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ABSTRACT
The proliferation of trajectory data has facilitated various applica-
tions in urban spaces, such as travel time estimation, traffic moni-
toring, and flow prediction. These applications require a substantial
volume of high-quality trajectories as the prerequisite to achieve
effective performance. Unfortunately, a large number of real-world
trajectories are inevitably collected in unsatisfactory quality due
to device constraints. To address this issue, previous studies have
proposed numerous trajectory recovery methods to augment the
quality of such trajectories, thereby ensuring the performance of
related applications. However, these methods all assume the aware-
ness of the recovery positions in advance, which is a condition not
always available in practice. In this paper, we discard this strong
assumption and focus on trajectory recovery with irregular time
intervals as a more prevalent setting in downstream scenarios. We
propose a novel framework, called TERI, to tackle trajectory re-
covery without prior information in a two-stage process, where
recovery positions are first detected, followed by the imputation
of the missing data points. In each stage, TERI framework deploys
a model named RETE, which is based on Transformer encoder ar-
chitecture enhanced by novel designs to boost the performance
for the new problem setting. Specifically, RETE features a learn-
able Fourier encoding module to better model spatial and temporal
correlations, and integrates collective transition pattern learning
and trajectory contrastive learning to effectively capture sequen-
tial transition patterns. Extensive experiments on three real-world
datasets demonstrate that TERI consistently outperforms all the
baselines by a significant large margin.

PVLDB Reference Format:
Yile Chen, Gao Cong, Cuauhtemoc Anda. TERI: An Effective Framework
for Trajectory Recovery with Irregular Time Intervals. PVLDB, 17(3): 414 -
426, 2023.
doi:10.14778/3632093.3632105

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yileccc/TERI.

1 INTRODUCTION
With the rapid development of geopositioning technologies, trajec-
tories are being collected at an unprecedented speed to enhance
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Figure 1: Difference between existing studies and our work.

urban intelligence in a range of applications, including travel time
estimation [19], traffic monitoring [5, 14], and flow prediction [42].
Serving as a vital data source for these applications, trajectories are
expected to be dense and accurate to represent the faithful and de-
tailed underlying movements of objects. Otherwise, the uncertainty
between consecutive records within trajectories could increase,
thus greatly impacting the effectiveness of these applications [27].
Unfortunately, a large quantity of trajectories are inevitably sparse
due to device malfunctions or cost-saving measures that involve
utilizing low sampling rates. Therefore, it is essential to develop
trajectory recovery methods that produce trajectories with higher
qualities to benefit the performance of related applications.

Extensive studies have been proposed to address the trajectory
recovery problem, and they can be classified into two categories
based on whether topological constraints (i.e., road networks) are
considered. In the first category, data points are map-matched onto
road networks, and then the recovery task is transformed into
completing the missing route between two distant road segments [7,
13, 18, 27]. In contrast, trajectory recovery in the second category is
performed in the way that such structural knowledge is not utilized,
and thus called network-free trajectory recovery [29, 31, 35,
36]. In this paper, we focus on the latter problem setting without
applying additional map-matching operations for data points, as it
represents a more general use case in practice.

Despite the difference in problem settings, existing studies on
trajectory recovery share a common underlying assumption which
can be abstracted in Figure 1: the recovery positions are provided as
prior information. On one hand, studies [13, 18] on road networks
aim to complete the missing parts between two disconnected road
segments, and these gaps naturally serve as the recovery positions.
On the other hand, other studies either have the knowledge about
the positions of the unobserved locations [29, 35, 36], or target
at recovering regularly sampled trajectories (e.g., 30 seconds per
data point) [7, 27, 31]. In all these instances, the recovery positions
can be transformed into placeholders which are either explicitly
given or implicitly identified by calculating the time interval be-
tween consecutive data points, respectively. Taking Figure 1 as
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(a) Time interval. (b) Distance interval.

Figure 2: Illustration of irregular time and distance intervals.

an example, the question marks could be viewed as placeholders
employed in previous studies. They indicate the existence of two
unknown locations following 𝑙𝑏 to be recovered. In contrast, such
prior knowledge is not provided in our study.

We argue that the assumption employed in existing studies has
great limitations. Due to the factors such as reducing energy con-
sumption (e.g., logistics truck) or accommodating communication
characteristic for data sampling (e.g., cellular data), time intervals
between two consecutive data points are usually irregular (i.e., with
unfixed sampling rate). For example, Figure 2a illustrates the ir-
regular interval patterns in real-world cellular trajectories from
two cities utilized in the experiments. These two datasets are ob-
tained from a leading telecommunication company in Singapore.
Considering the advanced mobile technology and well-developed
telecommunication infrastructure in urban areas, cellular trajecto-
ries can be more extensively and easily collected on a larger scale.
This creates the expectation for the company to derive more accu-
rate and granular trajectories, thus enabling the analysis of urban
mobility at a greater level of detail. Consequently, the recovery of
low-quality trajectories with irregular time intervals becomes a fun-
damental requirement to benefit the company’s services in diverse
business scenarios, such as mobility pattern analysis, urban infras-
tructure optimization, and location-based marketing. For example,
by studying recovered trajectories with more details, the company
can have a deeper understanding of urban mobility patterns to
enhance traffic monitoring, and event management.

However, unlike the setting in regularly sampled trajectories,
time intervals in these trajectories cannot be regarded as an indica-
tor to infer recovery positions. Furthermore, in reality we have no
means to determine in advance whether any locations are missing
for a given trajectory. Therefore, the awareness of the positions for
missing locations, is not feasible in practical situations.

To address the limitations in existing studies, we consider a new
setting that does not rely on the awareness of recovery positions
based on explicitly or implicitly predetermined placeholders. In-
stead, we do not impose any prior information on the positions
where trajectory recovery should be performed. In other words, we
aim to not only discover and but also recover themissing data points
from trajectories with irregular intervals. However, this problem is
non-trivial due to the following challenges.

(Challenge 1) Given that the recovery positions are not provided
in advance, the Sequence-to-sequence (Seq2seq) model variants
in previous studies [7, 27, 31], which formulate the recovery as a
sequence generation process, are not adequate for the new problem
setting. In the context of our problem where the prior information
for placeholders are not available, each data point in the original

sparse trajectory is expected to be produced together with the
missing data points in the decoding phase. Unfortunately, it is
usually the case that some data points in the original trajectory are
not successfully reconstructed in Seq2seq models [12], which could
lead to ambiguous recovery results. Taking Figure 1 as an example,
given the original trajectory (𝑙𝑎, 𝑙𝑏 , 𝑙𝑒 ), the Seq2seq model might
generate a prediction (𝑙𝑎, 𝑙𝑐 , 𝑙𝑒 ) in the decoder while failing to copy
𝑙𝑏 . In this case, it is unclear whether 𝑙𝑏 should be placed after 𝑙𝑎 or
𝑙𝑐 , as both are valid options.

(Challenge 2) Trajectories with irregular intervals exhibit com-
plex spatial and temporal correlations, and therefore we cannot easily
determine the recovery positions based solely on large time or dis-
tance intervals. As shown in Figure 2, for all the data points in the
Sydney dataset, approximately 25% have time interval exceeding
100 seconds, and 40% have distance interval greater than 1000 me-
ters. If we heuristically choose a threshold that is too large (small) to
identify recovery positions, the recall (precision) would significantly
decrease. Moreover, although we may split the time or distance
into different bins (e.g., 10 mins or 100 meters) to create discrete
embedding vectors, it is difficult to manually select an appropriate
number and interval of bins. Even worse, this approach neither
effectively models fine-grained spatial and temporal correlations,
as different intervals within the same bin are considered identical
(e.g., intervals of 10 mins and 18 mins are indistinguishable with
a 10-20 minute bin), nor it is capable of handling unseen intervals
(e.g., very long intervals) that may exist in testing examples.

