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ABSTRACT
Training GNNs over large graphs faces a severe data processing bot-

tleneck, involving both sampling and feature loading. To tackle this

issue, we introduce F2CGT, a fast GNN training system incorporat-

ing feature compression. To avoid potential accuracy degradation,

we propose a two-level, hybrid feature compression approach that

applies different compression methods to various graph nodes. This

differentiated choice strikes a balance between rounding errors,

compression ratios, model accuracy loss, and preprocessing costs.

Our theoretical analysis proves that this approach offers conver-

gence and comparable model accuracy as the conventional train-

ing without feature compression. Additionally, we also co-design

the on-GPU cache sub-system with compression-enabled training

within F2CGT. The new cache sub-system, driven by a cost model,

runs new cache policies to carefully choose graph nodes with high

access frequencies, and well partitions the spare GPU memory for

various types of graph data, for improving cache hit rates. Finally,

extensive evaluation of F2CGT on two popular GNN models and

four datasets, including three large public datasets, demonstrates

that F2CGT achieves a compression ratio of up to 128 and provides

GNN training speedups of 1.23-2.56× and 3.58-71.46× for single-

machine and distributed training, respectively, with up to 32 GPUs

and marginal accuracy loss.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have extended machine learning

methods for modeling graph-structured data. Popular GNN models

such as GraphSAGE[15], GCN [21], and GAT [39] have recently

achieved state-of-the-art (SOTA) performance in a broad range of

fields, ranging from social networks [22], recommendation sys-

tems [11], to bioinformatics [31].

It is a norm to train GNN models by leveraging CPU-GPU co-

operation, where GNN-related computations occur on the GPU,

utilizing mini-batches of sampled subgraph data provided by the

CPU. This collaboration between the CPU and GPU is essential

because GNN computations can benefit significantly from the exten-

sive parallelism offered by the GPU, while the limited GPU memory

can hardly accommodate entire real-world graphs. However, this

cooperation results in a performance issue as the expensive data

processing cost between CPU and GPU limits the end-to-end train-

ing speed, which is mostly contributed by sampling subgraphs and

loading feature vectors of sampled nodes to GPU per mini-batch

basis, in single-machine or distributed training scenarios.

Some prior works [8, 24, 44, 46] employ on-GPU cache to speed

up data loading, but this approach falls short for large graphs due

to limited cache size and the randomness of data access. Some

works [7, 10] apply model-specific optimizations to reduce data

loading workload at the cost of accuracy degradation or model

computational complexity.

In this paper, standing from a different perspective, we propose a

general approach tominimize graph data volume as possible to elim-

inate the data processing bottleneck through feature compression.

Through empirical insights and theoretical analysis, we demon-

strate that feature compression can be applied to GNN training due

to the mitigating effect of aggregation steps on compression errors.

We propose two basic compression methods tailored to the charac-

teristics of graph features and GNN training patterns and introduce

a two-level compression approach to achieve higher compression

ratios while maintaining model accuracy. Finally, we present F2CGT,
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Figure 1: The sampled-based mini-batch GNN training workflow

a novel GNN training system that significantly enhances training

efficiency by leveraging the advantages of feature compression.

By introducing operator fusion between decompression and GNN

aggregation steps, we substantially reduce model computation and

GPU memory overhead. The saved memory can be allocated for

caching to reduce PCIe and network communication. We also made

significant modifications to the GPU cache design to improve cache

efficiency. With a cost model, the new cache sub-system takes a few

factors, such as spare GPU memory, compression ratios, and ben-

efits of caching graph structure and feature vectors, into account

for allocating space for both data. We also build a sampling-based

parallel compression procedure to accelerate the preprocessing.

With the support of feature compression, F2CGT is able to reduce

inter-machine communication by an order of magnitude or more.

Additionally, we can now handle large graphs that previously re-

quired partitioning before distributed training. By storing a com-

plete replica of the graph on each machine, we completely eliminate

the need for remote feature retrieval.

Our extensive evaluation uses two popular GNNmodels and four

datasets, where three are large graphs. Results demonstrate that

F2CGT achieves a compression ratio of up to 128, and provides GNN

training speedup of 1.23-2.56× for single-machine training with 8

GPUs, and 3.58-71.46× for distributed training with 4 machines and

32 GPUs, with less than 1% accuracy loss, compared to DGL, the

leading GNN system, as well as Legion [35] and DUCATI [45], the

state-of-the-art approaches with the on-GPU cache.

In summary, we make the following main contributions:

• A comprehensive analysis about the tolerance of high graph

feature compression ratios by GNNs, which reveals the main

factors impacting training accuracy, and theoretically proves the

convergence of F2CGT by proposing a statistical bound on loss;

• A collection of three GNN-oriented graph feature compression

methods that are tailored for sampling-based GNN training over

large graphs, with necessary adaptions to align compressed fea-

tures with data distributions of original graph features;

• A new sampling-based GNN training system F2CGT that incorpo-
rates these compression methods and forms a feature-quantized

data loading methodology for eliminates the feature loading

bottleneck. F2CGT improves on-GPU cache efficiency, enables

fast preprocessing for offline feature compression, and leverages

kernel fusion for accelerating online decoding and aggregation.

Now it is open-sourced at [3];

• An in-depth evaluation of F2CGT compared to compression en-

abled baselines with lossless or lossy compression, and non-

compression baselines optionally with on-GPU cache, across 2

GNN models and 4 graph datasets, for single-machine or dis-

tributed training.

2 BACKGROUND AND MOTIVATION
2.1 Sampling-based Mini-batch GNN Training
GNNs training relies on both the graph structure and the features

associated with nodes or edges, and commonly leverage GPUs

for training acceleration [1]. However, when dealing with large-

scale graphs, the size of the graph often exceeds the available GPU

memory, making it impossible to store the entire graph in GPU

memory. For instance, the MAG240M dataset, with a total size of

377 GB, exceeds the capacity of the device memory in the most

advanced GPUs. To address this challenge, the current practice

for training GNNs over large-scale graphs adopt a sampled-based

mini-batch approach. As illustrated in Figure 1(a), this approach

consists of three major steps, namely, graph sampling, feature
loading, andmodel updating. These steps run sequentially but go
through a large number of iterations towards model convergence.

We will detail their explanation as follows.

Graph sampling. The GNN training procedure begins with sam-

pling subgraphs from the original large graphs, where a neighbor

sampling [15] method is often employed. It traverses the graph

structural information from a set of frontier nodes, and sampling

their neighboring nodes. It then continues to sample the next

layer from the newly selected neighbors, and completes when the

desired number of layers is reached. Despite the issue of over-

smoothing [33] in GNNs, the sampling process typically involves 2

to 5 layers of sampling.

Feature loading. Once the sampled subgraph is formed, the next

step is to gather the associated features of nodes or edges in that

subgraph, which typically consist of high-dimensional vectors. Of-

ten, these feature vectors are placed on host memory due to their

large volume. Therefore, the feature loading process collects the

features, according to subgraphs, and then transfers them to the

GPU for model training.

