ResLake: Towards Minimum Job Latency and Balanced Resource
Utilization in Geo-distributed Job Scheduling

Xinchun Zhang*, Agsa Kashaf™, Yihan Zou*, Wei Zhang*, Weibo Liao, Haoxiang Song, Jintao Ye,
Yakun Li, Rui Shi, Yong Tian, Wei Feng, Binbin Chen, Zuzhi Chen, Tieying Zhang, Yongping Tang
ByteDance
reslake-paper@bytedance.com

ABSTRACT

At internet scale companies like ByteDance, data is generated and
consumed at enormously high speed by many different applications.
Achieving low latency on such big data jobs is an important problem.
However, the naive approach of aggregating all the data required by
a job to a single location is not always feasible in a geo-distributed
environment. Similarly, existing approaches in geo-distributed job
scheduling often try to minimize WAN usage, which may come at
the cost of latency. Another crucial element to ensure low latency is
resource load balancing among DCs, which enables flexibility in job
scheduling and avoids resource bottlenecks. Therefore, to minimize
latency, optimizing job completion time (JCT) while maintaining
resource utilization balance is important. To this end, we propose
ResLake, a global scheduling platform for data-intensive workloads.
ResLake aims to reduce JCT of geo-distributed applications while
balancing the compute (CPU/Memory) and storage (Disk) usages
across DCs and efficiently using WAN interconnections. We have
deployed ResLake in ByteDance’s production for over 1.5 years.
ResLake has scheduled billions of jobs since its deployment. We
find that ResLake improves JCT of jobs by at least 20%, and can
improve resource utilization balance across DCs by up to 53%.

PVLDB Reference Format:

Xinchun Zhang, Agsa Kashaf, Yihan Zou, Wei Zhang, Weibo Liao,
Haoxiang Song, Jintao Ye, Yakun Li, Rui Shi, Yong Tian, Wei Feng,
Binbin Chen, Zuzhi Chen, Tieying Zhang, Yongping Tang. ResLake:
Towards Minimum Job Latency and Balanced Resource Utilization in
Geo-distributed Job Scheduling. PVLDB, 17(12): 3934 - 3946, 2024.
doi:10.14778/3685800.3685817

1 INTRODUCTION

Digital technological advancements have led to the rapid growth
and proliferation of data. As a result, internet-scale companies like
ByteDance are seeing an increasing growth of data-intensive appli-
cations that collect, process, and analyze enormous amounts of data
to help them gain useful insights. These internet-scale companies
deploy tens of data centers (DCs) across multiple regions in the
world to provide low-latency service to their customers. At these
geographically distributed sites, data is generated and consumed at

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685817

3934

an enormously high speed by many different applications. Ensur-
ing low latency for these data-intensive jobs is important to meet
service level agreements (SLAs), and to enhance user experience.

Existing big data processing frameworks such as Hadoop [3],
Spark [36], Flink [7] and Dryad [17] have been designed to analyze
large datasets efficiently. However, all these frameworks assume
a single-DC deployment, where network resources are typically
uniform and readily accessible, making these solutions infeasible for
geo-distributed data analysis. To extend to multiple DCs, a trivial
solution would be to aggregate all the data in a single location for
processing. However, it is often impractical due to the following
reasons. First, the job may have many inputs, whose total data
size may be very challenging for storage space in any DC. Second,
these data may only be used once, resulting in a waste of resources.
Moreover, for high availability, data needs to be replicated and
stored at multiple remote DCs to prevent data loss during incidents.

Recent efforts have tried to build on these frameworks to en-
able data analytics across multiple DCs [14, 28, 30, 31]. However,
these frameworks are not optimized for the wide-area network
(WAN) bandwidth heterogeneity and limitations [27]. Other works
assume that different DCs have uniform computational resources,
which does not conform to the reality [16]. Other approaches that
perform geo-distributed job scheduling for big data jobs seek to op-
timize WAN usage [15, 30] as they are designed for a public cloud
environment where WAN resources can easily become a bottle-
neck. However, in a private cloud environment such as ByteDance,
network resources are often over-provisioned. Since WAN usage
optimization can often come at the cost of latency, these approaches
do not directly account for low latency.

Hence, to optimize job completion time (JCT) for geo-distributed
big data jobs, we propose ResLake. ResLake is a global schedul-
ing platform for data-intensive workloads, which in addition to
reducing JCT, also aims to balance the compute (CPU/memory) and
storage (Disk) utilization across DCs and efficiently use the WAN
interconnections. We believe that ensuring a balanced resource
utilization is crucial for optimizing JCT, as it enables more flexible
scheduling and prevents resource bottlenecks that may increase la-
tency. To design ResLake, we formulate the job scheduling problem
as a joint optimization problem that minimizes JCT and maximizes
resource utilization balance. In the JCT minimization part, we divide
the entire scheduling task into meta-tasks, which can be scheduled
individually to avoid unnecessary resource blocking. Also, ResLake
frequently updates each resource’s processing rate to ensure the
accuracy of overall approximate JCT. To formulate the resource
utilization balance as an optimization problem, we aim to ensure
that the resource utilization of each cluster is close to the average
cluster utilization. We design ResLake as a layered system. The core

https://doi.org/10.14778/3685800.3685817
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685817

function of the control layer of ResLake is to perform job schedul-
ing. The compute, storage, and network layers in ResLake support
the control layer, and ensure execution of the decisions made by
the control layer. Moreover, these layers also provide necessary
information to the control layer that aids in scheduling jobs.

ResLake has been deployed in ByteDance’s infrastructure for
over 1.5 years. We evaluate the effectiveness of ResLake on our
production, with an emphasis on achieving its goals of improving
average JCT and resource utilization balance across DCs. We present
the results for 3 core DCs in ByteDance’s infrastructure. We find that
ResLake improves the JCT by 20% on average. More than 70% of the
jobs show gains in JCT with ResLake, and more than 50% of these
jobs show JCT gains of more than 60%. ResLake improves the CPU
utilization balance by up to 53% and memory utilization balance by
up to 71%. Moreover, as a result of ResLake, the variability in cross-
DC read traffic is reduced by 50%. Since its deployment, ResLake
has successfully scheduled millions of jobs and has covered almost
100% of big data processing jobs at ByteDance.

We now summarize the main contributions of this work.

We formulate the problem of minimizing job completion times in
a private cloud environment while maintaining resource balance
across DCs.

We propose an end-to-end system that implements our problem
formulation and uses workload characteristics to motivate the
design of ResLake.

We deploy a production-ready system for geo-distributed DCs.
e We show that ResLake improves JCT by over 20% and resource
utilization imbalance by over 53%.

Paper Outline The remainder of this paper is organized as follows:
Sec. 2 gives the basic motivation behind the design goals of ResLake.
Sec. 3 presents a high-level overview of the ResLake infrastructure,
and discusses the main design decisions motivated by our workload
analysis. Sec. 4 presents the formulation of job scheduling at the
control layer of ResLake. Sec. 5 discusses the design of ResLake
in detail followed by its implementation in Sec. 6. In Sec. 7, we
evaluate ResLake and in Sec. 8 we discuss our related work.

2 MOTIVATION

At ByteDance, majority of submitted jobs are big data jobs, which
typically require accessing huge amounts of data of different types.
To ensure a good user experience and service level agreement (SLA),
it is important to achieve low latency (or completion time) for jobs.
In this case, a highly performant scheduling system is needed to
manage the scales of jobs and data. For single-DC, in-cluster job
scheduling and data placement are well-studied, and there exists
known solutions, e.g., YARN [29] or similar technology. However,
the problem for geo-distributed setup is still somewhat open, as the
design solution is usually company-dependent. In a geo-distributed
environment, the scheduling system needs to take various resources
into consideration. Existing studies [25] have shown that compute,
storage, and network have almost the same probability of becoming
performance bottlenecks for data-intensive analysis jobs. As a result,
those approaches considering only one or part of the resources
are insufficient due to the dependency between job latency and
resources. Therefore, in this work, we propose a solution that directly
deals with job latency and resource utilization balance.

3935

- ~-DC2 - DC3 3 ~-DC-2 ~-DC3
] 2 045
506 [l
LT e Yo
o) 1 A ¢ S 04 (h Wivay
5 os- U“W ﬁ‘m i § 035 ffﬂ\
E 5 M
04- by Z 03
E ah ;r e fogft 5 o ,\a_r«“
@ 03 -% 02
S oou22 0322 0522 0722 S ouz o2 o2 onz
Date Date
(a) CPU (b) Memory

Figure 1: Resource utilization differs by up to 25% across
different DCs before the deployment of ResLake.

2.1 ResLake Goals

Given the aforementioned context, we now explain the main goals
of ResLake.

Reduce Job Completion Times (JCT): JCT is defined as the
time it takes to complete a job after it was first submitted by the
user. JCT involves the time a job waits for resources, as well as
the time spent in fetching data from a remote DC (see Sec. 4.1 for
more details). Existing works [15, 26] often try to reduce WAN
usage as a proxy for latency. These works mainly consider a public
cloud environment where WAN bandwidth is limited and can easily
become a bottleneck. However, this is not always true in a private
cloud environment for the following reasons:

(1) For self-hosted private clouds, network infrastructure requires
an extensive period of planning and construction. Oftentimes
there are some degrees of over-provisioning in bandwidth re-
sources;

Network bandwidth is shared by online services and offline jobs.
Thus, network traffic exhibits tidal behavior: day-night traffic
patterns of online/offline services can be very different. Instead
of minimizing WAN usage at all times, we can harvest the
peak/off-peak traffic patterns to improve bandwidth utilization
and resource efficiency.