(Challenge 3) Given a sparse trajectory with unobserved missing
locations, it is critical to capture sequential transition patterns to
offer invaluable insights for the trajectory recovery task. Specifi-
cally, it’s important to ensure that the recovered trajectory makes
logical sense considering its full context, and that the recovered
locations align with typical movement patterns hidden in the data.
For instance, in the challenge presented, an adequate model should
identify the unsmooth and anomalous sequential transition be-
tween 𝑙𝑏 and 𝑙𝑒 , thereby indicating the high likelihood of missing
locations in between. Capturing such patterns could be achieved us-
ing sequential models such as recurrent neural networks (RNN) [15]
or Transformer [30], as applied in [29, 36]. However, these models
struggle to handle the scenarios when trajectories become short and
contain limited context information. Therefore, dedicated designs
are required to mitigate the issue.

To address these challenges in both tackling the new problem
setting and the unique data characteristics inherent in cellular tra-
jectoies, we propose a novel framework, named TERI, forTrajectory
rEcovery with iRregular time Intervals. To eliminate the ambiguous
recovery results (Challenge 1) produced by the sequence generation
of Seq2seq models, we divide the task into two stages, namely the
detection stage and the recovery stage. Specifically, the detection
stage aims to identify the recovery positions for given trajectories.
Then the recovery stage generates the predictions for those missing
data points at each recovery position. The framework is built on
the Transformer encoder, which formulates the recovery process
as a pipeline of classification followed by imputation, thus avoid-
ing the ambiguity by ensuring all the data points in the original
trajectory are preserved in the final prediction. To better adapt the
Transformer encoder to our problem setting, we employ a novel
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time and distance encoding module based on learnable Fourier
features [20, 37], which can model continuous intervals without
pre-defining any embedding vectors, while also being naturally
inductive to handle arbitrary intervals. Consequently, complex spa-
tial and temporal correlations in irregular intervals (Challenge 2)
are encoded into the model. Moreover, to better capture sequen-
tial transition patterns (Challenge 3), we propose to harness the
collective information from trajectory databases by constructing
a global transition graph. We then adopt graph neural networks
(GNN) [6, 34] to encode spatial proximity in location representa-
tions, as the representations are influenced by precedents during
message passing operations in the global transition graph. In addi-
tion, since trajectories with different underlying routes have distinct
sequential transition patterns, we develop trajectory contrastive
learning to further enrich the module by distinguishing trajectory
variants with the same underlying route from those on different
routes. These proposed techniques are integrated to obtain a Re-
covery Enhanced version of Transformer Encoder (RETE). Finally,
RETE serves as a unified backbone model, which requires only min-
imal modifications in the last layer to fulfill the function for each
stage effectively. Utilizing the proposed pipeline coupled with these
specifically designed modules, TERI is tailored to seamlessly tackle
the new trajectory recovery scenario, and effectively overcome the
issues unresolved by previous studies.

The contributions of our work are summarized as follows:
• We identify the limitations in existing studies and introduce a

two-stage framework, named TERI, to address trajectory recov-
ery with irregular intervals. To the best of our knowledge, TERI
is the first attempt to tackle this problem setting, which has more
practical and general real-world use cases.

• We propose a novel backbone model, called RETE, to accommo-
date the new problem setting. RETE incorporates three new tech-
niques, namely learnable Fourier features for interval encoding
to consider complex spatial and temporal correlations, collective
transition pattern learning module and trajectory contrastive
learning to effectively capture sequential transition patterns.

• We conduct extensive experiments on three real-world datasets
with irregular intervals to evaluate the effectiveness of the pro-
posed framework. Experimental results demonstrate that the
TERI significantly outperforms existing solutions.

2 RELATEDWORK
2.1 Road-Network-based Trajectory Recovery
Trajectory recovery on road networks aims to infer the most likely
route between two non-adjacent road segments. In this setting,
road network structure is used as prior knowledge or constraints
to address the problem. Early studies [1, 44] utilize Markov-based
models with road network constraints to derive spatial transition
probabilities for road segment pairs. Several studies propose search
algorithms in a data-driven manner to obtain the recovery route
based on dynamic programming [23], inverse reinforcement learn-
ing [33] or heuristic cost measures [13]. Recently, deep learning
based models have been adopted to model the complex factors
in trajectory recovery on road networks. Li et al. [18] propose a
deep generative model which explains the generation of a route
conditioning on the past route sequence, destination and real-time

traffic. Wu et al. [32] propose to improve 𝐴∗ search algorithms in
trajectory recovery using neural networks to automatically learn
the cost functions without handcrafting search strategies. More-
over, Ren et al. [27] and Chen et al. [7] integrate trajectory recovery
into map-matching [25, 39], which aims to produce map-matched
records with a high sampling rate. They propose a Seq2seq model
with multi-task learning to recover fine-grained data points directly
on road networks from GPS trajectories. In addition, some methods
tackle this problem from another perspective, and propose to utilize
traffic camera videos to identify and track vehicles for trajectory
recovery [22, 41]. While these methods have achieved promising re-
sults, they essentially rely on modeling the graph structure of road
network, and are therefore not applicable to our problem setting.

2.2 Network-free Trajectory Recovery
Different from the above studies, another line of research, referred
to as network-free trajectory recovery, aims to work with fixed
locations rather than road network structure. Early studies propose
to predict a sequence of traversed locations between a pair of origin
and destination locations by formulating it as an optimization prob-
lem [11], utilizing pre-defined anchor points for calibration [28], or
adopting Markov model [3, 8]. However, these approaches simply
consider low-order transition patterns in a trajectory, failing to
capture spatial and temporal context with long-term dependencies.
To overcome this issue, sequential models based on RNN [9, 15] or
Transformer [30] have been applied to the problem. For example,
Xi et al. [35] propose to model the location correlations with a fixed
window size using embedding techniques, which can only capture
the local location correlations. To further improve the performance,
Wang et al. [31] employ a RNN-based Seq2seq framework equipped
with spatial and temporal attentions to capture transition patterns,
and introduce a calibration component based on the Kalman filter
to reduce the predictive uncertainty. Xia et al. [36] utilize histori-
cal trajectories of users, and adopt self-attention mechanisms both
within and across trajectories to recover unobserved locations given
as placeholders. Building on this model, Sun et al. [29] further incor-
porate GNN to model each individual trajectory, which helps better
capture the transition patterns. Moreover, Elshrif et al. [10] pro-
pose a heuristic search algorithm to impute locations between two
consecutive but distant records within a trajectory. As discussed
in Section 1, these methods share the same underlying assumption
that the recovery positions are provided as prior information. How-
ever, such oracle information is usually not available in practice. In
contrast, our framework does not require the recovery positions,
making it more versatile and applicable to real-world scenarios.

3 PROBLEM FORMULATION
In this section, we present some definitions used throughout this
paper, and then formulate the new problem setting of trajectory
recovery with irregular intervals.

Definition 3.1. (Trajectory). A trajectory𝑇 of length 𝑛 is defined
as a trip within a city, comprising of a sequence of chronologically
ordered data points, denoted as 𝑇 = (𝑙1, 𝑙2, ..., 𝑙𝑛). Each 𝑙𝑖 is a loca-
tion associated with a coordinate 𝑐𝑖 and a timestamp 𝑡𝑖 to indicate
the arrival time of the location.

416



Unlike the studies [27, 31] which work on trajectories with con-
stant intervals for consecutive data points, i.e., 𝑡𝑖+1 − 𝑡𝑖 = 𝜖 for
1 ≤ 𝑖 ≤ 𝑛 − 1 where 𝜖 is a fixed time interval, to accommodate
various sampling characteristics across different data sources and fa-
cilitate more generic use cases, we do not make such an assumption
in our setting.

