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ABSTRACT

Sharedmobility leverages under-utilized vehicles to o�er on-demand

transport services by sharing vehicles among users. It strives to

match supply with demand via a series of data-intensive opera-

tions such as supply prediction and task assignment. However,

its full potential is often compromised in practice as most shared

mobility platforms operate in isolation, leading to sub-optimal re-

source utilization. In this demonstration, we advocate a federated

approach to shared mobility, which enhances its e�ectiveness by

enabling optimizations across platforms while retaining their au-

tonomy. We develop privacy-preserving operators and incentive

mechanisms dedicated to supply prediction and task assignment

in shared mobility and implement generic interfaces that support

diverse prediction and assignment algorithms. We showcase the

shared mobility system with real-world ride-hailing applications.
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1 INTRODUCTION

The shared use of a vehicle, bicycle, or other under-utilized trans-

port resources for on-demand services, known as shared mobility,

has stimulated various emerging urban services such as ride-hailing,

food delivery, and parcel delivery [9]. The key is to maximize the

matching between workers (e.g., idle drivers) and tasks (e.g., orders

from passengers), which often arrive dynamically and must be han-

dled in real-time, via a pipeline of optimizations, such as supply

prediction [3], and task assignment [11]. Despite various existing

sharedmobility platforms (e.g., Didi, Uber, and Lyft) within the same

city or region, they typically operate in isolation without sharing

the global information about their own workers and tasks, leading
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Figure 1: Motivating example for federated shared mobility.

to sub-optimal resource utilization from a more global landscape,

as illustrated by the toy example below.

Example 1. In ride-hailing depicted as Fig. 1, there is one task (riding

order) >1 from platform 1 and three workers (drivers) (31, 32 from

platform 1 and 33 from platform 2), with task assignment modeled

as bipartite matching. Consider two assignment settings. (i) Single-

Platform Assignment. Platforms operate independently, meaning an

order (>1) placed on platform 1 can only be assigned to drivers on

platform 1. In this example, drivers on platform 1 (31 and 32), are

too far away to pick up >1 in time. Therefore, order >1 is canceled

once waiting time expires, despite being near the idle driver (33)

on platform 2. (ii) Cross-Platform Assignment. Orders are placed

through a uni�ed interface, enabling assignments across multiple

platforms. In this setting, the nearby idle driver (33) on platform 2

can respond to order >1.

The example above illustrates the bene�ts of cross-platform opti-

mization in shared mobility applications. However, realizing cross-

platform services encounters three practical challenges. (i) Pri-

vacy Protection: Shared mobility platforms possess datasets with

sensitive information, such as locations and travel histories. Un-

restricted sharing of such data across platforms is prohibited by

regulations like GDPR [10]. Privacy-preserving techniques dedi-

cated to the core functionalities in shared mobility are crucial for

cross-platform optimization without compromising user privacy.

(ii) Incentive Mechanisms: Platforms may hesitate to share their valu-

able data without fair compensation based on their contributions.

Establishing a mechanism to accurately quantify the contributions

of various platforms is vital for fostering data sharing across plat-

forms. (iii) Transparent Interfaces: Shared mobility platforms may

adopt diverse algorithms for the core operations such as supply
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prediction and task assignment, each catered for speci�c contexts.

A practical cross-platform system should be agnostic to these core

algorithms to accommodate diverse real-world applications.

We demonstrate the feasibility to ful�l the above requirements

via a practical Federated Shared Mobility (FedSM) system. It has

the following features. (i) FedSM provides privacy-preserving oper-

ators to support federated supply prediction and task assignment.

Speci�cally, we employ a random masker to aggregate the supply

predictions from individual shared mobility platforms, and develop

a location encoder together with a utility obfuscator to protect

the privacy of workers. (ii) FedSM adopts a Shapley Value [6, 7]

based metric to measure the contributions of each shared mobility

platform in both supply prediction and in task assignment. Var-

ious incentives and rewards schemes can be designed upon the

contribution assessments to promote cross-platform collaboration.

(iii) FedSM implements uni�ed interfaces to accommodate diverse

algorithms necessary for shared mobility.

