
Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language

W3C Working Draft 3 August 2004
This version:

http://www.w3.org/TR/2004/WD-wsdl20-20040803
Latest version:

http://www.w3.org/TR/wsdl20
Previous versions:

http://www.w3.org/TR/2004/WD-wsdl20-20040326
Editors:

Roberto Chinnici, Sun Microsystems
Martin Gudgin, Microsoft
Jean-Jacques Moreau, Canon
Jeffrey Schlimmer, Microsoft
Sanjiva Weerawarana, IBM Research

This document is also available in these non-normative formats: postscript, PDF, XML, and plain text.

Copyright Â© 2004 W3CÂ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
This document describes the Web Services Description Language (WSDL) Version 2.0, an XML language
for describing Web services. This specification defines the core language which can be used to describe
Web services based on an abstract model of what the service offers. It also defines criteria for a
conformant processor of this language.

Status of this Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This is a W3C Last Call Working Draft. If the feedback is positive, the Working Group plans to submit
this specification for consideration as a W3C Candidate Recommendation. Comments on this document
are invited and are to be sent to the public public-ws-desc-comments@w3.org mailing list (public

1

Table of Contents

http://www.w3.org/
http://www.w3.org/TR/2004/WD-wsdl20-20040803
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/2004/WD-wsdl20-20040326
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/TR/
http://www.w3.org/2004/02/Process-20040205/tr.html#last-call
http://lists.w3.org/Archives/Public/public-ws-desc-comments/

archive). Comments can be sent until 4 October 2004.

Three formal objections from Working Group participants have been received against portions of the
WSDL 2.0 specification. Feedback is specifically encouraged on these topics:

Compositors (see objection)

Feature and properties (see objection and follow-on message)

Requiring unique GEDs or required feature to distinguish operations (see objection)

A diff-marked version against the previous version of this document is available. For a detailed list of
changes since the last publication of this document, please refer to appendix F. Part 1 Change Log [p.96]
. Issues about this document are documented in the last call issues list maintained by the Working Group.

This document has been produced as part of the W3C Web Services Activity. The authors of this
document are the Web Services Description Working Group members.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to
cite this document as other than work in progress.

This document has been produced under the 24 January 2002 Current Patent Practice as amended by the
W3C Patent Policy Transition Procedure. Patent disclosures relevant to this specification may be found on
the Working Group’s patent disclosure page. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) with respect to this specification should disclose the
information in accordance with section 6 of the W3C Patent Policy.

Short Table of Contents
1. Introduction [p.7]
2. Component Model [p.9]
3. Types [p.68]
4. Modularizing WSDL descriptions [p.73]
5. Documentation [p.77]
6. Language Extensibility [p.77]
7. Locating WSDL Documents [p.80]
8. Conformance [p.80]
9. XML Syntax Summary (Non-Normative) [p.82]
10. References [p.84]
A. The application/wsdl+xml Media Type [p.87]
B. Acknowledgements [p.89] (Non-Normative)
C. URI References for WSDL constructs [p.90] (Non-Normative)
D. Migrating from WSDL 1.1 to WSDL 2.0 [p.92] (Non-Normative)
E. Examples of Specifications of Extension Elements for Alternative Schema Language Support. [p.93]
(Non-Normative)
F. Part 1 Change Log [p.96] (Non-Normative)

2

Short Table of Contents

http://lists.w3.org/Archives/Public/public-ws-desc-comments/
http://lists.w3.org/Archives/Public/www-ws-desc/2004Jul/0371.html
http://lists.w3.org/Archives/Public/www-ws-desc/2004Jul/0375.html
http://lists.w3.org/Archives/Public/www-ws-desc/2004Jul/0395.html
http://lists.w3.org/Archives/Public/www-ws-desc/2004Jul/0376.html
http://www.w3.org/2002/ws/desc/last-call-issues
http://www.w3.org/2002/ws/Activity.html
http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/ws/desc/2/04/24-IPR-statements.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

Table of Contents
1. Introduction [p.7]
 1.1 Web Service [p.7]
 1.2 Notational Conventions [p.7]
 1.3 WSDL Terminology [p.9]
2. Component Model [p.9]
 2.1 Definitions [p.11]
 2.1.1 The Definitions Component [p.11]
 2.1.2 XML Representation of Definitions Component [p.12]
 2.1.2.1 targetNamespace attribute information item [p.13]
 2.1.3 Mapping Definitions’ XML Representation to Component Properties [p.13]
 2.2 Interface [p.14]
 2.2.1 The Interface Component [p.14]
 2.2.1.1 Operation Name Mapping Requirement [p.15]
 2.2.2 XML Representation of Interface Component [p.16]
 2.2.2.1 name attribute information item with interface [owner] [p.17]
 2.2.2.2 extends attribute information item [p.17]
 2.2.2.3 styleDefault attribute information item [p.17]
 2.2.3 Mapping Interface’s XML Representation to Component Properties [p.18]
 2.3 Interface Fault [p.19]
 2.3.1 The Interface Fault Component [p.19]
 2.3.2 XML Representation of Interface Fault Component [p.20]
 2.3.2.1 name attribute information item with fault [owner] [p.21]
 2.3.2.2 element attribute information item with fault [owner] [p.21]
 2.3.3 Mapping Interface Fault’s XML Representation to Component Properties [p.22]
 2.4 Interface Operation [p.22]
 2.4.1 The Interface Operation Component [p.22]
 2.4.1.1 Operation Style [p.24]
 2.4.2 RPC Style [p.24]
 2.4.2.1 wrpc:signature Extension [p.25]
 2.4.2.2 XML Representation of the wrpc:signature Extension [p.27]
 2.4.2.3 wrpc:signature Extension Mapping To Properties of an Interface Operation Component
[p.27]
 2.4.3 XML Representation of Interface Operation Component [p.28]
 2.4.3.1 name attribute information item with operation [owner] [p.29]
 2.4.3.2 pattern attribute information item with operation [owner] [p.30]
 2.4.3.3 style attribute information item with operation [owner] [p.30]
 2.4.3.4 safe attribute information item with operation [owner] [p.30]
 2.4.4 Mapping Interface Operation’s XML Representation to Component Properties [p.30]
 2.5 Message Reference [p.31]
 2.5.1 The Message Reference Component [p.31]
 2.5.2 XML Representation of Message Reference Component [p.32]
 2.5.2.1 messageLabel attribute information item with input, or output [owner] [p.33]
 2.5.2.2 element attribute information item with input, or output [owner] [p.34]

3

Table of Contents

 2.5.3 Mapping Message Reference’s XML Representation to Component Properties [p.34]
 2.6 Fault Reference [p.35]
 2.6.1 The Fault Reference Component [p.35]
 2.6.2 XML Representation of Fault Reference Component [p.36]
 2.6.2.1 ref attribute information item with infault, or outfault [owner] [p.37]
 2.6.2.2 messageLabel attribute information item with infault, or outfault [owner] [p.38]
 2.6.3 Mapping Fault Reference’s XML Representation to Component Properties [p.38]
 2.7 Feature [p.39]
 2.7.1 The Feature Component [p.39]
 2.7.1.1 Feature Composition Model [p.39]
 2.7.1.1.1 Example of Feature Composition Model [p.40]
 2.7.2 XML Representation of Feature Component [p.41]
 2.7.2.1 uri attribute information item with feature [owner] [p.41]
 2.7.2.2 required attribute information item with feature [owner] [p.42]
 2.7.3 Mapping Feature’s XML Representation to Component Properties [p.42]
 2.8 Property [p.42]
 2.8.1 The Property Component [p.42]
 2.8.1.1 Property Composition Model [p.43]
 2.8.2 XML Representation of Property Component [p.44]
 2.8.2.1 uri attribute information item with property [owner] [p.45]
 2.8.2.2 required attribute information item with property [owner] [p.45]
 2.8.2.3 value element information item with property [parent] [p.45]
 2.8.2.4 constraint element information item with property [parent] [p.46]
 2.8.3 Mapping Property’s XML Representation to Component Properties [p.46]
 2.9 Binding [p.47]
 2.9.1 The Binding Component [p.47]
 2.9.2 XML Representation of Binding Component [p.48]
 2.9.2.1 name attribute information item with binding [owner] [p.49]
 2.9.2.2 interface attribute information item with binding [owner] [p.49]
 2.9.2.3 type attribute information item with binding [owner] [p.50]
 2.9.2.4 Binding extension elements [p.50]
 2.9.3 Mapping Binding’s XML Representation to Component Properties [p.50]
 2.10 Binding Fault [p.51]
 2.10.1 The Binding Fault Component [p.51]
 2.10.2 XML Representation of Binding Fault Component [p.52]
 2.10.2.1 ref attribute information item with fault [owner] [p.53]
 2.10.2.2 Binding Fault extension elements [p.53]
 2.10.3 Mapping Binding Fault’s XML Representation to Component Properties [p.53]
 2.11 Binding Operation [p.53]
 2.11.1 The Binding Operation Component [p.53]
 2.11.2 XML Representation of Binding Operation Component [p.54]
 2.11.2.1 ref attribute information item with operation [owner] [p.55]
 2.11.2.2 Binding Operation extension elements [p.55]
 2.11.3 Mapping Binding Operation’s XML Representation to Component Properties [p.55]
 2.12 Binding Message Reference [p.56]
 2.12.1 The Binding Message Reference Component [p.56]
 2.12.2 XML Representation of Binding Message Reference Component [p.57]

4

Table of Contents

 2.12.2.1 messageLabel attribute information item with input or output [owner] [p.58]
 2.12.2.2 Binding Message Reference extension elements [p.58]
 2.12.3 Mapping Binding Message Reference’s XML Representation to Component Properties [p.58]
 2.13 Service [p.59]
 2.13.1 The Service Component [p.59]
 2.13.2 XML Representation of Service Component [p.60]
 2.13.2.1 name attribute information item with service [owner] [p.61]
 2.13.2.2 interface attribute information item with service [owner] [p.61]
 2.13.3 Mapping Service’s XML Representation to Component Properties [p.61]
 2.14 Endpoint [p.62]
 2.14.1 The Endpoint Component [p.62]
 2.14.2 XML Representation of Endpoint Component [p.63]
 2.14.2.1 name attribute information item with endpoint [owner] [p.64]
 2.14.2.2 binding attribute information item with endpoint [owner] [p.64]
 2.14.2.3 address attribute information item with endpoint [owner] [p.64]
 2.14.2.4 Endpoint extension elements [p.64]
 2.14.3 Mapping Endpoint’s XML Representation to Component Properties [p.65]
 2.15 Definition of the Simple Types Used in the Component Model [p.65]
 2.15.1 string Type [p.66]
 2.15.2 Token Type [p.66]
 2.15.3 NCName Type [p.66]
 2.15.4 anyURI Type [p.66]
 2.15.5 QName Type [p.66]
 2.15.6 boolean Type [p.66]
 2.15.7 int Type [p.66]
 2.16 Equivalence of Components [p.67]
 2.17 Symbol Spaces [p.67]
 2.18 QName resolution [p.68]
 2.19 Comparing URIs [p.68]
3. Types [p.68]
 3.1 Using W3C XML Schema Description Language [p.70]
 3.1.1 Importing XML Schema [p.70]
 3.1.1.1 namespace attribute information item [p.70]
 3.1.1.2 schemaLocation attribute information item [p.71]
 3.1.2 Embedding XML Schema [p.71]
 3.1.2.1 targetNamespace attribute information item [p.72]
 3.1.3 References to Element Declarations and Type Definitions [p.72]
 3.2 Using Other Schema Languages [p.72]
4. Modularizing WSDL descriptions [p.73]
 4.1 Including Descriptions [p.73]
 4.1.1 location attribute information item with include [owner] [p.74]
 4.2 Importing Descriptions [p.75]
 4.2.1 namespace attribute information item [p.76]
 4.2.2 location attribute information item with import [owner] [p.77]
5. Documentation [p.77]
6. Language Extensibility [p.77]
 6.1 Element based Extensibility [p.78]

5

Table of Contents

 6.1.1 Mandatory extensions [p.78]
 6.1.2 required attribute information item [p.79]
 6.2 Attribute-based Extensibility [p.79]
 6.3 Extensibility Semantics [p.79]
7. Locating WSDL Documents [p.80]
 7.1 wsdli:wsdlLocation attribute information item [p.80]
8. Conformance [p.80]
 8.1 Document Conformance [p.80]
 8.2 XML Information Set Conformance [p.81]
 8.3 Processor Conformance [p.81]
9. XML Syntax Summary (Non-Normative) [p.82]
10. References [p.84]
 10.1 Normative References [p.84]
 10.2 Informative References [p.86]

Appendices

A. The application/wsdl+xml Media Type [p.87]
 A.1 Registration [p.88]
 A.2 Security considerations [p.89]
B. Acknowledgements [p.89] (Non-Normative)
C. URI References for WSDL constructs [p.90] (Non-Normative)
 C.1 WSDL URIs [p.90]
 C.2 Fragment Identifiers [p.91]
 C.3 Extension Elements [p.91]
 C.4 Example [p.92]
D. Migrating from WSDL 1.1 to WSDL 2.0 [p.92] (Non-Normative)
 D.1 Operation Overloading [p.92]
 D.2 PortTypes [p.93]
 D.3 Ports [p.93]
E. Examples of Specifications of Extension Elements for Alternative Schema Language Support. [p.93]
(Non-Normative)
 E.1 DTD [p.93]
 E.1.1 namespace attribute information item [p.93]
 E.1.2 location attribute information item [p.94]
 E.1.3 References to Element Definitions [p.94]
 E.2 RELAX NG [p.94]
 E.2.1 Importing RELAX NG [p.94]
 E.2.1.1 ns attribute information item [p.95]
 E.2.1.2 href attribute information item [p.95]
 E.2.2 Embedding RELAX NG [p.95]
 E.2.2.1 ns attribute information item [p.96]
 E.2.3 References to Element Declarations [p.96]
F. Part 1 Change Log [p.96] (Non-Normative)
 F.1 WSDL Specification Changes [p.96]

6

Appendices

1. Introduction
Web Services Description Language (WSDL) provides a model and an XML format for describing Web
services. WSDL enables one to separate the description of the abstract functionality offered by a service
from concrete details of a service description such as "how" and "where" that functionality is offered.