Definition 3.2. (Sparse Trajectory). A sparse trajectory 𝑇̃ =

(𝑙𝑎1 , 𝑙𝑎2 , ..., 𝑙𝑎𝑘 ) is a part of 𝑇 of length 𝑘 (𝑘 < 𝑛), in which some
data points are omitted. Each 𝑎𝑖 corresponds to an index of a data
point in 𝑇 , i.e., 𝑎𝑖 ∈ N: 𝑎𝑖 ∈ [1, 𝑛], and 1 ≤ 𝑎1 < ... < 𝑎𝑖 < 𝑎𝑖+1 <

... < 𝑎𝑘 ≤ 𝑛.

We note that the definition of sparse trajectory in this paper
differs from those in [29, 35, 36], where locations are masked with
null placeholders (e.g., the question marks in Figure 1) without
actually being dropped, i.e., 𝑘 = 𝑛. This implies that the recovery
positions are provided in advance as prior knowledge to the model,
which contradicts many practical scenarios. Then we formulate the
problem setting of trajectory recovery as follows.
Problem Statement. Given a sparse trajectory 𝑇̃ , the objective is
to recover its corresponding 𝑇 . In other words, we aim to recover
the missing locations that are not present in 𝑇̃ , i.e., 𝑙𝑖 ∈ 𝑇 and 𝑙𝑖 ∉ 𝑇̃ .

4 METHODOLOGY
In this section, we first provide an overview of TERI framework.
Then we briefly introduce the Transformer encoder as the main
building block of our RETE model. Next, we present the details of
the modules specifically designed for the RETE model, including
time and distance encoding module, collective transition pattern
learning module and trajectory contrastive learning module. Finally,
we introduce the training procedure of TERI framework.

4.1 Framework Overview
The pipeline of the proposed TERI framework is illustrated in Fig-
ure 3. To address the recovery ambiguity issue in Seq2seq models,
we propose to rephrase the problem into two stages. First, classifi-
cation is performed to determine the number of missing locations
following each observed data point, thereby identifying both the
recovery positions and their lengths (detection stage). Next, given
the results from the detection stage, we insert the corresponding
number of placeholders into the original trajectory and perform
imputation to replace them with predicted locations as the final re-
covery results (recovery stage). In contrast to decoding phase in the
Seq2seq framework, the proposed recovery process is structured
into the manner that predicted locations are inserted into positions
identified as potentially incomplete, thus successfully avoiding the
recovery ambiguity issue in Challenge 1.

To achieve this, we propose a unified model, called Recovery En-
hanced Transformer Encoder (RETE), to serve as the backbone for
each stage. The overview of RETEmodel is shown in Figure 4. RETE
is built on Transformer encoder [30] which treats the trajectory
as input sequence and utilizes self-attention mechanism at each
location. Moreover, RETE is further enhanced with novel designs
to better adapt to our problem setting. First, since irregular inter-
vals are crucial features to be considered, we adopt an encoding
method based on learnable Fourier features [20, 37] to handle the
continuous properties of distance and time intervals (Section 4.3). In

Recovery 
Enriched 

Transformer 
Encoder
(RETE)

Recovery 
Enriched 

Transformer 
Encoder
(RETE)

Detection Stage Recovery Stage
(classification) (imputation)

3

1

Figure 3: The pipeline of TERI framework.

Figure 4: The model architecture of RETE.

contrast to existing studies [29, 36] which manually select intervals
to produce embedding vectors and regard different times or dis-
tances belonging to the same interval bin as the same, this method
retains fine-grained interval information, and seamlessly integrates
complex spatial and temporal correlations in a trajectory to the
self-attention mechanism, thus addressing Challenge 2. Next, the
capture of sequential transition patterns provides informative sig-
nals for trajectory recovery in both stages. Although Transformer
is capable of capturing such patterns, the effectiveness declines
for short and sparse trajectories due to their limited spatial and
temporal contexts. To this end, we propose to enhance the model
by harnessing the collective information from trajectory databases
(Section 4.4). Specifically, we construct a global transition graph
based on transition frequencies for consecutive data points, and
apply GNN to obtain the global contextual location representations,
which explicitly model the influences among different locations
through GNN messaging passing. Moreover, we integrate a tra-
jectory contrastive learning module into the model. The module
aims to distinguish trajectory variants with the same underlying
route from those with different routes (Section 4.5). By doing so,
trajectories with more similar sequential transition patterns could
be identified, which further enhances the effectiveness of the model.
These two modules are combined together to address Challenge 3.
Finally, RETE is flexible to be applied in both the detection stage and
the recovery stage with only minor adjustments to the training ob-
jectives (Section 4.6), thus reducing the efforts to design respective
components for the pipeline of trajectory recovery.
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4.2 Transformer Encoder
Before presenting the details of the RETE model, we first introduce
some preliminaries regarding Transformer encoder [30], which has
become the default choice for sequence modeling across various
tasks. As shown in Figure 4(c), Transformer encoder is composed of
several identical self-attention layers, each of which includes two
sub-layers: multi-head self-attention module followed by position-
wise Feed-foward Network. Then we describe the details of these
two components.
Multi-head Self-attention Module. Self-attention mechanism
allows the model to selectively focus on correlated parts of the
input sequence. It can be described as mapping the representations
of input sequence to output representations through scaled dot-
product function, which is defined as follows:

Attention(Q,K,V) = softmax

(︄
QK𝑇√︁
𝑑𝑘

)︄
V (1)

where Q, K and V represent the query, key, and value matrix
respectively derived from linear projection on the representations
of the input trajectory, and 𝑑𝑘 is the vector dimension, which is
typically set to be the same for all the three matrices.

In our work, we adopt multi-head self-attention to model tra-
jectory sequences. Specifically, the representations of input tra-
jectory are projected into ℎ sets of different queries, keys, and
values to perform self-attention mechanism, which has been shown
to achieve better performance. Given the input representations
X = [x1, ..., x𝑁 ] ∈ R𝑁×𝑑𝑖𝑛 with length 𝑁 where x𝑖 is the represen-
tation of the 𝑖-th location in the trajectory after the encoding layer,
the output representations Z ∈ R𝑁×𝑑𝑜𝑢𝑡 are produced as follows:

Z = MH-Attn(X) = [ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ] ·W𝑂

ℎ𝑒𝑎𝑑𝑖 = Attention
(︂
XW𝑄

𝑖
,XW𝐾

𝑖 ,XW
𝑉
𝑖

)︂ (2)

where W𝑄

𝑖
, W𝐾

𝑖
, W𝑉

𝑖
∈ R𝑑𝑖𝑛×𝑑𝑖𝑛/ℎ are projection matrices for each

head, and W𝑂∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 is learnable parameters.
Position-wise Feed-forward Network. After the multi-head self-
attention module, the output representations are passed through a
two-layer fully connected feed-forward network (FFN) with ReLU
activation function:

FFN(Z) = ReLU (ZW1 + b1)W2 + b2 (3)

where W1,W2, b1 and b2 are parameters of the network.
Model Stacking. In practice, it is usually beneficial to stack mul-
tiple layers to obtain more effective embeddings for downstream
tasks. To alleviate possible training difficulty caused by the increas-
ing depth of more stacked layers, we follow [30] to employ the
residual connection and layer normalization on each of the two
sub-layers. It can be expressed as follows:

Z′ = LayerNorm(X +MH-Attn(X))
X′ = LayerNorm(Z′ + FFN(Z′))

(4)

where LayerNorm denotes layer normalization and Z′ denotes the
final output representations which are passed as the input to the
subsequent layer of Transformer encoder.