Model updating. Finally, taking the sampled subgraph and its

associated feature vectors, the training procedure updates the target

GNNmodel via the forward and backward steps. During these steps,
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GNN training systems employ a message passing method [15],

which iteratively aggregates node vectors from neighboring nodes

to compute a node representation vector. This aggregation can be

described by Equation 1 as below.

h(𝑡+1)
𝑖

= AGGRE

(︂{︂
COMBINE

(︂
h(𝑡 )
𝑗

,m(𝑡 )
𝑗𝑖

)︂ |︁|︁|︁ 𝑣 𝑗 ∈ N (𝑣𝑖 )}︂)︂ (1)

Here, h(𝑡 )
𝑖

is the representation vector of node 𝑣𝑖 in the 𝑡-th

iteration, m(𝑡 )
𝑗𝑖

represents the message passed from node 𝑣 𝑗 to

node 𝑣𝑖 , and N(𝑣𝑖 ) denotes the set of neighboring nodes of 𝑣𝑖 . The

COMBINE function merges the representation vector h(𝑡 )
𝑗

with the

passed message m(𝑡 )
𝑗𝑖

. The AGGRE function is typically a reduction

operation, such as the maximum or mean function.

2.2 Single-machine Training
When the graph data can fit into the memory or storage of a single

GPU machine, the single-machine GNN training method is adopted.

However, the limited per-GPU memory capacity poses a challenge,

as it is typically much smaller than the size of the graph being

processed. For example, the NVIDIA T4 GPU comes with 16 GB

memory, while the Ogbn-Papers100M dataset is 79 GB. This tension

will be amplified as in the real world, the graph size keeps increasing

with its speed significantly higher than the increase in GPUmemory

capacity. To address this, as illustrated in Figure 1(b), the GNN

training systems place graph structural information and feature

vectors in host memory, and let GPU access these data through

CUDA Unified Virtual Addressing (CUDA UVA) [5].

However, the previous studies [24], plus our experiments, have

identified that the data processing steps of sampling subgraphs, and

loading the associated features via PCIe are the major performance

bottleneck. Furthermore, their time costs increase when the graph

size expands. Table 1 illustrates this phenomenon, where transi-

tioning from GNN training on the Products dataset (1.9 GB) to the

Papers100M dataset (78 GB) results in an increase in the percentage

of time spent on graph sampling and feature loading, from 36.9%

to 42.0%. Furthermore, when increasing the training workload by

expanding the set of frontier nodes in Papers100M dataset to 5% of

the total graph nodes, the processing time cost ratio also increases

from 42.0% to 65.7%.

Previous studies further point out that the vast majority of the

loaded graph data are features. Unfortunately, this situation can be

much worse since the state-of-the-art (SOTA) training systems such

as AWS DGL [6] can further leverage GPU-based sampling [13],

which improves the speed of model computation on graph data

consumption and aggravates the bottleneck of feature data loading.

Some approaches also incorporate an on-GPU cache, which keeps

frequently visited graph data in GPU memory for reducing data

transmission between the GPU and PCIe interfaces [24, 36, 45].

2.3 Distributed Training
When graphs are too large to be effectively processed on a single

machine, the distributed GNN training method is used to leverage

more resources such as GPU, CPU and memory from a cluster of

machines. As illustrated in Figure 1(c), distributed GNN training

incorporates graph partitioning techniques to shard the graph data

Table 1: Data processing (graph sampling + feature loading)
time cost ratio of one epoch on GAT model. The notation 5%

indicates that 5% of the total nodes in the graph comprise the
training set, larger than the original training set size. This
setting mimics the increase in the training workload. See
Section 5.1 for detailed setting.

Products Papers100M Papers100M (5%)

Processing
Ratio (%) 36.9% 42.0% 65.7%

0.0 0.5 1.0 1.5
Normalized Throughput

DGL(1*8)
DistDGL(1*8)
DistDGL(2*8)
DistDGL(4*8)

1.00
0.43

0.63
1.49

Figure 2: Training performance comparison of single-
machine GNN training (DGL) and distributed GNN training
(DistDGL) on Ogbn-Products dataset. The number of GPUs
utilized is indicated in parentheses.

Table 2: DGL METIS 4-part graph partition cost

Dataset Peak Memory (GB) Time Cost

Ogbn-Products 30.6 245 seconds

Ogbn-Papers100M 650.9 5.9 hours

into multiple parts, corresponding to the number of machines used.

Though eachmachine manages its dedicated partition, the sampling

and graph data loading steps have to still be distributed, due to the

graph connectivity.

Compared to single-machine training, the distributed setting

has much higher complexity with more severe performance bottle-

necks, which lie in distributed sampling and graph data loading,

and graph partitioning. The first bottleneck stems from the distribu-

tion of graph partitions across multiple GPU servers, which leads

to a significant increase in cross-machine communication during

distributed sampling and loading, even with the well-tuned METIS

partitioning method [20]. Figure 2 demonstrates that, despite uti-

lizing 4 machines and 32 GPUs, it is still unable to significantly

surpass the training performance of a single-machine, 8-GPU GNN

training configuration on the Ogbn-Products dataset. Additionally,

the current distributed setting with graph partitioning precludes

important optimizations, such as GPU-based graph sampling. This

is because that distributed training should use on-CPU sampling.

Second, graph partitioning is a crucial aspect of distributed train-

ing. The contemporary GNN training systems, such as DGL [6]

and PyG [29], commonly utilize METIS [20] for graph partitioning.

METIS aims to minimize the number of cut edges across partitions,

thereby reducing cross-machine communication during sampling

and loading. However, it requires huge computational cost and
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Figure 3: Structure and feature size ratio of Ogbn-Papers100M
(PP), WikiKG90Mv2 (Wiki) and MAG240M(MAG) datasets.

significant CPU memory consumption. As shown in Table 2, using

METIS for graph partitioning can take up to 5.9 hours, which are

often much longer than model training, and consume memory of

at least two or three times the size of the original graph.

2.4 Our Goals and Challenges
Observations. In this paper, our goal concentrates on eliminating

the data processing bottlenecks of graph sampling and feature load-

ing during GNN training. The primary solution we plan to apply

is feature compression due to the following two key observations.

First, graph features occupy a significant portion of storage space

in real-world datasets. Figure 3 demonstrates that graph features

account for approximately 68-93% of the total graph storage size

across three widely used graph data sets in the GNN field. Even

worse, during training, sampled subgraphs become sparser, lead-

ing graph structure to account for less than 2% of the loaded data

volume. Second, the core training process of GNNs, as expressed

in Equation 1, primarily depends on aggregating messages from

neighboring nodes through reduction operations, which can toler-

ate a high compression ratio configuration possibly with negligible

impacts on model convergence and accuracy (The detailed analysis

can be found in Section 3.3).

System design opportunities. Through feature compression, the

efficiency of on-GPU caching can be largely improved due to stor-

ing more feature vectors in GPU memory, during single-machine

training. This speeds up the graph data loading since more features

are served by on-GPU cache and the missing items transferred via

PCIe will have smaller volumes. Consequently, feature compression-

enabled training makes the single-machine training more scalable

with respect to large graphs. In addition, it can give some spare

GPU memory for caching graph structural information, leading to

acceleration in on-GPU sampling.

In the case of distributed training, feature compression enables

the compressed graph to have a size comparable to or even smaller

than each graph partition on individual machines. This enables each

machine to replicate the entire graph structure and compressed

graph features, eliminating the need for graph partitioning, dis-

tributed graph sampling, and distributed feature loading. Further-

more, it allows distributed training to leverage optimizations, such

as on-GPU caching and sampling, which are originally designed

for single-machine training.