@

Moreover, solely minimizing WAN usage reduces WAN usage for
all links irrespective of their available bandwidth, while minimizing
JCT may only reduce WAN usage on the bottleneck link of the
network. Therefore, ResLake particularly focuses on reducing JCT
(which considers WAN latency) instead of reducing WAN usage.
Improve Resource Utilization Balance: While minimizing JCT is
important from a user standpoint, it should not come at the cost of
skewed resource utilization among DCs/clusters in the system. Fig. 1
shows that significant load imbalance can exist in geo-distributed
systems. Skewed resource utilization poses challenges to placing
jobs/data at their ideal locations, causing negative impacts on JCT.
Fig. 2 illustrates that JCT and CPU/memory resource utilization are
positively correlated. There are two degrees of potential imbalance
in the system. First, utilization imbalance of the same resource
across DCs may result in hot nodes and resource waste. Second,
the imbalance across different resources may cause unnecessary
blocking due to the dependency among resources. For instance,
migrating data closer to a job, or a DC with abundant storage re-
sources, is possible only when there is enough network bandwidth
to transfer the data. Hence, ResLake explicitly focuses on balanc-
ing load across DCs and among different resources in addition to
minimizing JCTs.

\:} 1500 - \;} 1500

g MPgiaar = g

E 1400 -~ E 1400-

g r F

S 1300 2 1300 :

5 5

2 1200- 2 ,J

£ g 1200

8 1100 8 /"‘

-E -— | i 1100 "—f |

04 045 0.5 055 06 0.25 03 035 04

CPU Utilization Memory Utilization
(a) CPU (b) Memory

Figure 2: JCT is positively correlated with load, e.g., (2a) CPU
utilization and (2b) memory utilization.

2.2 Challenges

Achieving the aforementioned goals is not straightforward because
of the following aspects:

e Data Locality Awareness The naive approach of moving all
data required by big-data jobs into one central location can be
inefficient and resource-intensive [26, 30]. Therefore, big-data
frameworks must prioritize assigning computations to where
frequently accessed data resides, a concept known as data lo-
cality awareness. However, there can be complex dependencies
between data and jobs as we show later in Section 3.2. These
dependencies make it hard to achieve data locality.
Heterogeneous WAN Bandwidth Variations in the inter-DC
bandwidth can result in unpredictable latency, which can signif-
icantly harm the performance of geo-distributed apps [13, 18].
Therefore, it’s crucial to manage the Wide Area Network (WAN)
bandwidth effectively.
Heterogeneous Clusters There is heterogeneous hardware
among clusters and some jobs may require specialized hard-
ware making it important to enforce cluster-aware scheduling.
Moreover, the resource capacities at various clusters may also
be different. As existing studies [25] have shown that compute,
storage, and network have almost the same probability of becom-
ing performance bottlenecks for data-intensive analysis jobs, it
is important to consider all resources while scheduling and not
just focus on WAN usage.

o Global Resource Management While using multiple clusters,
users tend to submit jobs to clusters with surplus resources while
sacrificing data locality. Moreover, users may need to apply for
resources in all clusters, exacerbating the fragmentation of re-
sources. Therefore, a global resource management scheme is
needed to balance resource usage while optimizing JCT.

Given the main design goals of ResLake, and the main challenges
in designing ResLake, we now present an overview of ResLake in
the next section and provide our design details.

3 AN OVERVIEW OF RESLAKE

In this Section, we present the high-level overview of ResLake,
including all sub-components in the architecture and the end-to-
end workflows in the system. To better facilitate the data-driven
analysis, we then discuss some key workload characteristics at
ByteDance that motivate our design for ResLake.

3936

Big Data Processing

‘ MapReduce Flink ‘ Spark
Framework
s
L ‘ Scheduler | Locality Service ‘ Control Layer W
b/
/ 3
Resource Global Quota Global Resource oD L Er
Monitoring Manager Manager = B
b/
/
Data Access Replication
L | T Data Clustering | l S I Storage Layer W
e 3
| Network Dynamic Quota Network Layer
Monitoring Manager
J

ResLake

HDFS, Yarn/Godel,

HDFS, Yarn/Godel,
Network Cluster

Network Cluster

HDFS, Yarn/Godel,
Network Cluster

DC,

DC, DC,

Figure 3: A high-level overview of ResLake’s architecture

3.1 High-level System Architecture

We propose ResLake, a centralized scheduling platform for data-
intensive applications with a global view of resources and work-
loads in different DCs/regions. ResLake aims to reduce the job
completion time (JCT) of geo-distributed applications while balanc-
ing the compute (CPU/ Memory) and storage (Disk) usages across
DCs, as well as efficiently use the WAN inter-connecting those DCs.
Fig. 3 illustrates the high-level overview of ResLake.

3.1.1 ResLake architecture. ResLake has a layered architecture. We
briefly describe each layer and its function below:

Control Layer (ResLake Core): The control layer sits on the top
of the ResLake layered architecture, and it is responsible for in-
teracting with the underlying computing layer, storage layer, and
network layer. The control layer retrieves comprehensive infor-
mation regarding computing, storage, and network resources, to
make real-time optimal scheduling decisions for job layout. It will
also provide guidance and feedback to the other layers to facilitate
strategies such as job migration, data migration/replication, and
network quota adjustment. In this way, the overall utilization of
cross-DC resources can be improved.

Computing Layer: The computing layer provides a unified in-
terface for global computing resource management, virtual queue
(i.e., resource group) management, and authentication. In contrast
to the in-cluster Resource Manager (RM) in YARN/Godel [29, 34],
the Global Resource Manager (GRM) in the computing layer is
mainly responsible for managing computing resources across dif-
ferent DCs/clusters. Also, GRM is in charge of maintaining resource
statuses in the scheduling process and reporting them back to the
ResLake Core for accurate real-time scheduling decisions.
Storage Layer: The storage layer manages data-related features
and operations in this architecture. Based on the guidance and
feedback from ResLake Core, the storage layer can initiate offline
operations, e.g., data replication/migration and possible compres-
sion, to enhance the data placement and storage cost savings. Most
importantly, the storage layer needs to ensure that frequently ac-
cessed data is copied or migrated at the target DCs/clusters before
the required deadline for any job that requires the data. On the other

hand, the storage layer also reports information (e.g., metadata of
the input data) back to ResLake Core for online scheduling.
Network Layer: The network layer is responsible for network
conditions monitoring, network quota usage monitoring, and en-
forcing the network quota assigned by ResLake. On the monitoring
front, the network layer reports the latest network conditions and
available bandwidth quota to ResLake for job scheduling. On the
enforcement front, the network layer needs to ensure the allotted
network quota by ResLake is guaranteed, and QoS is satisfied for
the given task.

3.1.2 ResLake end-to-end. Based on the high-level context regard-
ing the various components of the ResLake architecture, we now
present an end-to-end ResLake overview. We first describe the input
and output of ResLake, and then discuss various online and offline
mechanisms.

Input: At job submission, users need to specify the information
for the job to be scheduled, as well as the required computing
quota. Note that only computing quota is needed, and no stor-
age/network quota is specified at this time. In the current design,
network bandwidth resource is allocated as a system-level resource
pool for ResLake. In ResLake, resource quota is assigned by business
application as a whole, and the administrator can further specify
fine-grained quotas for specific users. The input can be the database
table partition, the file path (optional), or the start offset and length
in case of message queues. In ResLake, most jobs’ input paths (e.g.,
Spark SQL, MapReduce) can be automatically parsed. In partic-
ular, ResLake explicitly removes the requirements of specifying
inputs for any kind of job by analyzing the data access patterns of
recurring jobs offline.

Output: ResLake output consists of a destination DC and cluster
where the job will be executed.

Online mechanisms: Some online mechanisms are listed below.

e Dynamic Job Scheduling: ResLake is a global service that offers
centralized access to compute, storage, and network resources.
It can dynamically schedule jobs to geo-distributed DCs/clusters,
and make optimal decisions for job placements depending on
jobs’” input paths.

Online Data Synchronization: For ad-hoc jobs, ResLake can ini-
tiate data synchronization on the fly. By using the data cache
acceleration capability at the storage layer, the remote read is
converted into the local read within the same DC. See more
details in Sec. 5.3.

Data Access Pattern Recording: For recurring jobs, ResLake can
utilize the analysis results from offline data access patterns min-
ing to improve data locality in scheduling decisions.

Dynamic Network Quota Management: The dynamic quota man-
agement recycles unused quota from jobs and assigns additional
quota to jobs that have used most of their quota if there is any
quota left in the resource pool.