4.3 Time and Distance Encoding
Considering the crucial role of spatial and temporal correlations
in identifying missing locations, it is essential to effectively en-
code these complex correlations into the model. The original Trans-
former encoder is limited to only encoding the ordering information
in the input trajectory through the use of pre-defined or learned
positional embeddings. To further incorporate spatial and temporal
correlations, previous methods on trajectory recovery [29, 31, 36]
utilize discrete embeddings to represent specific intervals, with
each embedding associated with a particular time bin. For example,
every 5-minute interval can be treated as a bin for embedding. How-
ever, this approach has significant drawbacks. It is a non-trivial
task to select appropriate intervals to obtain discrete embeddings
in the setting of irregular intervals, and the method also fails to
model the fine-grained correlations for two different intervals that
fall in the same bin.

In light of this, we adopt a novel spatial and temporal encod-
ing method based on learnable Fourier features to address the
limitations. Specifically, we propose to learn an encoding func-
tion Φ(𝑥) : R𝑚 → R𝑑 , which maps the original feature to a 𝑑-
dimensional vector. The function is defined as follows:

Φ(𝑥) = 1
√
𝑑
[cos𝑥W𝑟 ∥ sin𝑥W𝑟 ] (5)

where ∥ denotes vector concatenation,W𝑟 ∈ R𝑚×𝑑/2 is the learn-
able parameter which defines the orientation and the wavelength
of Fourier features. Here, the feature 𝑥 could either represent a
timestamp (temporal information) or location coordinates (spatial
information). Then the dot-product between two features Φ(𝑥) and
Φ(𝑦) is calculated as:

Φ(𝑥) · Φ(𝑦) = K(𝑥,𝑦) = 1
𝑑

∑︂
(cos(𝑥 − 𝑦)W𝑟 ) (6)

This means that the mapping function in Equation 5 corresponds
to a translation-invariant kernel (i.e., K(𝑥,𝑦) = K(𝑥 + 𝑐,𝑦 + 𝑐)) pa-
rameterized byW𝑟 . The proposed encoding paradigm has several
advantages. First, the translation invariant property allows the
model to focus on the gap information for temporal interval or
geographical distance, which is more desired in trajectory recovery
task, as opposed to relying on absolute values of spatial and tempo-
ral features. Second, it endeavors to model the correlations directly
on continuous features without manually selecting the intervals for
discrete embeddings. This reduces the information loss associated
with discrete embeddings. Third, it is applicable to unseen features
that might not be present in training examples. Furthermore, for
every data point 𝑙𝑖 in a trajectory, such a dot-product formulation
can seamlessly integrate the correlations into the self-attention
mechanism by modifying the input embeddings to the Transformer
encoder as follows:

x𝑖 = E(𝑙𝑖 )∥Φ(𝑡𝑖 )∥Φ(𝑐𝑖 ) (7)

where Φ(𝑡𝑖 ) and Φ(𝑐𝑖 ) denote the temporal encoding on timestamp
and the spatial encoding on location coordinates respectively, and
E(𝑙𝑖 ) is the enhanced location representation for 𝑙𝑖 , which will
be detailed in the next subsection. The process is illustrated in
shown in Figure 4(b). To facilitate model training, we initialize the
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parameter from a normal distributionW𝑟 ∼ N(0, 𝜎−2). By doing
this, Equation 6 approximates the Gaussian kernel (i.e.,Φ(𝑥)·Φ(𝑦) ≈
exp(−∥𝑥 − 𝑦∥2/𝜎2)) over its original feature differences [26], and
this introduces a useful inductive bias of Euclidean distances as the
start point in the model.

4.4 Collective Transition Pattern Learning
While Transformer encoder demonstrates its ability to capture se-
quential transition patterns, it still struggles when dealing with
short and sparse trajectories due to their limited context infor-
mation, which in turn provide less informative knowledge about
transition patterns. To mitigate this issue, we leverage the collective
information from trajectory databases to explicitly integrate such
knowledge into the model. Specifically, we propose to construct
a global transition graph, denoted as G = (L, E,A), to provide
a comprehensive view of global movement patterns. Here, L, E
and A denote a set of unique locations across all trajectories, a set
of edges, and the adjacency matrix, respectively. To represent the
spatial proximity, we define each entry A𝑖 𝑗 to be the frequency of
co-occurrences for consecutive data points. Given the global transi-
tion graph, we adopt graph convolutional networks (GCN) [17], a
commonly used GNN variant, to derive contextual location repre-
sentations. Specifically, we first derive the normalized adjacency
matrix for a non-symmetric 𝐴̃ ∈ R𝐿×𝐿 as follows:

Ã = (D + I)−1Â (8)
whereD is the degree matrix, I is the identity matrix, and Â = A+I is
the adjacency matrix augmented with self-hoop. Then the message
passing in GCN is performed as follows:

F (H(𝑘−1) ) = H(𝑘 ) = 𝜎

(︂
ÃH(𝑘−1)W(𝑘 ) + b(𝑘 )

)︂
(9)

where H(𝑘−1) is the embeddings for the 𝑘-th layer, W𝑘 and b𝑘 are
the parameters in the 𝑘-th layer, and 𝜎 is the activation function.
From the perspective of an individual location 𝑙𝑖 , this process can
be reformulated as:

h(𝑘 )
𝑖

= 𝜎
⎛⎜⎝

∑︂
𝑗∈𝑁 (𝑖 )

1√︁
|𝑁 (𝑖) | |𝑁 ( 𝑗) |

h(𝑘−1)
𝑗

W(𝑘 ) + b(𝑘 )⎞⎟⎠ (10)

where 𝑁 (𝑖) denotes the set of neighbors for node 𝑙𝑖 . This illustrates
that for each location, the message passing operation updates the
location representation by aggregating information from its neigh-
bors in the global transition graph (i.e., precedents in collective
trajectories). In this way, the model explicitly models the influences
among different locations, thus enriching the knowledge about
sequential transition patterns.

We can stack multiple layers to derive the final location rep-
resentations that preserve the influences among locations with
higher-order, as this could encode more complex contextual infor-
mation in trajectories. In our model, we take the results at the 𝑡-th
layer and apply residual connection to obtain the enhanced location
representations as depicted in Equation 7:

E = F 𝑡 (L) + L (11)

where L represents the initial location embedding matrix for all the
locations at the start of the encoding layer in RETE.

4.5 Trajectory Contrastive Learning
Given that missing data points can occur in any segment of a tra-
jectory, the resulting sparse trajectories may exhibit substantial
variation with respect to the original locations. However, these tra-
jectories essentially share the same underlying route, which implies
a high similarity in their sequential transitions patterns. Since these
sparse trajectories can provide complementary information for tra-
jectory recovery, it is beneficial to effectively discriminate them
from other trajectories to further enrich the sequential transition
patterns. Such an objective naturally suggests the use of contrastive
learning, which is designed to draw semantically similar positive
sample pairs closer while pushing unrelated negative samples far-
ther apart [4]. To achieve this, for a given trajectory 𝑇 , we apply
data augmentation to generate two trajectory variants, denoted
as 𝑇 and 𝑇 ′, as two views of 𝑇 . Analogous to data augmentation
operations utilized in images, the idea of data augmentation for
trajectories aims to generate alternative views of a given trajectory
with additional variations, while preserving the semantic charac-
teristics (i.e., the same underlying route). Apart from the positive
trajectory pair, we also randomly sample other (𝑀 − 1) negative
trajectories and apply the same procedure to create a batch of 2𝑀
trajectories. These trajectories are processed through our RETE
model followed by a pooling layer to produce representations for
all the trajectories. Then for each trajectory, it is trained to align
with the other view of itself (positive sample) among the (2𝑀 − 1)
instances. Formally, given z𝑖 and z𝑗 as a positive pair from two
views of 𝑇 generated through data augmentation, the contrastive
loss for this pair is defined as follows:

ℓ𝑖, 𝑗 = − log
exp

(︁
sim

(︁
z𝑖 , z𝑗

)︁
/𝜏

)︁∑︁2𝑀
𝑘=1 1[𝑘≠𝑖 ] exp (sim (z𝑖 , z𝑘 ) /𝜏)

(12)

where sim denotes the cosine similarity, and 𝜏 is the temperature
hyperparameter. We average the loss for each pair within the batch
as the final trajectory contrastive learning loss.