This specification defines a language for describing the abstract functionality of a service as well as a
framework for describing the concrete details of a service description. It also defines criteria for a
conformant processor of this language. The WSDL Version 2.0 Part 2: Message Exchange Patterns
specification [WSDL 2.0 Predefined Extensions [p.85]] defines the sequence and cardinality of abstract
messages sent or received by an operation. The WSDL Version 2.0 Part 3: Bindings specification [WSDL
2.0 Bindings [p.85]] defines a language for describing such concrete details for SOAP 1.2 [SOAP 1.2 Part
1: Messaging Framework [p.86]], HTTP [IETF RFC 2616 [p.86]] and MIME [IETF RFC 2045 [p.86]].

1.1 Web Service

WSDL describes a Web service in two fundamental stages: one abstract and one concrete. Within each
stage, the description uses a number of constructs to promote reusability of the description and separate
independent design concerns.

At an abstract level, WSDL describes a Web service in terms of the messages it sends and receives;
messages are described independent of a specific wire format using a type system, typically XML Schema.

An operation associates a message exchange pattern with one or more messages. A message exchange
pattern identifies the sequence and cardinality of messages sent and/or received as well as who they are
logically sent to and/or received from. An interface groups together operations without any commitment to
transport or wire format.

At a concrete level, a binding specifies transport and wire format details for one or more interfaces. An
endpoint associates a network address with a binding. And finally, a service groups together endpoints that
implement a common interface.

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [IETF RFC 2119 [p.84]].

This specification uses properties from the XML Information Set [XML Information Set [p.85]]. Such
properties are denoted by square brackets, e.g. [namespace name].

This specification uses namespace prefixes throughout; they are listed in Table 1-1 [p.8] . Note that the
choice of any namespace prefix is arbitrary and not semantically significant (see [XML Information Set
[p.85]]).

7

1. Introduction

This specification uses curly brackets (e.g., {property}) to indicate a property in the WSDL component
model, as defined in 2. Component Model [p.9] .

Table 1-1. Prefixes and Namespaces used in this specification

Prefix Namespace Notes

wsdl "http://www.w3.org/2004/08/wsdl"

A normative XML Schema [XML Schema:
Structures [p.85]], [XML Schema:
Datatypes [p.85]] document for the
"http://www.w3.org/2004/08/wsdl"
namespace can be found at
http://www.w3.org/2004/08/wsdl. WSDL
documents that do NOT conform to this
schema are not valid WSDL documents.
WSDL documents that DO conform to this
schema and also conform to the other
constraints defined in this specification are
valid WSDL documents.

wsdli "http://www.w3.org/2004/08/wsdl-instance"

A normative XML Schema [XML Schema:
Structures [p.85]], [XML Schema:
Datatypes [p.85]] document for the
"http://www.w3.org/2004/08/wsdl-instance"
namespace can be found at
http://www.w3.org/2004/08/wsdl-instance.

wsdls "http://www.w3.org/2004/08/wsdl-simple-types"

This prefix and namespace name are used to
refer to the simple types defined by this
specification for use in the component
model, see 2.15 Definition of the Simple
Types Used in the Component Model
[p.65] .

wrpc "http://www.w3.org/2004/08/wsdl/rpc"

A normative XML Schema [XML Schema:
Structures [p.85]], [XML Schema:
Datatypes [p.85]] document for the
"http://www.w3.org/2004/08/wsdl/rpc"
namespace can be found at
http://www.w3.org/2004/08/wsdl/rpc.
WSDL documents that do NOT conform to
this schema are not valid WSDL documents.
WSDL documents that DO conform to this
schema and also conform to the other
constraints defined in this specification are
valid WSDL documents.

8

1.2 Notational Conventions

http://www.w3.org/2004/08/wsdl
http://www.w3.org/2004/08/wsdl-instance
http://www.w3.org/2004/08/wsdl/rpc

wsoap "http://www.w3.org/2004/08/wsdl/soap12" Defined by WSDL 2.0: Bindings [WSDL 2.0
Bindings [p.85]].whttp "http://www.w3.org/2004/08/wsdl/http"

xs "http://www.w3.org/2001/XMLSchema" Defined in the W3C XML Schema
specification [XML Schema: Structures
[p.85]], [XML Schema: Datatypes [p.85]].xsi "http://www.w3.org/2001/XMLSchema-instance"

Namespace names of the general form "http://example.org/..." and "http://example.com/..." represent
application or context-dependent URIs [IETF RFC 2396 [p.84]].

All parts of this specification are normative, with the EXCEPTION of notes, pseudo-schemas, examples,
and sections explicitly marked as "Non-Normative".

Pseudo-schemas are provided for each component, before the description of the component. They use
BNF-style conventions for attributes and elements: ‘?’ denotes optionality (i.e. zero or one occurrences),
‘*’ denotes zero or more occurrences, ‘+’ one or more occurrences, ‘[’ and ‘]’ are used to form groups, ‘|’
represents choice. Attributes are conventionally assigned a value which corresponds to their type, as
defined in the normative schema.

<!-- sample pseudo-schema -->
<defined_element
 required_attribute_of_type_string="xs:string"
 optional_attribute_of_type_int="xs:int"? >
 <required_element />
 <optional_element />?
 <one_or_more_of_these_elements />+
 [<choice_1 /> | <choice_2 />]*
</defined_element>

1.3 WSDL Terminology

This section describes the terms and concepts introduced in Part 1 of the WSDL Version 2.0 specification
(this document).

Actual Value

As in [XML Schema: Structures [p.85]], the phrase actual value is used to refer to the member of the
value space of the simple type definition associated with an attribute information item which
corresponds to its normalized value. This will often be a string, but may also be an integer, a boolean,
a URI reference, etc.

2. Component Model
This section describes the conceptual model of WSDL as a set of components with attached properties,
which collectively describe a Web service. Each subsection herein describes a different type of
component, its defined properties, and its representation as an XML Infoset [XML Information Set [p.85]
].

9

2. Component Model

Components are typed collections of properties that correspond to different aspects of Web services.

Properties are unordered and unique with respect to the component they are associated with. Individual
properties’ definitions may constrain their content (e.g., to a typed value, another component, or a set of
typed values or components), and components may require the presence of a property to be considered
conformant. Such properties are marked as REQUIRED, whereas those that are not required to be present
are marked as OPTIONAL. By convention, when specifying the mapping rules from the XML Infoset
representation of a component to the component itself, an optional property that is absent in the
component in question is described as being "empty". Unless otherwise specified, when a property is
identified as being a collection (a set or a list), its value may be a 0-element (empty) collection. In order to
simplify the presentation of the rules that deal with sets of components, for all OPTIONAL properties
whose type is a set, the absence of such a property from a component MUST be treated as semantically
equivalent to the presence of a property with the same name and whose value is the empty set. In other
words, every OPTIONAL set-valued property MUST be assumed to have the empty set as its default
value, to be used in case the property is absent.

Component definitions are independent of any particular serialization of the component model. In order to
avoid creating an implicit dependency on a particular serialization, this specification defines its own set of
simple types for use by component definitions, rather than reusing an existing one (say [XML Schema:
Datatypes [p.85]]). By convention, those types are defined in the
http://www.w3.org/2004/08/wsdl-simple-types namespace and references to them use the wsdls prefix, see
2.15 Definition of the Simple Types Used in the Component Model [p.65] . All the value spaces of all
simple types used by the the component model are a superset of the value spaces of the XML Schema
simple types with the same name, i.e. every xs:string is also a wsdls:string (but the opposite is not true).
Hence, for brevity, in the sections describing the mapping from the XML Infoset representation of a
WSDL document to its component model we use "actual values" as defined by the XML Schema
specification [XML Schema: Datatypes [p.85]] as if they were members of the value space of the
corresponding WSDL-defined simple types. So, for instance, we talk of "assigning the actual value of the
"name" attribute information item (a xs:string) "to the {name} property (of type wsdls:string)" of a certain
component.

In addition to the direct XML Infoset representation described here, the component model allows
components external to the Infoset through the mechanisms described in 4. Modularizing WSDL
descriptions [p.73] .

A component model can be extracted from a given XML Infoset which conforms to the XML Schema for
WSDL by recursively mapping Information Items to their identified components, starting with the
wsdl:description element information item. This includes the application of the mechanisms described in
4. Modularizing WSDL descriptions [p.73] .

This document does not specify a means of producing an XML Infoset representation from a given set of
WSDL components. Furthermore, given a particular serialization, not all valid sets of components need be
serializable to it. For instance, due to the use in the component model of types that cannot be described
using XML schema (.e.g wsdls:string), it is possible to come up with a valid set of WSDL components
that cannot be serialized as an XML 1.0 document.

10

2. Component Model

2.1 Definitions

2.1.1 The Definitions Component

At the abstract level, the Definitions component is just a container for two categories of components;
WSDL components and type system components.

WSDL components are interfaces, bindings and services.

Type system components describe the constraints on a message’s content. By default, these constraints are
expressed in terms of the [XML Information Set [p.85]], i.e. they define the [local name], [namespace
name], [children] and [attributes] properties of an element information item. Type systems based upon
other data models are generally accommodated by extensions to WSDL; see 6. Language Extensibility
[p.77] . In the case where they define information equivalent to that of a XML Schema global element
declaration, they can more simply be treated as if they were such a declaration.

The properties of the Definitions component are as follows:

{interfaces} OPTIONAL. A set of Interface components.

{bindings} OPTIONAL. A set of Binding components.

{services} OPTIONAL. A set of Service components.

{element declarations} OPTIONAL. A set of named element declarations, each one isomorphic to a
global element declaration as defined by XML Schema.

{type definitions} OPTIONAL. A set of named type definitions, each one isomorphic to a global type
definition as defined by XML Schema.

The set of interfaces/binding/services/etc. available in the Definitions component include those that are
defined within the component itself and those that are imported and/or included. Note that at the
component model level, there is no distinction between directly defined components vs. imported/included
components.

The components directly defined within a single Definitions component are said to belong to the same
target namespace. The target namespace therefore groups a set of related component definitions and
represents an unambiguous name for the intended semantics of the collection of components. The target
namespace URI SHOULD point to a human or machine processable document that directly or indirectly
defines the intended semantics of those components.

Note that it is RECOMMENDED that the value of the targetNamespace attribute information item
SHOULD be a dereferencible URI and that it resolve to a WSDL document which provides service
description information for that namespace.

If a service description is split into multiple documents (which may be combined as needed via 4.1
Including Descriptions [p.73]), then the targetNamespace attribute information item SHOULD
resolve to a master document which includes all the WSDL documents needed for that service description.

11

2.1 Definitions

This approach enables the WSDL component designators’ fragment identifiers to be properly resolvable.

Imported components have different target namespace values from the Definitions component that is
importing them. Thus importing is the mechanism to use components from one namespace in another set
of definitions.

Each WSDL or type system component MUST be uniquely identified by its qualified name. That is, if two
distinct components of the same kind (Interface, Binding etc.) are in the same target namespace, then their
QNames MUST be unique. However, different kinds of components (e.g., an Interface component and a
Binding component) MAY have the same QName. Thus, QNames of components must be unique within
the space of those components in a given target namespace.

In addition to WSDL components and type system components, additional extension components MAY be
added via extensibility 6. Language Extensibility [p.77] . Further, additional properties to WSDL and
type system components MAY also be added via extensibility.

2.1.2 XML Representation of Definitions Component

<definitions
 targetNamespace="xs:anyURI" >
 <documentation />?
 [<import /> | <include />]*
 <types />?
 [<interface /> | <binding /> | <service />]*
</definitions>

WSDL definitions are represented in XML by one or more WSDL Information Sets (Infosets), that is one
or more definitions element information items. A WSDL Infoset contains representations for a
collection of WSDL components which share a common target namespace. A WSDL Infoset which
contains one or more import element information items 4.2 Importing Descriptions [p.75] corresponds
to a collection with components drawn from multiple target namespaces.

The targetNamespace URI MUST be an absolute URI (see [IETF RFC 2396 [p.84]]).

The definitions element information item has the following Infoset properties:

A [local name] of definitions .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED targetNamespace attribute information item as described below in 2.1.2.1
targetNamespace attribute information item [p.13] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

12

2.1 Definitions

Zero or more element information items amongst its [children], in order as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more include element information items (see 4.1 Including Descriptions [p.73]
)

Zero or more import element information items (see 4.2 Importing Descriptions [p.75])

Zero or more namespace-qualified element information items. The [namespace name] of
such element information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

3. An OPTIONAL types element information item (see 3. Types [p.68]).

4. Zero or more element information items from among the following, in any order:

interface element information items (see 2.2.2 XML Representation of Interface
Component [p.16]).

binding element information items (see 2.9.2 XML Representation of Binding
Component [p.48]).

service element information items (see 2.13.2 XML Representation of Service
Component [p.60]).

Zero or more namespace-qualified element information items. The [namespace name] of
such element information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

2.1.2.1 targetNamespace attribute information item

The targetNamespace attribute information item defines the namespace affiliation of top-level
components defined in this definitions element information item. Interfaces, Bindings and Services
are top-level components.

The targetNamespace attribute information item has the following Infoset properties:

A [local name] of targetNamespace

A [namespace name] which has no value

The type of the targetNamespace attribute information item is xs:anyURI.

2.1.3 Mapping Definitions’ XML Representation to Component Properties

The mapping between the properties of the Definitions component (see 2.1.1 The Definitions Component
[p.11]) and the XML Representation of the definitions element information item (see 2.1.2 XML
Representation of Definitions Component [p.12]) is described in Table 2-1 [p.14] .

13

2.1 Definitions

Table 2-1. Mapping between Definitions Component Properties and XML Representation

Property Mapping

{interfaces}

The set of Interface components corresponding to all the interface element
information items in the [children] of the definitions element information item, if
any, plus any included or imported Interface components (see 4. Modularizing WSDL
descriptions [p.73]).

{bindings}

The set of Binding components corresponding to all the binding element information
items in the [children] of the definitions element information item, if any, plus any
included or imported Binding components (see 4. Modularizing WSDL descriptions
[p.73]).

{services}

The set of Service components corresponding to all the service element information
items in the [children] of the definitions element information item, if any, plus any
included or imported Service components (see 4. Modularizing WSDL descriptions
[p.73]).

{element
declarations}

The set of element declarations corresponding to all the element declarations defined as
descendants of the types element information item, if any, plus any imported element
declarations. At a minimum this will include all the global element declarations defined
by XML Schema element element information items. It MAY also include any
declarations from some other type system which describes the [local name], [namespace
name], [attributes] and [children] properties of an element information item.