We showcase FedSM through a cross-platform ride-hailing appli-

cation. FedSM provides a uni�ed ride-hailing interface for users to

seamlessly place riding orders across platforms. It also implements

multiple control panels for the core functionalities of cross-platform

ride-hailing, including supply prediction, task assignment, and dri-

ver pre-dispatching. The demonstration is simulated with traces

from real-world ride-hailing platforms, and o�ers diverse interac-

tive visualizations and interfaces for the visitors.

2 FEDSM OVERVIEW

We �rst introduce the core functionalities, system architecture, and

operational work�ow of FedSM.

Functionalities. FedSM unites multiple shared mobility platforms

P1,P2, · · · ,PĤ to provide cross-platform services via a platform

broker PĘĨĥġěĨ . Each platform Pġ holds its own workers Wġ , and

the broker collects all tasks T through the uni�ed user interface.

Take ride-hailing as an example. Platforms such as Didi, Caocao

Mobility, and Shouqi Yueche can form a federation, while a map

company can act as the broker for cross-platform ride-hailing. The

broker performs the following functionalities. (i) Federated Sup-

ply Prediction. This functionality calculates the global predicted

worker supply from all shared mobility platforms. Providing es-

sential guidance for task assignment, the supply prediction is an

fundamental issue in shared mobility [3, 5]. Since workers are de-

centralized across multiple platforms within the federation, the

prediction of worker supply relies on the prediction results by each

local platform. To obtain a global supplySĘĨĥġěĨ in a speci�c area 0,

the broker needs to aggregate all local supplies Sġ and such aggre-

gation should be conducted in a federated manner due to privacy

issues. As a result, with federated supply aggregation, the broker

can make global supply predictions, as the task data are directly

accessible. (ii) Federated Task Assignment. This functionality

assigns workers from multiple shared mobility platforms to tasks

collected from the uni�ed user interface. Speci�cally, given a set

of tasks T = {C1, · · · , C | T | }, a set of workers W = ∪ġWġ , and

a utility function D, it aims to �nd assignments across platforms

such that total utility is maximized:max
∑
Ī ∈T,ĭ∈W D (C,F) ·"Ī,ĭ

where "Ī,ĭ is 1 if task C is matched to worker F and "Ī,ĭ = 0

otherwise. D (C,F) denotes the utility when C is assigned to F . In

Figure 2: FedSM overview.

federated task assignment, information of workers from individual

platforms is shared with the broker in a privacy-preserving manner.

Architecture. Fig. 2 illustrates the system architecture of FedSM .

We brie�y explain the key components as follows. (i) Local Platform

Side: Each local platform manages its own workers and provides

three tailored privacy-preserving operators to support federated

supply prediction and federated task assignment at the broker. (ii)

Platform Broker Side: The broker has a uni�ed user interface, a

federated aggregator and a contribution evaluator. The user inter-

face o�ers a uni�ed way to collect tasks for all local platforms.

The federated aggregator constructs a global bipartite graph using

tasks from the uni�ed interface and workers from local platforms.

It then calculates the global worker supply to guide and execute

cross-platform task assignments. The broker utilizes an evaluator

to quantify the contributions of each local platform, and provides

higher rewards to those with more signi�cant contributions.

Work�ow. The FedSM operates cross-platform transparently to

users as if tasks were processed on a single platform. First, a user

places a task via the uni�ed interface. Then the broker inserts the

task into a global bipartite graph, calculates the utilities between

the task and workers from local platforms, and assigns the task to

an appropriate worker. Finally, the broker evaluates and updates

the contributions of each local platform based on the assignment

results for fair compensation.

3 SYSTEM DESIGN

Next we explain the privacy-preserving operators and contribution

evaluator in FedSM, the two key designs in FedSM, and how they

enable federated supply prediction and task assignment.

3.1 Privacy-Preserving Operators

FedSM incorporates three privacy-preserving operators. Speci�-

cally, we employ a random masker for federated supply prediction
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and develop a location encoder together with a utility obfuscator

to protect the privacy of workers in federated task assignment.