To tailor contrastive learning for trajectories, we devise two
kinds of data augmentation strategies, namely trajectory cropping
and segment masking. They are designed to emulate the trajectory
characteristics inherent in the two-stage pipeline.

• Trajectory Cropping. Given a trajectory𝑇 , trajectory cropping
involves removing a certain number of segments to generate
𝑇 . Specifically, we randomly sample the number of dropped
segments from 1-3 and evenly remove locations to a total ratio of
𝜌𝑐 . The resulting 𝑇 can be represented as 𝑇 = [𝑙𝑛1 , 𝑙𝑛2 , ..., 𝑙𝑛 |𝑇̂ | ],
where |𝑇 | = ⌊|𝑇 | × (1 − 𝜌𝑐 )⌋.

• Segment Masking. Given a trajectory 𝑇 , segment masking in-
volves applyingmasking for a certain number of segments to gen-
erate𝑇 . Specifically, we randomly sample the number of masked
segments from 1-3 and evenly mask locations to a total ratio of
𝜌𝑐 . The resulting𝑇 can be represented as𝑇 = [𝑙1, 𝑙2, ..., 𝑙 |𝑇 | ] with
masked positions replaced by [MASK] tokens.

Notably, trajectory cropping produces trajectories that resemble
the inputs in the detection stage in the detection stage for the iden-
tification of recovery positions, while segment masking produces
trajectories that resemble the inputs in the recovery stage for the
imputation of missing locations. The adoption of these strategies
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allows for the effective incorporation of contrastive learning into
the trajectory recovery task, and thus facilitating the capture of
sequential transition patterns and contributing to improved perfor-
mance of the model. Note that we have additionally experimented
with several other trajectory augmentation strategies [2], such as
point shifting, temporal jittering, and trajectory pooling. However,
we do not observe performance improvement.

4.6 Model Training
Recall that RETE model is utilized for both the detection stage and
the recovery stage. We train a distinct model for each stage based
on specific data characteristics required for each model input.

In the detection stage, a classification task is conducted for each
data point in a trajectory to identify the number of missing loca-
tions succeeding this data point. Since the number of classes could
become quite large if each potential number of missing locations is
assigned a separate class, we propose to reduce the class number
by partitioning the numbers into the non-overlapping bins (e.g.,
0, 1-4, 5-8, etc). We then transform the initial label for each data
point into the label of its corresponding bin and train the model
to minimize classification error. This approach offers two primary
benefits. First, it indicates that our focus is not to determine the
exact number of locations, but to identify the approximate number
within the interval. This not only aligns with the intuition that
minor deviations in numbers tend to have little effect on the overall
result, but also ensures to balance the difficulty of tasks between the
first and the second stage. Second, adopting this paradigm greatly
reduces the number of classes associated with all possible location
numbers, which makes the the training of the model more feasible
and tractable.

In the recovery stage, based on the predicted results for the
bin class, we first insert [MASK] tokens with maximum possible
number for the designated bin after this data point. For example,
if the predicted bin corresponds to 1-4, we insert four [MASK]
tokens. Subsequently, we train the model to accurately impute the
missing location for each [MASK] token. When the actual number
of missing locations is less than the maximum number for the
specified bin, we train the model to fill in special [NULL] tokens
that represent vacancies for those additional positions.

To further enhance the model performance, we incorporate the
trajectory contrastive learning loss into the training process. Specif-
ically, we employ trajectory cropping and segment masking strate-
gies in the detection and recovery stages, respectively. The trajec-
tory contrastive learning loss is jointly optimized with the respec-
tive loss for RETE model in each stage.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We conduct the experiments using real-world tra-
jectory datasets from three cities, namely Singapore (SG), Sydney
(SYD), and Beijing (BJ). The Singapore and Sydney datasets, which
include cellular trajectories, are provided by the largest telecommu-
nication company in Singapore. Cellular trajectories record mobile
connections to base stations from anonymous users. In this scenario,
users automatically switch their cellular connections to another
base station upon entering an area where that station provides

Table 1: Statistics of the datasets
Dataset SG SYD BJ

Collection time Apr 2022 Nov 2022 Feb 2008
# Trajectories 2,512,584 625,255 131,218
# Locations 11,633 18,426 9,936

Avg Traj. Length 18.98 21.54 49.68

(a) SG (b) SYD
Figure 5: Distribution of trajectory length.

mobile signals. Such switching events result in cellular trajectories
with irregular intervals. As cellular trajectories can effectively re-
flect user mobility, we treat base stations as locations in the paper.
For the Beijing dataset, we utilize the public T-drive dataset [43]
which tracks trajectories of taxis with irregular intervals in Beijing.
Since the records comprise continuous coordinates, we partition
the city into 300m×300m grids to serve as locations and filter out
the grids with fewer than 10 visits. For all the datasets, we retain
trajectories that have a length of at least 10. Table 1 presents the
statistics of the three datasets, and Figure 5 shows the distribution
of trajectory length on the Singapore and Sydney datasets.
5.1.2 Baseline Methods. As mentioned in Section 1, existing meth-
ods [29, 31, 36] assume that the recovery positions are provided
in advance. Specifically, these methods employ masking on some
locations with null placeholders and then aim to recover them, and
thus they are not applicable when recovery positions are unavail-
able due to the constraints of their model designs. Therefore, given
the more practical and realistic problem in this paper, we only com-
pare with models that are directly applicable or can be suitably
adjusted to our setting. Nevertheless, to illustrate the superiority
of our framework, we also evaluate the performance against these
previous methods in the setting where the oracle recovery positions
are provided beforehand (Section 5.4). Specifically, we include three
types of methods as baseline models, namely heuristic methods (LI
and TraImpute), statistical learning methods (Markov), and Seq2seq
models (LSTM, Transformer and SAGCopy) as follows:

• LI: it applies linear interpolation for distance consecutive data
points, and selects locations within a specified distance from the
interpolated line as the prediction.

• TraImpute [10]: it is a heuristic search algorithm which decides
the imputed locations based on the frequencies of each location
in the historical trajectories.

• Markov [24]: it is a statistical learning method that regards each
location as a state and constructs a transition matrix for these
states. We impute locations between consecutive data points if
this increases the transition probability, and then we use the
results with the highest probability as the prediction.

• LSTM [15]: it is a classical Seq2seq model which takes the origi-
nal trajectory as input to the encoder and outputs the recovered
trajectory in the decoder.
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• Transformer [30]: it is awidely utilized Seq2seqmodel equipped
with self-attention mechanism. The recovered trajectory is also
produced in the decoder.

• SAGCopy [38]: it incorporates copy mechanism [12] to directly
copy the input to the output result, and this method can alleviate
the issue that the decoder fails to reconstruct the input trajectory.