System design challenges. Nevertheless, the application of fea-

ture compression in GNN training still faces three challenges. The

first one is how to strike the appropriate trade-off between com-

pression ratio and the potential drop in model accuracy due to

information loss led by feature compression. To address this issue,

we propose a multi-level compression design based on the charac-

teristics of data access patterns during sampled-based mini-batch

training, where compression methods with lower compression ra-

tio are applied to important features while the ones with much

higher compression ratio are applied to features with lower priori-

ties. Second, incorporating feature compression into data loading

also changes the whole training process. In particular, it introduces

complexity to the original cache system and cache policy, necessi-

tating the need to update the on-GPU cache sub-system and cache

policy accordingly. Third, compression comes with high compu-

tational and time costs, both offline and online. Therefore, efforts

should be made to accelerate these processes and minimize their

impact on training efficiency and costs.

3 GNN-ORIENTED FEATURE COMPRESSION
3.1 Design Rationale
The key is to find a proper compression method for reducing the

feature loading volume in sampling-based GNN training. We first

preclude lossless compression ones due to their extremely low com-

pression ratios and high computation overhead, when being applied

to float numbers of GNN graph features. As shown in Figure 4, for

Ogbn-Products, fpzip [26] only achieves a compression ratio of

1.068, while resulting in more than 10× processing overhead, com-

pared to lossy methods. On the other hand, as a representative lossy

method in the scientific computing domain, zfp [25] compresses

data by relying on spatial correlation in float arrays, where adja-

cent values are contiguous. However, as shown in Figure 4, zfp

fails to deliver comparable accuracy. This is mainly because for

graph datasets, there is no continuity between the feature values

of adjacent vertex IDs or dimensions, for a given vertex.

We do not randomly choose existing compression methods, in-

stead, we have drawn inspiration from the ones that have been

extensively used in DNN models for quantizing various data types

such as model weights, activations and gradients [14, 23, 37, 48].

Though they are not designed for GNNs and graph features, we

still find their potentials to be the primary solution in our target

context with necessary adaptions.

Most DNN data quantization algorithms are scalar quantization,
which facilitates the representation of continuous values as dis-

crete values, enabling the use of integers with lower bit-widths

to represent floating-point numbers [43]. Numerous studies have

adopted uniform scalar quantization, which maps floating-point

values into fixed intervals [9, 37, 41]; however, this approach is not

optimal for graph features and GNN training. Figure 4 shows that

the uniform distribution setting makes the GraphSAGE model with

scalar quantization enabled experience substantial accuracy drop.

This connects to our observations indicate that the features of most

large-scale graphs used for GNN training approximate a normal

distribution rather than a uniform one. This is expected since these

features are often derived from the outputs of upstream models. For

example, in the MAG240M dataset, each paper node represents an

arXiv paper, and its feature is a 768-dimensional output generated
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Figure 4: Accuracy performance of different compression
methods when training GraphSAGE on Ogbn-Products.

by BERT. Therefore, we have devised a new scalar quantization

method tailored for the distribution of features of graph datasets.

Unfortunately, when processing graphs at large scales using high-

end hardware, the efficacy of scalar quantization may be limited,

given its maximum compression ratio of 32 for binary quantized

values. Hence, it is imperative to explore some other quantization

methods offering significantly higher compression ratios. Here, we

focus on vector quantization, which represents multiple floating-

point numbers as discrete values by a single integer. It employs

the k-means clustering algorithm to organize feature vectors into

distinct clusters, each of which is presented by its centroid. These

centroids are cataloged in codebooks, and their indices facilitate re-

trieval of the associated values. Figure 4 highlights that GraphSAGE

with vector quantization and the widely-used Euclidean distance

metrics for k-means clustering achieves a high compression ratio

of up to 256, at the cost of substantial drops in accuracy. Equally

importantly, compared to scalar counterpart, vector quantization

imposes significantly higher preprocessing overhead for offline

compression and online decompression. In summary, the negative

accuracy and performance implications of vector quantization lead

us to design a new vector quantization method and also think of

how to make the best use of it.

3.2 Feature Compression Methods
3.2.1 Scalar quantization with log uniform distribution. To adapt

scalar quantization to data distribution of graph features, we in-

troduce a log-uniform scalar quantization, which concentrates the

quantization of central data more effectively, further reducing quan-

tization error, which is better for GNN training and improving

model accuracy. The idea is summarized in Equation 2. x repre-

sents the original feature, while 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 represent the mini-

mum and maximum values, respectively, obtained from the binary

logarithm of the non-negative 𝑥 after clipping outlier values (i.e.,

𝐶𝑙𝑖𝑝 (𝑙𝑜𝑔2 |𝑥 |)). We empirically clip 0.5% of values with largest and

smallest absolute value, and varying the portion has little impacts

on model accuracy. The parameter 𝑘 refers to the target value bit-

width. This quantization method essentially performs a uniform

quantization of the clipped logarithm.

𝑄 (𝑥) =
{︄
−⌈𝐶𝑙𝑖𝑝 (𝑙𝑜𝑔2 (−𝑥 ) )−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
∗ 2𝑘−1⌉, 𝑥 < 0

⌊𝐶𝑙𝑖𝑝 (𝑙𝑜𝑔2𝑥 )−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
∗ 2𝑘−1⌋, 𝑥 ≥ 0

(2)

16 64 128 256 1024 2048 4096 8192 16384
k

72%
74%
76%
78%
80%
82%

Ac
cu
ra
cy  

CR=32
CR=64

CR=128
CR=200

Figure 5: Accuracy performance of different 𝑘 in vector quan-
tization when training GraphSAGE on Ogbn-Products, each
line represents a fixed compression ratio (CR).

We highlight that this formula also works for features that do

not follow a normal distribution. This is because we do not differ-

entiate zero and negative values for the compatibility of discrete

original values like one-hot encoding [32] and binary features [16],

which are commonly used in smaller-sized graphs. In in Figure 4,

we have experimentally proved that log-uniform quantization is

more effective than the uniform one with better training accuracy

guarantees. For instance, when setting the quantization bit-width

of Ogbn-Papers100M to 2, the log-uniform quantization achieves

0.3% better training accuracy than its uniform counterpart.

3.2.2 Vector quantization with cosine similarity. We propose to use

cosine similarity rather than Euclidean to measure vector distances

in k-means, which can produce more balanced centroid results. The

cosine similarity is summarized in the following equation:

Similarity(𝑥1, 𝑥2) = 1 − 𝑥1 · 𝑥2
∥𝑥1∥2 · ∥𝑥2∥2

(3)

where 𝑥1 and 𝑥2 represent two vectors. This formula first computes

the cosine value between the two vectors and then subtracts it from

1 to produce non-negative results. Using cosine similarity helps

almost evenly partitions input features. Figure 4 demonstrates that

cosine similarity significantly outperforms Euclidean distance in

GNN feature quantization. For instance, when setting the compres-

sion ratio to 256 for the Ogbn-Products dataset, vector quantization

with cosine similarity achieves 2.1% better accuracy than the coun-

terpart with Euclidean distance.

