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ABSTRACT
In the era of big data, data annotation is integral to numerous

applications. However, it is widely acknowledged as a laborious

and time-consuming process, significantly impeding the scalability

and efficiency of data-driven applications. To reduce the human

cost, we demonstrate CORAL, a collaborative automatic labeling

system driven by large language models (LLMs), which achieves

high-quality annotation with the least human effort. Firstly, CORAL

employs LLM to automatically annotate vast datasets, generating

coarse-grained labels. Subsequently, a weakly-supervised learning

module trains small language models (SLMs) using noisy label learn-

ing techniques to distill accurate labels from LLM’s annotations. It

also allows statistical analysis of model outcomes to identify poten-

tially erroneous labels, reducing the human cost of error detection.

Furthermore, CORAL supports iterative refinement by LLMs and

SLMs using manually corrected labels, thereby ensuring continual

enhancement in annotation quality and model performance. A vi-

sual interface enables annotation process monitoring and result

analysis.
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1 INTRODUCTION
In the era of big data, data annotation plays a pivotal role in many

applications, such as data integration and machine learning. How-

ever, it is notoriously a laborious and time-consuming process that

largely hinders the scalability and efficiency of data-driven applica-

tions. In Figure 1, we illustrate the most common pipeline of data

annotation that comprises three iterative stages: data annotation,

error detection, and label refinement. Notably, each stage requires

massive human efforts, resulting in high annotation costs.
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Figure 1: Comparison between classic labeling approaches
and our collaborative labeling framework. Our CORAL
framework consists of three core modules: (i) LLMs for cheap
annotation; (ii) weakly supervised small models for error fil-
tering; and (iii) a user-friendly UI for manual correction.

To remedy this problem, researchers have explored diverse so-

lutions. Among these, weakly-supervised learning (WSL) [2, 3, 8]

stands out as an effective approach that attempts to reduce the

necessity for precise supervision. For example, active learning [3]

only annotates a subset of the most important samples to achieve

superior performance; semi-supervised learning [8] allows train-

ing models from a small set of labeled samples along with a huge

amount of unlabeled data; noisy label learning (NLL) [2] allows the

training corpus to contain many wrong labels. However, despite

advancements, WSL still necessitates significant annotation costs

to ensure decent performance.

In recent years, the emergence of large language models (LLMs)

has introduced another promising paradigm, showcasing remark-

able zero-shot/few-shot capabilities, which hold promise for alle-

viating annotation expenses. Even more inspiringly, they emerge

with in-context learning (ICL) [11] ability that demonstrates impres-

sive performance on domain-specific tasks given a few task-related

labeled samples. However, some recent works [1] have observed

that LLMs tend to lag behind fine-tuned small language models

(SLMs) when confronted with challenging tasks. To date, it remains
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Figure 2: The architecture of CORAL.

an unresolved question of how we can generalize to downstream

tasks with minimal human efforts in the era of LLMs.

To address the problems, we demonstrate the COllaboRative
Automatic Labeling (CORAL) system, designed to streamline the

data annotation process while maintaining label accuracy based on

our previouswork [9]. CORAL comprises three core components: (a)

a large language model annotation module capable of automatically

annotating vast corpora, generating coarse-grained labels; (b) a

weakly supervised learning module that trains small models using

noisy label learning techniques to distill accurate labels from the

coarse-grained annotations; and (c) a label refinement mechanism

that recommend potentially erroneous labels based on statistical

analysis of model outcomes. Finally, CORAL also supports iterative

refinement by LLMs and SLMs using manually corrected labels,

thus ensuring continual improvement in annotation quality and

model performance.

Based on CORAL, users can quickly acquire huge amounts of

high-quality annotated data at minimal human resource costs, ex-

pediting the development of big data applications.

2 SYSTEM OVERVIEW
In this section, we present the details of our CORAL system. As

depicted in Figure 2, CORAL comprises three key parts:

• User-Friendly Interfacemakes the labeling process trans-

parent to users and provides a friendly interaction interface

to users for the refinery including take configuration, refin-

ery operations, process tracking, and results revaluation.

• Annotation Module is the core module of CORAL that

performs annotation with the least human costs. It con-

tains LLM-driven labeling, SLM-driven filtering, refinery

components, and iterative process controller components.

• Data Management Module handles and organizes data

within our system, including data storage preprocessing,

and integration. It first writes user-input unlabeled data, de-

fined labels, and task configurations into the database. Then

it is responsible for managing data interaction between dif-

ferent modules and updating new annotation results.

Table 1: An example of prompt for sentiment analysis task.

Prompt Template for the Sentiment Analysis Task

[Task Description] You are a helpful assistant for the task of

sentiment analysis. You reply with brief, to-the-point answers

with no elaboration as truthfully as possible. Your task is to a

binary classification to classify content as positive or negative

according to their overall sentiment polarity. The category is

divided into two types: ’positive’ and ’negative’.