5.1.3 Evaluation Metrics. Considering the fact that input trajecto-
ries are not guaranteed to be successfully reconstructed in Seq2seq
models, we propose to design the metrics to evaluate different meth-
ods from two aspects: a macroscopic view and a microscopic view.
For the macroscopic view, we evaluate how the recovered full tra-
jectory 𝑇 resembles the ground truth trajectory 𝑇 . This implies
that the model is required to accurately predict the missing loca-
tions while retaining the original locations of the input trajectory
to avoid the ambiguous recovery results. Accordingly, we define
two metrics: precision and recall for the full trajectory, denoted as
Precision𝐹 (Prec.𝐹 ) and Recall𝐹 (Rec.𝐹 ), as follows: Precision𝐹 =
|𝑇∩𝑇 |
|𝑇 |

, Recall𝐹 =
|𝑇∩𝑇 |
|𝑇 | .

For the microscopic view, we are only interested in how the
missing locations are recovered. Specifically, given a sparse tra-
jectory 𝑇̃ , and its associated ground truth full trajectory 𝑇 and its
predicted full trajectory𝑇 respectively, we denote the ground truth
missing locations as 𝑃 = 𝑇 − 𝑇̃ , and the predicted missing locations
as 𝑃 = 𝑇 −𝑇̃ . To focus specifically on these missing locations, we de-
fine two additional metrics Precision𝑀 and Recall𝑀 to consider the
missing locations as follows: Precision𝑀 =

|𝑃∩𝑃 |
|𝑃 |

, Recall𝑀 =
|𝑃∩𝑃 |
|𝑃 | .

Based on the above metrics, we also report the 𝐹1 score for both
micro and macro views defined as: 𝐹1 = 2×Precision × Recall

Precision+Recall .

5.1.4 Parameter Settings. In our experiments, we randomly sample
70%/10%/20% trajectories as training/validation/test examples for
all the datasets. We keep the architecture of RETE model consistent
for each stage, and it consists of four self-attention layers. For all
the layers, the hidden size and the number of heads are set to be
128 and 4 respectively. We apply trajectory cropping and segment
masking for the detection stage and recovery stage respectively.
We set the number of GNN layers to be 3 in the collective transition
pattern learning module. We set the ratio 𝜌 in data augmentation to
be 0.7, and size M to be 512 for the SG and SYD datasets and 128 for
the BJ dataset in trajectory contrastive learning. We adopt Adam
optimizer to train themodel with a batch size 512 for the SG and SYD
datasets and 128 for the BJ dataset, and the weight for the trajectory
contrastive loss is set to 0.2 while the weight for classification
and imputation task is set to 1. To ensure a fair comparison, all
compared Seq2seq models use the same layer number and hidden
size as defined in our framework.

5.2 Performance Comparison
Unlike the previous studies which adopt a fixed dropping ratio for
all the trajectories, we embrace a more realistic setting that better
reflects real-world scenarios where both the number of dropped seg-
ments and the number of missing locations may vary. Specifically,
for each trajectory, the total dropping ratio is randomly selected
in [0.2, 0.3, 0.4, 0.5, 0.6], and the number of dropped segments is
selected from 1-4. For example, if the dropping ratio is 0.4 and the

number of dropped segments is 2, it indicates that two segments
from a given trajectory are dropped, and each segment contains
20% of the data points in the original trajectory (i.e., 40% in total).
This design principle aligns with our problem setting: we have no
prior knowledge about the characteristics of sparse trajectories in
practice, and thus no fixed parameters should not be predetermined.
As a result, the model is required to handle a diverse range of tra-
jectory recovery cases, rather than developing individual models
for each dropping ratio.

5.2.1 Overall Performance. The overall results of all the compared
methods are presented in Table 2. The improvement column indi-
cates the performance of TERI relative to the second best models.
Based on the results, we can make several observations.

First, Seq2seq models demonstrate lower performance in terms
of Precision𝐹 and Recall𝐹 in most cases compared to heuristic and
statistical learning methods. This is because Seq2seq models might
not successfully reconstruct the whole original input trajectories in
the decoding phase. The absence of some locations from the input
could lead to lower metrics in the macroscopic view.

Second, despite the potential imperfect reconstruction issue,
Seq2seq models outperform other baselines in terms of Precision𝑀
and Recall𝑀 in most cases. It indicates that Seq2seq models possess
a superior capability to predict missing locations, as they are better
equipped to capture sequential transition patterns owing to more
powerful model capability to tackle sequential data than other
baselines. Moreover, Transformer model is better than LSTM due
to its enhanced expressive power for modeling sequential data, and
SAGCopy alleviates the issue of imperfect reconstruction on two
datasets. However, no single baseline model can consistently deliver
the best performance.

Third, out TERI framework achieves the best performance across
all the metrics on these three datasets. The framework effectively
combines the strengths of the two types of baselines: it avoids the
issue of imperfect reconstruction in Seq2seq models while demon-
strating the capability to model complex spatial and temporal cor-
relations as well as capture complex sequential transition patterns.
5.2.2 Impact of Dropping Ratio. We examine the model perfor-
mance on different dropping ratios by computing the average re-
sults on each metric for recovered trajectories. Figure 6– 7 show the
four metrics of all the compared methods across different dropping
ratios on the SG and SYD dataset respectively. Then we can make
the following observations based on the results.

Regarding the macroscopic perspective, both Precision𝐹 and
Recall𝐹 metrics demonstrate a downward trend as the dropping ra-
tio increases. This is due to the increasing difficulty of the trajectory
recovery problem with a higher level of sparsity. One exception
is that Precision𝐹 for Markov method shows a slightly gradual
increase, as Markov method tends to keep the original trajectory
unchanged with a high dropping ratio. In general, heuristic meth-
ods are better than Seq2seq models for most of the dropping ratios.
Regarding the microscope perspective, it is typically observed that
Precision𝑀 increases with a higher dropping ratio, while Recall𝑀
conversely decreases. However, the decline in Recall𝑀 may be due
to the increased challenge of recovering more detailed missing loca-
tions given the limited context information available in trajectories
with higher dropping ratios.
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Table 2: Performance comparison of different methods on trajectory recovery with irregular intervals. Bold scores denote the
best in method group, and underlined scores denote the second best.

Methods SG SYD BJ

Prec.𝐹 Rec.𝐹 F1𝐹 Prec.𝑀 Rec.𝑀 F1𝑀 Prec.𝐹 Rec.𝐹 F1𝐹 Prec.𝑀 Rec.𝑀 F1𝑀 Prec.𝐹 Rec.𝐹 F1𝐹 Prec.𝑀 Rec.𝑀 F1𝑀
LI 0.420 0.663 0.514 0.032 0.061 0.042 0.547 0.670 0.602 0.071 0.061 0.066 0.526 0.584 0.553 0.012 0.014 0.013

TraImpute 0.684 0.694 0.689 0.200 0.147 0.169 0.625 0.679 0.651 0.183 0.138 0.157 0.536 0.583 0.559 0.021 0.015 0.018
Markov 0.715 0.709 0.712 0.268 0.195 0.226 0.658 0.706 0.681 0.236 0.186 0.208 0.485 0.591 0.533 0.058 0.076 0.066
LSTM 0.693 0.646 0.669 0.419 0.339 0.375 0.533 0.478 0.504 0.355 0.181 0.240 0.241 0.417 0.305 0.032 0.036 0.034

Transformer 0.737 0.648 0.690 0.426 0.301 0.353 0.654 0.618 0.635 0.317 0.188 0.236 0.442 0.544 0.488 0.045 0.081 0.058
SAGCopy 0.761 0.674 0.715 0.453 0.299 0.360 0.451 0.556 0.498 0.267 0.165 0.204 0.475 0.537 0.504 0.051 0.064 0.057
TERI 0.820 0.807 0.813 0.481 0.452 0.466 0.791 0.746 0.768 0.373 0.278 0.319 0.618 0.627 0.622 0.115 0.114 0.114

Improv. 7.75% 13.82% 13.71% 6.18% 33.33% 24.27% 20.21% 5.67% 12.78% 5.07% 47.87% 32.92% 13.99% 6.09% 11.27 98.28% 40.74% 72.73%

(a) Precision𝐹 (b) Recall𝐹 (c) Precision𝑀 (d) Recall𝑀
Figure 6: Results for different dropping ratios on SG dataset.