Offline mechanisms: Some offline mechanisms are listed below.

o Data Replication and Migration: When a recurring job is submit-
ted, its data synchronization occurs before the job is running.
The data access mode is calculated offline by ResLake control
layer. Once data replication/migration is determined, the storage
layer is notified to synchronize the data to the target DC before

3937

0.52

0

é 0.5- 7 1-
;g 0.4 ;% 09
g 0.3- 0.26 g 0.8-
o
g 02 0.14 g 07-
© 0.1 0.075 o /
= [| & 08y
0 1 2

5102 51002 510002 5
Table Count (Log scale)

>=3 12
Number of non-local DCs

(a) Dependency relationship be- (b) Dependency relationship be-
tween tables and jobs tween tables and jobs

Figure 4: (4a) Almost 50% of jobs read data from a non-local
DC, and 34% of jobs read data from more than 1 non-local
DC. (4b) Almost 50% of the jobs read from more than one
table. The distribution is long-tailed, indicating that some
jobs read from an arbitrarily large number of tables.

the deadline (the specific synchronization timing is determined
by the storage layer). To avoid unnecessary storage costs, we
will only synchronize data that has an extremely high read-write
ratio between DCs.

Data Access Pattern Mining: Related to pattern recording in on-
line mechanisms, ResLake analyzes historical data access char-
acteristics of recurring jobs, generates data access patterns, and
combines it with the replica metadata of the storage system.
Network Quota Allocation: When a job is submitted to ResLake,
the control layer assigns a bandwidth quota for it. However,
ResLake communicates with other in-house network manage-
ment services and modifies the job’s network quota periodically.
Path Recommendation for ByteCool !: ResLake can analyze the
data access behaviors and recommend seldom accessed files to
the ByteCool, in order to reduce the storage costs in the company.

3.2 Workload Driven Design Decisions

Below, we describe some key design decisions in designing ResLake
and also provide data-driven analysis to justify our decisions based
on the workload characteristics at ByteDance.
D1: Closely related tables/files are stored in the same DC as
much as possible. The dependency relationship between tables
and jobs is extremely complex. Currently, there are over 2 million
tables in the production system, and over 37% of tables have been
active in the past 7 days. Fig. 4b shows the dependencies between
tables and jobs. We analyzed the situation of YARN/Godel applica-
tion accessing data belonging to hive tables and data centers in the
recent period. Fig. 4b illustrates that 44.5% of the jobs have access
to multiple tables, and 47.5% of the jobs have access to multiple data
center data at the same time. To summarize, our analysis results
show that nearly half of the tasks have access to multiple tables or
DCs, and the complexity of data dependencies brings great challenges
to resource scheduling.

We analyzed cross-DC network traffic of the recent 936,660 batch
jobs and found that the top 10% jobs contribute more than 90% of
cross-DC traffic. We also analyzed cross-DC network traffic of the

IByteCool is an in-house data storage system at ByteDance. Erasure Code (EC) [12]
encoding is used by ByteCool to achieve data dependability comparable to multiple
copies with less redundancy. Consequently, ByteCool can significantly reduce the cost
of storage.

w
kS
@ 100 0.3
o
o 8o (1.0,0.9) 2
v [s)
E 60 go.z
5 4 5
& Soa1
2 20 o
€ T
§ o 4 -2 2 0.0
10 10 1 10 708 10-3 102 107 10

Percentage of tables read/write ratio

(a) Hot Tables (b) Read-write (RW) ratio
Figure 5: (5a) The top 1% tables contribute more than 90%
of cross-DC traffic. (5b) Jobs read more data than write. The
majority of jobs (94%) have an RW ratio of more than 1.

top 1 million hive paths and found that the top 1% hive tables
contribute more than 90% of cross-DC traffic. Thus, the job-table
relationship follows the 90-10 rule.

D2: Location of multiple replicas is considered when sched-
uling jobs. The rationale for multiple replicas is two-fold. First,
replication improves data availability and provides the ability for
disaster recovery. With multi-replica architecture, one can achieve
3-nines (99.9%) data availability in a year, where the probability of
losing a block on a large (4000 nodes) cluster is 0.021% [8]. Second,
multiple replicas can improve data locality and reduce WAN usage.
Unlike some prior work, there is no concept of “default DC/cluster”
for jobs in ResLake, and jobs can be scheduled at any DC if nec-
essary. Intuitively, having data replicas at multiple DCs provides
more flexibility for data locality, and helps achieve load balancing
among DCs/clusters.

D3: A universal quota and virtual-queue model is needed to
support multiple levels (Region/DC/Cluster) of granularity.
In practice, each user/application may own multiple physical com-
pute/storage resources (or physical queues) in various DCs/clusters.
However, we observed that the direct interaction between users and
physical queues can result in the following issues. (1) Poor User Expe-
rience: Users cannot perceive the utilization rate of queue resources
and cluster load in real-time, resulting in uneven use of queue re-
sources and even failed job submissions. (2) Degraded Data Locality:
Users tend to submit jobs to queues with surplus resources, sac-
rificing data locality and leading to more serious cross-DC read
problems. (3) Resource Fragmentation: The sub-optimal user deci-
sions may lead to more idle portion of resources (or fragments) that
cannot be utilized by the scheduler.

D4: ResLake enforces per-job network quota only for data
reading. WAN bandwidth is a scarce resource shared by many
applications, and network capacity can oftentimes be impacted
by errors and incidents. Thus, it is important to ensure that WAN
usage is under close monitoring and proper control. Unlike prior
work, instead of minimizing WAN usage, ResLake assigns per-job
quota to make sure that WAN does not become a bottleneck. Fig. 5b
shows the distribution of read-write (RW) ratios of all jobs in a
cluster. We observed very high RW ratios for the majority of jobs.
Specifically, 94.1% of the jobs have more reads than writes, and the
total input size is about 14.2 times of the total output size. Hence,
ResLake only enforces network quota on data reads for jobs.

3938

Job Completion Time (JCT)
A

r

Waiting for Global Job
Schedule i

Data time

Data
i Export

Pr

In-cluster

Figure 6: Meta-tasks of a job in ResLake

4 FORMULATION AND MODELING

In this section, we formulate the core decision problem of ResLake,
which jointly considers JCT performance and resource utilization
in ByteDance’s global infrastructure. Acting as a centralized “brain”,
the main responsibility of the control layer (or ResLake Core) is to
coordinate with the underlying computing, storage, and network
layers, to achieve the optimal scheduling performance and resource
allocation from a global point of view. For ease of explanation in
the later part of the analysis, we first list the major decision factors
of ResLake Core.
Compute Cost: For a given job, the computing cost includes the
CPU, Memory, GPU, and other resources needed, as well as the job’s
execution time. With the use of jobs historical running data, this
information can be analyzed offline for recurring jobs. For ad-hoc
jobs, this information can be estimated based on the input data size.
Storage Cost: For a given job, the storage cost includes its input
data size and replica distribution. Such information can be obtained
from analyzing the input/output path of the submitted job, and the
analysis for majority of the jobs are fully automated.
Network Cost: For a given job, the network cost includes its band-
width quota, and the WAN bandwidth usage to prepare the job’s in-
put data. Such information is crucial for data migration/replication
decisions. (See more details about data migration/replication in
Section Storage layer.)
No Resource Overbooking: Although one may argue that over-
booking can increase resource utilization, it often comes at the cost
of severe load imbalance and unnecessary resource competition,
causing more issues like unpredictable job performance. Hence, we
strictly prohibit resource overbooking in ResLake.
Negligible Intra-DC latency: In reality, compared to cross-DC
situation, intra-DC communication usually sees very minimal band-
width limitation and transmission latency. At ByteDance, the cross-
DC network latency is usually 1-2 orders of magnitude higher than
intra-DC latency. To simplify the analysis, we focus on the network
cost in the context of WAN.

Before diving into details, we first briefly introduce the concept of
meta-task, which helps the formulation and analysis of the system.

4.1 Meta-tasks

In a geo-distributed system, resources are located in various DCs.
Also, skewed resource distribution imposes difficulties to fully uti-
lize resource fragments in a single location. As we discussed in
Sec. 2, resource dependency may cause blocking. To avoid unneces-
sary blocking in scheduling, we use a segmentation-based idea to
further divide a job into multiple logical phases that can be sched-
uled individually. As shown in Fig. 6, the entire pipeline of a job, i.e.,
from its submission to its completion, can be divided into multiple
meta-tasks as follows.

e Wait For Schedule (WFS). No resource consumption at this stage.

Global Job Scheduling. ResLake’s global scheduling algorithm
will dispatch jobs into assigned regions/clusters.

Data Preparation. ResLake will inform the storage layer and
network layer to make sure most required data is ready before
the job’s scheduled time starts.

In-cluster Scheduling. In-cluster scheduling systems (e.g., YARN
or Godel) will allocate resources and execute the job.

Data Export. After the job finishes, the output data will be written
into the target location.

Note that, the concept of meta-task is related to, but different
from the notion of monotask in [20]. A monotask is defined as a
unit of work that uses only a single type of resource (apart from
memory), i.e., CPU, network, or disk. [20] shows that job schedulers
can utilize this monotask abstraction to maximize cluster resource
utilization. In ResLake, a meta-task is associated with a specific
stage in a job’s life cycle and has clear relationships with the un-
derlying resource layers. One can view a meta-task as a collection
of correlated monotasks in a particular phase of job scheduling.