RandomMasker. Given = platforms where platform Pġ holds a

private value ?ġ , the random masker perturbs each by a random

number, which allows computing
∑
ġ ?ġ without revealing any

private value. Speci�cally, the masker perturbs private value ?ġ as,

[?ġ ] = ?ġ +
∑

ġ ′
<ġ

%'� (B3ġ,ġ ′ ) −
∑

ġ ′
>ġ

%'� (B3ġ ′,ġ ), (1)

where %'� (·) is the pseudo-random generator and B3ġ,ġ ′ is the

corresponding random seed determined by negotiation between

platform : and :′. As a result, the sum of all masked values equals

that of the original values, i.e.,
∑
ġ [?ġ ] =

∑
ġ ?ġ .

Location Encoder. As we only use the connectivity in task as-

signment, we use a LSH based location encoder [4] to preserve

the proximity relationships among some points without disclosing

exact locations. Given a set of points $ = {>1, · · · , >Ĥ}, the loca-

tion encoder maps each point to an array by LSH, such that points

nearby are mapped to the same position with a high probability:

• ∀>, >′ ∈ $ and 38BC (>, >′) f ', Pr[E(>) = E(>′)] g X ;

• ∀>, >′ ∈ $ and 38BC (>, >′) g 2 · ', Pr[E(>) = E(>′)] f n ,

where E(·) is the encoding function, 38BC (·, ·) is distance function,

and ', X and n are all thresholds with X/n expected to be large.

Laplacian Obfuscator. We adopt the Laplacian obfuscator to pro-

tects the private assignment utility in FedSM. It perturbs a pri-

vate value by directly adding noise from a Laplacian distribution:

?̃ = ? + !0? (
�Ħ
ÿ
), where �? is the possible range of private value ?

and V denotes the privacy budget. The Laplacian obfuscator protects

private scalar data that satis�es di�erential privacy [2].

3.2 Contribution Evaluators

FedSM utilizes a contribution evaluator to assess the contributions

in a federation with = local platforms PĊ = {P1, · · · ,PĤ}. Speci�-

cally, we adopt the Shapley Value to measure the contribution:

qġ =

∑

ď¦PĊ \{Pġ }

* (Pď ∪ {Pġ }) −* (Pď )

= ·
(Ĥ−1
|ď |

) (2)

whereqġ is the contribution ofPġ and* (Pď )measures the rewards

among a set of local platforms Pď . We can accomplish task-speci�c

contribution evaluation by de�ning speci�c reward function* (·).

The contribution metric provides the basic fairness guarantee, such

as: (i) A platform who has no impact on rewards in any federation

has zero contribution; (ii) If two platforms can substitute for each

other in any federation, they contribute equally. Thus, we can in-

centive platforms to cooperate actively through fair compensation.

3.3 Actions at Platform Broker

We introduce how our FedSM utilizes the above privacy-preserving

operators and the contribution metric in its functionalities. (i) Ac-

tions for Federated Supply Prediction: As mentioned, the local plat-

form Pġ possesses a predicted local supply Sġ for various areas,

which can be perturbed using the random masker to [Sġ ]. By sum-

ming these masked values from all platforms, we derive the global

supply prediction SĘĨĥġěĨ =

∑
ġ [Sġ ] =

∑
ġ Sġ . The system em-

ploys the sum of local supplies from a subset of platforms Pď as

the reward function * (Pď ) and then we can assess contributions

of each platform in federated supply prediction. (ii) Actions for Fed-

erated Task Assignment: Firstly, the broker employs the location

encoder to determine the connectivity between tasks and work-

ers without revealing their locations. Speci�cally, if a task and a

worker are mapped to the same position by the location encoder,

it indicates that the task can be assigned to that worker. As the

assignment utility is a scalar value, it can be computed by the utility

obfuscator in a privacy-preserving manner. After that, the system

establishes a global bipartite graph where tasks from the broker

and workers from multiple platforms can be matched through task

assignment algorithms. For contribution evaluation, the broker uses

the maximum total utility achieved with workers from di�erent sets

of platforms as the reward functions. Then, the evaluator can assess

the contributions of each platform in federated task assignment.