(a) Precision𝐹 (b) Recall𝐹 (c) Precision𝑀 (d) Recall𝑀
Figure 7: Results for different dropping ratios on SYD dataset.

Among all the methods, TERI consistently achieves the best
performance across all the dropping ratios. This demonstrates that
our designed modules are effective for various dropping ratios.
5.2.3 Impact of Trajectory Length. We conduct experiments to
examine the model performance across various trajectory lengths.
The results for F1 scores as comprehensive evaluation metrics are
presented in Figure 8.

We can observe that distinct model types exhibit varied perfor-
mance trends as the trajectory length increases. Specifically, the
performance of non-learning-based methods and LSTM tends to
gradually decrease, while Transformer-based methods (i.e., Trans-
former, SAGCopy and TERI) maintain a stable or even increased
performance across different length ranges. This pattern can be
likely attributed to the inherent capability of Transformer architec-
ture to effectively model long sequences. Moreover, our proposed
TERI consistently outperforms all the compared methods across
all length ranges, thereby validating its superior performance for
trajectories irrespective of their dropping ratios or length variations.

5.3 Model Analysis
5.3.1 Ablation Study. We conduct an ablation study by removing
different model components to investigate their contributions to
the performance. Specifically, we compare the TERI framework
with the following variants:

• TERI-T: it removes the spatial and temporal encoding technique
(Section 4.3) and applies solely the learnable positional embed-
dings [30] for each input position.

• TERI-TG: it further removes the collective transition pattern
learning module (Section 4.4).

• TERI-TGC: it further removes the module of employing con-
trastive learning technique to enhance the model (Section 4.5).

• TERI-B: it adopts a different recovery process. It first employs
binary classification on each location to identify recovery posi-
tions, and then uses a Transformer model to only recover the
missing locations for each detected position in a Seq2seq manner.
Figure 9 presents the results of all model variants on the SG and

SYD datasets. Based on the results, we can observe that the removal
of different components from the framework leads to the decline
of all the metrics, which demonstrates the contributions of each
component to the model performance. In particular, it validates that
our framework can effectively model the spatial and temporal cor-
relations and as well as capture the sequential transition patterns.
Moreover, as more components are removed from the model (-T, -G
and -C), a more substantial decline in performance can be observed.
This illustrates that each component has complementary effect to
enhance the model performance. In addition, the framework be-
comes less effective when adopting an alternative form of recovery
process (TERI-B) by first detecting the recovery position and then
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(a) SG dataset

(b) SYD dataset
Figure 8: Results for different trajectory lengths.

(a) SG dataset

(b) SYD dataset
Figure 9: Results for ablation study.

recovering the missing locations with Seq2seq model. TERI-B is
better than TERI-TGC in certain metrics because it incorporates
both the spatial and temporal encoding module (-T) and the collec-
tive transition pattern learning module (-G), which are beneficial to
the model performance. However, its performance still lags behind
other model variants. This suggests that Seq2seq model is not the
optimal choice for this task even if it can be adjusted to avoid the
ambiguous results issue with a two-stage design.

5.3.2 Time and Distance Encoding Techniques. We examine the
effectiveness of time and distance encoding method utilized in the
paper. Specifically, we replace the learnable Fourier features in
TERI with four alternative techniques to encode time and distance
information, while maintaining all other components unchanged.
The details of these techniques are listed as follows:

• Emb: we partition the time and distance intervals into overlap-
ping bins. Each bin is represented as an embedding, which then
serves as an input to the Transformer encoder. We find that bins
of 30-second interval for time and 200-meter interval for distance
produce the best performance.

• Attn-bias [16]: we employ the interval-aware self-attention
mechanism to transform the intervals to a bias term in attention
score calculation.

• Flashback [40]: we compute correlation scores by considering
time and distance intervals on hidden representations from the

Table 3: Results for time and distance encoding techniques.

Dataset SG SYD

Metric F1𝐹 F1𝑀 F1𝐹 F1𝑀
Emb 0.806 0.458 0.759 0.308

Attn-bias 0.803 0.454 0.762 0.303
Flashback 0.808 0.461 0.761 0.310

CPE 0.745 0.348 0.729 0.250
TERI 0.813 0.466 0.768 0.319

(a) Precision𝑀 (b) Recall𝑀
Figure 10: Results for different number of missing locations.

Transformer encoder. The scores are used to derive additional
context representation at each time step through weighted sum.

• CPE [21]: we convert time and distance intervals into kernels,
which are used to in convolution operations on location repre-
sentations to incorporate spatio-temporal information.
The results of the learnable Fourier features utilized in TERI

in comparison to these methods are shown in Table 3. From the
results, we can make the following observations. First, CPE yileds
the worst performance, likely due to discrepancy in data format
between its application and cellular trajectories. Second, the embed-
ding method exhibits performance comparable to both Attn-bias
and Flashback despite its simplicity. Flashback outperforms other
baseline techniques across datasets. Third, the proposed technique
in this study achieves the best performance, which demonstrates
its effectiveness in directly tackling the continuous feature values.

5.3.3 Missing Locations v.s. Trajectory Length. We further examine
the performance of TERI on trajectories with varying length ranges,
each characterized by distinct number of missing locations. This
evaluation sheds light on questions such as the effectiveness on long
trajectories with few missing locations. In particular, trajectories
are classified based on their length into three groups: short (10-20),
medium (20-50) and long (>50). Each group is further tested with
three ranges of missing locations: <5, 5-10 and >10. Note that as
long trajectories do not produce sparse trajectories with fewer than
10 missing locations, we re-process the test data to include these
two ranges. Then the metrics of Precision𝑀 and Recall𝑀 on the
SYD dataset are reported in Figure 10.

We observe that trajectories with varying length ranges exhibit
distinct patterns. Our framework demonstrates superior perfor-
mance on short trajectories with few missing locations. However,
it tends to make conservative predictions when the proportion of
missing locations increases, thus leading to increased Precision𝑀
and decreased Recall𝑀 . Trajectories of medium length yield inter-
mediate performance on these metrics. Interestingly, while long
trajectories manifest a suboptimal performance on Precision𝑀 , the
framework produces commendable results on Recall𝑀 . Given that
the framework has never been trained on trajectories fewer than 10
missing locations, such results manifest its inherent robustness. As
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such, regardless of the trajectory length, our framework remains
relatively stable across diverse ranges of missing locations.

5.3.4 Effect of Location Granularity. To evaluate the model perfor-
mance on varying levels of location sparsity, we conduct experi-
ments across different location granularities on the Beijing dataset.
Specifically, we employ grid partitioning strategies with a range of
grid sizes from 150m×150m to 300m×300m. The data processing
procedure is the same as the one described in Section 5.1.1, and
the results are presented in Table 4. We can observe that all the
metrics increase as the granularity becomes more sparse, which
is consistent with our intuition. Moreover, our model exhibits a
modest decline in performance even when the granularity results
in more than a four-time increase in location number. This demon-
strates the robustness of TERI framework across different location
granularities, and the model’s adaptability to diverse datasets.