4.2 Problem Formulation for ResLake Core

The essential task of ResLake is to solve an optimal job scheduling
problem. The decision-making process in such a large-scale com-
plex system with various conflicting interests can be formulated as
a constrained optimization problem [5, 33]. As mentioned in Sec-
tion 2, the goal of ResLake is to minimize JCT while simultaneously
achieving balanced resource utilization.

4.2.1 JCT Minimization. To do so, we first formulate the JCT mini-
mization (JCT-MIN) problem. Let M be the set of all meta-tasks for
a given job j. From the definition of meta-tasks in the last section,

we have
j o Jj
Yer= 2, tw
meM

For ease of notation, in the following discussion, we will drop the
superscript j whenever there is no ambiguity. Let Op, denote the
collection of monotasks for the meta-task m. Then, we have

> S e

me M,m#WFS me M,m#WFS 0€ O,

1

tjcr = twrs + tm = twrs +

Since each monotask only uses a single type of resource by defini-
tion, we can regroup the above summation by resources, i.e.,

tjer = twrs + Z tr, ®)

reR

where R is the set of all types of resources (e.g., CPU, network, or
disk). It is extremely difficult to obtain the exact time duration for
a given meta-task, due to factors such as device heterogeneity and
random network delay. At a cluster level, for any input data d, we

can compute the approximate processing time (APT) that d spent
with resource r in cluster ¢ as

APT
La = Ka/vra(c), vpq >0,

©

where K} is the data size for d and v, 4(c) is the processing rate
of resource r for d in cluster c. Note that, v, 4(c) may drift across
time due to factors like different load levels or device performance
deterioration. Therefore, v, 4(-) needs to be updated at each round

3939

to ensure the accuracy of computation. From above, we can obtain
the approximate JCT for a given job as

frer = twrs + Z by = fwrs + Z Z Kg/vpq(c),

reR deDreR

©)

where D is the set of all required input data for the job. Let uc ()
be the binary decision variable, such that u.(j) = 1 if and only if
job j is assigned to cluster ¢, and uc(j) = 0 otherwise. Then, the
JCT minimization problem for job j can be formulated as

. . K,
min, A= > —L

(62)
¢ deDj;reR ord(c)

st nee(Duc()+ D nre(i’) < Npe, VreR,Ve € C, (6b)
i€l

D uel) =1, (6c)
ceC

where J is the set of jobs in the system before job j, C is the set
of all clusters, n,¢(j) is the amount of resource r that job j is
consuming in cluster ¢, and N; ¢ is the total amount of resource r in
cluster c. In formulation (6), the objective function (6a) minimizes
the total approximate JCT for job j. Constraint (6b) is the resource
capacity constraint and (6c) ensures that job j will be assigned to a
certain cluster. Note that, (6) can be viewed as a greedy approach,
where each job tries to find its “locally optimal” scheduling decision,
without considering incoming jobs in the future.

4.2.2 Resource Utilization Balance. Next, we consider the resource
utilization balancing (RUB) problem. As we discussed in Sec. 2, due
to factors like data locality and data dependency, resource utilization
imbalance may occur if the scheduling decisions only focus on
minimizing JCT. Hence, it is also very important to achieve resource
utilization balance among different DCs/clusters in ResLake. For a
given resource r in cluster c, the utilization with all jobs J is

Zj’Ej nr,c(j’)

- .
Nre(J) Nre (7)
Thus, the overall utilization for a resource r in the system is
2eeC X ireihr c(j")
~] 5
nr(J) = ~ : (®)
r,total

To achieve balanced resource utilization, our objective is to have
each cluster’s resource utilization be close to the average cluster
utilization as much as possible, i.e.,

Wr,c(j) - Ur(j),VC eC.
Now, suppose a new job j is submitted. Then, we have

e (Ve i) + 5o nre (/')

1 U) = Ny S
. nr(j) + Yce Z-IE”nr,c(j/)
nr(JU{j}) = NCt t]l / . (10)

To measure the gap between 1, ¢ and ,, we use Mean-Square Error
(MSE) as an example. Let J = J U {j} RUB problem with MSE can

be formulated as

min () =D D (mre() =0 (D) (112)
uc(7) reRceC
st. me(J) <1 VreRVeceC. (11b)

Note that capacity constraint (11b) is equivalent to constraint (6b)
in JCT-MIN problem.

4.2.3 ResLake Core Problem. Now, we present the core problem of
ResLake that jointly optimizes JCT and RUB as follows.

min g(uc(j)) = wifi(uc())) + wafa(uc ()
UcJ (12)
s.t. constraints (6b) and (6c)

where wi and ws is the corresponding weights for JCT-MIN prob-
lem and RUB problem. In practice, these weights can be tuned by
the ResLake administrator and some privileged users. See more im-
plementation details in Sec. 6. Clearly, to solve (12), ResLake Core
layer needs to interact with compute, storage, and network layers
to obtain the most updated parameters in the system. On the other
hand, once the scheduling decision is made, each underlying layer
needs to perform its corresponding functions. Note that we use a
weighted-sum approach to scalarize the objective function instead
of the Pareto-front-based approach for simplicity [10, 22]. Thanks
to the simplified formulation, we can solve (12) by enumerating all
possible decisions for our network scale (see our stress test result in
Sec 7.3). We will consider the Pareto-front-based solution and other
mathematical optimization solvers for future work. We will discuss
the distinct designs of these layers in the following section.

5 DESIGN

In this section, we dive into the detailed designs of compute, stor-
age, and network layers, and show how to incorporate the design
decisions in Sec. 3.2.

5.1 Computing Layer

Typically, in the absence of global resource management, users
apply for resource quota in multiple DCs/clusters separately. This
results in several problems. First, with resource quotas in multiple
DCs/clusters, users cannot perceive the utilization and cluster load
in real time. Second, we observed that users tend to submit jobs to
queues with surplus resources, sacrificing data locality. Third, the
fragmentation of resources reduces the utilization of total comput-
ing resources. Last, in the disaster scenario, resources in the failed
cluster cannot be used, resulting in the inability to submit jobs.

To overcome all these aforementioned problems, ResLake pro-
poses a global resource quota management system. This design
provides several benefits: 1) It shields business perception from the
existence of multiple queues; 2) It solves the problem of uneven
resource usage; 3) It improves JCT by considering data locality, and
load imbalance; 4) In the event of a disaster, it can solve the problem
of migrating queues and recovery operations across data centers
and clusters; 5) It also breaks the limitation of queue in a single
DC and extends resource sharing from clusters to regions, which
contributes to the improvement of global resource utilization.

Quota is the resource quota requested by the user, and the queue
is the concretization of quota, which is the resource abstraction
provided to the user.

3940

? ~
[(8 | D D N 1 G |
{0 | LJ [
|ElmEm o)
High-Priority Virtual Queue Mid-Priority Virtual Queue ~ Low-Priority Virtual Queue s“:}:h"g:‘:’é‘zﬂ:‘;‘"
PSPSpY PSS oo PSS
—High-Prionty uling Low-Priority Scheduling Super Low-Priority
| scheduling Thread Pool Thread Pool Thread Pool Scheduling Thread Pool
AN e ! Virtal
LAY e
N N Y
o G} (== (Call (I(eg) () opication
2ag ([[eg (2l ([[eg]
High Prioty Mid-Priority | LonePeony Super Low-Priority

\ Resource Pool / Resource Pool/ \ Resource Pool / Resource Pool/

Figure 7: Virtual queue management in the compute layer

Global Virtual Queue Management: ResLake introduces the
design of global quotas and virtual queues in the computing layer,
extending the traditional quota/queue concept from a single cluster
to the Region dimension. ResLake virtual queue adopts a three-
level tree structure design, which is naturally compatible with Re-
gion/DC/Cluster three-dimensions. To ensure the extensibility of
queue naming, we define our queues as:

{queue_namespace}.{data_center}.{cluster_queue}

Among them, queue_namespace must be strictly specified, while
data_center and cluster_queue support wildcard (“). The above
queue naming method is compatible with both the cluster-level
resource management (in YARN/Godel) and the DC-level federation.
To summarize, the hierarchical structure of resource naming is
extensible and compatible with queue designs in other systems.
Fault Isolation in Virtual Queues: As the failure domain of
ResLake is a resource pool of different SLA levels in different data
centers, to achieve the goal of failure domain isolation, we re-
strict queues of different SLA levels from being merged into virtual
queues. That is, virtual queues are divided into high, medium, low,
and super-low priorities according to the cluster level. Figure 7
shows how physical computing resources are mapped to virtual
queues with different priorities. Each user can join up to N virtual
queues of the same priority at the same time. For most scenarios,
N = 2 is sufficient to separate batch and stream processing. How-
ever, we can easily adjust N to meet future needs. There is no limit
on the number of existing queues that users can join.

Quota Recycling: The compute layer also exhibits a rebalance
service, which periodically scans all virtual queues and executes
the rebalance policy. Queue orchestration in the compute layer
involves two stages.

(1) Job submission phase: if the job needs to be scheduled away
from data in a remote DC, the compute layer will create cor-
responding physical queues and allocate quotas in the target
DC.