Note that there is an important parameter 𝑘 in the k-means

clustering algorithm, which represents the number of centroids to

be generated in the k-means clustering algorithm, and determines

the quality of vector quantization. If 𝑘 is too small, the features will

be quantized into a limited number of centroids without enough

information for decompression. Thus the accuracy of the model

will be greatly reduced. On the other hand, too large 𝑘 imposes

heavy quantization overhead, as the time complexity of k-means is

𝑂 (𝑘𝑛𝑚), where𝑛 is the number of vectors and𝑚 is the dimension of

the vectors. Furthermore, 𝑘 affects the maximum compression ratio

that the vector quantization can achieve. This is because the larger

𝑘 is, the more bytes are required for storing centroids. We conduct

an empirical study to understand the trade-offs between model

accuracy and compression ratios w.r.t varied 𝑘 choices. Figure 5

shows that 256 is a good choice as setting 𝑘 to 256 can achieve

78.3% accuracy, as comparable as 78.5%, delivered by DGL without

feature compression, even at a high compression ratio of 200.
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Figure 6: Two-level compression, compression ratio 𝐶1 < 𝐶2

3.2.3 Two-level quantization. To achieve a high compression ratio

without compromising model accuracy, we propose a GNN-specific

two-level feature compression strategy. By increasing the compres-

sion ratio, we can significantly reduce data volume transferred over

intra-machine PCIe or cross-machine links and improve GPU cache

efficiency for graph structural information and features vectors,

thereby enhancing training performance.

Figure 6 illustrates the high-level idea of our two-level com-

pression approach. Our approach divides graph nodes within one

sampled subgraph in GNN training into two categories. The first

category consists of the seed nodes which the sampling procedure

begins with. Their features correspond to h(0)
𝑖

in Equation 1, and

have more impact on the model output, pivotal for model accuracy.

Therefore, we have to minimize information loss for these features

by limiting the compression ratios. To this end, our approach as-

signs the first level compression method—scalar quantization—with

lower compression ratios to compress them. In contrast, for other

graph nodes, their errors have much smaller impacts on model out-

puts since they have to go through at least one more aggregation

step, canceling out more errors. Therefore, our approach adopts a

more aggressive compression strategy—vector quantization—for

nodes other than seeds, achieving significantly high compression

ratios to reduce the volume of graph data.

Upon the use of the two-level feature compression strategy, a re-

duction of approximately 70% in graph data volume can be achieved.

For instance, when employing a compression ratio of 58.4, the Ogbn-

Papers100M dataset shrinks from 79 GB to 28 GB, a size comparable

to one segment of a four-machine graph partition (36 GB), which

can be replicated across all machines. This can completely eliminate

cross-machine communication of data processing.

Note that when using two-level quantization, we only distinguish

between seed nodes and other nodes in the graph. Seed nodes are

from train/test/valid nodes and act as root nodes in each sampled

subgraph. We do not require these train/test/valid nodes to be

labeled, thus the two-level quantization can work for most GNN

training tasks, not just semi-supervised learning ones. However, we

do impose a constraint that train/test/valid nodes should be known

prior to training, since the compression is done offline.

3.3 Theoretical Accuracy Analysis
In addition to experimental validation, we conduct a theoretical

analysis to explore the impact of feature compression errors onGNN

training, i.e., we prove that GNN training with feature compression

will converge as usual and achieve a low increase in loss
3
. We

find that GNNs’ unique properties often lead to a relatively small

increase in loss. With appropriate compression parameter selection,

the impact on model loss can be negligible. We formally prove

the upper bound of loss increase and identify key factors affecting

the magnitude of loss increase, including GNN model depth and

graph structural characteristics. Here, we define the bound with 𝜖 ,

compared to the optimal loss achieved with original features.

We build our proof upon the prior works of the convergence prop-

erties of over-parameterized conventional neural networks [12],

and extend the theoretical framework to GNNs. The necessary for-

mulations are as follows. Let 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑁 ) ∈ R𝑁×𝑑
represent

input features, where 𝑁 is the number of nodes and 𝑑 is the num-

ber of feature dimensions. The quantized features are denoted as

𝑋 ′ = (𝑥 ′
1
, 𝑥 ′

2
, ..., 𝑥 ′

𝑁
) ∈ R𝑁×𝑑

with |𝑥𝑖 − 𝑥 ′𝑖 |2 ≤ 𝛿 for all 𝑖 ∈ [𝑁 ].

Assumption 3.1 (Independent error). Randomness of rounding
error is independent among nodes and feature dimensions.

Remark.Despite the relevance of a node’s neighboring nodes’ fea-
tures, the compression error from rounding is normally considered

independent [43], being a high-order small quantity.

Assumption 3.2 (Assumption on loss function). The loss func-
tion is Lipschitz-smooth and convex.

Remark.This assumption is commonly used and necessarywithin

the framework of machine learning optimization theory [12]. Mean

Squared Error (MSE) [2] and Cross-Entropy(CE) [27] are two fre-

quently used loss functions. MSE satisfies the assumption by design.

Unlike this, CE is convex but not entirely Lipschitz-smooth, as its

gradients have no bounds as the input values approach 0 and 1.

However, CE still satisfies this assumption in practice, since typi-

cally it is used along with softmax, which constrains input values

so that they are far from 0 and 1, and gradients are bounded.

Theorem 3.3. Given 𝜖 > 0, 𝐿-layer GNN with a large enough
width𝑚 and quantization error 𝛿 ≤ 𝜖

�̂�𝐿

satisfying Assumption 3.1,
with loss function satisfying Assumption 3.2. If we run gradient descent
for 𝑇 steps, then with a high probability, we have

min

𝑡=1,· · ·,𝑇
(𝐿𝑜𝑠𝑠 (𝑊𝑡 , 𝑋

′) − 𝐿𝑜𝑠𝑠 (𝑊∗, 𝑋 ) ≤ 𝑂 (�̂�𝐿𝛿) ≤ 𝜖

Remark.4 𝐿(𝑊∗, 𝑋 ) is the optimal loss of GNNs trained with

original features, and 𝐿(𝑊𝑡 , 𝑋
′) is the minimum loss with F2CGT.

So this implies the difference of loss with F2CGT methodology and

original features is bounded. With 𝛿 representing the scale of input

error, the factor �̂�𝐿 delineates the sensitivity of an 𝐿-layer GNN to

the input error. This sensitivity is influenced by both the number

of GNN layers and the structure of the target graph.

Our proof realizes the fundamental difference between GNNs

and conventional DNNs, which lies in the GNN’s aggregation step.

Based on the assumption of independently quantized errors, we

demonstrate that the relative scale of errors decreases at each layer’s

aggregation stage and does not significantly impact the loss to

which the model eventually converges. We use the parameter �̂�𝐿

to denote the scale of error contributions relative to the loss and

3
The low increase in loss implies the negligible impacts on model accuracy.

4
The detailed proof of Theorem3.3 is present in supplemental material [4].
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input features, which typically remains below 0.1 for GNNs. In

contrast, for traditional DNNs, �̂�𝐿 remains equal to 1 as they lack

the aggregation stage to mitigate these influences.

4 DESIGN AND IMPLEMENTATION
We introduce our system F2CGT, which offers Fast Feature Compres-

sion enabled GNN Training, eliminating the data processing bottle-

necks across single-machine and distributed environments.

4.1 System Overview
F2CGT incorporates the aforementioned scalar quantization (SQ),

vector quantization (VQ) and two-level (TL) quantization strat-

egy for features into the conventional GNN training workflow. As

shown in Figure 7, F2CGT is comprised of three key system compo-

nents: an offline feature compressor, a high-efficiency GPU cache

sub-system, and a high-performance runtime decompressor.

Prior to training, F2CGT performs offline preprocessing (Sec-

tion 4.2) to produce compressed feature vectors. Recognizing that

decompression introduces extra overhead during training, F2CGT
incorporates high-performance decompression techniques to miti-

gate this overhead and fuses decompression and aggregation steps

to further improve performance (Section 4.4). In addition to the

offline component, at runtime, F2CGT employs on-GPU caching,

which caches both graph structural information and compressed

feature vectors, according to their access frequencies (detailed cache

policies can be found in Section 4.3).

