC model. The BIC model imple-

ments two distinct incremental computations to compute connected

components within the window, operating along and against the

timeline, respectively. These computations are then merged to ef-

ficiently compute queries in the window. We propose techniques

for optimized index storage, incremental index updates, and effi-

cient query processing to improve BIC effectiveness. Empirically,

BIC achieves a 14× increase in throughput and a reduction in P95

latency by up to 3900× when compared to state-of-the-art indexes.
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1 INTRODUCTION
Graphs have been the natural representation of data in many do-

mains [33, 40], where individual entities are represented as vertices

and the relationships between entities are represented as edges.

With graph-structured data, one of the most interesting operations

is to compute connected components (CCs) [38, 39], which are ba-

sically subsets of vertices in a graph such that all vertices in the

subset are connected via undirected paths. Analyzing CCs has many

practical applications. In social networks, CCs represent distinct

communities or groups of individuals who are tightly connected to

each other, and analyzing these components helps in identifying
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friend circles and influential users within the larger social network

[34]. In transport networks, identifying CCs helps in understanding

traffic flow and connectivity between different parts of a city, which

is crucial for optimizing traffic signal timings, planning public trans-

portation routes, and managing emergency response systems [50].

In financial networks, CCs are used to detect unusual patterns or

suspicious clusters of activity that differ from normal transaction

patterns, which is crucial in fraud detection [17].

In modern data-driven applications, stream processing [1, 5, 25,

49, 55] is of significant importance, providing real-time data pro-

cessing capabilities. In the stream model, data arrive at a processing

site continuously and each data record contains a payload and a

timestamp. Computations are typically performed over windows
that are continuous finite subsets of streaming data over the un-

bounded input stream [12]. Of particular interest are time-based
sliding windows that are characterized by a window size and a slide
interval, denoted as 𝛼 and 𝛽 , respectively, which are given in time

units. Each window contains data whose timestamps are within

the window. For instance, a sliding window with window size of

3 hours and slide interval of 1 hour includes all streaming data of

the last 3 hours, and the window is updated every hour by deleting

expired data (i.e., data whose timestamp falls outside the window)

from the window and inserting new streaming data.

In this paper, we study the computation of CCs over a time-based

sliding window in a streaming graph [30, 35] that is essentially a

stream of edges. For ease of presentation, we focus on connectiv-
ity queries that check whether two vertices belong to the same

CC. Computing connectivity is equivalent to computing CCs as

the former requires computing and storing CCs. The problem of

computing connectivity over sliding windows is referred to as slid-
ing window connectivity. Computing sliding window connectivity

allows for the continuous analysis of data streams in real-time, en-

abling the immediate detection of changes or anomalies in network

structures. This is crucial in scenarios like social network monitor-

ing [34], traffic monitoring [50], and fraud detection [17], where

timely responses are essential.

Running example. Figure 1 shows a query to compute CCs over a

sliding window with window size of 5 and slide interval of 1 (time

units are not important). W2 is the instance of the sliding window

ranging from timestamp 𝜏2 to 𝜏6,W3 is the one from 𝜏3 to 𝜏7, and

so forth. W2 and W3 contain only one CC while W4 has two CCs.

Vertices𝐶 and𝐺 are connected in bothW2 andW3 but not inW4.

The naive approach to compute sliding window connectivity

is to traverse the streaming graph in each window instance, e.g.,
performing depth-first-search (DFS) in each W𝑖 in Figure 1. How-

ever, this approach would lead to recomputing CCs from scratch in

each window before processing queries, thus being inefficient in a

streaming setting. A non-trivial method is to use data structures
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designed for fully dynamic connectivity (FDC) [6, 9, 13–16, 18–

20, 22–24, 36, 48, 48, 53, 54]. Specifically, FDC supports 3 opera-

tions: insert, delete, and query. As previously mentioned, when

the sliding window needs to be updated, it is necessary to remove

expired data while adding new data into the window, e.g., from
W2 to W3 in Figure 1, it is necessary to delete streaming edges

with timestamp 𝜏2 and insert ones with timestamp 𝜏7. Obviously,

the insert and delete operations supported by FDC can be used

to deal with the updates required by sliding windows. The main

performance issue of the FDC approaches is the delete operation.

These use spanning trees to represent CCs, and deleting an edge

of a spanning tree requires traversing the graph in the window to

verify whether there exists an edge that can reconnect the two split

sub-trees (or CCs). In the worst case, this takes the same time as

the naive approach (see details in §2). For example, from W3 to

W4 in Figure 1, edge (B, D) needs to be deleted from W3, which

can lead to two CCs in the graph of W3. Then, it is necessary to

traverse the entire graph ofW3 to verify whether the two CCs can

be reconnected.

In this paper, we propose the bidirectional incremental computa-

tion model (BIC) to process sliding window connectivity. The main

idea of BIC is that streaming edges with contiguous timestamps

are grouped to form disjoint chunks, windows are decomposed ac-

cording to chunks, and queries are processed by applying partial

computations in chunks followed by merging the corresponding

partial results. Specifically, we compute two kinds of buffers for

each chunk: forward and backward buffers. Both forward and back-

ward buffers are computed incrementally, achieved by scanning

streaming edges in chunks. For the forward buffer, streaming edges

are processed sequentially, starting from the first edge and pro-

gressing to the last edge within the chunk. Conversely, to compute

the backward buffer, the streaming edges are scanned in the reverse

order, beginning with the last edge and moving towards the first in

the chunk. These two kinds of buffers are stored and the elements

in them are merged to compute the query result of each window.

Figure 2 demonstrates the BIC model, using the example pro-

vided in Figure 1. In this example, each chunk contains streaming

edges spanning 5 timestamps. The forward buffer 𝑓2 for chunk 𝑐2
is computed by scanning streaming edges from timestamps 𝜏6 to

𝜏10. The backward buffer 𝑏1 for chunk 𝑐1 is computed by scanning

streaming edges in reverse within 𝑐1, from 𝜏5 back to 𝜏1. Intuitively,

𝑓2 [1] captures the connectivity information of edges spanning from

𝜏6 to 𝜏7, whereas 𝑏1 [2] encompasses the connectivity information

of edges from 𝜏3 to 𝜏5 (see §5.1 for details). Consequently, any con-

nectivity query 𝑄 over W3 can be computed by merging these

segments of connectivity information (see §6.1 for details). The

novelty of the BIC model is its ability to deal with the deletion

of expired streaming edges from the window without necessitat-

ing any corresponding deletions in the maintained index to reflect

these changes. For example, 𝑄 over W3 is computed by merging

the segments of connectivity information stored in 𝑏1 [2] and 𝑓2 [1],
respectively. Our approach contrasts with a FDC approach, which

necessitates deleting expired edges with 𝜏2 from and inserting new

edges with 𝜏7 into the index of𝑊2.

In order to leverage the BIC model to compute sliding window

connectivity, two main challenges need to be addressed. Challenge

C1 is related to the storage of backward buffers. Specifically, every
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Figure 1: Ruining example.

𝑐ଵ[0] 𝑐ଵ[1] 𝑐ଵ[2] 𝑐ଵ[3] 𝑐ଵ[4]

𝜏ଵ 𝜏ଶ 𝜏ଷ 𝜏ସ 𝜏ହ

𝑐ଶ[0] 𝑐ଶ[1] 𝑐ଶ[2] 𝑐ଶ[3] 𝑐ଶ[4]

𝜏଺ 𝜏଻ 𝜏଼ 𝜏ଽ 𝜏ଵ଴

𝒲ଷ
Chunk 𝑐ଵ Chunk 𝑐ଶ

𝑏ଵ[0] 𝑏ଵ[1] 𝑏ଵ[2] 𝑏ଵ[3] 𝑏ଵ[4]

𝑓ଶ[0] 𝑓ଶ[1] 𝑓ଶ[2] 𝑓ଶ[3] 𝑓ଶ[4]Backward buffer 𝑏ଵ of chunk 𝑐ଵ

Forward buffer 𝑓ଶ of chunk 𝑐ଶ

𝑄 𝒲ଷ = 𝑏ଵ 2 ⊕ 𝑓ଶ 1

Figure 2: Using BIC for the running example in Figure 1.

element in a backward buffer needs to be stored, which will be re-

trieved for computing query results. However, storing all elements

in a backward buffer will lead to significant overhead (see detail

in §5.3). Challenge C2 is on efficiently merging backward and for-

ward buffers to compute query results. Vertices 𝑠 and 𝑡 might not

be connected in a single buffer (either forward or backward one)

but may be connected transitively via vertices that exist in both

kinds of buffers. Such inter-buffer checking can result in searching

entire buffers, which is not feasible to achieve low latency query

processing (see detail in §6.1).

This paper makes the following contributions:

• We introduce the BIC model, which transforms the updates

of edge insertions and deletions in sliding window computa-

tions into bidirectional incremental computations involving

only edge insertions. This approach effectively eliminates

the need for the costly operation of deleting expired edges

in maintaining indexes for processing connectivity queries

in sliding windows.

• To tackle challenge C1, we propose an approach that stores

just a single element in each backward buffer instead of

all elements. The single element stored is capable of recon-

structing all the other elements. This method introduces

no additional overhead for query processing.

• To address challenge C2, we design a bipartite graph to

bridge the global connectivity information between back-

ward buffers and forward buffers, such that the search space

of the merging operation can be significantly reduced.

• Our approach achieves near 𝑂 (log𝑛) complexity for both

worst-case query time and amortized index update time,

with 𝑛 representing the number of vertices in a window.
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Although the number of CCs in the window influences

these complexity results, it is noteworthy that the number

of CCs is typically very small in real-world graphs.

• Comprehensive experimental evaluation using 8 real-world

datasets and 2 synthetic datasets from industrial-grade

benchmarks demonstrates that our approach achieves a

14× increase in throughput and a reduction in P95 latency

by up to 3900× when compared to state-of-the-art indexes.