[In-Context Demonstration] You can refer to the following

labeled samples for prediction: ["content": "enigma is well-made,

but it’s just too dry and too placid.", "label": "negative"]...

[Output Control] Given a content: <QUERY>. How do you

feel about the sentiment polarity of the given content? Is this

positive or negative? please answer in a single line with ’posi-

tive’ or ’negative’.

The most innovative feature of CORAL is to support automated

data annotation and error filtering, making annotation less human-

dependent. Hence, in what follows, we focus on our core annotation

modules, which comprise four components:

(1) LLM-driven labeling component. In this component, we

leverage the great zero-shot/few-shot learning ability of LLMs to

replace human annotators. Given any labeling task, we can design

task-specific prompts for LLM to produce a vast amount of weak

annotations on given unlabeled corpora. Notably, one can modify

the prompts to address different tasks, such as various text classifi-

cation [1] and tabular data analysis [6]. In Table 1, we demonstrate

a prompt template for the sentiment analysis task.

To further improve the annotation quality, we also include the

in-context learning [11] algorithm such that LLM can mimic the

pattern of labeled samples in [In-Context Demonstration]. Here,

the demonstration set can not necessarily be human-annotated or

even fully precise, which will be discussed later.

(2) SLMs filtering component. It is worth noting that LLM

can inevitably introduce erroneous labels and it is difficult for the

LLM itself to distinguish its own errors. To this end, we train a

robust small language model by noisy label learning (NLL) [4] to

detect noisy samples during the training procedure. After that, its

outcomes, including feature representations and prediction con-

fidences, can be employed for designing indicators for detecting

error labels. For example, those wrong-labeled samples typically

demonstrate low confidence. Moreover, the SLM itself can produce

much more accurate predictions than the LLM’s outputs, achieving

a human-free label refinery.

Notably, for non-language tasks, one can also replace the small

languagemodel with another task-specificmodel, e.g., multi-layered

perceptions for tabular data analysis.

(3) Manual refinery component. It is unfortunate that relying
solely on machine models for labeling is unable to address some

challenging samples. For real-world applications, human knowl-

edge is indispensable in controlling the quality of annotations. In

this component, we highlight those potentially wrong samples

through the user interfaces, e.g., data with very low prediction

confidence. Then, users can manually correct these recommended
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samples with the help of displayed information such as LLM/SLM

predictions, confidences, and so on. This component can largely

relieve the burden of human correction costs, transferring human

expertise to solving the most difficult labeling problems.

(4) Iterative process controller component. Inspired by the

active learning algorithms, CORAL also enables iterative annota-

tion to maximally improve the annotation quality. This controller

component implements twomain functionalities. Firstly, to enhance

the proficiency of the LLM, this component gathers highly probable

clean samples based on model outcomes and identifies the most

representative samples to serve as in-context demonstration exam-

ples. With the help of precise demonstration samples, LLM is able

to re-label the training corpora with improved accuracy. Secondly,

it aggregates the machine/human labels to retrain a more robust

small model. One can optionally rerun (1) and (2) components many

times through our controller component.

3 IMPLEMENTATION DETAILS
To better understand how labeling works in CORAL, this section

will explain the implementation of three key issues.

SLMs Distillation Strategy: While any off-the-shelf NLL al-

gorithm can be used, we choose the most popular selection-based

technique [4] for our implementation. The intuition is that those

clean samples typically demonstrate smaller loss values because

deep networks tend to fit easy patterns during early training stages

[10]. Therefore, we can separate clean samples for robust training

according to loss values. Following [4], after a few warm-up epochs

of standard training on noisy labels, we fit a two-component Gauss-

ian Mixture Model (GMM) to the loss function to identify clean

samples belonging to the Gaussian component with a smaller mean,

indicative of their clean probability. To maximize the robustness,

we further develop a semi-supervised learning (SSL) procedure

by regarding clean samples as labeled and the remaining data as

unlabeled. In our implementation, we follow the pioneering Fix-

Match algorithm for SSL training. We perform these two steps at

the beginning of each training epoch, until the convergence.

In-Context Demonstration for LLM: The quality of LLM’s

annotation depends on two key factors, i.e., a good prompt and

in-context learning (ICL). Though we provided few templates for

specific tasks, the prompt design largely depends on human knowl-

edge. Thus, this section focuses on improving the ICL ability in

our CORAL system. Through our experiments, we find that even

noisy in-context demonstration samples still produce can bring

large performance improvement. Consequently, we develop two

strategies to obtain in-context samples. At the initial round of an-

notation, we perform Self-Labeling, which randomly annotates

a few samples by LLM and integrates them into the prompt. After

the subsequent rounds where SLM are well-trained, we perform

Distilled Selection. Specifically, we first collect all clean samples

detected by SLM as well as those manually corrected. Then, we

run a simple 𝑘-medoids clustering algorithm on SLM’s features

to gather the most representative medoids of 𝑘-clusters for ICL.