(2) Recycling phase: After the job is completed, it will release the
corresponding temporary physical queues to prevent resource
fragmentation.

To provide more flexibility, the queue rebalance strategy can be
customized by users.

5.2 Storage Layer

The storage layer plays a key role in ResLake to optimize JCT. We
describe the main functions of the storage layer below:

o Optimize data distribution to ensure that tightly coupled/closely
related tables/files are stored in the same data center as much as
possible; the storage capacity of each data center and resource
consumption are balanced as much as possible.

Cooperate with ResLake to ensure that recurring and ad-hoc
jobs are scheduled to the data-related data center as much as
possible; cooperate with the network side to control the rhythm
of cross-data center traffic access.

For hot tables (<10%) provide multi-DC replicas to enable more
flexible scheduling and more resources.

We describe each of these aspects below:

Data Distribution Optimization: As mentioned above, placing
closely related tables/files in the same datacenter increases the
JCT and also reduces the network overhead of remotely accessing
data. Therefore, optimizing data distribution is important. However,
the problem is challenging because the dependency relationship
between tables and jobs is very complex. This also makes it harder
to decide which tables can be migrated, and which tables need
multi-DC replicas. To solve this problem, ResLake introduces the
concept of forming table clusters. The tables within the table cluster
are tightly coupled with strong dependencies; the dependencies
in different table clusters are relatively small. To formulate this
relationship, ResLake models the table dependencies as follows.
Based on file access traffic data and clustering analysis, this module
divides all tables into multiple cohesive table clusters. Then, it builds
a weighted dependency graph of a table, where each table is a node
in the graph; the weights of the edges between tables are calculated
based on the data traffic accessed. The storage system stores the
statistical data of all jobs accessing tables.

To illustrate how these weights are calculated, assume job j reads
data from Tables T; and T to generate Table T3. When j is running
, it reads i1-sized data from Tj, ip-sized data from T5, and writes
o03-sized data to T3. This module calculates the weight dependencies
of the edges (T1, T3) and (T2, T3) as follows.

Weight(T1, T3) = i1 + 03 = (i1/(i1 + i2))
Weight(Tp, T3) = iz + 03 * (i2/ (i1 + i2))

We select access data from a period of time (usually the past 7
days), traverse all data records, and construct a traffic-weighted
dependency graph. To solve this clustering problem, we use mixed
integer linear programming (MILP) similar to [11, 35].

Data Access Acceleration: For hot tables or top applications, it
is impossible to eliminate cross-DC traffic from a governance per-
spective. Hence, ResLake implements cross-DC data acceleration
to optimize such data access. To support data access acceleration,
ResLake implements the following: ResLake sets up an accelera-
tion cluster in each DC to save temporary copies of remote DCs.
For recurring jobs, the replication strategy supports periodically
copying data from the remote data center to the current data center
at the directory partition or file granularity. The strategy supports
configuring the lifecycle of the data. This strategy is the main pro-
motion strategy and is suitable for recurring jobs with fixed access
patterns and ad-hoc queries for typical partition scans.

3941

5.3 Network Layer

To improve the overall network resource utilization, the control
layer of ResLake needs to consider the usage of network resources
and ensure the allocation of assigned cross-DC network quota
during the job lifecycle. To do this, ResLake implements a network
quota manager (NQM) that assigns an initial quota to each job,
coordinates with each cluster to ensure the allocation of cross-DC
quota, and ensures that the quota is not over-used.

5.3.1 Network Quota Manager (NQM). The network quota man-
ager in ResLake assigns the initial quota to each job, and then dy-
namically changes the quota if needed. NQM also coordinates the
allocation of cross-DC quota for each cluster and ensures that the
total quota is not exceeded. We discuss the initial quota allocation
strategy and the dynamic quota management strategy below:
Initial Quota Allocation Strategy: The initial quota allocation
varies based on the job type. For recurring jobs, NQM mines the
input data access pattern in advance according to the historical
records, so that an accurate quota estimate can be made for the
given job. For ad-hoc jobs, there are two scenarios: default mode
and “lazy-read” (cache acceleration for ad-hoc jobs) mode?.

Default Mode: When the input data path of the job input data is
unknown, ResLake will assign default network quota for the job
at job scheduling initially. The network quota for the job will be
dynamically adjusted later.

Lazy Read: In this case, the input data path for the ad-hoc job can
be automatically parsed in advance before the job is submitted.
In such a scenario, the initial quota is assigned based on the input
data size and the distribution of the data replicas. ResLake can
initiate data replication/migration at the storage layer after job
submission while allocating the corresponding network quota.

Dynamic Quota Management: The NQM in ResLake interacts
with Bandwidth Broker? and the in-cluster resource manager where
the job is scheduled. For dynamic quota management, the NQM
obtains the available cross-DC network quota for each DC from
the bandwidth broker. It then coordinates with the cluster-level
resource manager (RM) to see the quota usage of clusters and quota
requests. The RM monitors the quota usage of jobs, aggregates the
information at the cluster level, and provides it to the NQM. For
the clusters that need to release quota, the NQM performs quota
recycling based on the cluster priority and the available bandwidth.
The recovered quota will be included in the total quota resource
pool. For the clusters that need to request quota, it executes the
following allocation strategy for each priority cluster in order of
high and low-priority tasks: When the requested quota is below
the available limit of the resource pool, a quota is sequentially
allocated to each cluster. When the requested quota exceeds the
available quota in the resource pool, a partial quota is allocated
to each cluster according to the request ratio, and the remaining
part will be allocated in the next round. ResLake centrally adjusts
the recycling strategy of each cluster according to the network
load. When the network load is low, NQM tries to grant all quota

2We note that, although we implemented data cache acceleration for ad-hoc jobs, in
practice data may only be accessed once by ad-hoc jobs due to lack of patterns. Thus,
this type of data scheduling is highly expensive, and should only be used if necessary.
3Bandwidth Broker is a company-wide network service at ByteDance to manage the
WAN bandwidth resource and to enforce network quota/QoS.

[ResLake SDK] b Policy
N Chain
)
4 L '
'
VQueue Admission Manager !
App Orchestration

VQueue Quota Manager Policy Plugin

Abstract Orchestrator

/App O
][Policy Plugin ‘wa G

Dispatcher

Compute

VQueue O
Policy Plugin

Unified Orchestrator Framework

Figure 8: ResLake control layer implementation

requests for each cluster and maximize resource utilization. On the
other hand, under high network load, NQM prioritizes high-priority
clusters in network quota allocation and forcibly reduces the quota
for clusters with lower priority if necessary. To see the details of
quota adjustment at cluster and job level, please refer to Section 6.3.

5.3.2 Interaction with External Network Services. BBroker enforces
QoS and performs rate-limiting at the application level. The NQM
works with BBroker to ensure each job’s required bandwidth quota
is promptly allocated and effectively utilized. The in-cluster re-
source manager monitors the quota used by each running job and
keeps track of the quota requests. The interaction between ResLake,
BBroker, and the in-cluster resource manager is summarized below.

(1) When the job is first submitted, NQM requests a specific amount
of cross-DC bandwidth quota from BBroker. Specifically, the
job’s unique identifier (classID), source DC (srcDC), and desti-
nation DC (dstDC) are included in the request body.

Then, BBroker periodically updates NQM with the actual band-
width usage by the job and the available cross-DC bandwidth
resource at the moment.

Next, NOM relays the allotted bandwidth quota to the in-cluster

scheduler (YARN/Godel) of the target cluster decided by ResLake.

The in-cluster resource manager determines the number of con-
tainers to launch, and reports each one’s information and the
corresponding bandwidth quota back to the BBroker.

Finally, the BBroker ensures that quota is enforced by installing
corresponding rules at BBroker agents on the containers.

“

=

6 SYSTEM IMPLEMENTATION

In this section, we present some implementation details of ResLake.
In our implementation of ResLake, the control and compute lay-
ers are intertwined, so we present their implementation together
followed by the storage and network layers.