Due to space constraints, detailed proofs and algorithm pseudocodes

are available in our online technical report [56].

2 RELATEDWORK
Fully dynamic connectivity. FDCs [6, 9, 13–16, 18–20, 22–24, 36,
48, 48, 53, 54] are data structures that can reflect the window up-

dates due to expirations and insertions. They support 3 operations:

insert, delete, and query. Designing an algorithm that can per-

form all operations in 𝑂 (log𝑛) time (even amortized time) is a

long-standing problem. An early work shows the lower bound of

Ω(log𝑛/log log𝑛) [13, 31], and the latest lower bound is proved to

be Ω(log𝑛) [36]. The existing algorithms can be categorized into

two classes: deterministic algorithms [9, 10, 18, 19, 24, 53] and ran-

domized algorithms [11, 14, 15, 20, 23, 48, 51]. The former can return

correct query result with a fixed time complexity while the latter

has a random variable in either query results or time complexity.

There exist two sub-classes in the randomized ones: Monte Carlo

algorithms [11, 23, 51] and Las Vegas algorithms [14, 15, 20, 48].

Monte Carlo algorithms have a fixed time complexity but the query

results might be incorrect, while Las Vegas algorithms can return

correct query results but the time complexity contains a random

variable. Deterministic algorithms can be further classified accord-

ing to their primary focus: amortized algorithms [18, 19, 53] and

worst-case algorithms [9, 10, 24], which are designed to optimize

amortized and worst-case time complexity, respectively. According

to the latest study [6], most of these algorithms rely on complicated

data structures, which make them hard to implement. The seminal

works, HK [14, 15] and HDT [18, 19], are the only two algorithms

that have been successfully implemented and compared [2, 22]. HK

is a Las Vegas randomized algorithm while HDT is a deterministic

algorithm to amortize the time complexity. Both algorithms are de-

signed based on a framework using spanning trees and incorporate

specific techniques to deal with the main bottleneck in the frame-

work. We briefly discuss the framework below. The overarching

idea is to use Euler-Tour Tree [14] to store the spanning trees of

the input graph. Updates related to non-tree edges are trivial as

the connected components will not be changed. Tree edge inser-

tions can be addressed by using the combine operation provided by

Euler-Tour Tree. The main problem is the case of tree edge deletion

because it requires splitting the spanning tree into two sub-trees

and then checking whether there exists a non-tree edge that can

reconnect the two sub-trees. Such a non-tree edge is known as a

replacement edge. Searching for a replacement edge requires travers-

ing the entire graph in the worst case, which takes𝑂 ( |𝑉 | + |𝐸 |) time

if BFS or DFS is used. HK and HDT design advanced techniques to

amortize the cost of searching for replacement edges. D-Tree [6]

is a recent work that also uses the spanning tree framework, but

includes a different design to deal with the problem. Specifically, D-

Tree balances the length from each vertex to its root so as to reduce

the average cost of searching. However, the worst-case time com-

plexity of all existing approaches remains the same as using BFS or

DFS. In this paper, we focus on designing a deterministic algorithm

for computing connectivity queries within sliding windows. Thus,

we adopt D-Tree as the current state-of-the-art FDC approach. We

also include HDT as a baseline in our experimental evaluation as

HDT can be faster than HK according to early experiments [2] and

D-Tree is shown to be superior to HK.

Incremental connectivity. When the input graph only has edge

insertions, the well-known Union-Find (UF) [45, 46] can be used

to compute connectivity queries, which supports two operations:

insert and query in 𝑂 (log𝑛) time, where 𝑛 is the number of ver-

tices in the graph. However, UF cannot deal with edge deletions that

are necessary in computing sliding window connectivity. In this

paper, we design the bidirectional computation model to completely

avoid edge deletions, such that UF can be adopted.

Stream processing systems (SPSs). One of the primary require-

ments in general SPSs [1, 5, 25, 49, 55] is to achieve high-throughput

and low-latency computations. Two general stream processingmod-

els exist:micro-batch model, e.g., Apache Spark [55], and continuous
model, e.g., Apache Flink [5]. The former starts the computation

when each fix-sized batch is full while the latter immediately pro-

cesses streaming data. In this paper, we adopt the continuous model,

where the query result within a window is computed immediately

upon the arrival of a streaming edge that completes the window.

This approach facilitates low-latency real-time computation, a key

advantage of the continuous model [5]. There also exist graph

streaming systems designed for graph analytics [8, 21, 26, 29, 42, 43]

and SPARQL query processing [3, 4, 7, 27], and systems for tem-

porary graph analytics [37]. However, these systems lack specific

designs for sliding window connectivity queries, and our approach

proposed in the paper can be adopted into these systems to support

such fundamental operations in graph computation.

3 PROBLEM STATEMENT
Connectivity queries in graphs. We denote an (undirected) graph as

𝐺 = (𝑉 , 𝐸), where𝑉 is a finite set of vertices and 𝐸 ⊆ 𝑉×𝑉 is a finite

set of (undirected) edges. A connectivity query𝑄𝑐 (𝑠, 𝑡) in𝐺 checks

whether vertices 𝑠 and 𝑡 in 𝐺 are connected, and 𝑄𝑐 (𝑠, 𝑡) = 𝑇𝑟𝑢𝑒 if
there exists a path of undirected edges from 𝑠 to 𝑡 in 𝐺 .

Streaming graphs. A streaming edge is an undirected edge with a

timestamp, denoted as 𝑒 = (𝑢, 𝑣, 𝜏), where𝑢 and 𝑣 are the endpoints

of 𝑒 , and 𝜏 is the timestamp of 𝑒 . A streaming graph is an infinite

sequence of streaming edges (𝑒1, 𝑒2, ...), where subscript 𝑖 of 𝑒𝑖
denotes the arrival order of 𝑒𝑖 , which is strictly increasing, and

𝑒𝑖 .𝜏 ≤ 𝑒 𝑗 .𝜏 for any pair of streaming edges 𝑒𝑖 and 𝑒 𝑗 such that 𝑖 < 𝑗 .

Streaming graphs in sliding windows. In stream processing, the

computations are done in windows as the input stream is infinite.

A window is a fixed-size subsequence of the input stream, denoted

asW. In streaming graph processing, windows are usually time-
based that have fixed time intervals. A time-based window W
has a beginning timestamp W .𝜏𝑏 and an ending timestamp W .𝜏𝑒 .

W over a streaming graph 𝑆𝐺 = (𝑒1, 𝑒2, ...) consists of all the

streaming edges 𝑒𝑖 such that W .𝜏𝑏 ≤ 𝑒𝑖 .𝜏 ≤ W .𝜏𝑒 . A sliding
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window is defined with a window size 𝛼 and a slide interval 𝛽
given in time units, which essentially define the following sequence

of window instances, i.e., (W1,W2, ...), such that for each W𝑖 ,

W𝑖 .𝜏𝑒 = W𝑖 .𝜏𝑏 + 𝛼 , and for every two adjacent W𝑖 and W𝑖+1, we
have W𝑖+1 .𝜏𝑏 = W𝑖 .𝜏𝑏 + 𝛽 .

Sliding window connectivity. Sliding window connectivity com-

putes connectivity queries in each window instance of a sliding

window. We formalize the problem below.

Definition 3.1 (Sliding Window Connectivity). Given a stream-

ing graph 𝑆𝐺 and a time-based sliding window W(𝑆𝐺) defined by

window size 𝛼 and slide interval 𝛽 , sliding window connectivity is

to compute connectivity query 𝑄𝑐 (𝑠, 𝑡) between vertices 𝑠 and 𝑡 in

all window instances (W1,W2, ...) of W(𝑆𝐺).

Example 3.2. Figure 1 includes three window instancesW2,W3,

and W4 of the running example. For query 𝑄𝑐 (𝐶,𝐺), a path exists

between 𝐶 and 𝐺 in W2 and W3, making 𝑄𝑐 (𝐶,𝐺) = 𝑇𝑟𝑢𝑒 , but in
W4, 𝐶 and 𝐺 are not connected, so 𝑄𝑐 (𝐶,𝐺) = 𝐹𝑎𝑙𝑠𝑒 .

We aim to build an index for efficiently processing connectiv-

ity queries within sliding windows due to the inefficiencies of the

naive approach based on graph traversal. The main challenge is

maintaining the index on the fly. Specifically, when the window

is sliding, expired edges will be deleted and new edges will be in-
serted. For instance, in Figure 1, whenW3 is sliding toW4, expired
edges (𝐵, 𝐷) and (𝐹,𝐺) with timestamp 𝜏3 are deleted and new
edges (𝐿,𝑀) and (𝐾, 𝐿) with timestamp 𝜏8 are inserted. The gist of

the problem, therefore, is to effectively manage graph updates so

they can be efficiently incorporated into an index, which in turn

facilitates efficient processing of queries.

4 A BIDIRECTIONAL INCREMENTAL MODEL
In this section, we propose the bidirectional incremental computa-

tion (BIC)model to address the problem of dynamic computations in

sliding windows over streaming graphs. BIC’s main idea is to group

streaming edges into chunks and perform forward and backward
computations in chunks. Both forward and backward computations

can be done incrementally. The final computation result in each

window instanceW𝑖 can be obtained by merging sub-computation

results obtained by the forward and backward computations. We

explain the main BIC concepts below, where we use the running

example in Figure 2 to guide the presentation.

In the BICmodel, the result of a query𝑄 in each window instance

W is computed as follows:

𝑄 (W) = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1) ⊕ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2), (1)

where W1
and W2

are disjoint sub-windows of W, i.e., W =

W1 ∪W2
, and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 () and ⊕ are the partial and merging opera-

tions for processing𝑄 , respectively. 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 () and ⊕ will be detailed

in §5 and §6, respectively.