2.2 Interface

2.2.1 The Interface Component

An Interface component describes sequences of messages that a service sends and/or receives. It does this
by grouping related messages into operations. An operation is a sequence of input and output messages,
and an interface is a set of operations. Thus, an interface defines the design of the application.

An interface can optionally extend one or more other interfaces. To avoid circular definitions, an interface
MUST NOT appear as an element of the set of interfaces it extends, either directly or indirectly. An
interface contains all the operations defined by the interfaces it extends, along with any operations it
directly defines. In the process, operation components that are equivalent per 2.16 Equivalence of
Components [p.67] are treated as one. The interface extension mechanism behaves in a similar way for all
other components that can be defined inside an interface, namely Interface Fault, Feature and Property
components.

Interfaces are named constructs and can be referred to by QName (see 2.18 QName resolution [p.68]).
For instance, Binding components refer to interfaces in this way.

The properties of the Interface component are as follows:

14

2.2 Interface

{name} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] .

{target namespace} REQUIRED. A wsdls:anyURI, as defined in 2.15.4 anyURI Type [p.66] .

{extended interfaces} OPTIONAL. A set of Interface components which this interface extends. This
set MUST be closed under the operation of adding the values of the {extended interfaces} properties
of all its members.

{faults} OPTIONAL. A set of Interface Fault components. This set MUST include the values of the
{faults} properties of all the interface definitions that are listed under the {extended interfaces}
property of the component.

{operations} OPTIONAL. A set of Interface Operation components. This set MUST include the
values of the {operations} properties of all the Interface components that are listed under the
{extended interfaces} property of the component.

{features} OPTIONAL. A set of Feature components. This set MUST include the values of the
{features} properties of all the Interface components that are listed under the {extended interfaces}
property of the component.

{properties} OPTIONAL. A set of Property components. This set MUST include the values of the
{properties} properties of all the Interface components that are listed under the {extended interfaces}
property of the component.

For each Interface component in the {interfaces} property of a definitions container, the combination of
{name} and {target namespace} properties MUST be unique.

Additionally, an Interface component MUST satisfy the Operation Name Mapping requirement, as defined
below. This requirement is intended to ensure that a received message can be uniquely mapped to a
corresponding wsdl:operation.

2.2.1.1 Operation Name Mapping Requirement

Consider all Interface Operation components specified in the {operations} property of an Interface
component. Further, consider all Message Reference components specified in the {message references}
properties of said Interface Operation components. Further, consider all said Message Reference
components that have the same value for their {direction} property (i.e., either the token in or the token
out). If the {message content model} property of any of these Message Reference components has a value
of "#any", or if more than one of these Message Reference components has a value of "#none", or if the
qualified names of the global element declarations specified by the values of the {element} properties of
these Message Reference components are not unique when considered together, then either one of the
following two conditions MUST apply:

1. the {features} property of the Interface component MUST contain a Feature component, having a
{required} property with a value of true, that unambiguously identifies the mechanism that a message
sender is required to support in order to enable the message recipient to unambiguously determine the
name of the Interface Operation component that is intended to be associated with the received
message; or

15

2.2 Interface

2. the element information item for the Interface component MUST contain an extension element (i.e.,
an element that is not in the http://www.w3.org/2004/08/wsdl namespace), having a wsdl:required
attribute information item with a value of "true", that unambiguously identifies the mechanism that a
message sender is required to support in order to enable the message recipient to unambiguously
determine the name of the Interface Operation component that is intended to be associated with the
received message.

2.2.2 XML Representation of Interface Component

<definitions>
 <interface
 name="xs:NCName"
 extends="list of xs:QName"?
 styleDefault="list of xs:anyURI"? >
 <documentation />?
 [<fault /> | <operation /> | <feature /> | <property />]*
 </interface>
</definitions>

The XML representation for an Interface component is an element information item with the following
Infoset properties:

A [local name] of interface

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.2.2.1 name attribute
information item with interface [owner] [p.17] .

An OPTIONAL extends attribute information item as described below in 2.2.2.2 extends
attribute information item [p.17] .

An OPTIONAL styleDefault attribute information item as described below in 2.2.2.3
styleDefault attribute information item [p.17] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information items amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more fault element information items 2.3.2 XML Representation of Interface
Fault Component [p.20] .

16

2.2 Interface

Zero or more operation element information items 2.4.3 XML Representation of
Interface Operation Component [p.28] .

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41] .

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44] .

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

2.2.2.1 name attribute information item with interface [owner]

The name attribute information item together with the targetNamespace attribute information item
of the [parent] definitions element information item forms the QName of the interface.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.2.2.2 extends attribute information item

The extends attribute information item lists the interfaces that this interface derives from.

The extends attribute information item has the following Infoset properties:

A [local name] of extends

A [namespace name] which has no value

The type of the extends attribute information item is a list of xs:QName.

2.2.2.3 styleDefault attribute information item

The styleDefault attribute information item indicates the default style used to construct the
{element} properties of {message references} of all operations contained within the [owner] interface
.

The styleDefault attribute information item has the following Infoset properties:

A [local name] of styleDefault.

17

2.2 Interface

A [namespace name] which has no value.

The type of the styleDefault attribute information item is list of xs:anyURI. Moreover, the value of
the styleDefault attribute information item, if present, MUST contain absolute URIs (see [IETF RFC
2396 [p.84]]).

2.2.3 Mapping Interface’s XML Representation to Component Properties

The mapping between the properties of the Interface component (see 2.2.1 The Interface Component
[p.14]) and the XML Representation of the interface element information item (see 2.2.2 XML
Representation of Interface Component [p.16]) is as described in Table 2-2 [p.18] .

Table 2-2. Mapping between Interface Component Properties and XML Representation

Property Mapping

{name} The actual value of the name attribute information item

{target
namespace}

The actual value of the targetNamespace attribute information item of the [parent]
definitions element information item

{extended
interfaces}

The set of Interface components resolved to by the values in the extends attribute
information item if any, plus the set of Interface components in the {extended
interfaces} property of those interface definitions, if any.

{faults}
The set of Interface Fault components corresponding to the fault element information
items in [children], if any, plus the set of Interface Fault components in the {faults}
property of the Interface components in {extended interfaces}, if any.

{operations}

The set of Interface Operation components corresponding to the operation element
information items in [children], if any, plus the set of Interface Operation components
in the {operations} property of the Interface components in {extended interfaces}, if
any.

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any, plus the set of Feature components in the {features} property
of the Interface components in {extended interfaces}, if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any, plus the set of Property components in the {properties}
property of the Interface components in {extended interfaces}, if any.

Note that, per 2.2.1 The Interface Component [p.14] , the Interface components in the {extended
interfaces} property of a given Interface component MUST NOT contain that Interface component in any
of their {extended interfaces} properties, that is to say, recursive extension of interfaces is disallowed.

18

2.2 Interface

2.3 Interface Fault

2.3.1 The Interface Fault Component

A fault is an event that occurs during the execution of a message exchange that disrupts the normal flow of
messages.

A fault is typically raised when a party is unable to communicate an error condition inside the normal
message flow, or a party wishes to terminate a message exchange. A fault message may be used to
communicate out of band information such as the reason for the error, the origin of the fault, as well as
other informal diagnostics such as a program stack trace.

An Interface Fault component describes a fault that MAY occur during invocation of an operation of the
interface. The Interface Fault component declares an abstract fault by naming it and indicating the
contents of the fault message. When and how the fault message flows is indicated by the Interface
Operation component 2.4 Interface Operation [p.22] .

The Interface Fault component provides a clear mechanism to name and describe the set of faults an
interface may generate. This allows operations to easily identify the individual faults they may generate by
name. This mechanism allows the ready identification of the same fault occurring across multiple
operations and referenced in multiple bindings as well as reducing duplication of description for an
individual fault.

Note that faults other than the ones described in the Interface component can also be generated at
run-time, i.e. faults are an open set.

The properties of the Interface Fault component are as follows:

{name} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] .

{target namespace} REQUIRED. A wsdls:anyURI, as defined in 2.15.4 anyURI Type [p.66] .

{element} OPTIONAL. A reference to an XML element declaration in the {element declarations}
property of 2.1.1 The Definitions Component [p.11] . This element represents the content or
"payload" of the fault.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

If a type system NOT based on the XML Infoset [XML Information Set [p.85]] is in use (as considered in
3.2 Using Other Schema Languages [p.72]) then additional properties would need to be added to the
Fault Component (along with extensibility attributes to its XML representation) to allow associating such
message types with the message reference.

For each Interface Fault component in the {faults} property of an Interface component, the combination of
{name} and {target namespace} properties must be unique.

19

2.3 Interface Fault

Interface Fault components are local to Interface components; they cannot be referred to by QName,
despite having both {name} and {target namespace} properties. That is, two Interface components sharing
the same {target namespace} property but with different {name} properties MAY contain Interface Fault
components which share the same {name} property. Thus, the {name} and {target namespace} properties
of the Interface Fault components are not sufficient to form the unique identity of an Interface Fault
component. To uniquely identify an Interface Fault component one must first identify the Interface
component (by QName) and then identify the Interface Fault within that Interface component (by a further
QName).

In cases where, due to an interface extending one or more other interfaces, two or more Interface Faults
components have the same value for their {name} and {target namespace} properties, then the component
models of those Interface Fault components MUST be equivalent (see 2.16 Equivalence of Components
[p.67]). If the Interface Fault components are equivalent then they are considered to collapse into a single
component. It is an error if two Interface Fault components have the same value for their {name} and
{target namespace} properties but are not equivalent.

Note that, due to the above rules, if two interfaces that have the same value for their {target namespace}
property also have one or more faults that have the same value for their {name} property then those two
interfaces cannot both form part of the derivation chain of a derived interface unless those faults are the
same fault.

Note:

For the above reason, it is considered good practice to ensure, where necessary, that the {name} property
of Interface Fault components within a namespace are unique, thus allowing such derivation to occur
without inadvertent error.

2.3.2 XML Representation of Interface Fault Component

<definitions>
 <interface>
 <fault
 name="xs:NCName"
 element="xs:QName"? >
 <documentation />?
 [<feature /> | <property />]*
 </fault>
 </interface>
</definitions>

The XML representation for an Interface Fault component is an element information item with the
following Infoset properties:

A [local name] of fault

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

Two or more attribute information items amongst its [attributes] as follows:

20

2.3 Interface Fault

A REQUIRED name attribute information item as described below in 2.3.2.1 name attribute
information item with fault [owner] [p.21] .

An OPTIONAL element attribute information item as described below in 2.3.2.2 element
attribute information item with fault [owner] [p.21] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41]

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44]

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

2.3.2.1 name attribute information item with fault [owner]

The name attribute information item identifies a given fault element information item inside a given
interface element information item.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.3.2.2 element attribute information item with fault [owner]

The element attribute information item refers, by QName, to an element declaration component.

The element attribute information item has the following Infoset properties:

A [local name] of element .

A [namespace name] which has no value.

21

2.3 Interface Fault

The type of the element attribute information item is xs:QName.

2.3.3 Mapping Interface Fault’s XML Representation to Component Properties

The mapping between the properties of the Interface Fault component (see 2.3.1 The Interface Fault
Component [p.19]) and the XML Representation of the fault element information item (see 2.3.2
XML Representation of Interface Fault Component [p.20]) is as described in Table 2-3 [p.22] .

Table 2-3. Mapping between Interface Fault Component Properties and XML Representation

Property Mapping

{name} The actual value of the name attribute information item.

{target
namespace}

The actual value of the targetNamespace attribute information item of the [parent]
definitions element information item of the [parent] interface element
information item.

{element}

The element declaration from the {element declarations} property of 2.1.1 The
Definitions Component [p.11] resolved to by the value of the element attribute
information item if present, otherwise empty. It is an error for the element attribute
information item to have a value and for it to not resolve to a global element declaration
from the {element declarations} property of 2.1.1 The Definitions Component [p.11] .

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.4 Interface Operation

2.4.1 The Interface Operation Component

An Interface Operation component describes an operation that a given interface supports. An operation is
an interaction with the service consisting of a set (ordinary and fault) messages exchanged between the
service and the other roles involved in the interaction, in particular the service requester. The sequencing
and cardinality of the messages involved in a particular interaction is governed by the message exchange
pattern used by the operation (see {message exchange pattern} property).

A message exchange pattern defines placeholders for messages, the participants in the pattern (i.e., the
sources and sinks of the messages), and the cardinality and sequencing of messages exchanged by the
participants. The message placeholders are associated with specific message types by the operation that
uses the pattern by means of message and fault references (see {message references} and {fault
references} properties). The service whose operation is using the pattern becomes one of the participants
of the pattern. This specification does not define a machine understandable language for defining message
exchange patterns, nor does it define any specific patterns. The companion specification, [WSDL 2.0
Predefined Extensions [p.85]] defines a set of such patterns and defines identifying URIs any of which

22

2.4 Interface Operation

MAY be used as the value of the {message exchange pattern} property.

The properties of the Interface Operation component are as follows:

{name} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] .

{target namespace} REQUIRED. A wsdls:anyURI, as defined in 2.15.4 anyURI Type [p.66] .

{message exchange pattern} REQUIRED. A wsdls:anyURI identifying the message exchange pattern
used by the operation. This URI MUST be an absolute URI (see [IETF RFC 2396 [p.84]]).

{message references} OPTIONAL. A set of Message Reference components for the ordinary
messages the operation accepts or sends. (See 2.5 Message Reference [p.31] .)

{fault references} OPTIONAL. A set of Fault Reference components for the fault messages the
operation accepts or sends. (See 2.6 Fault Reference [p.35] .)

{style} OPTIONAL. A set of wsdls:anyURIs identifying the rules that were used to construct the
{element} properties of {message references}. (See 2.4.1.1 Operation Style [p.24] .) These URIs
MUST be absolute URIs (see [IETF RFC 2396 [p.84]]).

{safety} REQUIRED. A wsdls:boolean (see 2.15.6 boolean Type [p.66]) indicating whether the
operation is asserted to be safe (as defined in Section 3.5 of [Web Architecture [p.86]]) for users of
the described service to invoke. If this property is false, then no assertion has been made about the
safety of the operation, thus the operation MAY or MAY NOT be safe. However, an operation
SHOULD be marked safe if it meets the criteria for a safe interaction defined in Section 3.5 of [Web
Architecture [p.86]].