6.1 Control Layer and Compute Layer

The control layer (or ResLake Core) maintains a global view of com-
puting, storage, and network resources to determine the optimal de-
cisions in terms of job latency and global resource balance. We show
the architecture of the control layer in Fig. 8. On the top of Fig. 8,
the control layer accepts scheduling requests via ResLake SDK or
API gateways. First, the submitted requests will go through authen-
tication and permission control by vQueue Admission Manager which
is implemented by the compute layer. Next, vQueue Quota Manager
will perform quota management to adjust corresponding quotas

3942

based on job information and virtual queues. ResLake implements
a Unified Orchestration Framework (UOF), which includes modules
such as VQueue Orchestration Policy Plugin (or VQueue Orchestrator), App
Orchestration Policy Plugin (OI‘ App Orchestrator), and Dispatcher.
VQueue Arrangement: VQueue Orchestrator is responsible for on-
demand virtual queue arrangement. When a job is scheduled to a
DC without a corresponding registered physical queue, the vQueue
orchestrator will apply a temporary physical queue and set up the
corresponding quota. When the job is completed, the queue re-
sources will be promptly recycled by ResLake. This allows ResLake
to shield the excessive information of physical queues from users.
Queue orchestration involves two stages: In the job submission
phase, if the job needs to be scheduled away from data in a remote
DC, VQueue oOrchestrator will create corresponding physical queues
and allocate quotas in the target DC. In the recycling phase, after
the job completes, vQueue Orchestrator will release the corresponding
temporary physical queues to prevent resource fragmentation.
Dynamic Job Scheduling: App Orchestrator is responsible for job
scheduling. Essentially, it is the optimization solver for solving the
ResLake Core problem (12) in Sec. 4 for job placement. To ensure the
performance of the solver output, App Orchestrator needs to main-
tain the most updated view of the computing, storage, and network
resources. As shown in Fig. 8, App Orchestrator will communicate
with underlying compute, storage, and network layers to obtain
information including approximate processing rate, CPU/memory
utilization, input data location, and network quota, etc. Specifically,
by tuning the weights in Eq. (12), Policy Factory in App Orchestrator
can support various standard and customized policies to meet dif-
ferent needs, e.g., to promote data locality or resource utilization
balance. The scheduling framework constructs independent thread
pools for each priority queue, with the purpose of physical sepa-
ration of resource pools with different priorities. The separation
of job scheduling is conducive to the concurrency of jobs with dif-
ferent priorities, avoiding interference between job schedules with
different priorities, and also preventing low-priority task jobs from
starving or not being scheduled for a long time. For each queue,
to ensure that the scheduler has a global perspective, the jobs of
the queue are scheduled serially, but queues with the same priority
run concurrently. Each job needs to go through the policy chain to
obtain the decision set for the optimal job arrangement.
Scheduling Execution: The dDispatcher will ensure the decisions
from App Orchestration are executed as expected.

6.2 Storage Layer

Storage Metadata Query: The storage layer provides a metadata
query interface for file paths, including information such as the
datacenter, number of replicas, and size of each replica. After the
control layer of ResLake parses the job access paths, it calls this
interface to obtain the optimal scheduling data center for the job.
Since the file path corresponding to the Hive table partition may
contain data in the order of Terabytes, analysis time for this data
will be in the order of minutes. Therefore, a metadata warehouse
is introduced to reduce the access delay of the path information
query interface. 1) Data center information: To avoid information
inconsistency caused by data migration, the storage layer peri-
odically refreshes cached data center information. For the newly

accessed directories, the path data center information is obtained
by sampling the files under the directory and updating the cache. 2)
Data size information: the storage system introduces a Data Insight
Service, which will periodically dump metadata images into the
warehouse and stack directories at all levels of paths to obtain the
size information, and finally import ClickHouse to support near
real-time queries for data size.

Data Cache Acceleration: To reduce the bandwidth and latency
of accessing data across DCs, ResLake analyzes the job’s required
data and its access behavior offline. Based on the result, the control
layer initiates data replication/migration to cache the data at the
local DC in advance. The storage system will then forward the
client read requests to the data node of the local DC.

DC Relocation: Data insight service collects storage indicators
from storage components including name node and data node, and
then obtains the current data placement strategy, storage space
occupancy, and cross-DC traffic to evaluate the expected resource
consumption of data migration.

Data Management service provides data replica relocation capa-

bility. The implementation principle is to scan the replica distribu-
tion of all file blocks under the directory and determine whether it
meets the target distribution strategy. Benefiting from name node
replica repair process, the corresponding replicas of the missing
data center are supplemented, and the corresponding replica dele-
tion mechanism is used to delete redundant blocks that do not meet
the replica placement strategy, ultimately achieving directory-level
data center redistribution.
Data Clustering Analysis: Based on historical access character-
istics, offline data can be arranged and adjusted more finely and
migrated in an orderly manner to achieve the goal of reducing
cross-DC traffic. Based on the dependency relationship between
computing tasks and data, we construct a Directed Acyclic Graph
(DAG) with computing tasks (jobs) and data paths (table or file
path) as nodes, and the traffic between query tasks and data paths
as edges. The above problem can be summarized as dividing this
DAG into several subgraphs so that the sum of edge weights across
subgraphs is minimized. The data paths in each subgraph are placed
in the same group of DCs, and the computing tasks start from that
group of DCs, so the edges across the subgraph are the traffic across
the DCs. We use Mixed Integer Linear Programming (MILP) to solve
the data clustering problem.

6.3 Network Layer

Initial Quota Allocation: As mentioned in Section 5.3, the net-
work quota manager in the network layer performs initial quota
allocation when a job is submitted, and then dynamically manages
the quota. For periodic jobs, we assign the initial quota as the aver-
age WAN usage of the job in the last n (n > 3) runs. The NQM uses
the API exposed by the storage layer to query the total WAN usage
(cross-DC reads). For ad-hoc jobs, we assign a default quota value.
Dynamic Quota Management: For dynamic quota management,
we set the recycling policy parameters for each cluster based on
the current bandwidth level, including request_threshold, release_
threshold, increase_step and decrease_step. These parameter val-
ues vary based on the current available bandwidth, and the clus-
ter priority, e.g., for a high-priority cluster, when the available

3943

bandwidth is high, request_threshold is set to 80%. Thus, the high-
priority cluster needs to utilize 80% of its current quota to get more
quota. Also, increase_step is set to 100% for high-priority clusters.
So, their current quota will increase by 100%. When the available
bandwidth is low, request_threshold will increase to 90%, and the
increase_step will decrease to 50%. The NQM increases the quota
by increase_step if the current quota usage of a cluster exceeds its
request_threshold. A similar strategy is used to lower the quota.

Within a given cluster, the in-cluster RM adjusts the individual
quota of jobs. When a cluster receives a quota increase, its RM up-
dates the quota of jobs that are more than 80% full for 2 consecutive
cycles. If the current network quota of a job is larger than its as-
signed quota, then the increase_step for the job is 100%. When the
current network quota is greater than the initial quota, the adjust-
ment is capped by: min{0.5%current_quota, 0.05xmax_job_quota}.
A similar strategy is used for quota recycling based on the usage of
quota per job until the quota of a job reaches min_job_quota. The
RM aggregates the quota adjustments for all jobs, calculates the
total quota adjustment needed at cluster granularity, and gives this
data to the NQM. After NQM adjusts the cluster quota based on
the request and network conditions, the RM allocates new quotas
to the jobs.

7 EVALUATION

In this section, we present the performance evaluation results* to
demonstrate how ResLake achieves the two main objectives, i.e.,
reducing JCT and improving resource utilization. We also observe
other potential gains in ResLake deployment and analyze how
different sub-components can benefit from ResLake.

7.1 Experimental Setup

The experimental results in this section were obtained from 3 core
DCs in ByteDance’s infrastructure. DC-1 and DC-2 are two large
DCs with several hundreds of thousands of servers, while DC-3 is
a relatively new DC (about 60% scale compared to DC-1) and con-
siderably lower load initially. The levels of load do not necessarily
translate to the amount of available resources in these DCs, e.g.,
DC-1 has the largest number of projects, jobs, and tables, though
this does not imply that DC-1 is the largest DC in terms of comput-
ing resources. We incrementally deployed ResLake to production
through multiple phases. Fig. 9a shows the total number of jobs in
the system and the cumulative fraction of jobs covered by ResLake
over time. From its release in July 2022, ResLake has covered almost
all big data processing jobs in these 3 DCs by September 2023.

7.2 Main Results

We observe an average improvement of 20% in JCT after the
deployment of ResLake. First, we show the results of comple-
tion time for all jobs in the above-mentioned 3 DCs to demon-
strate ResLake’s performance in reducing JCT. Fig. 9b illustrates
the average daily JCT in the system and the exponential moving
average (EMA) values, concerning the percentage of jobs onboard
to ResLake. As ResLake’s deployment scale increases, the average

“Note that, relative numbers or fractions are reported instead of exact numbers wher-
ever the results contain sensitive business/customer information. The relative numbers,
however, are sufficient to show the performance gain of ResLake.

— Number of jobs *:’
— ResLake Upgrade " 2 E 1800~
am £
a ! a7 21600
. P S
= .
o 06 ¢ 9 @
T 1.5M 25 2 q00-
a 04 © bt £
S c o o
5 02 § 3 1000 ‘
< ‘ | ‘ 0 8E O 0 02
01/22 07/22 01723 07/23 0124 & ©

Date

(a) Scales of jobs and ResLake deployment over
time

0.4

Percentage of apps offloaded
to ResLake (%)

(b) JCT s for jobs against the percentage of jobs
offloaded to ResLake

——true —EMA

/Median = 1.6

Fraction of jobs
OCO000O000
O=_NWAUIONXOWOW—

06 08 1

2

1 510 2 51002
Acceleration Ratio (Log Scale)

2 5

(c) Acceleration ratio (JCTpefore/JCTatter) Of
jobs against the fraction of jobs

Figure 9: (9a) Since its deployment, ResLake has successfully scheduled millions of jobs. (9b) As the percentage of apps offloaded
to ResLake increases, we observe a reduction in the JCT. (9c) Almost 70% of jobs have an acceleration ratio of more than 1.
Almost 50% of the jobs show an improvement in JCT by more than 60%.

~+-DC-1 - DC-2 - DC-3
e
e N
= M
>

04
%

0.35

.