Definition 4.1 (Chunks). Given a streaming graph 𝑆𝐺 , streaming

edges in 𝑆𝐺 are grouped into non-overlapping chunks (𝑐1, 𝑐2, ..., 𝑐𝑛).
Each chunk 𝑐 is an array of slide intervals. The number of slide

intervals in each chunk is the chunk size, referred to as |𝑐 |.

Example 4.2. For the running example in Figure 1, we present

(Figure 2) the BICmodel with chunk size of 5 slide intervals. Chunks

𝑐1 and 𝑐2 are arrays of 5 elements, including (𝑐1 [0], ..., 𝑐1 [4]) and
(𝑐2 [0], ..., 𝑐2 [4]), respectively. Window instance W3 is split into

two sub-windowsW1

3
= {𝜏3, 𝜏4, 𝜏5} andW2

3
= {𝜏6, 𝜏7}. Computing

query 𝑄 (W3) can be done by first computing 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1

3
) and

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2

3
), followed by merging the two partial results.

Definition 4.3 (Backward and Forward Buffers). Given a streaming

graph 𝑆𝐺 and chunks (𝑐1, 𝑐2, ..., 𝑐𝑛) over 𝑆𝐺 . Two kinds of buffers

of size |𝑐 | are computed in each chunk 𝑐𝑖 .

• Forward buffer 𝑓𝑖 consists of |𝑐 | elements (𝑓𝑖 [0], ..., 𝑓𝑖 [|𝑐 | −
1]), and each element 𝑓𝑖 [ 𝑗] = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑐𝑖 [0] ∪ ... ∪ 𝑐𝑖 [ 𝑗]);

• Backward buffer 𝑏𝑖 consists of |𝑐 | elements (𝑏𝑖 [0], ..., 𝑏𝑖 [|𝑐 |−
1]), and each element𝑏𝑖 [ 𝑗] = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑐𝑖 [ 𝑗]∪...∪𝑐𝑖 [|𝑐 |−1]).

In Figure 2, 𝑏1 [2] and 𝑓2 [1] are computed as follows: 𝑏1 [2] =

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑐1 [2] ∪𝑐1 [3] ∪𝑐1 [4]); 𝑓2 [1] = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑐2 [0] ∪𝑐2 [1]). Note
that each chunk has a backward and a forward buffer, and we only

show 𝑏1 and 𝑓2 in Figure 2 for ease of presentation.

In this paper, we focus on using the chunk size that matches the

window size divided by the slide interval, facilitating the merging

of single elements from backward and forward buffers, respectively.

Definition 4.4 (The BICModel). Given a query𝑄 and a sliding win-

dow over streaming graph 𝑆𝐺 , the BIC model computes a forward

buffer 𝑓𝑖 and a backward buffer 𝑏𝑖 for each chunk 𝑐𝑖 in 𝑆𝐺 . The com-

putation of 𝑄 in each window instance W is decomposed into par-

tial computations of𝑄 over sub-windows:𝑄 (W) = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1)⊕
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2), where 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1) and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2) are obtained
by using 𝑏𝑖 and 𝑓𝑖 .

Example 4.5. For the running example in Figure 2, we have

𝑄 (W3) = 𝑏1 [2] ⊕ 𝑓1 [2] because 𝑄 (W3) is split into sub-windows

W1

3
andW2

3
, and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1

3
) = 𝑏1 [2] and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2

3
) = 𝑓2 [1].

For each chunk 𝑐𝑖 , 𝑓𝑖 , and 𝑏𝑖 can be computed incrementally as

long as the partial operation has the following property:

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑒1 ∪ ...∪𝑒𝑚) = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑒1 ∪ ...∪𝑒𝑚−1) ∪𝑒𝑚). (2)

The partial operation that has the above property for comput-

ing connectivity queries is called incremental connectivity [45, 46],

which will be detailed in §5.

The remainder of the paper will address the problem of deploying

sliding window connectivity 𝑄𝑐 into the BIC model. In particular,

we design 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 () in §5 and ⊕ in §6 for 𝑄𝑐 such that Equations

(1) and (2) in the BIC model can be satisfied.

5 INCREMENTAL SUB-CONNECTIVITY
In this section, we discuss the design of 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 () for computing

𝑄𝑐 over sliding windows in BIC, such that Equations (1) and (2) are

satisfied. Intuitively, the Union-Find Tree (UFT) [45, 46] algorithm

can be applied to incrementally compute connectivity in backward

and forward buffers. We identify the underlying challenges on

buffer storage in §5.2 and propose a snapshot-based approach to

address the challenges in §5.3.

5.1 Incremental sub-connectivity in buffers
Our main finding is that incremental connectivity can be the par-
tial operation for computing 𝑄𝑐 in the BIC model, which allows fully
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Figure 3: The forward buffer 𝑓2 over chunk 𝑐2 and the backward buffer 𝑏1 over chunk 𝑐1 in the running example in Figure 2.

incremental computations in the backward and forward buffers. Incre-
mental connectivity is the case of computing connectivity queries

over a dynamic graph with only edge insertions, which indeed satis-

fies the property required in Equation (2). Incremental connectivity

can be efficiently computed using UFTs. Thus, in order to compute

𝑄𝑐 using the BIC model, each buffer (either 𝑓 or 𝑏) computes UFTs

to support the partial operation. We briefly review how UFT oper-

ates with respect to edge insertions and use the running example

to explain the data structures in buffers.

Each UFT represents a CC in the graph. UFTs are equipped with

two operations: find and union. The find operation computes the

root of a vertex in the UFT, and the union operation links the two

roots by making one of them a child of the other. A connectivity

query between 𝑠 and 𝑡 can be simply computed by checkingwhether

𝑓 𝑖𝑛𝑑 (𝑠) = 𝑓 𝑖𝑛𝑑 (𝑡). When an edge (𝑢, 𝑣) is inserted into the graph,

if 𝑓 𝑖𝑛𝑑 (𝑢) = 𝑓 𝑖𝑛𝑑 (𝑣), no update in the UFT is required since 𝑢 and

𝑣 are already in the same CC. Otherwise, the union operation is

performed to link the two UFTs with roots 𝑓 𝑖𝑛𝑑 (𝑢) and 𝑓 𝑖𝑛𝑑 (𝑣),
respectively. In this case, 𝑢 and 𝑣 are connected by having 𝑓 𝑖𝑛𝑑 (𝑢)
as a child of 𝑓 𝑖𝑛𝑑 (𝑣), or vice versa.

In BIC, we compute UFTs in each forward buffer 𝑓𝑖 of chunk 𝑐𝑖 ,

which are computed by continuously inserting streaming edges in

(𝑐𝑖 [0], ..., 𝑐𝑖 [|𝑐 | − 1]). Each 𝑓𝑖 [ 𝑗] corresponds to the snapshot of the
UFTs after inserting streaming edges in 𝑐𝑖 [ 𝑗]. The computation of

the backward buffer 𝑏𝑖 is the same as the computation of 𝑓𝑖 except

that UFTs in 𝑏𝑖 are computed by inserting streaming edges in the

order of (𝑐𝑖 [|𝑐 | − 1], ..., 𝑐𝑖 [0]). Hereafter, we use the term snapshot

to denote 𝑓𝑖 [ 𝑗] or 𝑏𝑖 [ 𝑗].

Example 5.1. Consider running the example in Figures 1 and 2.

The corresponding forward buffer 𝑓2 and backward buffer 𝑏1 are

presented in Figure 3. 𝑓2 is computed by inserting streaming edges

in chunk 𝑐2 from 𝑐2 [0] to 𝑐2 [4] into the UFTs of 𝑓2, with its UFT

snapshots illustrated in Figure 3. Two situations may arise when

inserting an edge into 𝑓2. The first situation is that vertices are al-

ready connected. For instance, the edge (𝐴, 𝐼 ) in 𝑐2 [1] inserted into
𝑓2 [0] does not alter the UFT because𝐴 and 𝐼 are already connected,

sharing the same root. The second situation is that vertices are not

connected, so union needs to be performed. For instance, insert-

ing edge (𝐼 , 𝐿) from 𝑐2 [3] into 𝑓2 [2] necessitates a union operation

since 𝐼 and 𝐿 have different roots in 𝑓2 [2]. 𝐴 is linked as a child of

𝐾 as the UFT rooted at 𝐴 has fewer vertices than the UFT rooted

at 𝐾 (an optimization technique explained later). The computation

of 𝑏1 works similarly but scans chunk 𝑐1 in reverse, from 𝑐1 [4] to
𝑐1 [0]. 𝑏1 [3] shows the snapshot after inserting edges from 𝑐1 [4]
and 𝑐1 [3].

In UFTs, find is the building block for query processing and

edge insertions. Thus, its cost should be reduced. We define an

optimization technique on UFTs in backward and forward buffers.

Definition 5.2 (Optimized UFT). If union always makes the root

of the smaller UFT as a child of the larger UFT, then the resulting

UFT is an optimized UFT, where the size of a UFT (|𝑈𝐹𝑇 |) is the
number of vertices in it.

Lemma 5.3. The worst-case time complexity of performing find in
an optimized UFT is 𝑂 (log( |𝑈𝐹𝑇 |)).

The lemma can be proved by induction [41]. In the remainder of

the paper, any UFT in the BIC model is an optimized UFT. By abuse

of notation, we simply denote optimized UFTs as UFTs.

5.2 Computing and accessing buffers
We explore the challenges of computing and storing forward and

backward buffers in BIC, starting with the definition of computing

and accessing orders. The computing order is forward if snapshots

are computed from the first to the last, and backward if from the

last to the first. Accessing order follows the same logic; forward for

accessing from the first to the last snapshot, and backward for the

reverse. Thus, forward buffers have both forward computing and

accessing orders, while backward buffers have backward computing

and forward accessing orders.