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

For each Interface Operation component in the {operations} property of an Interface component, the
combination of {name} and {target namespace} properties MUST be unique.

Interface Operation components are local to Interface components; they cannot be referred to by QName,
despite having both {name} and {target namespace} properties. That is, two Interface components sharing
the same {target namespace} property but with different {name} properties MAY contain Interface
Operation components which share the same {name} property. Thus, the {name} and {target namespace}
properties of the Interface Operation components are not sufficient to uniquely identify an Interface
Operation component. In order to uniquely identify an Interface Operation component, one must first
identify the Interface component (by QName) and then identify the Interface Operation within that
Interface component (by a further QName).

In cases where, due to an interface extending one or more other interfaces, two or more Interface
Operation components have the same value for their {name} and {target namespace} properties, then the
component models of those Interface Operation components MUST be equivalent (see 2.16 Equivalence
of Components [p.67]). If the Interface Operation components are equivalent then they are considered to
collapse into a single component. It is an error if two Interface Operation components have the same value

23

2.4 Interface Operation

for their {name} and {target namespace} properties but are not equivalent.

Note that, due to the above rules, if two interfaces that have the same value for their {target namespace}
property also have one or more operations that have the same value for their {name} property then those
two interfaces cannot both form part of the derivation chain of a derived interface unless those operations
are the same operation.

Note:

For the above reason, it is considered good practice to ensure, where necessary, that the {name} property
of Interface Operation components within a namespace are unique, thus allowing such derivation to occur
without inadvertent error.

2.4.1.1 Operation Style

If the {style} property of an Interface Operation component has a value then that value (a set of URIs)
implies the rules that were used to define the {element} properties (or other property which defines the
content of the message properties; see 3.2 Using Other Schema Languages [p.72]) of all the Message
Reference components which are members of the {message references} property of that component.

Note that the property MAY not have any value. If this property has a value (a set of URIs), then for each
individual URI that is an element of that set, the rules implied by that URI (such as rules that govern the
schemas) MUST be followed or it is an error. So, if the set of URIs has more than one item in it, then the
rules implied by ALL the URIs must be adhered to by the content definitions.

This specification defines the following pre-defined operation style:

RPC Style (see 2.4.2 RPC Style [p.24])

2.4.2 RPC Style

The RPC style is selected by assigning to an Interface Operation component’s {style} property the value
http://www.w3.org/2004/08/wsdl/style/rpc.

The RPC style MUST NOT be used for Interface Operation components whose {message exchange
pattern} property has a value other than ’http://www.w3.org/2004/08/wsdl/in-only’ or
’http://www.w3.org/2004/08/wsdl/in-out’.

When this value is used, the associated messages MUST conform to the rules below, described using
XML Schema [XML Schema: Structures [p.85]]. Note that operations containing messages described by
other type systems may also indicate use of the RPC style, as long as they are constructed in such a way as
to follow these rules.

If the Interface Operation component uses a {message exchange pattern} for which there is no output
element, such as ’http://www.w3.org/2004/08/wsdl/in-only’, then the conditions stated below that refer to
output elements MUST be considered to be implicitely satisfied.

24

2.4 Interface Operation

The content model of input and output {element} elements MUST be defined using a complex type
that contains a sequence from XML Schema.

The sequence MUST only contain elements. It MUST NOT contain other structures such as
xs:choice.

The sequence MUST contain only local element children. Note that these child elements MAY
contain the following attributes: nillable, minOccurs and maxOccurs.

The LocalPart of input element’s QName MUST be the same as the Interface operation component’s
name.

The LocalPart of the output element’s QName is obtained by concatenating the name of the operation
and the string value "Response".

Input and output elements MUST both be in the same namespace.

The complex type that defines the body of an input or an output element MUST NOT contain any
attributes.

If elements with the same qualified name appear as children of both the input and output elements,
then they MUST both be declared using the same type.

The input or output sequence MUST NOT contain multiple children elements declared with the same
name.

2.4.2.1 wrpc:signature Extension

The wrpc:signature extension AII MAY be be used in conjunction with the RPC style to describe
the exact signature of the function represented by an operation that uses the RPC style.

When present, the wrpc:signature extension contributes the following property to the interface
operation component it is applied to:

{rpc-signature} REQUIRED. A list of pairs (q, t) whose first component is of type wsdls:QName (as
defined by 2.15.4 anyURI Type [p.66]) and whose second component is of type wsdls:Token (as
defined by 2.15.2 Token Type [p.66]). Values for the second component MUST be chosen among
the following four: "#in", "#out", "#inout" "#return".

The value of the {rpc-signature} property MUST satisfy the following conditions:

The value of the first component of each pair (q, t) MUST be unique within the list.

For each child element of the input and output messages of the operation, a pair (q, t) whose first
component q is equal to the qualified name of that element MUST be present in the list, with the
caveat that elements that appear with cardinality greater than one MUST be treated as as a single
element.

25

2.4 Interface Operation

For each pair (q, #in), there MUST be a child element of the input element with a name of q and there
MUST NOT be a child element of the output element with the same name.

For each pair (q, #out), there MUST be a child element of the output element with a name of q and
there MUST NOT be a child element of the input element with the same name.

For each pair (q, #inout), there MUST be a child element of the input element with a name of q and
there MUST be a child element of the output element with the same name. Furthermore, those two
elements MUST have the same type.

For each pair (q, #return), there MUST be a child element of the output element with a name of q and
there MUST NOT be a child element of the input element with the same name.

The function signature defined by a wrpc:signature extension is determined as follows:

1. Start with the value of the {rpc-signature} property, a (possibly empty) list of pairs of this form:

 [(q0, t0), (q1, t1), ...]

2. Filter the elements of this list into two lists, the first one (L1) comprising pairs whose t component is
one of {#in, #out, #inout}, the second (L2) pairs whose t component is #return.

For ease of visualization, let’s denote the two lists as

 (L1) [(a0, u0), (a1, u1),...]

and

 (L2) [(r0, #return), (r1, #return),...]

respectively.

3. Then the formal signature of the function is

 f([d0] a0, [d1] a1, ...) => (r0, r1, ...)

i.e.

the list of formal arguments to the function is [a0, a1, ...];

the direction of each formal argument a is one of [in], [out], [inout], determined according to
the value of its corresponding u token;

the list of formal return parameters of the function is [r0, r1, ...];

each formal argument and formal return parameter is typed according to the type of the child
element identified by it (unique per the conditions given above).

26

2.4 Interface Operation

2.4.2.2 XML Representation of the wrpc:signature Extension

The XML representation for the RPC signature extension is an attribute information item with the
following Infoset properties:

A [local name] of signature

A [namespace name] of "http://www.w3.org/2004/08/wsdl/rpc"

The type of the name attribute information item is a list type whose item type is the union of the
xs:QName type and the subtype of the xs:Token type restricted to the following four values: "#in", "#out",
"#inout", "#return". See Example 2-1 [p.27] for a definition of this type.

Additionally, each even-numbered item (0, 2, 4, ...) in the list MUST be of type xs:QName and each
odd-numbered item (1, 3, 5, ...) in the list MUST be of the subtype of xs:Token described in the previous
paragraph.

Example 2-1. Definition of the wrpc:signature extension

<xs:attribute name="signature" type="wrpc:signatureType"/>

<xs:simpleType name="signatureType">
 <xs:list itemType="wrpc:signatureItemType"/>
</xs:simpleType>

<xs:simpleType name="signatureItemType">
 <xs:union memberTypes="wrpc:directionToken xsd:QName"/>
</xs:simpleType>

<xs:simpleType name="directionToken">
 <xs:restriction base="xs:token">
 <xs:enumeration value="#in"/>
 <xs:enumeration value="#out"/>
 <xs:enumeration value="#inout"/>
 <xs:enumeration value="#return"/>
 </xs:restriction>
</xs:simpleType>

2.4.2.3 wrpc:signature Extension Mapping To Properties of an Interface Operation
Component

A wrpc:signature extension attribute information item is mapped to the following property of the
Interface Operation component (see 2.4.1 The Interface Operation Component [p.22]) defined by its
[owner].

27

2.4 Interface Operation

Table 2-4. Mapping of a wrpc:signature Extension to Interface Operation Component Properties

Property Mapping

{rpc-signature}
A list of (xs:QName, xs:Token) pairs formed by grouping the items present in the
actual value of the wrpc:signature attribute information item in the order in
which they appear there.

2.4.3 XML Representation of Interface Operation Component

<definitions>
 <interface>
 <operation
 name="xs:NCName"
 pattern="xs:anyURI"
 style="list of xs:anyURI"?
 safe="xs:boolean"? >
 <documentation />?
 [<feature /> | <property /> |
 [<input /> | <output /> | <infault /> | <outfault />]+
]*
 </operation>
 </interface>
</definitions>

The XML representation for an Interface Operation component is an element information item with the
following Infoset properties:

A [local name] of operation

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.4.3.1 name attribute
information item with operation [owner] [p.29] .

A REQUIRED pattern attribute information item as described below in 2.4.3.2 pattern
attribute information item with operation [owner] [p.30] .

An OPTIONAL style attribute information item as described below in 2.4.3.3 style attribute
information item with operation [owner] [p.30] .

An OPTIONAL safe attribute information item as described below in 2.4.3.4 safe attribute
information item with operation [owner] [p.30] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

28

2.4 Interface Operation

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more input element information items (see 2.5.2 XML Representation of
Message Reference Component [p.32]).

Zero or more output element information items (see 2.5.2 XML Representation of
Message Reference Component [p.32]).

Zero or more infault element information items (see 2.6.2 XML Representation of
Fault Reference Component [p.36]).

Zero or more outfault element information items (see 2.6.2 XML Representation of
Fault Reference Component [p.36]).

A feature element information item (see 2.7.2 XML Representation of Feature
Component [p.41]).

A property element information item (see 2.8.2 XML Representation of Property
Component [p.44]).

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

At least one of the [children] MUST be an input , output , infault , or outfault element
information item.

2.4.3.1 name attribute information item with operation [owner]

The name attribute information item identifies a given operation element information item inside a
given interface element information item.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

29

2.4 Interface Operation

2.4.3.2 pattern attribute information item with operation [owner]

The pattern attribute information item identifies the message exchange pattern a given operation uses.

The pattern attribute information item has the following Infoset properties:

A [local name] of pattern

A [namespace name] which has no value

The type of the pattern attribute information item is xs:anyURI.

2.4.3.3 style attribute information item with operation [owner]

The style attribute information item indicates the rules that were used to construct the {element}
properties of the Message Reference components which are members of the {message references}
property of the [owner] operation.

The style attribute information item has the following Infoset properties:

A [local name] of style

A [namespace name] which has no value

The type of the style attribute information item is list of xs:anyURI.

2.4.3.4 safe attribute information item with operation [owner]

The safe attribute information item indicates whether the operation is safe or not.

The safe attribute information item has the following Infoset properties:

A [local name] of safe

A [namespace name] which has no value

The type of the safe attribute information item is xs:boolean and does not have a default value.

2.4.4 Mapping Interface Operation’s XML Representation to Component Properties

The mapping between the properties of the Interface Operation component (see 2.4.1 The Interface
Operation Component [p.22]) and the XML Representation of the operation element information
item (see 2.4.3 XML Representation of Interface Operation Component [p.28]) is as described in
Table 2-5 [p.30] .

30

2.4 Interface Operation

Table 2-5. Mapping between Interface Operation Component Properties and XML Representation

Property Mapping

{name} The actual value of the name attribute information item

{target
namespace}

The actual value of the targetNamespace attribute information item of the
[parent] definitions element information item of the [parent] interface
element information item.

{message
exchange
pattern}

The actual value of the pattern attribute information item

{message
references}

The set of message references corresponding to the input and output element
information items in [children], if any.

{fault
references}

The set of fault references corresponding to the infault and outfault element
information items in [children], if any.

{style}

The set containing the URIs in the actual value of the style attribute information
item if present, otherwise the set containing the URIs in the actual value of the
styleDefault attribute information item of the [parent] interface element
information item if present, otherwise empty.

{safety}
The actual value of the safe attribute information item if present, otherwise the value
false.

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.5 Message Reference

2.5.1 The Message Reference Component

A Message Reference component associates a defined type with a message exchanged in an operation. By
default, the type system is based upon the XML Infoset [XML Information Set [p.85]].

A message exchange pattern defines a set of placeholder messages that participate in the pattern and
assigns them unique message labels within the pattern (e.g. ’In’, ’Out’). The purpose of a Message
Reference component is to associate an actual message type (XML element declaration or some other
declaration (see 3.2 Using Other Schema Languages [p.72]) for message content) with a message in the
pattern, as identified by its message label. Later, when the message exchange pattern is instantiated,
messages corresponding to that particular label will follow the type assignment made by the Message
Reference component.

31

2.5 Message Reference

The properties of the Message Reference component are as follows:

{message label} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] . This
property identifies the role this message plays in the {message exchange pattern} of the Interface
Operation component this is contained within. The value of this property MUST match the name of a
placeholder message defined by the message exchange pattern.

{direction} REQUIRED. A wsdls:Token with one of the values in or out, indicating whether the
message is coming to the service or going from the service, respectively. The direction MUST be the
same as the direction of the message identified by the {message label} property in the {message
exchange pattern} of the Interface Operation component this is contained within.

{message content model} OPTIONAL. A wsdls:token with one of the values #any, #none, or
#element. A value of #any indicates that the message content is any single element. A value of #none
indicates there is no message content. A value of #element indicates that the message consists of a
single element described by the global element declaration reference by the {element} property.

{element} OPTIONAL. A reference to an XML element declaration in the {element declarations}
property of 2.1.1 The Definitions Component [p.11] . This element represents the content or
"payload" of the message. When the {message content model} property has the value #any or #none
the {element} property MUST be empty.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

If a type system not based upon the XML Infoset is in use (as considered in 3.2 Using Other Schema
Languages [p.72]) then additional properties would need to be added to the Message Reference
Component (along with extensibility attributes to its XML representation) to allow associating such
message types with the message reference.

For each Message Reference component in the {message references} property of an Interface Operation
component, its {message label} property MUST be unique.