In single-machine training, F2CGT populates the on-GPU cache

with both graph structure and compressed feature vectors, chosen

based on a cost model and the specified cache policy. Subsequently,

F2CGT runs on-GPU sampling to extract subgraphs, followed by

retrieving compressed feature vectors either from the on-GPU cache

(cache hits) or host memory (cache misses). Once the data is ready,

feature vector decompression is conducted by F2CGT in GPU. Finally,
F2CGT feeds the subgraphs and decompressed features into the GNN

model for training. When involving multiple GPUs, an allreduce

operation is initiated to synchronize the gradients generated by

each GPU for global model parameter updating.

F2CGT can avoid graph partitioning, enabling each machine to

retain both the entire graph structural information and the com-

pressed graph feature vectors. In this case, the distributed train-

ing works very similarly with the single-machine setting. Graph

sampling can perform locally within each machine, starting from

assigned per-machine train/test/valid node nids and determines dif-

ferent training tasks. Likewise, feature loading is also done locally.

4.2 Offline Preprocessing
At offline, F2CGT performs two primary tasks as follows. First, it

applies compression to all feature vectors, which results in the com-

pressed feature vectors that will be replicated across all machines.

Second, it needs to determine graph node hotness, which is cru-

cial for improving the efficiency of on-GPU cache, particularly, in

cooperation with feature compression.

Feature Compression. Both scalar and vector quantization meth-

ods require collecting statistics from graph datasets for performing

feature compression, i.e., the max, min, and mean values of features

Algorithm 1 Feature Compression

Input: features (𝑁 × 𝐷), gid(GPU ID), method (VQ or SQ),

CR(Compression ratio)

Output: Compressed Data

𝑖𝑛𝑑𝑒𝑥 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑁 )
𝑠𝑢𝑏_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 [𝑖𝑛𝑑𝑒𝑥, :] ⊲ Step 1: Sample a subset

𝑐𝑜𝑙_𝑠𝑙𝑖𝑐𝑒_𝑖𝑛𝑑𝑒𝑥 ← 𝑆𝑙𝑖𝑐𝑒 (𝐷,𝑔𝑖𝑑, 𝑁𝑈𝑀_𝐺𝑃𝑈𝑆)
𝑝𝑎𝑟𝑡_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑠𝑢𝑏_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 [

:, 𝑐𝑜𝑙_𝑠𝑙𝑖𝑐𝑒_𝑖𝑛𝑑𝑒𝑥],𝑚𝑒𝑡ℎ𝑜𝑑,𝐶𝑅)
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝐴𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟 (𝑝𝑎𝑟𝑡_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

⊲ Step 2: Generate parameters

𝑟𝑜𝑤_𝑠𝑙𝑖𝑐𝑒_𝑖𝑛𝑑𝑒𝑥 ← 𝑆𝑙𝑖𝑐𝑒 (𝑁,𝑔𝑖𝑑, 𝑁𝑈𝑀_𝐺𝑃𝑈𝑆)
𝑟𝑜𝑤_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 ← 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 [

𝑟𝑜𝑤_𝑠𝑙𝑖𝑐𝑒_𝑖𝑛𝑑𝑒𝑥, :], 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠,𝑚𝑒𝑡ℎ𝑜𝑑,𝐶𝑅)
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 ← 𝐴𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟 (𝑟𝑜𝑤_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎)

⊲ Step 3: Apply feature compression

return 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎

for scalar methods, while the centroid results of the k-means clus-

tering algorithm for vector quantization. We generalize the two

methods and propose an unified feature compression algorithm,

which fully exploits massive GPU parallelism for acceleration. From

a per GPU’s perspective, Algorithm 1 takes GPU id (gid), feature

vectors, the compression method (SQ or VQ), and the compression

ratio (CR) as input, and executes three common steps. At the first

step, each GPU samples a subset of features. Then, each GPU col-

lects the aforementioned statistics independently, followed by an

all-gather operation to synchronize to produce global compression

statistics. At the final step, each GPU consumes these statistics to

perform independent compression over its own feature partition,

followed by another all-gather to create the entire compressed fea-

ture map. In addition, for the two-level quantization method, we

execute the algorithm twice, where the first execution with seed

node features and the SQ method as inputs, while the second run

with other node features and the VQ method.

Caching-related computation. To guide on-GPU cache for data

selection, F2CGT incorporates pre-sampling to compute node access

hotness. The pre-sampling method runs the sampling phase of

the end-to-end training but not the training phase, to capture the

memory access patterns across iterations of sampling-based mini-

batch training. This computed hotness informs F2CGT’s cache policy
and cost model, guiding decisions on caching graph structures and

compressed features under the GPU memory constraints.

Cost discussion. Compared to graph partitioning, the offline pre-

processing in F2CGT demands less memory consumption and time

costs while scaling to comparable graph sizes. In terms of memory

usage, graph partitioning usually employs coarsening and uncoars-

ening algorithms [20], resulting in numerous intermediate, smaller

graphs that consume a substantial amount of memory. In contrast,

F2CGT primarily allocates memory for the graph itself, producing

minimal intermediate data via batch processing. Regarding time

efficiency, the intricate nature of graph partitioning precludes the

usage of GPU parallelism. Unlike this, the offline preprocessing in
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Figure 7: The overall architecture of F2CGT and workflow of the feature compression-enabled GNN parallel training.
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F2CGT benefits from a streamlined feature compression algorithm

that facilitates straightforward parallelization.

4.3 New Cache Design
F2CGT co-designs on-GPU cache with feature compression to fur-

ther eliminates data loading bottleneck. The novelties of our cache

design are two-folded. First, we propose a holistic collection of

GPU memory optimizations (Section 4.3.1 4.3.2), such as partition-

ing space and designing efficient data structure, for maximizing

cache space for graph structure and compressed feature vectors

with different compression ratios. Furthermore, this also includes a

computation fusion of feature decompression and GNN aggrega-

tion for both memory and computation optimization (Section 4.4).

Second, we propose a general cache policy (Section 4.3.3), which

greedily searches the proper cache space allocation plans for vari-

ous data types and chooses cache candidates for maximized cache

hit rates, by jointly and efficiently considering a large number of

factors such as node hotness, I/O sizes, compression ratios, hard-

ware capacities, etc. These points make F2CGT’s cache different

from related approaches such as Legion [35] and DUCATI [45].

4.3.1 Cache Structure. As shown in Figure 8, the cache consists of

three components: graph structure cache, segmented cache for com-

pressed features, and buffer for the feature compression codebooks.

The graph structure cache stores a set of key and value pairs, where

key refers to each selected node, according to their hotness, and

value keeps the list of IDs of the selected node’s out-edge neighbors,

organized in a compressed sparse row (CSR) format. The segmented

feature cache consists of two 2D arrays, each of which stores the

compressed node features of the selected nodes. The reason for

maintaining two segments in the feature cache is that the two-level

compression strategy will result in compressed features with two

different sizes and the separation will lead to better memory ac-

cess efficiency. Finally, the compressed codebook cache retains all

codebooks generated during preprocessing, stored in multiple 2D

arrays, which are subsequently used for feature decompression.