Example 5.4. Consider the running example in Figures 2 and 3.

The computations of 𝑄𝑐 in window instances W2, W3, and W4

using 𝑏1 and 𝑓2 are shown as follows: 𝑄𝑐 (W2) = 𝑏1 [1] ⊕ 𝑓2 [0];
𝑄𝑐 (W3) = 𝑏1 [2] ⊕ 𝑓2 [1]; 𝑄𝑐 (W4) = 𝑏1 [3] ⊕ 𝑓2 [2]. Both 𝑏1 and 𝑓2
are accessed in the forward manner. However, 𝑏1 is computed in

the backward manner while 𝑓2 is computed in the forward manner.

To sum up, snapshots in forward buffers are first-computed-

first-accessed (FCFA) while snapshots in backward buffers are first-

computed-last-accessed (FCLA). FCFA is trivial to address, but FCLA

will bring challenges in storing, discussed in §5.3.

5.3 Backward buffer storage
Since forward buffer snapshots are FCFA, they can be processed and

accessed immediately. For instance, in Figure 2 at timestamp 𝜏8, only

𝑓2 [2] needs storage; 𝑓2 [0] and 𝑓2 [1] are unnecessary. Conversely,
backward buffers are FCLA, needing more storage; for example,

𝑏1 [3] is computed before and accessed after 𝑏1 [1], thus must be

stored during 𝑏1 [1]’s access.
The naive solution to deal with FCLA in backward buffer 𝑏 is

to record every snapshot in 𝑏. The corresponding storage cost is

unfeasibly high because the size of UFTs in 𝑏 can be very large,

considering that each chunk can have millions of streaming edges,

and we have to make |𝑐 | copies of each UFT. To address the issue,

we design a snapshot isolation approach. We denote the edges in

UFTs as Union-Find Tree Edges (UFTEs). Notice that UFTEs are

not necessarily the same as streaming edges. Our approach labels

each UFTE with a snapshot index in 𝑏 to mark when the UFTE is
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inserted into 𝑏. Consequently, 𝑏𝑖 [ 𝑗] becomes a subset of UFTEs in

𝑏 [0], with each UFTE’s snapshot index equal to or great than 𝑗 .
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Figure 4: Storing 𝑏1 in Figure 3 using snapshot isolation.

Example 5.5. Figure 4 illustrates the snapshot isolation approach,

using the running example in Figure 3. UFTEs (𝐴, 𝐷) and (𝐴, 𝐹 )
are inserted into 𝑏1 [4] and labeled with snapshot index 4. Similarly,

other UFTEs are labeled accordingly. To compute 𝑏1 [3] from 𝑏1 [0],
we retrieve UFTEs in 𝑏1 [0] labeled with snapshot indexes 3 and 4,

specifically (𝐴, 𝐷), (𝐴, 𝐹 ), (𝐵,𝐶), and (𝐵, 𝐸).

Lemma 5.6 shows that the find operation can be correctly com-

puted by using snapshot isolation to store backward buffer 𝑏.

Lemma 5.6. Given vertex 𝑣 in 𝑏𝑖 [ 𝑗], computing 𝑓 𝑖𝑛𝑑 (𝑣) in 𝑏𝑖 [ 𝑗]
is equivalent to computing 𝑓 𝑖𝑛𝑑 (𝑣) in 𝑏𝑖 [ 𝑗 ′], 𝑗 ′ < 𝑗 , if the traversal
from 𝑣 in 𝑏𝑖 [ 𝑗 ′] terminates whenever a UFTE labeled with snapshot
index that is smaller than 𝑗 is visited.

Lemma 5.6 can be simply transformed into an algorithm for com-

puting find in UFTs labeled with snapshot indexes, which has the

same time complexity 𝑂 (log |𝑈𝐹𝑇 |) as the original find operation.

In Figure 3, 𝑓 𝑖𝑛𝑑 (𝐶) in 𝑏1 [3] is 𝐵. If we perform the same com-

putation using 𝑏1 [1] in Figure 4, UFTE (𝐵,𝐶) will be visited as it is

labeled with 3. However, the next UFTE (𝐴, 𝐵) will not be visited
as it is labeled with 2 which means (𝐴, 𝐵) does not exist in 𝑏1 [3].
Then, find stops and 𝐵 is returned as the root of 𝐶 .

Lemma 5.6 allows us to store only 𝑏𝑖 [1] as the find operation in

any 𝑏𝑖 [ 𝑗], 𝑗 > 1 can be correctly computed (𝑏𝑖 [0] is not needed as

it contains the same information as 𝑓𝑖 [0]). Therefore, snapshot iso-
lation necessitates only 𝑂 ( |𝑈𝐹𝑇 |) space, compared to 𝑂 ( |𝑈𝐹𝑇 | |𝑐 |)
in the naive approach. For storing 𝑏1 in the example of Figure 3, the

naive approach needs to store 24 UFTEs while snapshot isolation

only needs to store 6 UFTEs labeled with 6 integers.

6 MERGING SUB-CONNECTIVITY
In this section, we propose the merging operation ⊕ for computing

sliding window connectivity using the BIC model. The primary goal

is to merge the sub-connectivity information over sub-windows

stored in backward and forward buffers for computing the query

result in a full window. We discuss the challenges of merging, fol-

lowed by a tailored data structure for efficient merging.

6.1 Merging sub-connectivity
In the BIC model, any query 𝑄𝑐 over each window W is com-

puted as follows 𝑄𝑐 (W) = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1) ⊕ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2), where
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W1) and 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (W2) are stored in 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1],
and ⊕ is the operation for merging these two partial results. Given

𝑄𝑐 (𝑠, 𝑡), the main idea of merging is that if 𝑠 and 𝑡 are connected in

either 𝑏𝑖 [ 𝑗] or 𝑓𝑖+1 [ 𝑗−1], then𝑄𝑐 (𝑠, 𝑡) = 𝑇𝑟𝑢𝑒 . This case is referred

to as intra-buffer checking. If intra-buffer checking cannot deter-

mine the query result, then we check whether 𝑠 and 𝑡 are connected

via all vertices in 𝑏𝑖 [ 𝑗] or 𝑓𝑖+1 [ 𝑗 − 1], referred to as inter-buffer
checking.

Example 6.1. For an example of inter-buffer checking, consider

query 𝑄𝑐 (𝐶,𝐺) in Figures 2 and 3. 𝑄𝑐 (𝐶,𝐺) overW3 is evaluated

using 𝑏1 [2] and 𝑓2 [1] according to the BIC model. In 𝑏1 [2], 𝐶 and

𝐺 are connected as they have the same root 𝐴, such that 𝑄𝑐 (𝐶,𝐺)
is 𝑇𝑟𝑢𝑒 in W3. Consider query 𝑄𝑐 (𝐼 ,𝐶) in W3 in Figure 3 for an

example of inter-buffer checking. In this case, intra-buffer check-

ing can not determine the query result because 𝐼 and 𝐶 are not

connected in either 𝑏1 [2] or 𝑓2 [1]. Thus, inter-buffer checking is

necessary. In 𝑓2 [1], there exist vertices 𝐷 and 𝐵, which have the

same root as 𝐼 and 𝐶 , respectively, and 𝐷 and 𝐵 are connected in

𝑏1 [2]. Thus, 𝑄𝑐 (𝐼 ,𝐶) is 𝑇𝑟𝑢𝑒 in W3.

Intra-buffer checking is a trivial task as it only requires perform-

ing the find operation. Themain challenge inmerging is inter-buffer

checking. We denote the vertices that appear in both 𝑓𝑖+1 [ 𝑗 −1] and
𝑏𝑖 [ 𝑗] as inter-vertices. Then, inter-buffer checking requires search-
ing inter-vertices transitively as they can make 𝑠 and 𝑡 connected.

For instance, in Figure 3, for 𝑏1 [2] and 𝑓2 [1], vertices 𝐷 and 𝐵 are

inter-vertices as they appear in both 𝑏1 [2] and 𝑓2 [1], which can

make 𝐼 and 𝐶 connected, as discussed in Example 6.1.

Searching for such inter-vertices during inter-buffer checking is

computationally expensive because a UFT can have thousands or

millions of vertices. More importantly, this procedure needs to be

performed recursively, i.e., if 𝑠 and 𝑡 are not connected in 𝑓𝑖+1 [ 𝑗 −1]
and the inter-vertices 𝑠′ and 𝑡 ′ that are respectively connected to

𝑠 and 𝑡 in 𝑓𝑖+1 [ 𝑗 − 1] are still not connected in 𝑏𝑖 [ 𝑗], then it is

necessary to check whether there exist inter-vertices that can make

𝑠′ and 𝑡 ′ connected, and so forth. Such kind of checking needs to

be performed exhaustively to determine the final query result.

6.2 Indexing for inter-buffer checking
In order to support efficient inter-buffer checking, we store the con-

nection via inter-vertices between 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 −1], ∀𝑗 ≥ 1. The

main idea is to store the connection between 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1]
by recording the roots of inter-vertices. For instance, in Figure 3,

inter-vertex𝐶 has root𝐴 in 𝑏1 [2] and root𝐾 in 𝑓2 [1]. Thus, the con-
nected information between 𝐴 and 𝐾 via 𝐶 is recorded, which will

be used for inter-buffer checking. Storing the connection between

the roots of inter-vertices is more efficient than simply storing

inter-vertices. The reason is that the number of inter-vertices can

be large but the number of their roots in 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗−1] is very
small (the number of CCs is not large in practice). Consequently,

a significant amount of inter-vertices can have the same root, and

storing the roots will naturally remove redundancy.