2.5.2 XML Representation of Message Reference Component

<definitions>
 <interface>
 <operation>
 <input
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:Token"? >
 <documentation />?
 [<feature /> | <property />]*
 </input>
 <output
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:Token"? >
 <documentation />?
 [<feature /> | <property />]*

32

2.5 Message Reference

 </output>
 </operation>
 </interface>
</definitions>

The XML representation for a Message Reference component is an element information item with the
following Infoset properties:

A [local name] of input or output

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL messageLabel attribute information item as described below in 2.5.2.1
messageLabel attribute information item with input, or output [owner] [p.33] .

If the {message exchange pattern} of the Interface Operation component has only one message
with a given value for {direction}, then the messageLabel attribute information item is
optional for the XML representation of the Message Reference component with that {direction}.

An OPTIONAL element attribute information item as described below in 2.5.2.2 element
attribute information item with input, or output [owner] [p.34] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41]

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44]

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

2.5.2.1 messageLabel attribute information item with input , or output [owner]

The messageLabel attribute information item identifies the role of this message in the message
exchange pattern of the given operation element information item.

33

2.5 Message Reference

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel

A [namespace name] which has no value

The type of the messageLabel attribute information item is xs:NCName.

2.5.2.2 element attribute information item with input , or output [owner]

The element attribute information item has the following Infoset properties:

A [local name] of element .

A [namespace name] which has no value.

The type of the element attribute information item is a union of xs:QName and xs:Token where the
allowed token values are #any or #none.

2.5.3 Mapping Message Reference’s XML Representation to Component Properties

The mapping between the properties of the Message Reference component (see 2.5.1 The Message
Reference Component [p.31]) and the XML Representation of the message reference element
information item (see 2.5.2 XML Representation of Message Reference Component [p.32]) is as
described in Table 2-6 [p.34] .

34

2.5 Message Reference

Table 2-6. Mapping between Message Reference Component Properties and XML Representation

Property Mapping

{message
label}

The actual value of the messageLabel attribute information item if any; otherwise
the {message label} property of the message with same {direction} from the {message
exchange pattern} of the Interface Operation component, provided there is exactly one
such message; otherwise it is an error.

{direction}
If the [local name] of the element information item is input then "in", else if the [local
name] of the element information item is output then "out".

{message
content
model}

If the element attribute information item is present and its value is a QName, then
#element. Otherwise the actual value of the element attribute information item, if any,
otherwise empty.

{element}

If the element attribute information item is present and its value is a QName, then the
element declaration from the {element declarations} property of 2.1.1 The Definitions
Component [p.11] resolved to by the value of the element attribute information item,
otherwise empty. It is an error for the element attribute information item to have a
value and for it to not resolve to a global element declaration from the {element
declarations} property of 2.1.1 The Definitions Component [p.11] .

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.6 Fault Reference

2.6.1 The Fault Reference Component

A Fault Reference component associates a defined type, specified by an Interface Fault component, to a
fault message exchanged in an operation.

A message exchange pattern defines a set of placeholder messages that participate in the pattern and
assigns them unique message labels within the pattern (e.g. ’In’, ’Out’). The purpose of a Fault Reference
component is to associate an actual message type (XML element declaration or some other declaration
(see 3.2 Using Other Schema Languages [p.72]) for message content, as specified by an Interface Fault
component) with a fault message occurring in the pattern. In order to identify the fault message it
describes, the Fault Reference component uses the message label of the message the fault is associated
with as a key.

The companion specification [WSDL 2.0 Predefined Extensions [p.85]] defines two fault patterns that a
given message exchange pattern may use. For the pattern fault-replaces-message, the message that the
fault relates to identifies the message in place of which the declared fault message will occur. Thus, the
fault message will travel in the same direction as the message it replaces in the pattern. For the pattern
message-triggers-fault, the message that the fault relates to identifies the message after which the

35

2.6 Fault Reference

indicated fault may occur, in the opposite direction of the referred to message. That is, the fault message
will travel in the opposite direction of the message it comes after in the pattern.

More than one Fault Reference component may refer to the same message label. This allows one to
indicate that there is more than one type of fault that is related to that message.

The properties of the Fault Reference component are as follows:

{fault reference} REQUIRED. An Interface Fault component in the {faults} property of the parent
Interface Operation component’s parent Interface component. Identifying the Interface Fault
component therefore indirectly defines the actual content or payload of the fault message.

{message label} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] . This
property identifies the message this fault relates to among those defined in the {message exchange
pattern} property of the Interface Operation component it is contained within. The value of this
property MUST match the name of a placeholder message defined by the message exchange pattern.

{direction} REQUIRED. A wsdls:Token with one of the values in or out, indicating whether the fault
is coming to the service or going from the service, respectively. The direction MUST be consistent
with the direction implied by the fault rule used in the message exchange pattern of the operation. For
example, if the fault rule fault-replaces-message is used, then a fault which refers to an outgoing
message would have a {direction} property value of out. On the other hand, if the fault rule
message-triggers-fault is used, then a fault which refers to an outgoing message would have a
{direction} property value of in as the fault travels in the opposite direction of the message.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

2.6.2 XML Representation of Fault Reference Component

<definitions>
 <interface>
 <operation>
 <infault
 ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />?
 [<feature /> | <property />]*
 </infault>*
 <outfault
 ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />?
 [<feature /> | <property />]*
 </outfault>*
 </operation>
 </interface>
</definitions>

36

2.6 Fault Reference

The XML representation for a Fault Reference component is an element information item with the
following Infoset properties:

A [local name] of infault or outfault

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.6.2.1 ref attribute
information item with infault, or outfault [owner] [p.37] .

An OPTIONAL messageLabel attribute information item as described below in 2.6.2.2
messageLabel attribute information item with infault, or outfault [owner] [p.38] .

If the {message exchange pattern} of the Interface Operation component has only one message
with a given value for {direction}, the messageLabel attribute information item is optional
for the XML representation of any Fault Reference component with the same value for
{direction} (if the fault pattern of the {message exchange pattern} is fault-replaces-message) or
of any Fault Reference component with the opposite value for {direction} (if the fault pattern is
message-triggers-fault).

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41]

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44]

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

2.6.2.1 ref attribute information item with infault , or outfault [owner]

The ref attribute information item refers to a fault component.

The ref attribute information item has the following Infoset properties:

37

2.6 Fault Reference

A [local name] of ref

A [namespace name] which has no value

The type of the fault attribute information item is xs:QName.

2.6.2.2 messageLabel attribute information item with infault , or outfault [owner]

The messageLabel attribute information item identifies the message in the message exchange pattern
of the given operation element information item to which this fault is related to.

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel

A [namespace name] which has no value

The type of the messageLabel attribute information item is xs:NCName.

2.6.3 Mapping Fault Reference’s XML Representation to Component Properties

The mapping between the properties of the Fault Reference component (see 2.6.1 The Fault Reference
Component [p.35]) and the XML Representation of the message reference element information item (see
2.6.2 XML Representation of Fault Reference Component [p.36]) is as described in Table 2-7 [p.38] .

Table 2-7. Mapping between Fault Reference Component Properties and XML Representation

Property Mapping

{fault
reference}

The actual value of the ref attribute information item

{message
label}

The actual value of the messageLabel attribute information item if any; otherwise the
{message label} property of the message with the same {direction} from the {message
exchange pattern} of the Interface Operation component, provided there is exactly one
such message and the fault pattern of the {message exchange pattern} is
fault-replaces-message; otherwise the {message reference} property of the message with
the opposite {direction}, provided there is exactly one such message and the fault pattern
is message-triggers-fault; otherwise it is an error.

{direction}
If the [local name] of the element information item is infault then "in", else if the
[local name] of the element information item is outfault then "out".

{features}
The set of Feature components corresponding to the feature element information items
in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

38

2.6 Fault Reference

2.7 Feature

2.7.1 The Feature Component

A feature component describes an abstract piece of functionality typically associated with the exchange of
messages between communicating parties. Although WSDL poses no constraints on the potential scope of
such features, examples might include "reliability", "security", "correlation", and "routing". The presence
of a feature component in a WSDL description indicates that the service supports the feature and may
require a requester agent that interacts with the service to use that feature. Each Feature is identified by its
URI.

The properties of the Feature component are as follows:

{name} REQUIRED. A wsdls:anyURI as defined in 2.15.4 anyURI Type [p.66] . This URI MUST
be absolute as defined by [IETF RFC 2396 [p.84]]. This URI SHOULD be dereferenceable to a
document that directly or indirectly defines the meaning and use of the Feature that it identifies.

{required} REQUIRED. A wsdls:boolean value as defined by 2.15.6 boolean Type [p.66] . If the
value of this property is true, then the requester agent MUST use the Feature that is identified by the
{name} URI. Otherwise, the requester agent MAY use the Feature that is identified by the {name}
URI. In either case, if the requester agent does use the Feature that is identified by the {name} URI,
then the requester agent MUST obey all semantics implied by the definition of that Feature.

2.7.1.1 Feature Composition Model

The set of features which are required or available for a given component consists of the combined set of
ALL feature declarations applicable to that component. A feature is applicable to a component if:

it is asserted directly within that component, or

it is asserted in a containing component, or

it is asserted in a component referred to by the current component.

If a given feature is asserted at multiple locations, then the value of that feature at a particular component
is that given by the nearest assertion in lexical scoping order. Following these rules, the set of features
applicable at each component are as follows:

Interface component: all features asserted within the interface component.

Interface Fault component: all features asserted within the interface fault component and those within
the parent interface component.

Interface Operation component: all features asserted within the interface operation component and
those within the parent interface component.

39

2.7 Feature

Message Reference component: all features asserted within the message reference component, those
within the parent interface operation component and those within its parent interface component.

Binding component: all features asserted within the binding component and those within the interface
component referred to by the binding component (if any).

Binding Fault component: all features asserted within the binding fault component, those within the
parent binding component and those within the interface component referred to by the binding component
(if any).

Binding Operation component: all features asserted within the binding operation component, those
within the parent binding component and those within the interface component referred to by the binding
component (if any).

Binding Message Reference component: all features asserted within the binding message reference
component, those within the parent binding operation component, those within its parent binding
component and those within the interface component referred to by the binding component (if any).

2.7.1.1.1 Example of Feature Composition Model

In the following example, the depositFunds operation on the BankService has to be used with the
ISO9001 , the notarization and the secure-channel features; they are all in scope. The fact
that the notarization feature is declared both in the operation and in the binding has no effect.

<definitions targetNamespace="http://example.com/bank"
 xmlns:ns1="http://example.com/bank">
 <interface name="ns1:Bank">
 <!-- All implementations of this interface must be secure -->
 <feature uri="http://example.com/secure-channel"
 required="true"/>
 <operation name="withdrawFunds">
 <!-- This operation must have ACID properties -->
 <feature uri="http://example.com/transaction"
 required="true"/>
 ...
 </operation>
 <operation name="depositFunds">
 <!-- This operation requires notarization -->
 <feature uri="http://example.com/notarization"
 required="true"/>
 ...
 </operation>
 </interface>

 <binding name="ns1:BankSOAPBinding">
 <!-- This particular binding requires ISO9001
 compliance to be verifiable -->
 <feature uri="http://example.com/ISO9001"
 required="true"/>
 <!-- This binding also requires notarization -->
 <feature uri="http://example.com/notarization"
 required="true"/>
 </binding>

40

2.7 Feature

 <service name="ns1:BankService"
 interface="tns:Bank">
 <endpoint binding="ns1:BankSOAPBinding">
 ...
 </endpoint>
 </service>
</definitions>

2.7.2 XML Representation of Feature Component

<feature
 uri="xs:anyURI"
 required="xs:boolean"? >
 <documentation />?
</feature>

The XML representation for a Feature component is an element information item with the following
Infoset properties:

A [local name] of feature

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED uri attribute information item as described below in 2.7.2.1 uri attribute
information item with feature [owner] [p.41] .

An OPTIONAL required attribute information item as described below in 2.7.2.2 required
attribute information item with feature [owner] [p.42] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information items amongst its [children], in order as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more namespace-qualified element information items. The [namespace name] of such
element information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

2.7.2.1 uri attribute information item with feature [owner]

The uri attribute information item specifies the URI of the feature.

The uri attribute information item has the following Infoset properties:

A [local name] of uri

41

2.7 Feature

A [namespace name] which has no value

The type of the uri attribute information item is xs:anyURI .

2.7.2.2 required attribute information item with feature [owner]

The required attribute information item specifies whether the use of the feature is mandatory or
optional.

The required attribute information item has the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

The type of the required attribute information item is xs:boolean .

2.7.3 Mapping Feature’s XML Representation to Component Properties

The mapping between the properties of the Feature component (see 2.7.1 The Feature Component [p.39]
) and the XML Representation of the feature element information item (see 2.7.2 XML
Representation of Feature Component [p.41]) is as described in Table 2-8 [p.42] .

Table 2-8. Mapping between Feature Component Properties and XML Representation

Property Mapping

{name} The actual value of the uri attribute information item

{required} The actual value of the required attribute information item if present, otherwise "false".

2.8 Property

2.8.1 The Property Component

A "property" in the Features and Properties architecture represents a named runtime value which affects
the behaviour of some aspect of a Web service interaction, much like an environment variable. For
example, a reliable messaging SOAP module may specify a property to control the number of retries in the
case of network failure. WSDL documents may specify the value constraints for these properties by
referring to a Schema type, or by specifying a particular value. Properties, and hence property values, can
be shared amongst features/bindings/modules, and are named with URIs precisely to allow this type of
sharing.

The properties of the Property component are as follows:

{name} REQUIRED. A wsdls:anyURI as defined in 2.15.4 anyURI Type [p.66] . This URI MUST
be absolute as defined by [IETF RFC 2396 [p.84]]. This URI SHOULD be dereferenceable to a
document that directly or indirectly defines the meaning and use of the Property that it identifies.

42

2.8 Property

{required} REQUIRED. A wsdls:boolean value as defined by 2.15.6 boolean Type [p.66] . If the
{required} property is true, then the requester agent MUST use the Property that is identified by the
{name} URI. Otherwise, the requester agent MAY use the Property that is identified by the {name} URI.
In either case, if the requester agent does use the Property that is identified by the {name} URI, then the
requester agent MUST obey all semantics implied by the definition of that Property.

{value constraint} OPTIONAL. A type definition constraining the value of the property, or the token
#value if the {value} property is not empty.

{value} OPTIONAL. The value of the property, an ordered list of child information items, as
specified by the [children] property of element information items in [XML Information Set [p.85]].