4.3.2 Cache Management. Figure 8 also illustrates the workflow

within F2CGT’s on-GPU cache.When sampling starts, on-GPU cache

performs lookups in a GPU hashmap to determine whether a re-

quested graph node’s neighbor data are in GPUmemory. In the case

of a cache hit, the cache system retrieves the neighboring nodes

of the accessed node to form the next-layer sampling frontier (the

top part of Figure 8). Otherwise, on-GPU cache fetches the miss-

ing structure information from host memory. Upon the readiness

of the sampled subgraph, on-GPU cache performs lookups in the

segmented feature cache. If cache hit, the target feature vector is

served by GPU; Otherwise, the missing feature is collected from

host memory. Following this, to facilitate feature decompression

during the model updating phase, it also needs to fetch the cor-

responding codebooks. Given their frequent accesses during the

decompression process, codebooks, typically several megabytes in

size, are fully stored within the GPU cache. Finally, the on-GPU

cache returns the set of compressed features along with their cor-

responding codebooks, either from GPU memory or host memory.

4.3.3 Cache Policy. A suitable cache policy is crucial for determin-

ing the efficiency of F2CGT’s on-GPU cache due to the following

reasons. First, it is important to determine the cache space allo-

cation for both structure and compressed features so as to fully

utilize the available GPU memory and maximize the joint benefits.

Second, the cache space allocation and performance optimization

are also subject to the compression ratios and the node hotness.

To balance these aspects, we propose the following cost model to

formally define the cache efficiency.

Initially, we evaluate the time cost𝑇𝑒 associated with each mem-

ory access for entry 𝑒 , either a neighbor list in CSR format or

a feature vector. We have 𝑇𝑒 = 𝑘𝑒 × 𝐴𝑒 , where 𝐴𝑒 denotes the

accessed bytes required for entry 𝑒 and 𝑘𝑒 is a derived param-

eter. Crucially, it’s imperative to recognize that the value of 𝑘𝑒
varies based on whether 𝑒 resides in CPU memory or GPU mem-

ory. The expected time saving caused by caching 𝑒 can be calcu-

lated by multiplying hit probability 𝑝𝑒 and benefit of each hit, i.e.

Δ𝑇𝑒 = 𝑝𝑒×(𝑇𝐶𝑃𝑈
𝑒 −𝑇𝐺𝑃𝑈

𝑒 ) = 𝑝𝑒×(𝑘𝐶𝑃𝑈𝑒 −𝑘𝐺𝑃𝑈
𝑒 )×𝐴𝑒 = 𝑝𝑒×𝑘ˆ𝑒×𝐴𝑒 .

Here, 𝑘𝐶𝑃𝑈𝑒 and 𝑘𝐺𝑃𝑈
𝑒 represent 𝑘𝑒 when 𝑒 is on the CPU or GPU,

respectively, 𝑝𝑒 can be calculated by 𝑝𝑒 = 𝐻𝑜𝑡𝑛𝑒𝑠𝑠 (𝑒)/∑︁𝐻𝑜𝑡𝑛𝑒𝑠𝑠 .
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Considering hotness and storage cost, we can calculate the ben-

efits for caching node feature vector or neighbor list using the

following formula, where 𝐻𝑜𝑡𝑛𝑒𝑠𝑠 (𝑒) represents the hotness of

entry 𝑒 and 𝑆𝑒 signifies the memory storage size of entry 𝑒 .

𝐵𝑒 =
Δ𝑇𝑒
𝑆𝑒

=
𝐻𝑜𝑡𝑛𝑒𝑠𝑠 (𝑒)∑︁

𝐻𝑜𝑡𝑛𝑒𝑠𝑠
× 𝑘ˆ𝑒 ×

𝐴𝑒

𝑆𝑒

In F2CGT, the hotness derived from pre-sampling [44] informs the

computation of hit probability. To simplify implementation andmin-

imize overhead, when 𝑒 denotes a node’s neighbors, F2CGT employs

the average count of sampled neighbors for each node throughout

the sampling process as 𝐴𝑒 . Furthermore, it utilizes the average

𝑘ˆ value in lieu of 𝑘ˆ𝑒 These average slope values are determined

through straightforward profiling. By adopting this methodology,

F2CGT harmonizes the benefits derived from caching graph struc-

tures and compressed features, factoring in all considerations like

hotness, access size, and storage dimensions. Subsequently, F2CGT
arranges all 𝐵𝑒 values in descending order and prioritizes caching

based on the most significant data elements.

4.4 Implementation Details
F2CGT runs atop DGL [6] and PyTorch [30], with 3 k lines of code,

760, 1689, and 565 lines for offline preprocessing, on-GPU cache,

and decompression function, respectively.

Decompression and aggregation fusion. F2CGT introduces an
online feature decompression step, which converts compressed

features into their original size, and then passes decompressed

data to the aggregation computation of GNN training. The decom-

pressed input features occupy a major portion of the GPU memory

space, ranging from hundreds of MBs to several GBs. Based on

this observation, we further fuse the decompression operator and

the aggregation operator into a single operator. This brings two

benefits. First, it improves the computation efficiency by reducing

overhead of memory accessing. Second, it eliminates the need to

allocate GPU memory for storing intermediate results after decom-

pression, leaving more GPU memory available for the cache system.

We conduct performance evaluation in Section 5.5.

PCIe transfer acceleration. While feature compression improves

GPU cache efficiency, intermittent memory accesses to the host

memory can still arise. To expedite these occasional accesses, we

leverage CUDA Unified Virtual Addressing (UVA) [5], enabling the

GPU to access CPU memory at the cache-line level with reduced

latency and without the need for additional memory copies.

Compression method choices and ratio determination. For
a given GNN training task, we propose a simple method to auto-

matically choose the proper feature quantization method out of

the three ones introduced in Section 3.2, as well as its compres-

sion ratio. It first estimates the minimum compression ratio 𝑟 at

which the task can run on a large graph, by inspecting the training

hardware setups (e.g., per-machine host memory size, per-GPU

memory capacity, etc), subgraph sampling patterns, and statistics

of graph datasets (e.g., scale, feature dimensions, seed ratios, etc).

If 𝑟 is smaller than 32, then we set it to 32 and use scalar quantiza-
tion with log-uniform distribution, which is sufficient to alleviate

data loading bottlenecks, while preserving comparable accuracy,

according to the analysis in Figure 4. Otherwise, our configura-

tion method suggests to use the two-level compression method. In

Table 3: The graphs and compression strategies used in the
evaluation. TL, VQ, and SQ stand for two-level, vector, and
scalar quantization, respectively. The value represents com-
pression ratio and for TL, ratio of both levels are shown.

Dataset Abbr. |V| |E| Size (GB) Config

Ogbn-Products PD 2.4M 123M 1.9 VQ64

Ogbn-Papers100M PP 111M 3.2B 77.8 SQ32

Friendster FS 124M 1.8B 133.4 SQ32

MAG240M MAG 244M 3.5B 376.8 TL8,128

this case, we let the non-seed nodes of the target graph use vector
quantization with a compression ratio of 𝑟 . In addition, we assign

scalar quantization for seed nodes with a compression of 𝑟 ′. We

compute 𝑟 ′ by balancing the contributions from the input errors of

seed nodes and other nodes on the output error. Here, we introduce

a formula 𝑟 ′ = 64 · 𝑟/(64 + (log
2
𝑓 𝑎𝑛_𝑜𝑢𝑡 + 𝑘) · 𝑟 ), where 𝑘 is a

knob controlling contribution of seed nodes and other nodes, and

𝑓 𝑎𝑛_𝑜𝑢𝑡 is a sampling parameter of the last layer of GNN model. In

Section 5.1 and Table 3, we apply this method to various training

tasks over four datasets to generate compression configurations.