We use a backward-forward bipartite graph (BFBG) to store

the connection between 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1]. The vertices in a

BFBG are the roots in 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1], and the edges represent
the connection between the roots via inter-vertices. Each BFBG is

computed for each pair of (𝑏𝑖 , 𝑓𝑖+1), and the BFBG is updated as

the snapshot index 𝑗 increases. The snapshots of the BFBG can be

used to provide the connectivity information between 𝑏𝑖 [ 𝑗] and
𝑓𝑖+1 [ 𝑗 − 1]. In order to efficiently compute BFBGs, edges in BFBGs

are labeled with additional information.
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Definition 6.2. A BFBG (𝑉𝑏 ,𝑉𝑓 , 𝐸𝑏,𝑓 ) for (𝑏𝑖 , 𝑓𝑖+1) records the
connection between roots of UFTs in (𝑏𝑖 [ 𝑗], 𝑓𝑖+1 [ 𝑗 − 1]), 𝑗 ≥ 1. 𝑉𝑏
and 𝑉𝑓 are the subsets of vertices in 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1], respec-
tively. If there exists an inter-vertex 𝑣 between 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 −1],
there must exist an edge 𝑒𝑏,𝑓 = (𝑣𝑏 , 𝑣 𝑓 ) ∈ 𝐸𝑏,𝑓 , such that 𝑣𝑏 and 𝑣 𝑓
are the roots of 𝑣 in 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1], respectively. In addition,

each 𝑒𝑏,𝑓 is labeled with one or multiple intervals [ 𝑗𝑠 , 𝑗𝑒 ] such that

the root of the inter-vertex 𝑣 is 𝑣𝑏 in 𝑏𝑖 [ 𝑗],∀𝑗 ∈ [ 𝑗𝑠 , 𝑗𝑒 ].
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Figure 5: The snapshots of BFBG for 𝑏1 and 𝑓2 in Figure 4.

Example 6.3. The BFBG for (𝑏1 [1], 𝑓2 [0]) of the running example

is shown in snapshot 1 in Figure 5. As the roots of inter-vertex 𝐴

in 𝑏1 [1] and 𝑓2 [0] are 𝐴 and 𝐴, respectively. Thus, edge (𝐴𝑏 , 𝐴𝑓 )
is included in the BFBG. In addition, according to 𝑏1, the root of 𝐴

is 𝐴 from 𝑏1 [1] to 𝑏1 [4]. Thus, (𝐴𝑏 , 𝐴𝑓 ) in snapshot 1 of Figure 5

is labeled with [1, 4].

In BIC, a BFBG is created for each pair of (𝑏𝑖 , 𝑓𝑖+1), which will be

used to perform inter-buffer checking between 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 −
1], 𝑗 ≥ 1. We say the 𝑗-th snapshot of the BFBG is the snapshot

of the BFBG that can be used to perform inter-buffer checking

for (𝑏𝑖 [ 𝑗], 𝑓𝑖+1 [ 𝑗 − 1]), e.g., Figure 5 shows the 4 snapshots of the
BFBG for (𝑏1, 𝑓2) in the running example. We note that the intervals

assigned to edges in a BFBG are used to deal with the issues of

computing and updating the BFBG, and the corresponding detail

will be explained later. We discuss below how a BFBG can be used,

followed by how to compute a BFBG.

Inter-buffer checking using a BFBG. The main idea of performing

inter-buffer checking using a BFBG is to compute for 𝑠 and 𝑡 in

𝑄𝑐 (𝑠, 𝑡) their roots in 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1], and then check whether

the roots are connected in the BFBG. In checking connectivity using

the 𝑗-th snapshot of the BFBG, only edges labeled with an interval

such that 𝑗 is in the interval are visited.

Example 6.4. Consider 𝑄𝑐 (𝐼 ,𝐶) in W3 in Figure 3. 𝐼 and 𝐶 are

not connected in 𝑏1 [2] and 𝑓2 [1]. Then, snapshot 2 of the BFBG for

(𝑏1, 𝑓2) shown in Figure 5 is used to perform inter-buffer checking.

The computation starts with finding the roots of 𝐼 and 𝐶 in 𝑓2 [1],
i.e., 𝐴 and 𝐾 , respectively, and then checks whether 𝐴𝑓 and 𝐾𝑓 are

connected in snapshot 2 of the BFBG. We have 𝑄𝑐 (𝐼 ,𝐶) = 𝑇𝑟𝑢𝑒

as 𝐴𝑓 and 𝐾𝑓 are connected. In this example, edge (𝐴𝑏 , 𝐴𝑓 ) in
snapshot 2 of the BFBG is visited because it has an interval [1, 4]
and 2 ∈ [1, 4]. Edge (𝐴𝑏 , 𝐾𝑓 ) is visited because of the same reason.

However, edge (𝐵𝑏 , 𝐾𝑓 ) is pruned because (𝐵𝑏 , 𝐾𝑓 ) is labeled with

only one interval [3, 3] and 2 ∉ [3, 3].

Computing a BFBG. The BFBG for each pair of (𝑏𝑖 , 𝑓𝑖+1) is com-

puted incrementally in the sense that the 𝑗-th snapshot is computed

by performing updates on top of the ( 𝑗 − 1)-th snapshot, where

the first snapshot is computed on top of the empty BFBG. There

exist two kinds of updates in a BFBG: edge insertions and updating

𝑣 𝑓 ∈ 𝑉𝑓 . Edge insertion updates are for the case that a vertex is

identified as an inter-vertex, such that the connection between𝑏𝑖 [ 𝑗]
and 𝑓𝑖+1 [ 𝑗 − 1] via the inter-vertex needs to be recorded. Updating

𝑣 𝑓 ∈ 𝑉𝑓 is used to deal with the issue that the root of an inter-vertex
in 𝑓𝑖+1 [ 𝑗 −1] is changed as 𝑗 increases (this is because of processing
new streaming edges). One may notice that the root of an inter-

vertex in 𝑏𝑖 [ 𝑗] may also be changed as 𝑗 increases. However, such

kind of updates do not need to be performed because of the interval

assignment mechanism on the edges in BFBGs. The intuition is to

insert all the possible roots of an inter-vertex 𝑣 in different snap-

shots of 𝑏𝑖 when 𝑣 is identified as an inter-vertex and to distinguish

the roots using the assigned intervals. This tailored design is to

avoid recomputing the roots of inter-vertices in 𝑏𝑖 [ 𝑗] for different
𝑗 . We note that it is feasible to have all the roots of an inter-vertex

in 𝑏𝑖 [ 𝑗],∀𝑗 ≥ 1 because 𝑏𝑖 is computed in the backward manner.

Edge insertions in a BFBG. For each streaming edge inserted in

𝑓𝑖+1 [ 𝑗 − 1], we check whether each of the two endpoints of the

streaming edge is an inter-vertex. If 𝑣 is identified as an inter-vertex

with root 𝑣 𝑓 in 𝑓𝑖+1 [ 𝑗 − 1] and root 𝑣𝑏 in 𝑏𝑖 [ 𝑗], edge (𝑣𝑏 , 𝑣 𝑓 ) is
inserted into the current snapshot of the BFBG, which is labeled

with [ 𝑗𝑠 , 𝑗𝑒 ], 𝑗𝑠 = 𝑗 , such that 𝑣𝑏 is the root of 𝑣 from 𝑏𝑖 [ 𝑗𝑠 ] to
𝑏𝑖 [ 𝑗𝑒 ]. If inter-vertex 𝑣 has different roots in 𝑏𝑖 [ 𝑗 ′], 𝑗 ′ > 𝑗𝑒 , for

each such root 𝑣 ′
𝑏
, edge (𝑣 ′

𝑏
, 𝑣 𝑓 ) labeled with [ 𝑗 ′𝑠 , 𝑗 ′𝑒 ] is inserted,

such that 𝑣 ′
𝑏
is the root of 𝑣 from 𝑏𝑖 [ 𝑗 ′𝑠 ] to 𝑏𝑖 [ 𝑗 ′𝑒 ]. These additional

edge insertions allow the BFBG to keep track of changes of the

roots of inter-vertices in 𝑏𝑖 and avoid recomputing the roots. We

note that computing all possible intervals and the corresponding

roots in 𝑏𝑖 is feasible (details are discussed in §6.3).

Example 6.5. Snapshot 2 of the BFBG in Figure 5 is computed

by inserting edges into snapshot 1. 𝐶 is identified as an inter-

vertex, which has root 𝐴 in 𝑏1 [2] and root 𝐾 in 𝑓2 [1], such that

edge (𝐴𝑏 , 𝐾𝑓 ) is inserted. In addition, 𝐶 has root 𝐵 in 𝑏1 [3]. Thus,
(𝐴𝑏 , 𝐾𝑓 ) is labeled with [2, 2], and another edge (𝐵𝑏 , 𝐾𝑓 ) labeled
with [3, 3] is also inserted. Notice that 𝐶 does not exist in 𝑏1 [4]
and thus it is not an inter-vertex in (𝑏1 [4], 𝑓2 [3]). Such kind of

information is recorded in BFBG by the corresponding inserted

intervals, i.e., 4 is neither in [2, 2] nor in [3, 3]. Inter-vertex 𝐵 has

the same roots and the same intervals as inter-vertex 𝐶 , such that

no edge is inserted into the BFBG for 𝐵.

When inserting edge (𝑣𝑏 , 𝑣 𝑓 ) with interval [ 𝑗𝑠 , 𝑗𝑒 ], (𝑣𝑏 , 𝑣 𝑓 )might

already exist in BFBG but labeled with a different interval [ 𝑗 ′𝑠 , 𝑗 ′𝑒 ].
In this case, if [ 𝑗𝑠 , 𝑗𝑒 ] and [ 𝑗 ′𝑠 , 𝑗 ′𝑒 ] overlap, they can be merged to

condense BFBG, e.g., for edge (𝐴𝑏 , 𝐾𝑓 ) in snapshot 4 in Figure 5,

[2, 2] is subsumed by [1, 4] such that [2, 2] can be deleted.