03- /

Fraction of CPU used
Fraction of memory used

0 20

40

20 60 8 100
Percentage of apps offloaded
to ResLake (%)

(a) CPU

Percentage of apps offloaded
to ResLake (%)

(b) Memory

Figure 10: Overall resource utilization v.s. deployment scale

daily JCT decreases from about 1500 seconds (without ResLake) to
about 1200 seconds (at 80% deployment scale), which is a 20% reduc-
tion. To give more details, we show the acceleration ratio (defined
as the ratio of the JCT before the deployment of ResLake to the JCT
after the deployment of ResLake) of recurring jobs in Figure 9c. We
see that more than 70% jobs show JCT gains. Moreover, the median
acceleration ratio is about 1.6, corresponding to a 60% improvement
or higher for 50% of the jobs.

ResLake improves CPU utilization balance by up to 80%, and
memory utilization balance by up to 53%. Next, we show how
ResLake accomplishes its other main goal of improving resource
utilization balance. We plot the average utilization ratios of CPU
and memory in each DC w.r.t. the deployment scale of ResLake in
Fig. 10a and Fig. 10b, respectively. In Fig. 10a, as the deployment
scale increases to 80%, the maximum gap of CPU utilization in 3
DCs decreases from 15% to about 7%, which is a 53% reduction
in CPU utilization imbalance. Similarly, in Fig. 10b, we observe
that the maximum gap of memory utilization in 3 DCs decreases
from 7% to 2%, as the deployment scale increases to 80%, which
corresponds to a 71% reduction in memory usage imbalance.

To provide a closer look at ResLake’s benefits, we focus on a
single cluster with medium priority (MED cluster) in DC-1 and
DC-2, and plot its CPU/memory utilization changes as well as the
ResLake deployment coverage over time in Fig. 11. Since the MED
cluster upgraded to ResLake in Dec 2022, the CPU (Fig. 11a) and
memory (Fig. 11b) utilization imbalance between DC-1 and DC-2
have been significantly improved. We also plot the CPU/memory
utilization ratios w.r.t. the deployment scale of ResLake in MED

3944

cluster in Fig. 11c and Fig. 11d. We observe that the CPU utiliza-
tion gap between DC-1 and DC-2 decreases from 14% to about 2%
which is an 85% improvement. Similarly, the memory utilization
gap decreases from 13% to less than 5% which is a 61% improvement.
ResLake reduces the variability in cross-DC reads by 50%: To
observe the effect of ResLake on WAN usage, we plot the cross-DC
read traffic generated by jobs over time, in Figure 12. The boxplot
summarizes the data for each month. We also show the percentage
of apps offloaded to ResLake in the secondary y-axis to understand
the effect of ResLake on cross-DC reads. While we do not observe
a significant decrease in the median value of cross-DC reads, we
observe a significant change in the spread of values. The unusual
increases in Mar-May 2023 are due to a business decision regarding
storage decommission in one DC. As a result, lots of data needs to
be migrated to other DCs during that time, which is not handled by
ResLake. For a fair comparison, we exclude data points in Mar-May
2023 in the following discussion. Before ResLake was deployed,
the average cross-DC reads and its peak value are quite diverged,
showing a very bursty traffic pattern. As more apps are offloaded
to ResLake, the range of values for cross-DC reads is significantly
reduced. Overall, by Jan 2024, the inter-quartile range is reduced
by half, showing a decrease in the variability of cross-DC reads.

7.3 Other Benefits

System Scalability: One crucial benefit of ResLake as a centralized
control layer for compute, storage, and network resources is to im-
prove the scalability and to eliminate potential bottlenecks. Before
ResLake, the job scheduling is handled by in-cluster scheduling
services such as YARN and Godel [34]. Pressure test results show
that the Resource Manager (RM) of YARN/Godel can process up
to several thousands of tasks per minute. With the rapid growth
of business demands at ByteDance, a single cluster manager may
eventually become the bottleneck of the system soon. In today’s
production, ResLake is processing several millions of job requests
every day as shown in Figure 9a in a single region. Our pressure
test result shows that ResLake can easily handle over 30 million job
scheduling requests per day. Note that, this number does not reveal
the true limit of ResLake system, as the bottleneck is reached at
the in-cluster scheduler side with the given number of test clusters.

(a) CPU (b) Memory

el

o —DC-1 — DC-2 — ReslLake Upgrade 9 2 —DC-1 — DC-2 — ReslLake Upgrade < Bl —DC-1 = DC-2 § —-DC-1 —DC-2
9 1 . — 2® > 1 r T 8® 3055,‘ 2 -
g a3 > a - 35 0 ~ A > 04-
508 08 © § S 08 g > 05 \ J A% S

w & “ & & A £
& os 06 g £ 06 °s U /\i\\/ P g 035 AN 7
R T %= £ $2 50 / ~V = ~\ /
S oayfiny, f 04 £F 04 8g 5o\ / % 03 N /\\/‘/‘\d\/'
k<l 33 &3 Boss S
5 02 288 &% 83 & ‘ ‘ gos Y ‘
© | ! | | o E 5 | ! ! o E = 0 20 40 60 8 100 I 0 20 40 60 8 100
S oo 0o &% S o [2
= 10/22 01/23 04/23 07/23 10/23 01/24 L 10/22 01/23 04/23 07/23 10/23 01/24 Percentage of apps offloaded Percentage of apps offloaded

to ResLake (%)

(c) CPU

to ResLake (%)

(d) Memory

Figure 11: After the deployment of ResLake, we see significant improvement in CPU utilization balance (11a) and memory
utilization balance (11b) in our MED cluster. As the percentage of apps offloaded to ResLake increases, the improvement in
CPU utilization balance goes up to 85% (11c), and up to 61% in case of memory (11d).

o
4 o0 T oaE
_

o -
g 0 08 &7
2 4 ! 1 % &
© 30 P 06 ¢ 9
] .t i L v

1]
U 20 . i i 3 . ; 04 & @
a L] 7 B § . jelo]
S0l dbel ol ééé;ééééé 02 § 8
S o LI LE
0422 07/22 10/22 01723 0423 07/23 10/23 01/24

Figure 12: Cross-DC reads per second

From a theoretical analysis, we are confident that the performance
limit can be enhanced by increasing the number of processing
threads, as ResLake naturally supports parallelism.

Storage Cost Savings by ByteCool: Another great example for
ResLake’s benefits is to provide useful guidance for the storage layer,
to make better decisions on data migration and data compression.
To help vacate storage space in some heavily loaded DCs, some
less-frequently visited data can be migrated to a remote DC with
more abundant storage resources, also referring as “warm/cold
data storage”. Before ResLake, there were over 1,000 Hive tables
(corresponding to multiple EB in data size) stored in ByteCool. By
the end of 2023, ResLake helped identify over 10,000 potential tables
to move to ByteCool (nearly 20% of them were accepted), which
contributes to about 46% of storage savings by ByteCool.

8 RELATED WORK

Many existing efforts try to optimize job scheduling for big data
applications in geo-distributed settings [14, 15, 19, 23, 26]. Among
these works, many try to optimize for WAN usage as they consider a
public cloud environment, where WAN resources can easily become
a bottleneck [15, 23]. ResLake on the other hand operates in a pri-
vate cloud environment and directly optimizes for JCT. Other works
ignore the resource utilization balance which can harm JCT [23, 26].
In contrast, ResLake tries to optimize for resource utilization bal-
ance actively. Some of these proposed efforts are also limited in
scope as they only handle a restricted set of data processing jobs. For
example, Iridium only supports MapReduce tasks [26], Geode [23]
is limited to handling only recurring SQL jobs. However, ResLake
supports a wide range of big data processing frameworks. Other
prior efforts [14, 19] that solve the job scheduling problem do not

3945

handle data placement, which reduces the application of the sys-
tem, as it may not always be feasible to move jobs close to data for
example, due to hardware requirements of the job. In comparison,
ResLake considers the data placement problem in unison with the
job scheduling problem to have ultimate flexibility in scheduling
jobs to optimize for JCT. Similarly, some existing efforts [14, 19] as-
sume that cross-DC data access for jobs is minimal or non-existent,
which does not apply to ByteDance, as shown by our workload
patterns in Section 3.2. Other works look at analyzing dependen-
cies and propose dependency-aware scheduling similar to ResLake.
Still, they ignore resource utilization balance which is even more
important as a result of cross-resource dependencies [6, 21, 24, 32].

Many works present data placement systems to achieve data
locality. Akkio [2] provides a data-placement system that optimizes
data locality based on jobs, to minimize the data access times. Akkio
proposes the concept of micro-shards that allow fine-grained data
placement and migration. Similar to Akkio, several other systems
manage data locality at shard granularity [4, 9] and do not perform
job scheduling. Among systems that only perform data placement,
Volley [1] is another example. Volley provides data placement rec-
ommendations based on data locality and does not handle the place-
ment leaving it to the users. These works propose a data placement
system solely as opposed to ResLake which actively considers job
scheduling, and hence they cannot handle cases where it is not
feasible or it is costly to move data.