If a type system not based upon the XML Infoset is in use (as considered in 3.2 Using Other Schema
Languages [p.72]) then additional properties would need to be added to the Property Component (along
with extensibility attributes to its XML representation) to allow using such a type system to describe
values and constraints for properties.

2.8.1.1 Property Composition Model

At runtime, the behavior of features, (SOAP) modules and bindings may be affected by the values of
in-scope properties. Properties combine into a virtual "execution context" which maps property names
(URIs) to constraints. Each property URI MAY therefore be associated with AT MOST one property
constraint for a given interaction.

The set of properties which are required or available for a given component consists of the combined set
of ALL property declarations applicable to that componment. A property is applicable to a component if:

it is asserted directly within that component, or

it is asserted in a containing component, or

it is asserted in a component referred to by the current component.

If a given property is asserted at multiple locations, then the value of that property at a particular
component is that given by the nearest assertion in lexical scoping order. Following these rules, the set of
properties applicable at each component are as follows:

Interface component: all properties asserted within the interface component.

Interface Fault component: all properties asserted within the interface fault component and those
within the parent interface component.

Interface Operation component: all properties asserted within the interface operation component and
those within the parent interface component.

Message Reference component: all properties asserted within the message reference component,
those within the parent interface operation component and those within its parent interface
component.

43

2.8 Property

Binding component: all properties asserted within the binding component and those within the
interface component referred to by the binding component (if any).

Binding Fault component: all properties asserted within the binding fault component, those within the
parent binding component and those within the interface component referred to by the binding component
(if any).

Binding Operation component: all properties asserted within the binding operation component, those
within the parent binding component and those within the interface component referred to by the binding
component (if any).

Binding Message Reference component: all properties asserted within the binding message reference
component, those within the parent binding operation component, those within its parent binding
component and those within the interface component referred to by the binding component (if any).

Note that, in the text above, "property constraint" (or, simply, "constraint") is used to mean EITHER a
constraint inside a property component OR a value , since value may be considered a special case
of constraint .

2.8.2 XML Representation of Property Component

<property
 uri="xs:anyURI"
 required="xs:boolean"? >
 <documentation />?
 [<value /> | <constraint />]?
</property>

The XML representation for a Property component is an element information item with the following
Infoset properties:

A [local name] of property

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED uri attribute information item as described below in 2.8.2.1 uri attribute
information item with property [owner] [p.45] .

An OPTIONAL required attribute information item as described below in 2.8.2.2 required
attribute information item with property [owner] [p.45] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

One or more element information items amongst its [children], in order as follows:

44

2.8 Property

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. One OPTIONAL element information item from among the following:

A value element information item as described in 2.8.2.3 value element information
item with property [parent] [p.45]

A constraint element information item as described in 2.8.2.4 constraint element
information item with property [parent] [p.46]

3. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

2.8.2.1 uri attribute information item with property [owner]

The uri attribute information item specifies the URI of the property. It has the following Infoset
properties:

A [local name] of uri

A [namespace name] which has no value

The type of the uri attribute information item is xs:anyURI .

2.8.2.2 required attribute information item with property [owner]

The required attribute information item specifies whether use of the property is mandatory or optional.

The required attribute information item has the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

The type of the required attribute information item is xs:boolean .

2.8.2.3 value element information item with property [parent]

<property>
 <value>
 xs:anyType
 </value>
</property>

The value element information item specifies the value of the property. It has the following Infoset
properties:

45

2.8 Property

A [local name] of value

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

The type of the value element information item is xs:anyType .

2.8.2.4 constraint element information item with property [parent]

<property>
 <constraint>
 xs:QName
 </constraint>
</property>

The constraint element information item specifies a constraint on the value of the property. It has the
following Infoset properties:

A [local name] of constraint

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

The type of the constraint attribute information item is xs:QName .

2.8.3 Mapping Property’s XML Representation to Component Properties

The mapping between the properties of the Property component (see 2.8.1 The Property Component
[p.42]) and the XML Representation of the property element information item (see 2.8.2 XML
Representation of Property Component [p.44]) is as described in Table 2-9 [p.46] .

Table 2-9. Mapping between Property Component Properties and XML Representation

Property Mapping

{name} The actual value of the uri attribute information item.

{required}
The actual value of the required attribute information item if present, otherwise
"false".

{value
constraint}

If the constraint element information item is present, the type definition referred to
by the value of this element information item. Otherwise, if the value element
information item is present, the token #value, otherwise empty.

{value}
The value of the [children] property of the value element information item, if that
element is present, otherwise empty.

46

2.8 Property

2.9 Binding

2.9.1 The Binding Component

A Binding component describes a concrete message format and transmission protocol which may be used
to define an endpoint (see 2.14 Endpoint [p.62]). That is, a Binding component defines the
implementation details necessary to accessing the service.

Binding components can be used to describe such information in a re-usable manner for any interface or
specifically for a given interface. Furthermore, binding information MAY be specified on a per-operation
basis (see 2.11.1 The Binding Operation Component [p.53]) within an interface in addition to across all
operations of an interface.

If a Binding component specifies any operation-specific binding details (by including Binding Operation
components) or any fault binding details (by including Binding Fault components) then it MUST specify
an interface the Binding component applies to, so as to indicate which interface the operations come from.

Conversely, a Binding component which omits any operation-specific binding details and any fault
binding details MAY omit specifying an interface. Binding components that do not specify an interface
MAY be used to specify operation-independent binding details for Service components with different
interfaces. That is, such Binding components are reusable across one or more interfaces.

No concrete binding details are given in this specification. The companion specification, WSDL (Version
2.0): Bindings [WSDL 2.0 Bindings [p.85]] defines such bindings for SOAP 1.2 [SOAP 1.2 Part 1:
Messaging Framework [p.86]] and HTTP [IETF RFC 2616 [p.86]]. Other specifications MAY define
additional binding details. Such specifications are expected to annotate the Binding component (and its
sub-components) with additional properties and specify the mapping between those properties and the
XML representation.

A Binding component which defines bindings for an Interface component MUST define bindings for all
the operations of that Interface component. The bindings may occur via defaulting rules which allow one
to specify default bindings for all operations (see, for example [WSDL 2.0 Bindings [p.85]]) or by directly
listing each Operation component of the Interface component and defining bindings for them. Thus, it is
an error for a Binding component to not define bindings for all the Operation components of the Interface
component for which the Binding component purportedly defines bindings for.

Bindings are named constructs and can be referred to by QName (see 2.18 QName resolution [p.68]).
For instance, Endpoint components refer to bindings in this way.

The properties of the Binding component are as follows:

{name} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] .

{target namespace} REQUIRED. A wsdls:anyURI as defined in 2.15.4 anyURI Type [p.66] .

{interface} OPTIONAL. An Interface component indicating the interface for which binding
information is being specified.

47

2.9 Binding

{type} REQUIRED. A wsdls:anyURI as defined by 2.15.4 anyURI Type [p.66] . This URI MUST
be absolute as defined by [IETF RFC 2396 [p.84]]. The value of this URI indicates what kind of
concrete binding details are contained within this Binding component. Specifications (such as [WSDL
2.0 Bindings [p.85]]) that define such concrete binding details MUST specify appropriate values for
this property. The value of this property MAY be the namespace name of the extension elements or
attributes which define those concrete binding details.

{faults} OPTIONAL. A set of Binding Fault components.

{operations} OPTIONAL. A set of Binding Operation components.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

For each Binding component in the {bindings} property of a definitions container, the combination of
{name} and {target namespace} properties must be unique.

2.9.2 XML Representation of Binding Component

<definitions>
 <binding
 name="xs:NCName"
 interface="xs:QName"?
 type="xs:anyURI" >
 <documentation />?
 [<fault /> | <operation /> | <feature /> | <property />]*
 </binding>
</definitions>

The XML representation for a Binding component is an element information item with the following
Infoset properties:

A [local name] of binding

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.9.2.1 name attribute
information item with binding [owner] [p.49] .

An OPTIONAL interface attribute information item as described below in 2.9.2.2 interface
attribute information item with binding [owner] [p.49] .

An REQUIRED type attribute information item as described below in 2.9.2.3 type attribute
information item with binding [owner] [p.50] .

48

2.9 Binding

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information items amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more fault element information items (see 2.10.2 XML Representation of
Binding Fault Component [p.52]).

Zero or more operation element information items (see 2.11.2 XML Representation of
Binding Operation Component [p.54]).

Zero or more feature element information items (see 2.7.2 XML Representation of
Feature Component [p.41]).

Zero or more property element information items (see 2.8.2 XML Representation of
Property Component [p.44]).

Zero or more namespace-qualified element information items. The [namespace name] of
such element information items MUST NOT be "http://www.w3.org/2004/08/wsdl". Such
element information items are considered to be binding extension elements(see 2.9.2.4
Binding extension elements [p.50]).

2.9.2.1 name attribute information item with binding [owner]

The name attribute information item together with the targetNamespace attribute information item
of the definitions element information item forms the QName of the binding.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.9.2.2 interface attribute information item with binding [owner]

The interface attribute information item refers, by QName, to an Interface component.

The interface attribute information item has the following Infoset properties:

A [local name] of interface

49

2.9 Binding

A [namespace name] which has no value

The type of the interface attribute information item is xs:QName.

2.9.2.3 type attribute information item with binding [owner]

The type attribute information item identifies the kind of binding details contained in the Binding
component.

The type attribute information item has the following Infoset properties:

A [local name] of type

A [namespace name] which has no value

The type of the type attribute information item is xs:anyURI.

2.9.2.4 Binding extension elements

Binding extension elements are used to provide information specific to a particular binding. The semantics
of such element information items are defined by the specification for those element information items.
Such specifications are expected to annotate the Binding component with additional properties and specify
the mapping between those properties and the XML representation.

2.9.3 Mapping Binding’s XML Representation to Component Properties

The mapping between the properties of the Binding component (see 2.9.1 The Binding Component
[p.47]) and the XML Representation of the binding element information item (see 2.9.2 XML
Representation of Binding Component [p.48]) is as described in Table 2-10 [p.50] .

50

2.9 Binding

Table 2-10. Mapping between Binding Component Properties and XML Representation

Property Mapping

{name} The actual value of the name attribute information item

{target
namespace}

The actual value of the targetNamespace attribute information item of the
[parent] definitions element information item.

{interface}
The Interface component resolved to by the actual value of the interface attribute
information item, if any.

{type} The actual value of the type attribute information item.

{faults}
The set of Binding Fault components corresponding to the fault element
information items in [children], if any.

{operations}
The set of Binding Operation components corresponding to the operation element
information items in [children], if any.

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element
information items in [children], if any.

2.10 Binding Fault

2.10.1 The Binding Fault Component

A Binding Fault component describes a concrete binding of a particular fault within an interface to a
particular concrete message format. A particular fault of an interface is uniquely identified by the target
namespace of the interface and the name of the fault within that interface.

Note that the fault does not occur by itself - it occurs as part of a message exchange as defined by an
Interface Operation component (and its binding counterpart the Binding Operation component). Thus, the
fault binding information specified in a Binding Fault component describes how faults that occur within a
message exchange of an operation will be formatted.

The properties of the Binding Fault component are as follows:

{fault reference} REQUIRED. An Interface Fault component in the {faults} property of the Interface
component identified by the {interface} property of the parent Binding component. This is the
Interface Fault component for which binding information is being specified.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

51

2.10 Binding Fault

For each Binding Fault component in the {faults} property of a Binding component, the {fault reference}
property MUST be unique. That is, one cannot define multiple bindings for the same fault within a given
Binding component.

2.10.2 XML Representation of Binding Fault Component

<definitions>
 <binding>
 <fault
 ref="xs:QName" >
 <documentation />?
 [<feature /> | <property />]*
 </fault>
 </binding>
</definitions>

The XML representation for a Binding Fault component is an element information item with the following
Infoset properties:

A [local name] of fault

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.10.2.1 ref attribute
information item with fault [owner] [p.53] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41]

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44]

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl". Such element information items are considered to be
binding fault extension elements as described below (see 2.10.2.2 Binding Fault extension
elements [p.53]).

52

2.10 Binding Fault

2.10.2.1 ref attribute information item with fault [owner]

The ref attribute information item has the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:QName.

2.10.2.2 Binding Fault extension elements

Binding Fault extension elements are used to provide information specific to a particular fault in a binding.
The semantics of such element information items are defined by the specification for those element
information items. Such specifications are expected to annotate the Binding Fault component with
additional properties and specify the mapping between those properties and the XML representation.

2.10.3 Mapping Binding Fault’s XML Representation to Component Properties

The mapping between the properties of the Binding Fault component (see 2.10.1 The Binding Fault
Component [p.51]) and the XML Representation of the fault element information item (see 2.10.2
XML Representation of Binding Fault Component [p.52]) is as described in Table 2-11 [p.53] .

Table 2-11. Mapping between Binding Fault Component Properties and XML Representation

Property Mapping

{fault
reference}

The actual value of the ref attribute information item.

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.11 Binding Operation

2.11.1 The Binding Operation Component

The Binding Operation component describes the concrete message format(s) and protocol interaction(s)
associated with a particular interface operation for a given endpoint. A particular operation of an interface
is uniquely identified by the target namespace of the interface and the name of the operation within that
interface.

The properties of the Binding Operation component are as follows:

53

2.11 Binding Operation

{operation reference} REQUIRED. An Interface Operation component in the {operations} property
of the Interface component identified by the {interface} property of the parent Binding component.
This is the Interface Operation component for which binding information is being specified.

{message references} OPTIONAL. A set of Binding Message Reference components

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

For each Binding Operation component in the {operations} property of a Binding component, the
{operation reference} property MUST be unique. That is, one cannot define multiple bindings for the
same operation within a given Binding component.

2.11.2 XML Representation of Binding Operation Component

<definitions>
 <binding>
 <operation
 ref="xs:QName" >
 <documentation />?
 [<input /> | <output /> | <feature /> | <property />]*
 </operation>
 </binding>
</definitions>

The XML representation for a Binding Operation component is an element information item with the
following Infoset properties:

A [local name] of operation

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.11.2.1 ref attribute
information item with operation [owner] [p.55] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information items amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more input element information items (see 2.12 Binding Message Reference
[p.56])

54

2.11 Binding Operation

Zero or more output element information items (see 2.12 Binding Message Reference
[p.56])

Zero or more feature element information items (see 2.7.2 XML Representation of
Feature Component [p.41])

Zero or more property element information items (see 2.7.2 XML Representation of
Feature Component [p.41])

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl". Such element information items are considered to be
binding operation extension elements as described below (see 2.11.2.2 Binding Operation
extension elements [p.55]).