Updating 𝑣 𝑓 in edge (𝑣𝑏 , 𝑣 𝑓 ) in a BFBG. When a new streaming

edge 𝑒 is inserted into 𝑓𝑖+1, the union operation will link the roots of

the two endpoints of 𝑒 in 𝑓𝑖+1. Assuming root 𝑣 is linked as a child

root of𝑢. In this case, if 𝑣 also exists in𝑉𝑓 in the current snapshot of

the BFBG, the edges adjacent to 𝑣 need to be moved to 𝑢. Consider

𝑓2 [2] and 𝑓2 [3] in Figure 3. Both 𝐴 and 𝐾 are roots in 𝑓2 [2], but 𝐴
becomes a child of 𝐾 in 𝑓2 [3]. Thus, in Figure 5, edge (𝐴𝑏 , 𝐴𝑓 ) in
snapshot 3 is changed to edge (𝐴𝑏 , 𝐾𝑓 ) in snapshot 4.

6.3 Augmented UFTs in backward buffers
We discuss how to compute the intervals when inserting edges

into a BFBG. Interval [ 𝑗𝑠 , 𝑗𝑒 ] of edge (𝑣𝑏 , 𝑣 𝑓 ) indicates that 𝑣𝑏 is
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the root of an inter-vertex 𝑣 from 𝑏𝑖 [ 𝑗𝑠 ] to 𝑏𝑖 [ 𝑗𝑒 ]. Obviously, it
is computationally expensive to have the intervals by computing

the root of 𝑣 in each snapshot of 𝑏𝑖 , because the find operation in

the UFT has to be called repeatedly, i.e., 𝑂 ( |𝑐 |) times. We aim at

performing the find operation once to get all the possible roots

and the corresponding intervals. This is possible because backward

buffer 𝑏𝑖 is computed incrementally and in the backward manner.

Therefore, all the information related to the changes of the roots

in 𝑏𝑖 can be obtained. To achieve this goal, we augment UFTs in

each 𝑏𝑖 with additional information, and such UFTs are denoted as

augmented UFTs (AUFTs), defined below.

Definition 6.6. Given a backward buffer 𝑏, augmented UFTs

(AUFTs) in each snapshot in 𝑏 records the following information:

• Each vertex 𝑣 in an AUFT is labeled with a snapshot index

𝑗 in 𝑏, such that 𝑗 is the largest of all the snapshot indexes

of 𝑏, which contains 𝑣 , i.e., 𝑗 =𝑚𝑎𝑥 ({ 𝑗 ′ |𝑏 [ 𝑗 ′] contains 𝑣}).
• Each root 𝑟 in an AUFT is labeled with an interval [1, 𝑗𝑒 ],

such that 𝑗𝑒 is the largest of all the snapshot indexes of 𝑏,

where 𝑟 is a root, i.e., 𝑗𝑒 =𝑚𝑎𝑥 ({ 𝑗 ′ |𝑟 is a root in 𝑏 [ 𝑗 ′]}).
• If vertex 𝑣 is a root labeled with [1, 𝑗𝑒 ] in 𝑏 [ 𝑗] but 𝑣 is not

a root in 𝑏 [ 𝑗 − 1], then 𝑣 is labeled with interval [ 𝑗, 𝑗𝑒 ].
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Figure 6: The AUFTs in backward buffer 𝑏1 in Figure 3.

Example 6.7. We present in Figure 6 the AUFTs in the snapshots

of 𝑏1 in the running example of Figure 3. Vertices 𝐴, 𝐷 , and 𝐹 are

labeled with 4 because 4 is the largest snapshot index. Vertex 𝐵

is labeled with interval [1, 3] in 𝑏1 [3] as 3 is the largest snapshot
index such that 𝐵 is a root. In 𝑏1 [2], the interval of 𝐵 is changed to

[3, 3] because 𝐵 becomes a child of 𝐴.

Although AUFTs record additional information compared to

UFTs, AUFTs can be computed and stored in the same way as

UFTs. The intuition is that backward buffer 𝑏 is computed in the

backward manner, such that the vertex label of 𝑣 corresponds to

the first snapshot where 𝑣 appears, and 𝑗𝑒 in interval [1, 𝑗𝑒 ] of root
𝑟 corresponds to the first snapshot where 𝑟 is a root. For instance,

in Example 6.7, 𝑏1 [4] is first computed, where 𝐴 appears and 𝐴 is

also a root, such that 𝐴 has a vertex label 4 and interval [1, 4].
We note that snapshots of backward buffer 𝑏 with AUFTs can

be stored using the snapshot isolation approach presented in §5.3

because vertex labels and root intervals can be naturally stored

with vertices and roots in AUFTs.

We discuss below how to use the augmented information in

AUFTs to compute the roots of inter-vertex 𝑣 in the snapshots of

𝑏𝑖 . The main idea is to retrieve the path from 𝑣 to the root of 𝑣 in

the current snapshot 𝑏𝑖 [ 𝑗] and then leverage the vertex label of 𝑣

and root intervals of vertices along the path to compute the roots

of 𝑣 in all the snapshots 𝑏𝑖 [ 𝑗 ′], 𝑗 ′ ≥ 𝑗 . This is possible because the

vertex label of 𝑣 indicates when 𝑣 exists in the snapshots of 𝑏𝑖 and

the root interval of any vertex 𝑢 along the path indicates when 𝑢 is

a root in the snapshots of 𝑏𝑖 . Thus, we can derive the root of 𝑣 at

each snapshot of 𝑏𝑖 . For ease of presentation, we use the running

example to explain this procedure below.

Example 6.8. Consider Example 6.5, where 𝐶 is identified as an

inter-vertex between 𝑏1 [2] and 𝑓2 [1], and the root of 𝐶 in 𝑓2 [1]
is 𝐾 . In order to insert edges into the BFBG for (𝑏1 [2], 𝑓2 [1]), the
AUFT stored in 𝑏1 [2] shown in Figure 6 is used. The path from𝐶 to

the root in the AUFT is (𝐶, 𝐵,𝐴), where 𝐵 and 𝐴 have intervals in

the AUFT. The label of 𝐶 is 3, indicating that 𝐶 is inserted at 𝑏1 [3],
and the interval of 𝐵 is [3, 3], indicating that 𝐵 is a root in 𝑏1 [3].
Therefore, we can derive that 𝐵 is the root of 𝐶 in 𝑏1 [3], which
leads to inserting bipartite edge (𝐵𝑏 , 𝐾𝑓 ) with [3, 3] in snapshot 2

of the BFBG in Figure 5. The next vertex in the path (𝐶, 𝐵,𝐴) is 𝐴
labeled with [1, 4], indicating that 𝐴 is a root from 𝑏1 [1] to 𝑏1 [4].
Since the current snapshot index is 2 (when 𝐶 is identified as an

inter-vertex) and 𝐶 has root 𝐵 in 𝑏1 [3], such that we can derive

that 𝐴 is the root of 𝐶 in 𝑏1 [2], which leads to inserting bipartite

edge (𝐴𝑏 , 𝐾𝑓 ) with [2, 2] in snapshot 2 of the BFBG in Figure 5.

6.4 End-to-end computation & complexity
Consider query 𝑄𝑐 (𝑠, 𝑡) over sliding windows. Let 𝑛 and𝑚 be the

number of vertices and edges in a window, respectively.

Query time. A simple case in query processing is a forward buffer

stores the connectivity information of the entire window, e.g., 𝑓2 [4]
forW6 in Figure 2. In this case,𝑄𝑐 (𝑠, 𝑡) can be simply processed by

checking whether 𝑓 𝑖𝑛𝑑 (𝑠) and 𝑓 𝑖𝑛𝑑 (𝑡) are the same in the forward

buffer, which takes at most 𝑂 (log𝑛) time (Lemma 5.3). In other

cases, the merging operation is necessary. Intra-buffer checking in

𝑓𝑖+1 or 𝑏𝑖 is first applied, taking at most 𝑂 (log𝑛) time. If the query

result cannot be determined, inter-buffer checking is performed

by using the current snapshot of the BFBG for 𝑏𝑖 and 𝑓𝑖+1, taking
𝑂 (( |𝑉𝑏 | + |𝑉𝑓 | + |𝐸𝑏,𝑓 |) log |𝑐 |) time (the intervals of each bipartite

edge can be stored using a interval tree [52] and each edge has at

most log |𝑐 | intervals). Thus, the total query time is 𝑂 (log𝑛 + 𝐶)
in the worst case, where 𝐶 is ( |𝑉𝑏 | + |𝑉𝑓 | + |𝐸𝑏,𝑓 |) log |𝑐 |. Notice
that, |𝑉𝑏 | and |𝑉𝑓 | are at most the number of CCs in 𝑏𝑖 and 𝑓𝑖+1,
respectively, which are very small in practice. Thus, |𝐸𝑏,𝑓 |, bounded
by |𝑉𝑏 | × |𝑉𝑓 |, is also very small. |𝑐 | is window size divided by slide

interval, which is small in practical settings [35]. Consequently, 𝐶

can be negligible, and the query time can be 𝑂 (log𝑛) in practice.