5 EVALUATION
5.1 Experimental Setup
Experiment platform. For our experiments, we selected AWS in-

stance g4dn.metal [34], which offers 96 vCPUs, 384 GBmemory, and

8 NVIDIA T4 GPUs with 16 GB memory each. These instances are

interconnected by 100 Gbps network. Our operating environment

includes Ubuntu 20.04 with NCCL 2.18.6, DGL 1.1.3 [6], PyTorch

2.1.2 [30], OpenMP 4.5, and CUDA 11.8.

Datasets. We use four graph datasets (Table 3). First, we use a

medium dataset, Ogbn-Products (PD) [18]. Additionally, we incor-

porate three large-scale graph datasets: Ogbn-Papers100M (PP) [18]

and MAG240M (MAG) [17], both derived from academic sources

(Microsoft Academic Graph) [42], and Friendster (FS) [38], a social

network within an online gaming platform. As the FS only con-

tains topology message, we generate the training set, labels, and

256-dimensional features for it. All the graph datasets used are ho-

mogeneous and undirected. For F2CGT, we select the compression

configurations (Table 3) according to the guideline in Section 4.4.

Specifically, for Ogbn-Products, we use VQ with a compression

ratio of 64 to show the performance of vector quantization.

Models. We utilize three layers of GraphSAGE [15] and GAT [39]

with a "20-20-20" neighbor sampling method and a batch size of

1536 for RD, PD, PP, and FS datasets. For the MAG dataset, a "5-

10-15" neighbor sampling is employed due to the GPU memory

limitation. By default, the hidden dimension for the models is 128.

Baselines.We conducted evaluations on both single-machine train-

ing and distributed training scenarios. For the single-machine ex-

periments, we compared our method, F2CGT, against three existing
frameworks: DGL, DUCATI [45], and Legion [35]. DGL is a widely

used and leading GNN framework, in which we enabled GPU sam-

pling and feature prefetching but did not utilize any GPU cache.

DUCATI and Legion are state-of-the-art systems that accelerate

GNN training by caching graph structures and features. Legion
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Figure 9: Single-machine training throughput comparison for DGL, DUCATI, Legion and F2CGT.
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Figure 10: Distributed training throughput comparison for DGL and F2CGT using GraphSAGE and GAT on PP and MAG.

further leverages graph partitioning to improve cache efficiency.

However, the partition algorithm xtraplup used by Legion fails to

balance computation cost, i.e., the number of the training nodes,

across trainers for real-world datasets. To address this, we replace

xtraplup with METIS and observe that this replacement makes

Legion perform better. For the distributed training experiments,

we compared our method, F2CGT, with DistDGL [47], which is a

version of DGL optimized for distributed training.

5.2 Single-machine Training
Overall performance. We compare F2CGT with DGL, DUCATI,

and Legion. For DUCATI, Legion and F2CGT that support on-GPU
cache, we set the cache capacity to themaximum. Figure 9 illustrates

the single-machine training performance. DGL typically exhibits

the worst performance, primarily because of its extensive PCIe fea-

ture transmission between the CPU and GPU. DUCATI optimizes

performance by caching both the graph structure and features in

GPU memory, thereby minimizing PCIe transmission. Legion per-

forms better than DUCATI due to two reasons: (1) an advanced GPU

memory management method that improves on-GPU cache’s ca-

pacity; and (2) the combination with graph partitioning to improve

cache efficiency. Impressively, F2CGT delivers 1.25-2.56× through-
put speedups (number of samples processed per second) for the

GraphSAGE model, and 1.23-2.12× speedups for the GAT model,

respectively, compared to the best-performed baseline across the

PD, PP, and FS datasets. Notably, for the MAG dataset, only F2CGT
can successfully complete the training process, while the others

fail since the dataset size exceeds the CPU memory limitation.

For the medium-size PD dataset, DUCATI and Legion are all able

to cache the entire dataset in GPU memory without compression.

Even though, F2CGT with feature compression still outperforms the

best-performed baseline by 22.7-54.0%. This enhanced performance

is mainly because of the reduced GPU memory usage by fusing the

decompression and aggregation operators. F2CGT delivers better

improvements when processing larger datasets. For the PP and FS

datasets, F2CGT achieves 107.4-155.9% throughput increases over

Legion. This is because, with feature compression, F2CGT can cache

significantly more features than Legion.

Impact on cache. We performed a comprehensive analysis of

feature compression’s impact on GPU cache, as detailed in Table 4.

F2CGT demonstrates an enhanced cache ratio for both structural

and feature components. Specifically, on the PP and FS datasets,

F2CGT outperforms Legion, realizing an average enhancement of

35.5% and 84.3% in structure and feature caching, respectively. Due

to the lower memory consumption caused by kernel fusion, F2CGT
retains ample working space, enabling F2CGT to effectively cache

a greater portion of features following feature compression. As a

result, F2CGT consistently maintains a significant cache ratio for

graph structures and features.

Impact on PCIe transmission. We also delve deeper into the

impact on PCIe transmission, as depicted in Table 5. While Legion
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Table 4: The ratios of cached graph structure and features,
from a single trainer’s perspective. Every 𝑣1, 𝑣2 tuple means
𝑣1 cache ratio for structure and 𝑣2 cache ratio for features.

Sys.\Data PD PP FS MAG

DUCATI 100%,100% 0.10%,3.72% 0.22%,1.64% N.A.

Legion 100%,100% 0.03%,21.0% 0.05%,10.5% N.A.

F2CGT 100%,100% 40.5%,100% 30.5%,100% 27%,53%

Table 5: The PCIe transmission volume during one epoch,
from a single trainer’s perspective. Every 𝑣1 + 𝑣2 tuple means
𝑣1 GB of data transmission during graph sampling and 𝑣2 GB
during feature loading.

Sys.\Data PD PP FS MAG

DGL 1.94+16.07 4.56+121.87 2.84+275.36 N.A.

DUCATI 0+0 4.29+48.58 2.83+195.18 N.A.

Legion 0+0 3.89+29.24 2.83+157.30 N.A.

F2CGT 0+0 0.10+0 2.07+0 0.09+0

has successfully minimized data transfers between the CPU and

GPU, F2CGT achieves even further reductions in data movement

volume. Specifically, for datasets like PP and FS where the GPU

cannot cache the entire dataset, F2CGT averages a reduction of 62.1%
in data transmission during graph sampling and 100% during feature

loading, compared with Legion. This efficiency stems from F2CGT’s
enhanced GPU cache ratio and the diminished overhead associated

with loading compressed features via PCIe.

5.3 Distributed Training
For distributed training, we compare F2CGT with DistDGL, which

partitions the graph structure and features, and assigns disjoint

partitions to each machine, leading to distributed graph sampling

and feature loading. We configure F2CGTwith two variants, namely,

F2CGT w/ partition and F2CGT w/ replication. Both variants enable

feature compression. However, the first variant combines graph

partition and feature compression by further partitioning graph

structure and distributing slices to multiple machines. With feature

compression, graph structure makes up the vast majority of the

dataset. F2CGTw/ partition leads to cross-machine sampling. Unlike

this, the second variant replicates graph structure and compressed

features across all machines.