4 DEMONSTRATION

We focus on cross-platform ride-hailing application and demon-

strate the scenario of the FedSM from both the user and broker side.

As next, we �rst introduce the used spatial-temporal dataset and

the simulation environment and then describe our demonstration.

Simulation Environments.We take the real-world ride-hailing

dataset from Didi’s GAYA initiative 1, which holds the order record

data and driver trajectory data from Chengdu China. We employ

a batch-based assignment framework with a time interval of 2

seconds, which is commonly adopted in real-world applications. For

drivers, there can be both online and o�ine. When online, they may

have various behaviors including pick-up, delivery, idle, or random

work. The local platforms independently generate local drivers,

while the platform broker focuses on generating cross-platform

orders. As next, we mainly demonstrate how a ride-hailing order is

requested by the user from the interface of platform broker.

User Side: Cross-Platform Ride-Hailing. Fig. 3 shows the sce-

nario in which a user requests a car through the user-friendly inter-

face on the platform broker: 1© In this panel, the user speci�es the

starting and ending points of his/her ride-hailing request. Initially,

the system o�ers a recommended pickup point based on the user’s

current location. 2© This panel provides multiple service options

from various ride-hailing platforms and each has a visible price.

Users can freely select their preferred taxi companies based on the

price and service quality. 3© Finally, by pressing the call-to-action

button, the user raises a ride request and the broker will assign an

available driver across multiple platforms to ful�ll the request.

Platform Side: Federated Order Dispatching. Our demonstra-

tion consists of three essential functions, including federated sup-

ply prediction, federated task assignment and federated drivers pre-

dispatching. We introduce each of them as follows.

(i) Federated Supply Prediction (in Fig. 4): 1© The platform broker

exhibits heatmaps for both predicted drivers across various areas

on the real-world map, where the distribution of drivers can be

viewed as guidance for task assignment and driver dispatching. 2©

This panel displays the percentage of drivers who are currently

occupied by orders. 3© The platform broker evaluates the contribu-

tions of various local platforms during certain time interval, using

1https://outreach.didichuxing.com/research/opendata/
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Figure 3: User interface for cross-platform ride-hailing.

Figure 4: Federated supply prediction.

the Shapley value based metric for federated supply prediction as

described in Section 3.3. 4© The FedSM also highlights the disparity

between supply and demand for the cross-platform ride-hailing.

(ii) Federated Task Assignment (in Fig. 5): It assigns drivers to orders

across multiple ride-hailing platforms. 1© This panel visualizes the

real-time assignment process between orders and drivers, where

each line depicted denotes a route between starting and ending

points, while distinct colors denote drivers a�liated with di�erent

taxi companies. 2© This panel features a demonstration controller

for simulation during di�erent time intervals and provides various

algorithms for task assignment including the greedy algorithm, the

classical Kuhn-Munkres algorithm [1] and advanced learning to

dispatch algorithm [8]. 3© There is a pie chart details response rate,

rejection rate and waiting rate within a 5 minutes, which indicates

the satisfaction levels of both passengers and drivers. 4© Similarly,

the trip distance is analyzed and depicted in a pie chart, o�ering a

snapshot of travel patterns. 5© In this panel, we can observe the real-

time completion percentages of current orders, which is a valuable

feedback to monitor the progress of the federated assignment.

(iii) Federated Driver Pre-Dispatching (in Fig. 6): Additionally, this

module primarily prepares to dispatch drivers to areas where the

ride-hailing demand exceeds supply after an assignment batch. 1©

It further displays the market imbalances in various areas using a

heatmap, allowing us to observe whether an area has an oversupply

or excess demand. 2© This panel provides algorithms designed to

motivate drivers to move from areas with an oversupply to those

experiencing high demand. 3© There is a radar chart presenting the

performance of the dispatch algorithm across multiple dimensions

(e.g., the response rate, total orders and the utility), which aids

in understanding an algorithm and providing valuable insights

for optimization. 4© The system also visualizes the improvements

Figure 5: Federated task assignment.

Figure 6: Federated driver pre-dispatching.

in utility gained through federated driver dispatching over time,

including both the total utility and the interval utility.
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