Update time. After receiving a streaming edge 𝑒 = (𝑢, 𝑣), we
need to update the forward buffer, the backward buffer, and the

BFBG between them. The update in forward buffer 𝑓 inserts 𝑒

into the maintained UFTs, which takes 𝑂 (log𝑛) time. If the in-

sertion requires performing the union operation, we might also

need to reflect the changes in the current BFBG (see updating

𝑣 𝑓 in (𝑣𝑏 , 𝑣 𝑓 ) in §6.2). The corresponding change takes at most

𝑂 ( |𝑉𝐵 | |𝑐 | log |𝑐 |) time because there can be at most |𝑉𝑏 | edges adja-
cent to a vertex in𝑉𝑓 , each edge can have at most |𝑐 | intervals, and
inserting each interval takes 𝑂 (log |𝑐 |) time. If the current chunk

is full, the backward buffer needs to be computed over the chunk,

taking 𝑂 (𝑚 log𝑛) time because of scanning all the edges in the

chunk. If the chunk is not full and 𝑢 (or 𝑣) is an inter-vertex be-

tween 𝑏𝑖 [ 𝑗] and 𝑓𝑖+1 [ 𝑗 − 1], the updates in the current BFBG are
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needed. It takes at most 𝑂 (log |𝑛 |) time to compute the roots of

inter-vertices in 𝑏𝑖 , and there can be at most 𝑂 (log |𝑛 |) roots. Each
root corresponds to an edge insertion into the BFBG, taking at most

𝑂 (log |𝑉𝑏 | + log |𝑉𝑓 | + log |𝑐 |) time. Thus, the update for processing

𝑒 takes at most 𝑂 (𝐶′ +𝑚 log𝑛) or 𝑂 (𝐶′ + 𝐶′′
log𝑛) time, where

𝐶′ = |𝑉𝐵 | |𝑐 | log |𝑐 | and 𝐶′′ = log |𝑉𝑏 | + log |𝑉𝑓 | + log |𝑐 |. As |𝑉𝑓 |,
|𝑉𝑏 |, and |𝑐 | are very small compared to 𝑛 and𝑚 in practice, the

update can take 𝑂 (𝑚 log𝑛) or 𝑂 (log𝑛) time.

Notice that the computation of the backward buffer is performed

per chunk, such that the cost of 𝑂 (𝑚 log𝑛) is amortized over all

edges in a chunk. Thus, the amortized update time is 𝑂 (log𝑛).
It is also noteworthy that our algorithm does not need to delete

expired edges from each window. Deleting an expired edge takes

𝑂 (𝑛 +𝑚) time in the worst case using the FDC approach (see §2),

and each slide interval can have millions of edges, all of which need

to be deleted. To sum up, the near 𝑂 (log𝑛) worst-case query time

and amortized update time demonstrate the high-throughput and

low-latency properties of our approach, which is a fundamental

requirement in stream processing.

Space. BIC’s space complexity is 𝑂 ( |𝑐 |𝑛 +𝑚). Each backward or

forward buffer necessitates at most 𝑂 (𝑛) space, with BFBG con-

taining at most𝑂 (𝑛) edges, each spanning up to |𝑐 | intervals. Addi-
tionally, storing edges in each chunk is essential for computing the

backward buffer of the chunk. The space complexity of BIC mirrors

that of FDC approaches [6, 15, 19], which also require 𝑂 (𝑛 +𝑚)
space. However, FDC methods store all edges per window instance,

while BIC stores all edges per chunk, leading to BIC’s lower memory

usage, as demonstrated in our experiments (§7.5).

7 EXPERIMENTAL EVALUATION
We evaluate BIC against current state-of-the-art methods using 8

real-world datasets and 2 synthetic datasets from industrial-grade

benchmarks. Our evaluation includes throughput and latency anal-

ysis in §7.2, emphasizing windows of a few million edges. We then

examine the settings with various window sizes and slide intervals

in §7.3, focusing on large windows of up to 80 million edges. We

analyze the impact of workload size in §7.4. Finally, we analyze the

memory usage in all these settings.

7.1 Experimental setup
In the experiments, we denote our approach as BIC and compare

it against the following approaches : Euler-Tour Tree (ET-Tree)
[47], HDT [18, 19], D-Tree [6], Depth-First Search (DFS), and
Recalculating Window Connectivity (RWC). ET-Tree, HDT,
and D-Tree are FDC data structures, designed based on spanning

trees (see §2 for details), and D-Tree is the current state-of-the-art

approach. DFS corresponds to executing a depth-first search for

each query in each window instance. RWC recalculates all CCs in

each window instance for query processing.

Datasets and workloads. In the experiments, we use 10 datasets

shown in Table 1, including 8 real-world graphs [28], YG, WT, PR,

LJ, SO, OR, FS, and SC, and 2 synthetic graphs from industrial-grade

benchmarks, LK [44] with scale factor 1000 and GF [32] with scale

factor 25. We present average distance (AD) and diameter (D) in

Table 1 for those such that their AD and D are available online.

We simulate a streaming graph using each dataset. Edges in SO

Table 1: Overview of datasets.

Dataset |𝑉 | |𝐸 | AD D

Youtube-growth (YG) 3.2M 14.4M 5.2 31

Wiki-top (WT) 1.7M 28.5M - 9

Pokec (PR) 1.6M 30.6M 4.6 14

LiveJournal (LJ) 3.9M 34.6M - 17

StackOverflow (SO) 2.6M 63.4M 3.9 11

Dataset |𝑉 | |𝐸 | AD D

Orkut (OR) 3M 117.1M 4.2 10

LDBC SNB Knows (LK) 3.3M 187.2M - -

Graph-500 (GF) 17M 523.6M - -

Friendster (FS) 63.6M 1.8B - 32

Semantic Scholar (SC) 65M 8.27B - -

and LK have timestamps, which we use in the experiments. For the

other datasets, we assign timestamps to edges - each timestamp is

assigned to 100 edges on average. We randomly generate workloads

of queries for each graph. The source code on the dataset and

workload setups are provided in our codebase.

Evaluation metrics. We report both throughput and tail latency

in our experiments, which are crucial in stream processing systems.

Throughput is computed as the processing time of a dataset divided

by the number of edges in the dataset. For latency, we record the

response time of each approach when a streaming edge indicates

the current window is complete. This includes processing queries

in the window and window updates, i.e., a round of query, insert
and delete. Due to space considerations, we do not show break-

down figures, but we can report that per-edge processing latency is

the dominant overhead. Notice that, the response time includes the

execution time of the most expensive operation in each compared

approach, e.g., computing backward buffers in BIC, computing con-

nected components in RWC, performing traversals in DFS, and

deleting expired edges in FDC-based approaches (ET-Tree, HDT,

and D-Tree). We report 99th and 95th percentile latency, referred

to as P99 latency and P95 latency, respectively. These are widely

used metrics to evaluate system response time.

Settings. As queries and window updates (edge insertions and

deletions) are performed in sliding windows, such that the number

of edges in windows and slide intervals has an impact on the perfor-

mances (throughput and tail latency) of all compared approaches.

Thus, we consider various settings with respect to the number of

edges in windows and slide intervals. We start the experiments in

§7.2 with a window size and a slide interval such that each win-

dow and each slide interval contain on average 3M edges and 150K

edges, respectively, across all datasets. We report the throughput

and tail latency of each approach for each dataset. Then, in §7.3,

we focus on the cases where windows increase to up to 80M edges

and slide intervals increase up to 8M edges. Specifically, we con-

sider the following two scenarios in §7.3. Scenario 1 fixes the slide

interval but varies the window sizes. Each slide interval contains

on average 1M edges, and windows contain on average 10M, 20M,

40M, and 80M edges, respectively. Scenario 2 fixes the window size

but varies slide intervals. Each window contains on average 80M

edges, and slide intervals contain on average 1M, 2M, 4M, and 8M

edges, respectively. We report throughput and tail latency (P95 la-

tency and P99 latency) in Scenario 1 and in Scenario 2, respectively.

We use GF, FS, and SC in the experiments in §7.3 as they have a

large number of edges that allow to test different settings. In the

experiments in §7.2 and §7.3, we focus on computing a workload

of 100 queries, and all approaches are compared except DFS as per-

forming DFS for each query in each window instance has very poor

performance. Then, in the experiments in §7.4, we study the impact

of the number of queries in workloads, where we consider 1, 10,
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Figure 7: Throughput analysis using windows of on average 3M edges and slide intervals of on average 150K edges.
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Figure 8: P95 and P99 tail latency analysis using windows of on average 3M edges and slide intervals of on average 150K edges.

100, 1000, and 10000 queries, and DFS is included. Each window and

slide interval contains on average 20M and 1M edges, respectively,

for the experiment in §7.4. We use these settings of window sizes

and slide sizes to study the memory usage of all approaches in §7.5.

The implementation of BIC, all compared approaches, and ex-

periment setups are included in our codebase that has been made

publicly available. We run the experiments on a server with Ubuntu

22.04, 80 CPUs of 2.30GHz, and 1TB main memory. We note that

all approaches are single-threaded.

7.2 Throughput and tail latency
Throughput. The results of our throughput analysis experiments

are displayed in Figure 7. We conducted throughput experiments

for all methods across all datasets. Notably, the results show that

BIC significantly outperforms the compared methods in all datasets.

Specifically, BIC improves throughput by up to 14× over D-Tree,

up to 500× over ET-Tree, up to 1000× over HDT, and up to 7× over

RWC. Delving deeper, we find that BIC and RWC exhibit superior

throughput over FDC-based approaches, including D-Tree, ET-Tree,

and HDT. The primary reason for this is the considerable overhead

associated with deleting expired edges in FDC-based approaches, a

process not required by RWC and BIC (detailed in §2). Interestingly,

although D-Tree does not boast better time complexities than ET-

Tree and HDT, it demonstrates higher throughput. This is largely

due to its simplicity in implementation, unlike the complex data

structures used in ET-Tree and HDT. Further distinguishing the

performance, the comparison between RWC and BIC reveals a

significant throughput difference. RWC computes all connected

components for each window instance, whereas BIC handles this

computation for each chunk. In BIC, the computed components in

each chunk are then utilized for query processing across 20 window

instances in our tested sliding window setup (where the window

size is 20× larger than the slide interval). This is a key factor in

why BIC shows superior throughput results compared to RWC.