2.11.2.1 ref attribute information item with operation [owner]

The ref attribute information item has the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:QName.

2.11.2.2 Binding Operation extension elements

Binding Operation extension elements are used to provide information specific to a particular operation in
a binding. The semantics of such element information items are defined by the specification for those
element information items. Such specifications are expected to annotate the Binding Operation component
with additional properties and specify the mapping between those properties and the XML representation.

2.11.3 Mapping Binding Operation’s XML Representation to Component Properties

The mapping between the properties of the Binding Operation component (see 2.11.1 The Binding
Operation Component [p.53]) and the XML Representation of the operation element information
item (see 2.11.2 XML Representation of Binding Operation Component [p.54]) is as described in
Table 2-12 [p.55] .

55

2.11 Binding Operation

Table 2-12. Mapping between Binding Operation Component Properties and XML Representation

Property Mapping

{operation
reference}

The actual value of the ref attribute information item.

{messages
references}

The set of Binding Message Reference components corresponding to the input and
output element information items in [children], if any.

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element
information items in [children], if any.

2.12 Binding Message Reference

2.12.1 The Binding Message Reference Component

A Binding Message Reference component describes a concrete binding of a particular message
participating in an operation to a particular concrete message format.

The properties of the Binding Message Reference component are as follows:

{message label} OPTIONAL. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] . The
value of this property identifies the role that the message for which binding details are being specified
plays in the {message exchange pattern} of the Interface Operation component being bound by the
containing Binding Operation component.

{direction} REQUIRED. A wsdls:Token with one of the values in or out indicating whether the
message is coming to the service or going from the service, respectively. The direction MUST be the
same as the direction of the message identified by the {message label} property in the {message
exchange pattern} of the Interface Operation component being bound by the containing Binding
Operation component.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

For each Binding Message Reference component in the {message references} property of a Binding
Operation component, the {message label} property MUST be unique. That is, the same message cannot
be bound twice within the same operation.

56

2.12 Binding Message Reference

2.12.2 XML Representation of Binding Message Reference Component

<definitions>
 <binding>
 <operation>
 <input
 messageLabel="xs:NCName"? >
 <documentation />?
 [<feature /> | <property />]*
 </input>
 <output
 messageLabel="xs:NCName"? >
 <documentation />?
 [<feature /> | <property />]*
 </output>
 </operation>
 </binding>
</definitions>

The XML representation for a Binding Message Reference component is an element information item with
the following Infoset properties:

A [local name] of input or output .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

One or more attribute information items amongst its [attributes] as follows:

An OPTIONAL messageLabel attribute information item as described below in 2.12.2.1
messageLabel attribute information item with input or output [owner] [p.58] .

If the {message exchange pattern} of the Interface Operation component being bound has only
one message with a given value for {direction}, then the messageLabel attribute information
item is optional for the XML representation of the Binding Message Reference component with
that {direction}.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41]

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44]

57

2.12 Binding Message Reference

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl". Such element information items are considered to be
binding message reference extension elements as described below (see 2.12.2.2 Binding
Message Reference extension elements [p.58]).

2.12.2.1 messageLabel attribute information item with input or output [owner]

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel .

A [namespace name] which has no value.

The type of the messageLabel attribute information item is xs:NCName.

2.12.2.2 Binding Message Reference extension elements

Binding Message Reference extension elements are used to provide information specific to a particular
message in an operation. The semantics of such element information items are defined by the specification
for those element information items. Such specifications are expected to annotate the Binding Message
Reference component with additional properties and specify the mapping between those properties and the
XML representation.

2.12.3 Mapping Binding Message Reference’s XML Representation to Component
Properties

The mapping between the properties of the Binding Message Reference component (see 2.12.1 The
Binding Message Reference Component [p.56]) and the XML Representation of the binding element
information item (see 2.12.2 XML Representation of Binding Message Reference Component [p.57])
is as described in Table 2-13 [p.58] .

58

2.12 Binding Message Reference

Table 2-13. Mapping between Binding Message Reference Component Properties and XML
Representation

Property Mapping

{message
label}

The actual value of the messageLabel attribute information item if any; otherwise the
{message label} property of the message with same {direction} from the {message
exchange pattern} of the Interface Operation component being bound, provided there is
exactly one such message; otherwise empty.

{direction}
If the [local name] of the element information item is input then "in", else if the [local
name] of the element information item is output then "out".

{features}
The set of Feature components corresponding to the feature element information items
in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.13 Service

2.13.1 The Service Component

A Service component describes a set of endpoints (see 2.14 Endpoint [p.62]) at which a particular
deployed implementation of the service is provided. The endpoints thus are in effect alternate places at
which the service is provided.

Services are named constructs and can be referred to by QName (see 2.18 QName resolution [p.68]).

The properties of the Service component are as follows:

{name} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] .

{target namespace} REQUIRED. A wsdls:anyURI as defined in 2.15.4 anyURI Type [p.66] .

{interface} REQUIRED. An Interface component.

{endpoints} REQUIRED. A non-empty set of Endpoint components.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

For each Service component in the {services} property of a definitions container, the combination of
{name} and {target namespace} properties MUST be unique.

59

2.13 Service

2.13.2 XML Representation of Service Component

<definitions>
 <service
 name="xs:NCName"
 interface="xs:QName" >
 <documentation />?
 <endpoint />+
 [<feature /> | <property />]*
 </service>
</definitions>

The XML representation for a Service component is an element information item with the following
Infoset properties:

A [local name] of service

A [namespace name] of "http://www.w3.org/2004/08/wsdl"

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.13.2.1 name attribute
information item with service [owner] [p.61] .

A REQUIRED interface attribute information item as described below in 2.13.2.2 interface
attribute information item with service [owner] [p.61] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

One or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. One or more element information items from among the following, in any order:

One or more endpoint element information items (see 2.14.2 XML Representation of
Endpoint Component [p.63]

Zero or more feature and/or property element information items (see 2.7.2 XML
Representation of Feature Component [p.41] and 2.8.2 XML Representation of
Property Component [p.44] , respectively).

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

Note that the XML Schema [XML Schema: Structures [p.85]] type of the element information item
service as defined in the WSDL schema MAY be used as the basis for defining new elements which
can be used as service references in message exchanges. To enable such reuse, the WSDL schema defines
the attribute information item name as optional in the type of the element information item service ,

60

2.13 Service

while it is REQUIRED for the element information item service as indicated above.

Note:

See the primer [WSDL 2.0 Primer [p.87]] for more information and examples.

2.13.2.1 name attribute information item with service [owner]

The name attribute information item together with the targetNamespace attribute information item
of the definitions element information item forms the QName of the service.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.13.2.2 interface attribute information item with service [owner]

The interface attribute information item identifies the interface that the service is an instance of.

The interface attribute information item has the following Infoset properties:

A [local name] of interface

A [namespace name] which has no value

The type of the interface attribute information item is xs:QName..

2.13.3 Mapping Service’s XML Representation to Component Properties

The mapping between the properties of the Service component (see 2.13.1 The Service Component
[p.59]) and the XML Representation of the service element information item (see 2.13.2 XML
Representation of Service Component [p.60]) is as described in Table 2-14 [p.61] .

61

2.13 Service

Table 2-14. Mapping between Service Component Properties and XML Representation

Property Mapping

{name} The actual value of the name attribute information item

{target
namespace}

The actual value of the targetNamespace attribute information item of the
[parent] definitions element information item

{interface}
The Interface component resolved to by the actual value of the interface attribute
information item.

{endpoints}
The Endpoint components corresponding to the endpoint element information
items in [children] if any.

{features}
The set of Feature components corresponding to the feature element information
items in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.14 Endpoint

2.14.1 The Endpoint Component

An Endpoint component defines the particulars of a specific endpoint at which a given service is available.

Endpoint components are local to a given Service component; they cannot be referred to by QName.

The properties of the Endpoint component are as follows:

{name} REQUIRED. A wsdls:NCName as defined by 2.15.3 NCName Type [p.66] .

{binding} REQUIRED. A named Binding component.

{address} OPTIONAL. A wsdls:anyURI as defined by 2.15.4 anyURI Type [p.66] . This URI
MUST be absolute as defined by [IETF RFC 2396 [p.84]]. If present, the value of this attribute
represents the network address at which the service indicated by the parent Service component’s
{interface} property is offered via the binding referred to by the {binding} property.

{features} OPTIONAL. A set of Feature components.

{properties} OPTIONAL. A set of Property components.

For each Endpoint component in the {endpoints} property of a Service component, the {binding} property
(see 2.14.1 The Endpoint Component [p.62]) MUST either be a Binding component with an unspecified
{interface} property (see 2.9.1 The Binding Component [p.47] or a Binding component with an
{interface} property equal to the {interface} property of the Service component.

62

2.14 Endpoint

For each Endpoint component in the {endpoints} property of a Service component, the {name} property
MUST be unique.

2.14.2 XML Representation of Endpoint Component

<definitions>
 <service>
 <endpoint
 name="xs:NCName"
 binding="xs:QName"
 address="xs:anyURI"? >
 <documentation />?
 [<feature /> | <property />]*
 </endpoint>
 </service>+
</definitions>

The XML representation for a Endpoint component is an element information item with the following
Infoset properties:

A [local name] of endpoint .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.14.2.1 name attribute
information item with endpoint [owner] [p.64] .

A REQUIRED binding attribute information item as described below in 2.14.2.2 binding
attribute information item with endpoint [owner] [p.64] .

An OPTIONAL address attribute information item as described below in 2.14.2.3 address
attribute information item with endpoint [owner] [p.64] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. An OPTIONAL documentation element information item (see 5. Documentation [p.77]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.41]

Zero or more property element information items 2.8.2 XML Representation of
Property Component [p.44]

63

2.14 Endpoint

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl". Such element information items are considered to be
endpoint extension elements as described below (see 2.14.2.4 Endpoint extension
elements [p.64]).

2.14.2.1 name attribute information item with endpoint [owner]

The name attribute information item together with the targetNamespace attribute information item
of the definitions element information item forms the QName of the endpoint.

The name attribute information item has the following Infoset properties:

A [local name] of name .

A [namespace name] which has no value.

The type of the name attribute information item is xs:NCName.

2.14.2.2 binding attribute information item with endpoint [owner]

The binding attribute information item refers, by QName, to a Binding component

The binding attribute information item has the following Infoset properties:

A [local name] of binding

A [namespace name] which has no value

The type of the binding attribute information item is xs:QName.

2.14.2.3 address attribute information item with endpoint [owner]

The address attribute information item specifies the address of the endpoint.

The address attribute information item has the following Infoset properties:

A [local name] of address

A [namespace name] which has no value

The type of the address attribute information item is xs:anyURI.

2.14.2.4 Endpoint extension elements

Endpoint extension elements are used to provide information specific to a particular endpoint in a server.
The semantics of such element information items are defined by the specification for those element
information items. Such specifications are expected to annotate the Endpoint component with additional
properties and specify the mapping between those properties and the XML representation.

64

2.14 Endpoint

2.14.3 Mapping Endpoint’s XML Representation to Component Properties

The mapping between the properties of the Endpoint component (see 2.14.1 The Endpoint Component
[p.62]) and the XML Representation of the endpoint element information item (see 2.14.2 XML
Representation of Endpoint Component [p.63]) is as described in Table 2-15 [p.65] .

Table 2-15. Mapping between Endpoint Component Properties and XML Representation

Property Mapping

{name} The actual value of the name attribute information item.

{binding}
The Binding component resolved to by the actual value of the binding attribute
information item.

{address} The actual value of the address attribute information item if present, otherwise empty.

{features}
The set of Features components corresponding to the feature element information items
in [children], if any.

{properties}
The set of Property components corresponding to the property element information
items in [children], if any.

2.15 Definition of the Simple Types Used in the Component Model

The component model uses a small set of predefined simple types, such as boolean, string, token. In order
to avoid introducing a dependency on any particular serialization of the component model, this
specification provides its own definition of those types, patterned after [XML Schema: Datatypes [p.85]]
but independent of it. This allows processors to accept descriptions serialized using a mechanism that is
not compatible with [XML Schema: Datatypes [p.85]], such as XML 1.1 [XML 1.1 [p.87]].

All types defined in this section are formally assigned to the
"http://www.w3.org/2004/08/wsdl-simple-types" namespace. All references to them in this specification
are made via qualified names that use the wsdls prefix. It should be noted though that there is no schema
(in the sense of [XML Schema: Structures [p.85]]) for that namespace, because the types defined here go
beyond the capabilities of XML Schema to describe.

The simple types defined in this specification are:

wsdls:string

wsdls:Token

wsdls:NCName

wsdls:anyURI

65

2.15 Definition of the Simple Types Used in the Component Model

wsdls:QName

wsdls:boolean

wsdls:int

All types listed above are such that their value spaces are a superset of the value space of the type with the
same name defined by XML Schema [XML Schema: Datatypes [p.85]]. In particular, the value space of
the wsdls:string type is a strict superset of the value space of xsd:string, as shown by the one-character
string consisting exclusively of the #x0 character.

2.15.1 string Type

The value space of the wsdls:string type consists of finite-length sequences of characters in the range
#x0-#x10FFFF inclusive, where a character is an atomic unit of text as specified by ISO/IEC 10646
[ISO/IEC 10646 [p.86]] and Unicode [Unicode [p.86]].

2.15.2 Token Type

The value space of the wsdls:Token type is the subset of the value space of the wsdls:string type consisting
of strings that do not contain the line feed (#xA), tab (#x9) characters, that have no leading or trailing
spaces (#x20) and that have no internal sequences of two or more spaces.

2.15.3 NCName Type

The value space of the wsdls:NCName type is the subset of the value space of the wsdls:Token type
consisting of tokens that do not contain the space (#x20) and ’:’ characters.

2.15.4 anyURI Type

The value space of the wsdls:anyURI type consists of all Uniform Resource Identifiers (URI) as defined
by [IETF RFC 2396 [p.84]] and amended by [IETF RFC 2732 [p.85]].

2.15.5 QName Type

The value space of the wsdls:QName type consists of the set of 2-tuples whose first component is of type
wsdls:anyURI and whose second component is of type wsdls:NCName.