9 CONCLUSION

We presented ResLake, a centralized scheduling platform for geo-
distributed data-intensive applications that aims to reduce JCT,
while achieving utilization balance across resources and DCs. At
its core, ResLake solves an optimization problem to jointly mini-
mize JCT and resource utilization imbalance. The control layer of
ResLake coordinates with the underlying compute, storage, and net-
work layer to ensure the effectiveness of various online and offline
mechanisms. Extensive evaluation results in ByteDance’s produc-
tion have shown that average JCT and resource utilization balance
has improved significantly since the deployment of ResLake. So
far, ResLake has covered nearly 100% of big data processing jobs
at ByteDance and has been consistently showing its stability and
robustness over an extensive period (over 1.5 years). We are excited
to share our experience with the community of geo-distributed
scheduling systems, and we believe that the solution can benefit a
broad audience from both industry and research institutes.

REFERENCES

(1]

(2]

[10

(1]

[12]

[13]

=
it

[15]

[16]

[17

[18

[19

Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and
Habinder Bhogan. 2010. Volley: Automated data placement for geo-distributed
cloud services. In NSDI. USENIX, 2.

Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor
Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael Stumm. 2018.
Sharding the shards: managing datastore locality at scale with Akkio. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX, 445-460.

Apache Software Foundation. [n.d.]. Hadoop. https://hadoop.apache.org
Masoud Saeida Ardekani and Douglas B Terry. 2014. A {Self-Configurable } { Geo-
Replicated} Cloud Storage System. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX, 367-381.

Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. 2003. Convex analysis
and optimization. Vol. 1. Athena Scientific.

Marcel Blécher, Lin Wang, Patrick Eugster, and Max Schmidt. 2021. Switches
for HIRE: resource scheduling for data center in-network computing. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS
’21). Association for Computing Machinery, New York, NY, USA, 268-285.
https://doi.org/10.1145/3445814.3446760

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015),
28-38.

Robert J. Chansler. 2012. Data Availability and Durability with the Hadoop
Distributed File System. login Usenix Mag. 37 (2012). https://api.semanticscholar.
org/CorpusID:2146015

Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden.
2010. Schism: a workload-driven approach to database replication and partition-
ing. (2010), 48-57.

Kalyan Deb. 2001. Multiobjective Optimization Using Evolutionary Algorithms.
Wiley, New York. Wiley.

Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D Simon.
2001. A min-max cut algorithm for graph partitioning and data clustering.
In Proceedings 2001 IEEE international conference on data mining. IEEE, IEEE,
107-114.

IBM Documentation. 2024. IBM Storage Ceph — Edge clusters, Erasure-
coding. https://www.ibm.com/docs/en/storage-ceph/7?topic=components-
erasure-coding

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM.
15-26.

Zhiming Hu, Baochun Li, and Jun Luo. 2016. Flutter: Scheduling tasks closer to
data across geo-distributed datacenters. In IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications. IEEE, IEEE, 1-9.
Yuzhen Huang, Yingjie Shi, Zheng Zhong, Yihui Feng, James Cheng, Jiwei Li,
Haochuan Fan, Chao Li, Tao Guan, and Jingren Zhou. 2019. Yugong: Geo-
distributed data and job placement at scale. Proceedings of the VLDB Endowment
12, 12 (2019), 2155-2169.

Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu,
and Mingyang Zhang. 2018. Wide-area analytics with multiple resources. In
Proceedings of the Thirteenth EuroSys Conference. ACM, 1-16.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (Lisbon, Portugal) (EuroSys ’07). Association for Computing Ma-
chinery, New York, NY, USA, 59-72.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 3-14.

Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin
Makarychev, and Matthew Caesar. 2015. Network-aware scheduling for data-
parallel jobs: Plan when you can. ACM SIGCOMM Computer Communication
Review 45, 4 (2015), 407-420.

3946

[20

[21

[22

(23]

[25

[26]

[27

[29]

[30

(32]

(33]

(34]

[35

[36]

Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian Jiang, and
James Cheng. 2020. Improving resource utilization by timely fine-grained sched-
uling. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys "20). ACM, New York, NY, USA, Article 20, 16 pages.

Aqgsa Kashaf, Vyas Sekar, and Yuvraj Agarwal. 2020. Analyzing third party service
dependencies in modern web services: Have we learned from the mirai-dyn
incident?. In Proceedings of the ACM Internet Measurement Conference. 634—647.

1l Yong Kim and Olivier de Weck. 2006. Adaptive weighted sum method
for multiobjective optimization: A new method for Pareto front generation.

Structural and Multidisciplinary Optimization 31 (02 2006), 105-116. https:
//doi.org/10.1007/s00158-005-0557-6

Peng Li, Song Guo, Toshiaki Miyazaki, Xiaofei Liao, Hai Jin, Albert Y Zomaya,
and Kun Wang. 2016. Traffic-aware geo-distributed big data analytics with
predictable job completion time. IEEE Transactions on Parallel and Distributed
Systems 28, 6 (2016), 1785-1796.

Jinwei Liu and Haiying Shen. 2016. Dependency-Aware and Resource-Efficient
Scheduling for Heterogeneous Jobs in Clouds. In 2016 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom). 110-117. https:
//doi.org/10.1109/CloudCom.2016.0032

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making sense of performance in data analytics frameworks. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI'15). USENIX Association, USA, 293-307.
Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data
analytics. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 421-
434.

Srikanth Sundaresan, Walter De Donato, Nick Feamster, Renata Teixeira, Sam
Crawford, and Antonio Pescapé. 2011. Broadband internet performance: a view
from the gateway. ACM SIGCOMM computer communication review 41, 4 (2011),
134-145.

Radu Tudoran, Gabriel Antoniu, and Luc Bouge. 2013. Sage: geo-distributed
streaming data analysis in clouds. In 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum. IEEE, IEEE, 2278-
2281.

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,
and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet another resource ne-
gotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing (Santa
Clara, California) (SOCC ’13). ACM, New York, NY, USA, Article 5, 16 pages.
Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Kon-
stantinos Karanasos, Jitendra Padhye, and George Varghese. 2015. Wanalytics:
Geo-distributed analytics for a data intensive world. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. ACM, 1087-1092.
Lizhe Wang, Jie Tao, Rajiv Ranjan, Holger Marten, Achim Streit, Jingying Chen,
and Dan Chen. 2013. G-Hadoop: MapReduce across distributed data centers
for data-intensive computing. Future Generation Computer Systems 29, 3 (2013),
739-750.

Shaoqi Wang, Wei Chen, Xiaobo Zhou, Ligiang Zhang, and Yin Wang. 2019.
Dependency-Aware Network Adaptive Scheduling of Data-Intensive Parallel
Jobs. IEEE Transactions on Parallel and Distributed Systems 30, 3 (2019), 515-529.
https://doi.org/10.1109/TPDS.2018.2866993

Laurence A Wolsey and George L Nemhauser. 2014. Integer and combinatorial
optimization. John Wiley & Sons.

Wu Xiang, Yakun Li, Yuquan Ren, Fan Jiang, Chaohui Xin, Varun Gupta, Chao
Xiang, Xinyi Song, Meng Liu, Bing Li, Kaiyang Shao, Chen Xu, Wei Shao, Yuqi
Fu, Wilson Wang, Cong Xu, Wei Xu, Caixue Lin, Rui Shi, and Yuming Liang. 2023.
Godel: Unified Large-Scale Resource Management and Scheduling at ByteDance.
In Proceedings of the 2023 ACM Symposium on Cloud Computing (Santa Cruz, CA,
USA,) (SoCC °23). ACM, New York, NY, USA, 308-323.

Zhengxi Yang, Zhipeng Jiang, Wenguo Yang, and Suixiang Gao. 2023. Balanced
graph partitioning based on mixed 0-1 linear programming and iteration vertex
relocation algorithm. Journal of Combinatorial Optimization 45, 5 (2023), 121.
Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: a unified engine for big data processing. Commun. ACM 59,
11 (oct 2016), 56-65

https://hadoop.apache.org
https://doi.org/10.1145/3445814.3446760
https://api.semanticscholar.org/CorpusID:2146015
https://api.semanticscholar.org/CorpusID:2146015
https://www.ibm.com/docs/en/storage-ceph/7?topic=components-erasure-coding
https://www.ibm.com/docs/en/storage-ceph/7?topic=components-erasure-coding
https://doi.org/10.1007/s00158-005-0557-6
https://doi.org/10.1007/s00158-005-0557-6
https://doi.org/10.1109/CloudCom.2016.0032
https://doi.org/10.1109/CloudCom.2016.0032
https://doi.org/10.1109/TPDS.2018.2866993

	Abstract
	1 Introduction
	2 Motivation
	2.1 ResLake Goals
	2.2 Challenges

	3 An Overview of ResLake
	3.1 High-level System Architecture
	3.2 Workload Driven Design Decisions

	4 Formulation and Modeling
	4.1 Meta-tasks
	4.2 Problem Formulation for ResLake Core

	5 Design
	5.1 Computing Layer
	5.2 Storage Layer
	5.3 Network Layer

	6 System Implementation
	6.1 Control Layer and Compute Layer
	6.2 Storage Layer
	6.3 Network Layer

	7 Evaluation
	7.1 Experimental Setup
	7.2 Main Results
	7.3 Other Benefits

	8 Related Work
	9 Conclusion
	References