Tail latency. The results of tail latency analysis experiments are

depicted in Figure 8. Overall, BIC significantly outperforms other

tested methods in both P99 latency and P95 latency. In terms of P99

latency, BIC’s improvements are notable: it enhances performance

by up to 28× compared to D-Tree, up to 1500× over ET-Tree, up to

4500× over HDT, and up to 2.3× over RWC. BIC’s advancements

are even more pronounced in P95 latency, where it surpasses other

methods by a larger margin: up to 3900× over D-Tree, up to 100000×
over ET-Tree, up to 400000× over HDT, and up to 4700× over RWC.

BIC’s performance improvements are due to its specialized compu-

tation process. The most compute-intensive scenario in BIC occurs

when a streaming edge completes a chunk, necessitating the com-

putation of the chunk’s backward buffer. This involves scanning all

edges in the chunk to construct the AUFTs (as discussed in §6.3).

Such intensive computation is only required for the last edge in a

chunk, not for every streaming edge. Given that each computed

chunk contributes to processing queries in 20 window instances

in this experiment, this costly computation significantly impacts

P99 latency but is less influential in P95 latency. Contrastingly, in

other methods like RWC and FDC-based approaches, there is no

substantial difference between P99 latency and P95 latency. RWC

necessitates the computation of all connected components for each

window instance before query processing. FDC-based methods face

the significant challenge of deleting expired edges, a mandatory

step for updating each window instance.

Discussion on average distance and diameter. Average distance and
diameter, which are the mean shortest path length and maximum

shortest path length in a graph, respectively, affect the performance

of FDC methods like ET-Tree, HDT, and D-Tree. This is because

FDC approaches, which are based on spanning trees, necessitate

performing a graph traversal (e.g., BFS) to find a replacement edge

when a tree edge is deleted in a spanning tree (see §2 for details).

Additionally, average distance and diameter directly impact the

efficiency of graph traversal. In contrast, RWC and BIC, based on

Union-Find Trees, are unaffected by these metrics since they don’t

require graph traversal. Due to the computational cost, average

distance and diameter are reported in Table 1 only for the graphs

such that their average distance and diameter are available online.

Generally, these values are low, favoring D-Tree’s performance;

however, BIC consistently outperforms D-Tree in these scenarios.
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Figure 9: Throughput, P95 latency, and P99 latency analysis using slides of 1M edges and windows of various sizes on average.
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Figure 10: Throughput, P95 latency, and P99 latency analysis using windows of 80M edges and slides of various sizes on average.

7.3 Impact of window sizes and slide sizes
Window sizes. In Figure 9, we present the results of our experiments

analyzing throughput and tail latency using windows with a fixed

slide interval but varying window sizes. Overall, we observe that

as the window size increases, the improvement of BIC over D-Tree

and RWC remains consistent with the trends reported in Figures 7

and 8. Below, we delve into more detailed findings in throughput

and latency results, respectively. Specifically, we observe a signifi-

cant decrease in RWC’s throughput with larger window sizes. This

reduction is attributed to RWC’s approach of computing connected

components for each window instance, where a larger window size

directly translates to increased computation time and subsequently

reduced throughput. In contrast, BIC’s throughput is less adversely

affected by increasing window sizes. This is because, in BIC, the

increment in chunk size, which is proportional to the window size,

allows for the computed backward buffer to be applied across a

broader range of window instances. This efficient utilization helps

mitigate the increased computation cost. D-Tree also experiences a

decrease in throughput as the window size grows. This decrease is

linked to the expansion of D-Tree’s primary data structure (span-

ning trees), leading to more resource-intensive operations. Turning

to tail latency, we see a clear increase in both P99 latency and

P95 latency for RWC as the window size expands. This is a direct

consequence of the longer time needed to compute connected com-

ponents in each larger window instance. For BIC, while the P99

latency similarly increases with window size, an interesting trend

is observed in P95 latency. We note a significant reduction in P95

latency when the window size shifts from 10M to 20M edges. This

phenomenon is explained by the frequency of computing back-

ward buffers in chunks, which is a crucial factor in P95 latency. In

smaller windows, this computation happens every 10 instances, but

in larger windows, it occurs every 20 instances, effectively reduc-

ing the P95 latency. D-Tree’s tail latency demonstrates irregular

patterns, varying depending on the graph. This inconsistency is

anticipated as D-Tree’s latency is more sensitive to the slide size

rather than the window size.

Slide sizes. In Figure 10, we present the results from our experi-

ments analyzing throughput and tail latency using windows of a

fixed size but with varying slide sizes. Generally, we observe that as

the slide size increases, BIC’s improvement over D-Tree and RWC

in terms of throughput and tail latency remains consistent with

the improvements reported in Figures 7 and 8. An exception to

this trend is noted in the case of BIC’s throughput improvement

over RWC. We delve into these details below. There is a notice-

able increase in RWC’s throughput with larger slide sizes. This is

because a larger slide size means less frequent query processing

over window instances, thereby reducing the frequency of RWC’s

major bottleneck — computing the connected component in win-

dows. In extreme cases, where the slide interval equals the window

size, window instances become disjoint (aka tumbling windows),
reducing the need for incremental computation methods like BIC

and D-Tree. Tumbling windows are generally less challenging than

sliding windows. Both BIC and D-Tree also experience a slight

increase in throughput, attributed to the less frequent processing

of queries. Turning to tail latency, we see that the tail latency for

RWC remains largely unchanged due to the fixed window size. BIC

shows similar behavior in tail latency, except for P95 latency in

cases where the slide size increases from 4M to 8M edges. This

pattern mirrors the trend observed in Figure 9 when the window

size increased from 10M to 20M edges. In cases where the slide

size is 8M, the computation time for backward buffers is factored

into P95 latency, unlike in scenarios with smaller slide sizes. Both

P95 latency and P99 latency in D-Tree exhibit a noticeable increase

with larger slide sizes. This is because D-Tree’s tail latency is pre-

dominantly influenced by the cost of deleting expired edges, and a

larger slide size results in a greater number of edges to delete.

7.4 Impact of workload size
In Figure 11, we present our experimental results on throughput

and tail latency across workloads of varying sizes. Interestingly,

in scenarios with small workloads, such as a single query, neither

D-Tree nor RWC exhibit superior performance compared to DFS
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Figure 11: Throughput, P95 latency, and P99 latency analysis using various workload sizes.
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Figure 12: Memory usage analysis: (a) analyzes per graph; (b)-(d) assess window size impact; (e)-(g) evaluate slide size impact.

in terms of throughput and latency. However, BIC significantly

outperforms DFS, particularly in terms of P95 latency. This finding

suggests that BIC is consistently beneficial for index construction

to accelerate query processing. The performance of DFS decreases

dramatically as the workload size increases, encountering timeouts

in large workloads within a 10-hour limit (indicated by ‘X’ in Figure

11). This is because processing each query requires performing a

single DFS. The influence of workload size on the performance of

RWC is minimal. This is because once the connected components

for each window instance in RWC are computed, the time taken

for query processing becomes insignificant. D-Tree exhibits similar

behaviors as its performance bottleneck is in index updating instead

of query processing, and the window and slide size are fixed in this

setting. The impact of workload size on BIC’s throughput is slight.

For P99 latency, the workload size does not significantly affect BIC

since the query processing time is relatively minor compared to

the time required for computing backward buffers. P95 latency in

BIC tends to increase with larger workloads. This increase is due

to the fact that, for each query, BIC might need to search over the

maintained BFBG (§6.2) in the worst-case scenario.

7.5 Memory usage
In Figure 12, we present the memory usage results for all methods,

detailing memory usage on each graph in Figure 12(a), a sliding

window with a slide size of 1M edges and different window sizes

in Figures 12(b)-(d), and a sliding window with a window size

of 80M edges and different slide sizes in Figures 12(e)-(g). Index-

based methods like ET-Tree, HDT, D-Tree, and BIC maintain an

index for streaming edge processing, with their memory efficiency

gauged by the median index size across window instances. RWC,

differentiating from index-based approaches, constructs Union-

Find Trees per window instance by scanning all edges, thus we

capture its memory usage based on the size of these trees and

report the median one of all window instances. Generally, RWC

consumes the least memory as it stores only vertices. In contrast,

FDC methods (ET-Tree, HDT, and D-Tree) require more memory

for holding both edges and vertices per window instance. Among

index-based approaches, BIC is the most memory-efficient, utilizing

Union-Find Trees for indexing and storing edges per chunk rather

than per window instance. Although RWC is less memory-intensive

than BIC, it faces latency challenges in constructing Union-Find

Trees, as depicted in Figures 8, 9, and 10. Memory usage escalates

with window size due to the increased count of vertices and edges,

as shown in Figures 12(b)-(d), but remains unaffected by slide size

changes (Figures 12(e)-(g)) when the window size is constant.

8 CONCLUSION
We study index-based query processing in sliding windows over

streaming data, focusing specifically on connectivity queries over

streaming graphs. The dynamic nature of sliding windows, charac-

terized by deleting expired edges and inserting new edges, presents

inherent challenges in index maintenance. To address these chal-

lenges, we propose BIC, a generic computation model towards

high-throughput and low-latency sliding window query processing.

BIC is tailored to circumvent physically performing edge deletions

in the maintained indexes, a process typically identified as a per-

formance bottleneck in existing indexes for connectivity queries in

dynamic graphs. We then propose specialized data structures that

synergize with BIC to efficiently process sliding window connectiv-

ity. The results from our comprehensive experimental evaluation

highlight the effectiveness of our approach, showcasing up to a

14× increase in throughput and a reduction in P95 latency by up to

3900× when compared to state-of-the-art indexes.

We recognize several promising directions for future research.

These include the development of optimization and parallelization

techniques and the study of using different chunk sizes in BIC,

aimed at further enhancing BIC’s performance. Additionally, we

envisage the application of the BIC model in broader contexts, ex-

tending its capabilities to achieve high throughput and low latency

in processing a variety of queries within sliding windows.
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