Overall performance. Figure 10 illustrates the distributed train-

ing throughput on PP and MAG datasets. DistDGL performs worst,

F2CGT w/ partition outperforms DistDGL, and F2CGT w/ replica-

tion performs best. F2CGT w/ partition and F2CGT w/ replication

achieve 3.58-11.31× speedups and 52.75-71.46× speedups, respec-
tively, across more than one machine. Both F2CGT variants achieves
great speedups due to the remarkable reduction in communication

volume. As shown in Table 6, DistDGL introduces 12.0 GB and

386.4 GB data across-machine network consumption per training

epoch for distributed sampling and feature loading for the MAG-

GraphSAGE training task, respectively. F2CGT w/ partition does

not pull features from other machines (network usage for this part

Table 6: Volume of network communication for a single
epoch distributed training across 4 machines. Every 𝑣1 + 𝑣2
tuple means 𝑣1 GB of network communication during graph
sampling and 𝑣2 GB during feature loading.

PP MAG

DistDGL 12.0 + 386.4 1.7 + 233.7

F2CGT w/ partition 12.0 + 0 1.7 + 0

F2CGT w/ replication 0 + 0 0 + 0
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Figure 11: Training convergence speedup with 8 GPUs

drops to zero), but still perform distributed sampling due to graph

structure partitioning. Finally, F2CGT w/ replication makes the best

use of feature compression and replicate both graph structure and

compressed feature across machines, thus completely eliminating

cross-machine communication (both are zero).

Preprocessing cost. Table 7 reports the time, memory require-

ments, and output sizes relevant to feature compression and graph

partitioning. F2CGT exhibits significant time efficiency advantages

for large-scale graphs, consuming diminished CPU resources and

producing smaller output sizes. Leveraging GPU acceleration, F2CGT
completes the preprocessing task within minutes, leading to notable

time savings. For memory utilization, F2CGT minimizes the genera-

tion of intermediate data. Conversely, METIS requires substantial

memory allocations for storing intermediate data. Furthermore, by

adopting feature compression, F2CGT efficiently reduces feature di-

mensions, achieving output sizes comparable to those of individual

partitioned graphs in METIS.

5.4 Accuracy and Convergence Speedup
We performed convergence validation experiments using single-

machine training with 8 GPUs (Figure 11). First, F2CGT delivers

comparable convergence results as DGL, the baseline with no com-

pression. For instance, F2CGT achieves 77.5% and 64.4% accuracy for

PD-GAT and PP-GraphSAGE, respectively, while DGL’s records are

77.4% and 64.9%. Second, in addition to the throughput speedups

shown before, here, we report the end-to-end training improve-

ments, measured by the time to convergence. For the PD-GAT

and PP-GraphSAGE tasks, F2CGT achieves an 2.53× and 3.24× con-

vergence speedup, respectively. These results are consistent with

the throughput speedups (i.e., 2.53× for PD-GAT and 3.60× for PP-

GraphSAGE in Figure 9). More results about accuracy with different

tasks and datasets can be found in the supplementary material [4].
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Table 7: Preprocessing cost for F2CGT (feature compression)
andMETIS. ForMETIS, the output size represents the average
size of the partitioned graphs.

Data Sys. Time Cost Peak Memory Output Size

PD METIS 248 sec 31 GB 1.1 GB

F2CGT 0.68 sec 11 GB 1.0 GB

PP METIS 5.98 hrs 641 GB 35 GB

F2CGT 10.8 sec 124 GB 27 GB

FS METIS 3.95 hrs 500 GB 44 GB

F2CGT 14.8 sec 267 GB 32 GB

MAG METIS 6.24 hrs 999 GB 112 GB

F2CGT 55.9 sec 150 GB 31 GB
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Figure 12: Speedups of F2CGT, normalized to DGL

5.5 Ablation Study
Next, we evaluate the individual performance gains of three opti-

mizations we introduced, namely, feature compression (+Compr),
on-GPU caching (+Cache), and decompression and aggregation

fusion (+Fusion). We report the normalized speedups against DGL

when enabling optimization one by one for training GraphSAGE

across 8 GPUs in Figure 12. For the PP datast, compared with DGL,

+Compr greatly enhances performance by 79%, while combin-

ing +Compr with +Cache, the performance of F2CGT is further

improved by 49%. Finally, when incorporating +Fusion, the per-
formance of F2CGT is profoundly enhanced by 35%. We observe

similar performance trends for MAG dataset. For instance, gradu-

ally adding the three optimizations introduce 86%, 128%, and 149%

higher throughput over DGL, respectively. We also further evaluate

the time ratios of sampling and feature loading, both affected by

compression, with respect to different optimizations. For the large

MAG dataset, +Compr reduces the original time ratio of 69% to

42%, while +Cache further reduces it to 29%. Finally, when stacking

up +Fusion, this time ratio slightly increases to 30%. This is because

+Fusion does not reduce the data transferring volume, instead, it

shortens the training computation time cost.

6 RELATEDWORKS
PaGraph [24] is the first work that incorporates on-GPU cache into

GNN training. GNNLab [44] extends this idea by incorporating

pre-sampling strategies, calculating the sampling probabilities for

each node before training, and caching the features of nodes with

the highest probabilities. DUCATI [45] and Legion [35] caches both

graph structure and features directly on the GPU. Despite of im-

provements, they demonstrate limited efficacy on graphs exceeding

the GPU memory capacity, as the proportion of features that can

be cached diminishes with increasing graph size, and data retrieval

from the host memory still incurs significant overhead.

Global Neighborhood Sampling [8] prioritize nodes present in

the cache for cache hit rate enhancement. GNNAutoScale [10] op-

timizes forward computations by utilizing previously computed

embeddings rather than recalculating neighbor embeddings in each

iteration. However, they both require to change GNNmodels, poten-

tially hurting accuracy, and impose high complexity and overhead

when dealing with large-scale graphs.

There have been some initial attempts to employ various quan-

tization methods in GNNs. However, none of these attempts have

focused on eliminating data processing bottlenecks in sampling-

based GNN training. For instance, Bi-GCN[41] and VQ-GNN[7]

employ model quantization to reduce GPU memory usage and

computational overhead.

Degree-Quant[37], SGQuant[9], A2Q[48], and AdaQP[40] target

full graph training and assume all the datasets are already stored on

the GPU. In this case, there is no data loading bottleneck, instead,

there is a cross-GPU message passing bottleneck. Therefore, these

approaches utilize scalar compression methods to accelerate full

graph training by compressing messages, where compression and

decompression occur in the GPU for each iteration at runtime.

Our work significantly differs from them as follows. First, these

quantization methods and full graph training are not scalable w.r.t

large graphs. In fact, the largest graph dataset in AdaQP is no more

than 4 GB. Second, our attempt to apply them to sampling-based

GNN training points out the runtime quantization overhead is

extremely high. Even worse, they rely on runtime computation

states, precluding the opportunities for being done offline. Third, it

is challenging to use vector quantization in full graph training as

it would impose much higher overhead than scalar quantization.

Thus, these methods exhibit limited compression ratios (usually

8 or 16, up to 32), making it hard to address the feature loading

bottleneck experienced by sampling-based GNN training.

C-SAW [28], NextDoor [19], GNNLab [44] and gSampler [13]

accelerate graph sampling using GPUs, demanding higher data

loading pressure. Fortunately, F2CGT can addresses this challenge.

7 CONCLUSION
F2CGT employs feature compression to address data processing

bottlenecks in single-machine and distributed GNN training. It

introduces a GNN tailored compression approach to balance com-

pression ratio and model accuracy. With highly optimized and accel-

erated compression and decompression, as well as the collaboration

with re-designed on-GPU cache sub-system, F2CGT significantly

outperforms the SOTA baselines across two popular GNN models

and four datasets, where three are large-scale graphs.
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