As the annotation procedure proceeds, the ICL demonstrates data

becomes increasingly accurate, fully unleashing the great power of

LLM for refined annotations.

Performance Evaluation: Due to space limitations, we illus-

trate the model’s performance specifically on the MR [7] dataset

for sentiment classification. Table 2 demonstrates that CORAL

significantly enhances unsupervised performance with the free

LLM’s iterator and SLM’s refinery. In Table 2, we adopt Llama3-

8B
1
as LLM and we use RoBERTa-Base[5] as the downstream SLM.

CORAL achieves competitive results and substantially reduces low-

confidence samples at minimal cost associated with previous human

labeling efforts. Further analyses and more results with GPT3.5
2

can be found in our previous work[9].

Table 2: Comparisons of different processes on MR dataset.

Model Step Process Accuracy

LLMs 1 Llama3-8B zero-shot labeling 87.69

SLMs 2 RoBERTa first distillation 90.94

LLMs 3 Llama3-8B labeling refinery 91.03

SLMs 4 RoBERTa second distillation 92.44

4 DEMONSTRATION SCENARIOS
Figure 3 is the screenshot of the CORAL user interface, which allows

users to work on our novel labeling processes in CORAL through

the following steps:

Step 1 (Task configuration). The configuration interface, as il-

lustrated in Figure 3-1, guides users through the initial setup. Users

begin by selecting the type of labeling task with current options

including sentiment analysis, topic classification, and tabular pre-

diction. The system is designed with a flexible strategy schema,

allowing for easy extension to accommodate additional task types.

Following task selection, users upload the target unlabeled data

via the "Upload" button. Additionally, CORAL offers prompt tem-

plate configuration for specific tasks but allows the users to tailor

prompts to their specific needs. Another crucial configuration step

involves defining customized label names for CORAL labeling tasks.

Basic task information such as LLM and SLM selection, as well as

epochs for SLMs, must also be configured. In our screenshot, we

use GPT-Turbo-3.5 and RoBERTa respectively. Upon submission

of the task configuration, the task transitions to the annotation

module for the primary labeling process.

Step 2 (LLMs labeling). Next, the LLM starts to perform data

annotation according to the pre-defined prompts. As depicted in

Figure 3-2, users can track the progress of the LLM labeling through

the progress bar at the bottom left corner. The table on the right

side displaying LLM labeling results will be updated continuously.

Upon completion of LLM’s coarse annotation, users can proceed

by clicking the "Next" button, transitioning CORAL to Step 3: SLM

filtering.

Step 3 (SLMs filtering). The SLM filtering is exactly the proce-

dure for CORAL auditing of the result of the preceding work. The

system presents confidence levels and Gaussian loss rankings for

each sample in the table on the right for analysis. SLMs iterates

continuously to refine predictions based on cross-entropy loss.

Figure 3-3 provides a visualization of this process, depicting the

current epoch and progress bar at the bottom left, while the scatter

1
https://llama.meta.com/llama3

2
https://chat.openai.com
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Figure 3: A Screenshot of CORAL with an example annotation task of sentiment analysis.

graph on the left illustrates the distribution of data based on SLM’s

features. The table on the right shows the process data filtered by

the SLMs. Once filtering work is finished, we supplement several

new columns showing SLM’s predicted labels, confidence values,

and the ranking of GMM’s probability. We also highlight those Data

that are likely to be clean or noisy in green and red, respectively.

After that, users can advance to the next step via the "Next" button.

Step 4 (Results display and manual correction). In this step,

CORAL displays the final results of labeling and filtering. As shown

in Figure 3-4, the right side table exhibits labeling results with an

additional manual correction column. Three buttons on the left

allow the users to highlight those samples with a high probability

of being clean (high confidence), noisy (low confidence), and incon-
sistent (different SLM/LLM’s predictions). Those clean samples are

marked with a green background, while noisy and inconsistent data

are in red. We also allow the users to sort their data according to

the SLMs’ confidence or the GMM probability. All these UI designs

allow the user to better perceive the degree of annotation error.

Accordingly, by clicking the "Submit Correct Label" button, users

can manually update labels in the correction column.

Optional Step (Iterative annotation). Finally, CORAL sup-

ports looped iterative annotation, allowing users to proceed to the

next iteration from LLMs labeling or SLMs filtering by clicking

"Refinery labeling from LLMs" or "Refinery labeling from SLMs"

respectively. Then, the users will turn back to the pages of Steps

2-4 with basically the same UI interfaces. On each page, the system

can utilize the last manual correction set to inform LLMs and SLMs,

respectively. Finally, users can download an Excel file containing

labeled data by clicking on the "Download" button.
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