5.4 Performance with Oracle Recovery Positions
As discussed in Section 1, previous studies on network-free tra-
jectory recovery are limited by the constraints that the recovery
positions are provided in advance. Given that such oracle infor-
mation is not available in real use cases, our problem formulation
does not follow this assumption, and hence is not comparable with
these methods due to their requirement of predetermined recovery
positions. To conduct a more extensive evaluation on the superi-
ority of our proposed framework, we investigate the performance
of TERI framework against these methods under conditions where
both the positions and the exact number of missing locations are
given as prior information. In this specific scenario, our TERI frame-
work reduces to employing only the second stage, and is directly
comparable to several baselines, which are listed as follows:
• AttnMove [36]: it interprets each missing location as a token

in the input, and employs a Transformer-based model with vari-
ous attention mechanisms to capture the sequential transition
patterns and impute the missing locations.

• PeriodicMove [29]: it employs a Transformer-based model with
self-attention mechanism to model location correlations and
periodicity patterns. It also applies graph neural networks for
each individual trajectory to enrich transition patterns.

• DHTR [31]: it adopts the Seq2seq framework based on RNN to
only recover the missing locations in the input during the decod-
ing phase. The attention mechanism is modified to incorporate
spatial and temporal information, and Kalman filter is utilized to
calibrate the predicted results.

• TrajFormer [21]: it employs squeeze function within the Trans-
former self-attention mechanism to reduce computational com-
plexity, and integrates spatial and temporal context with convo-
lution operations to refine location representations.
It is worth noting that PeriodicMove and AttnMove require the

historical trajectories of users to perform cross-attention in their
methods. We exclude this module since our datasets do not allow
user identification to extract historical trajectories due to privacy
concerns. We use the same experimental setting as detailed in
Section 5.2 to evaluate all the compared methods.

The results on the SG and SYD datasets are shown in Table 5. We
can observe that Periodic achieves the worst performance while
AttnMove performs the best among the baselines. This indicates

Table 4: Results for different location granularities

Size (m) # locations Metric

Precision𝐹 Recall𝐹 Precision𝑀 Recall𝑀
150 25837 0.571 0.527 0.087 0.077
225 15006 0.589 0.529 0.092 0.089
300 9936 0.618 0.627 0.115 0.114
375 7098 0.621 0.633 0.124 0.128
450 5317 0.712 0.692 0.135 0.139

Table 5: Results with oracle recovery positions.
Dataset SG SYD

Metric Precision𝑀 Recall𝑀 Precision𝑀 Recall𝑀
AttnMove 0.536 0.528 0.399 0.368

PeriodicMove 0.365 0.329 0.289 0.257
DHTR 0.405 0.384 0.344 0.316

TrajFormer 0.465 0.404 0.356 0.303
TERI 0.552 0.544 0.412 0.388

that Transformer-based framework is able to achieve satisfactory
performance due to its superior power of modeling sequential data.
However, applying GNN individually to each trajectory as opposed
to the global transition graph introduces noise in capturing tran-
sition patterns, thereby leading to a significant performance drop
for PeriodicMove. In addition, compared to Seq2seq framework em-
ployed in DHTR, it is more effective to regard trajectory recovery
as an imputation process, as adopted in AttnMove, rather than as a
sequence generation process. Given that TrajFormer is not designed
for the recovery task, its modules exhibit suboptimal performance
compared to the results in the original intended scenario. Most im-
portantly, TERI outperforms all the baselines in the scenario where
oracle recovery positions are provided. This demonstrates that our
framework at effective at capturing not only complex spatial and
temporal correlations, but also sequential transition patterns, thus
enhancing Transformer encoder for both problem settings.

5.5 Model Efficiency
We further evaluate model efficiency in terms of training and infer-
ence time. Training time denotes the time required for training an
epoch, while inference time refers to the time required to recover a
batch of trajectories. We use batch size of 128 and compute the av-
erage inference time per batch on the test set for different methods.
The performance for the compared methods on the SG and SYD
datasets is presented in Figure 12.

For inference time, we can observe that Markov method is the
most efficient as it can refer to the pre-stored transition probability
matrix in search, while LI and TraImpute adopt dynamic search
algorithm, leading to larger execution time. Moreover, Transformer-
based models take more time compared to LSTM due to the rel-
atively short sequence length. Remarkably, despite its two-stage
pipeline, TERI shows comparable efficiency with the Transformer
model. This can be attributed to the fact that the auto-regressive par-
adigm applied in imputation/generation process in TERI/Transformer
requires multiple steps in decoding stage, thus dominating the exe-
cution time. In addition, SAGCopy is the least efficient method, as
the copy mechanism applied in the model requires substantial time
at every decoding step. For training time, the pattern is similar to
that of inference time. Since our framework consists of two stages
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(a) TraImpute (b) Markov (c) LSTM (d) Transformer (e) SAGCopy (f) TERI

original missingrecovered interpolated

Figure 11: Case study for trajectory recovery on SG dataset. Dots are colored to denote different types of locations (Brown:
the original locations present in input trajectories; Green: the correctly recovered locations; Red: the locations that are not
successfully recovered; Yellow: the interpolated locations predicted by the model, but not in the ground truth trajectories).

(a) Inference time (b) Training time

Figure 12: Results for model efficiency.

(a) Varying trajectory lengths (b) Varying dropping ratios

Figure 13: Inference time for different cases.

for training, which inevitably leads to a more extended training
time compared to single Transformer or LSTM model. Moreover,
SAGCopy requires the highest training time due to the inefficiency
of its copy mechanism. Nevertheless, considering that the training
process is executed only once, and the inference time satisfies the
business requirement, the amount of time for training and inference
for TERI is acceptable in practice.

To investigate the inference time on diverse trajectory character-
istics, we further extend the evaluation to include varying trajectory
lengths and dropping ratios per batch on the SYD dataset. The re-
sults are shown in Figure 13. We can observe that with the increase
of trajectory length, all the methods need increased processing time.
Furthermore, search algorithms demonstrate a heightened sensitiv-
ity to trajectory length compared to deep learning models. On the
other hand, as the dropping ratio increases, all the methods, with
the exception of TERI framework, require less inference time. This
can be attributed to their decreased capability to identify recovery
positions, resulting in few recovery attempts in the decoding or
search phrase. In contrast, TERI tends to perform more imputation
operations, which lead to increased inference time. In summary,
compared to all the baselines, while TERI does not demonstrate

optimal efficiency, it achieves a favourable trade-off between effec-
tiveness and efficiency to satisfy the needs in downstream services.

5.6 Visualization and Case Study
We perform qualitative analysis by visualizing the recovery re-
sults for four trajectories in various regions within Singapore, as
illustrated in Figure 11. Then we can make several observations.

First, despite the ability of TraImpute and Markov to preserve
all original locations from the input trajectories in the prediction
results, they are not effective in recovering missing locations due to
their limited model capability on capturing complex patterns. Sec-
ond, deep learning methods can recover larger number of correct
locations compared to heuristic and statistical learning methods.
However, as mentioned previously, these Seq2seq models often
struggle with reconstructing the original locations, as illustrated by
the upper trajectory in Figure 11(c) and (d). Third, since SAGCopy
adopts the copy mechanism, it is able to avoid the bad examples en-
countered by LSTM and Transformer. Lastly, it is obvious that TERI
overcomes the issue in baselines and yields superior performance
on all these trajectories.

6 CONCLUSION
Trajectory recovery is a critical task to provide high-quality tra-
jectory data sources for downstream applications. While extensive
studies have been proposed to tackle this problem, they make un-
realistic assumptions that the recovery positions are known in
advance. In this paper, we study a more realistic setting where no
prior information is provided. Specifically, we propose our TERI
framework consisting of two stages: the detection stage to identify
the recovery positions, and the recovery stage to impute the miss-
ing locations. Both stages are built upon Transformer encoder and
equipped with novel designs that enhance the modeling of spatial
and temporal correlation, and the capture of sequential transition
patterns. Experimental results show that TERI outperforms baseline
methods in the new problem setting.
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