2.15.6 boolean Type

The value space of the wsdls:boolean type consists of the two distinct values true and false.

2.15.7 int Type

The value space of the wsdls:int type consists of the infinite set {...,-2,-1,0,1,2,...} representing the
standard mathematical concept of the integer numbers.

66

2.15 Definition of the Simple Types Used in the Component Model

2.16 Equivalence of Components

Two component instances of the same type are considered equivalent if, for each property of the first
component, there is a corresponding property with an equivalent value on the second component, and the
second component has no additional properties.

Instances of properties of the same type are considered equivalent if their values are equivalent.

For values of a simple type (see 2.15 Definition of the Simple Types Used in the Component
Model [p.65]) this means that they contain the same values. For instance, two string values are
equivalent if they contain the same sequence of Unicode characters, as described in [Character
Model for the WWW [p.86]]

Values which are references to other components are considered equivalent when they refer to
equivalent components (as determined above).

List-based values are considered equivalent if they have the same length and their elements at
corresponding positions are equivalent.

Finally, set-based values are considered equivalent if they contain corresponding equivalent values,
without regard to order.

Extension properties which are not string values, sets of strings or references MUST describe their values’
equivalence rules.

Because different top-level components (e.g., Interface, Binding and Service) are required to have
different names, it is possible to determine whether two top-level components of a given type are
equivalent by examining their {name} and {target namespace} properties.

2.17 Symbol Spaces

This specification defines three symbol spaces, one for each top-level component type (Interface, Binding
and Service).

Within a symbol space, all qualified names (that is, the combination of {name} and {target namespace}
properties) are unique. Between symbol spaces, the combination of these two properties need not be
unique. Thus it is perfectly coherent to have, for example, a binding and an interface that have the same
name.

When XML Schema is being used as one of the type systems for a WSDL description, then six other
symbol spaces also exist, one for each of: global element declarations, global attribute declarations, named
model groups, named attribute groups, type definitions and key constraints, as defined by [XML Schema:
Structures [p.85]]. Other type systems may define additional symbol spaces.

67

2.16 Equivalence of Components

2.18 QName resolution

In its serialized form WSDL makes significant use of references between components. Such references are
made using the Qualified Name, or QName, of the component being referred to. QNames are a tuple,
consisting of two parts; a namespace name and a local name. For example, in the case of an Interface
component, the namespace name is represented by the {namespace name} property and the local name is
represented by the {name} property.

QName references are resolved by looking in the appropriate property of the Definitions component. For
example, to resolve a QName of an interface (as referred to by the interface attribute information item
on a binding), the {interfaces} property of the Definitions component would be inspected.

If the appropriate property of the Definitions component does not contain a component with the required
QName then the reference is a broken reference. It is an error for a Definitions component to have such
broken references.

2.19 Comparing URIs

This specification uses absolute URIs to identify several components (for example, features and
properties) and components characteristics (for example, operation message exchange patterns and styles).
When such absolute URIs are being compared to determine equivalence (see 2.16 Equivalence of
Components [p.67]) the URIs MUST be compared character-by-character as indicated in [TAG URI
FINDING [p.86]].

3. Types
<definitions>
 <types>
 <documentation />?
 [extension elements]*
 </types>
</definitions>

The content of messages and faults may be constrained using type system components. These constraints
are based upon a specific data model, and expressed using a particular schema language.

Although a variety of data models can be accommodated (through WSDL extensions), this specification
only defines a means of expressing constraints based upon the XML Infoset [XML Information Set [p.85]
]. Furthermore, although a number of alternate schema languages can be used to constrain the XML
Infoset (as long as they support the semantics of either embedding or importing schema), this specification
only defines the use of XML Schema [XML Schema: Structures [p.85]], [XML Schema: Datatypes [p.85]
].

Specifically, the {element declarations} and {type definitions} properties of the Definitions component
are collections of imported and embedded schema components that describe Infoset element information
items.

68

3. Types

When extensions are used to enable the use of a non-Infoset data model, or a non-Schema constraint
language, the wsdl:required attribute information item MAY be used to require support for that extension.

Note:

Support for the W3C XML Schema Description Language [XML Schema: Structures [p.85]],[XML
Schema: Datatypes [p.85]] is required of all processors.

The schema components contained in the {element declarations} property of 2.1.1 The Definitions
Component [p.11] provide the type system used for Message Reference and Interface Fault components.
Message Reference components indicate their structure and content by using the standard attribute
information items element , or for alternate schema languages in which these concepts do not map well,
by using alternative attribute information item extensions. Interface Fault components behave similarly.
Such extensions should define how they reference type system components. Such type system components
MAY appear in additional collection properties on 2.1.1 The Definitions Component [p.11] .

The schema components contained in the {type definitions} property of 2.1.1 The Definitions
Component [p.11] provide the type system used for constraining the values of properties described by
Property components. Extensions in the form of attribute information items can be used to refer to
constraints (type definitions or analogous constructs) described using other schema languages or type
systems. Such components MAY appear in additional collection properties on 2.1.1 The Definitions
Component [p.11] .

The types element information item encloses data type definitions, based upon the XML Infoset, used to
define messages and has the following Infoset properties:

A [local name] of types .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

Zero or more namespace qualified attribute information items in its [attributes] property. The
[namespace name] property of such attribute information items MUST NOT be
http://www.w3.org/2004/08/wsdl

Zero or more element information items amongst its [children] as follows:

An OPTIONAL documentation element information item (see 5. Documentation [p.77]) in
its [children] property.

Zero or more element information items from among the following, in any order:

xs:import element information items

xs:schema element information items

Other namespace qualified element information items whose namespace is NOT
http://www.w3.org/2004/08/wsdl

69

3. Types

3.1 Using W3C XML Schema Description Language

XML Schema MAY be used as the schema language via import or embedding. Each method defines a
different element information item for use within a types element information item. All processors
MUST support XML Schema type definitions.

A WSDL description MUST NOT refer to XML Schema components in a given namespace unless an
xs:import and/or xs:schema statement for that namespace is present. That is, using the
xs:import and/or xs:schema constructs is a necessary condition for making XML Schema
components available to a WSDL description.

3.1.1 Importing XML Schema

Importing an XML Schema uses the syntax and semantics of the xs:import mechanism defined by
XML Schema [XML Schema: Structures [p.85]],[XML Schema: Datatypes [p.85]], with some additional
restrictions. The schema components defined in the imported schema are available for reference by
QName (see 2.18 QName resolution [p.68]). Note that only components defined in the schema itself and
components included by it via xs:include are available to WSDL. Specifically, components that the
schema imports via xs:import are NOT available to WSDL.

A child element information item of the types element information item is defined with the Infoset
properties as follows:

A [local name] of "import".

A [namespace name] of "http://www.w3.org/2001/XMLSchema".

One or two attribute information items as follows:

A REQUIRED namespace attribute information item as described below.

An OPTIONAL schemaLocation attribute information item as described below.

3.1.1.1 namespace attribute information item

The namespace attribute information item defines the namespace of the element declarations and type
definitions imported from the referenced schema. The referenced schema MUST contain a
targetNamespace attribute information item on its xs:schema element information item and the
values of these two attribute information items MUST be identical. It is an error to import a schema that
does not have a targetNamespace attribute information item on its xs:schema element information
item. Such schemas must first be included (using xs:include) in a schema that contains a
targetNamespace attribute information item on its xs:schema element information item, which can
then be either imported or inlined in the WSDL document.

The namespace attribute information item has the following Infoset properties:

70

3.1 Using W3C XML Schema Description Language

A [local name] of namespace

A [namespace name] which has no value.

The type of the namespace attribute information item is xs:anyURI.

3.1.1.2 schemaLocation attribute information item

The schemaLocation attribute information item, if present, provides a hint to the processor as to
where the schema may be located. Caching and cataloging technologies may provide better information
than this hint. The schemaLocation attribute information item has the following infoset properties:

A [local name] of schemaLocation.

A [namespace name] which has no value.

The type of the schemaLocation attribute information item is xs:anyURI.

3.1.2 Embedding XML Schema

Embedding an XML schema uses the existing top-level xs:schema element information item defined by
XML Schema [XML Schema: Structures [p.85]]. It may be viewed as simply cutting and pasting an
existing, stand-alone schema, to a location inside the types element information item.

The schema components defined in the embedded schema are available to WSDL for reference by QName
(see 2.18 QName resolution [p.68]). Note that only components defined in the schema itself and
components included by it via xs:include are available to WSDL. Specifically components that the
schema imports via xs:import are NOT available to WSDL.

Similarly, components defined in an embedded XML schema are NOT automatically made available to a
WSDL description that imported (using wsdl:import) the description that embeds the schema (see 4.2
Importing Descriptions [p.75] for more details). For this reason, it is recommended that XML schema
documents intended to be shared across several WSDL descriptions be placed in separate documents and
imported using xs:import , rather than embedded inside a WSDL document.

Inside an embedded XML schema, the xs:import and xs:include element information items MAY
be used to refer to other XML schemas embedded in the same WSDL description, provided that an
appropriate value is specified for their schemaLocation attribute information items. The semantics of
such element information items are governed solely by the XML Schema specification [XML Schema:
Structures [p.85]].

The xs:schema element information item has the following Infoset properties:

A [local name] of schema.

A [namespace name] of "http://www.w3.org/2001/XMLSchema".

71

3.1 Using W3C XML Schema Description Language

A REQUIRED targetNamespace attribute information item, amongst its [attributes] as described
below.

Additional OPTIONAL attribute information items as specified for the xs:schema element
information item by the XML Schema specification.

Zero or more child element information items as specified for the xs:schema element information
item by the XML Schema specification.

3.1.2.1 targetNamespace attribute information item

The targetNamespace attribute information item defines the namespace of the element declarations
and type definitions embedded in its [owner] xs:schema element information item. WSDL modifies the
XML Schema definition of the xs:schema element information item to make this attribute information
item required. The targetNamespace attribute information item has the following infoset properties:

A [local name] of targetNamespace.

A [namespace name] which has no value.

The type of the targetNamespace attribute information item is xs:anyURI.

3.1.3 References to Element Declarations and Type Definitions

Whether embedded or imported, the element declarations present in a schema may be referenced from a
Message Reference or Interface Fault component. Similarly, regardless of whether they are embedded or
imported, the type definitions present in a schema may be referenced from a Property component.

A named, global xs:element declaration may be referenced from the element attribute information
item of an input , output or fault element information item. The QName is constructed from the
targetNamespace of the schema and the value of the name attribute information item of the
xs:element element information item. An element attribute information item MUST NOT refer to a
global xs:simpleType or xs:complexType definition.

A named, global xs:simpleType or xs:complexType declaration may be referenced from the
constraint attribute information item of property element information item. The QName is
constructed from the targetNamespace of the schema and the value of the name attribute information
item of the xs:simpleType or xs:complexType element information item. A constraint
attribute information item MUST NOT refer to a global xs:element definition.

3.2 Using Other Schema Languages

Since it is unreasonable to expect that a single schema language can be used to describe all possible
Message Reference, Fault and Property component contents and their constraints, WSDL allows alternate
schema languages to be specified via extensibility elements. An extensibility element information item
MAY appear under the types element information item to identify the schema language employed, and
to locate the schema instance defining the grammar for Message Reference and Interface Fault
components or the constraint for Property components. Depending upon the schema language used, an

72

3.2 Using Other Schema Languages

element information item MAY be defined to allow embedding, if and only if the schema language can be
expressed in XML.

A specification of extension syntax for an alternative schema language MUST include the declaration of
an element information item, intended to appear as a child of the wsdl:types element information item,
which references, names, and locates the schema instance (an "import" element information item). The
extension specification SHOULD, if necessary, define additional properties of 2.1.1 The Definitions
Component [p.11] (and extensibility attributes) to hold the components of the referenced type system. It
is expected that additional extensibility attributes for Message Reference, Interface Fault and Property
components will also be defined, along with a mechanism for resolving the values of those attributes to a
particular imported type system component.

See E. Examples of Specifications of Extension Elements for Alternative Schema Language Support.
[p.93] for examples of using other schema languages. These examples reuse the {element declarations}
property of 2.1.1 The Definitions Component [p.11] and the element attribute information items of the
wsdl:input , wsdl:output and wsdl:fault element information items.

4. Modularizing WSDL descriptions
This specification provides two mechanisms, described in this section, for modularizing WSDL
descriptions. These mechanisms help to make WSDL descriptions clearer by allowing separation of the
various components of a description. Such separation could be performed according to the level of
abstraction of a given set of components, or according to the namespace affiliation required of a given set
of components or according to some other grouping such as application applicability.

Both mechanisms work at the level of WSDL components and NOT at the level of XML Information Sets
or XML 1.0 serializations.

4.1 Including Descriptions
<definitions>
 <include
 location="xs:anyURI" >
 <documentation />?
 </include>
</definitions>

The WSDL include element information item allows for the separation of different components of a
service definition, belonging the same target namespace, into independent WSDL documents which can be
merged as needed.

The WSDL include element information item is modeled after the XML Schema include element
information item (see [XML Schema: Structures [p.85]], section 4.2.3 "References to schema components
in the same namespace"). Specifically, it can be used to include components from WSDL descriptions that
share a target namespace with the including description. Components in directly included descriptions
become part of the component model of the including description. Directly included means that
component inclusion is not transitive; components included by one of the included documents are not
available to the original including document unless the are included directly by that document. The

73

4. Modularizing WSDL descriptions

included components can be referenced by QName. Note that because all WSDL descriptions have a
target namespace, no-namespace includes (sometimes known as "chameleon includes") never occur in
WSDL.

A mutual include is direct inclusion by one WSDL document of another WSDL document which includes
the first. A circular include achieves the same effect with greater indirection (WSDL A includes WSDL B
includes WSDL A, for instance). Multiple inclusion of a single WSDL document resolves to a single set of
components. Mutual, multiple, and circular includes are explicitly permitted, and do not represent multiple
redefinitions of the same components. Multiple inclusion of a single WSDL document has the same
meaning as including it only once. Processors are encouraged to keep track of the source of component
definitions, so that multiple, mutual, and circular includes do not require establishing identity on a
component-by-component basis.

The include element information item has:

A [local name] of include .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED location attribute information item as described below in 4.1.1 location
attribute information item with include [owner] [p.74] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], as follows:

An optional documentation element information item (see 5. Documentation [p.77]).

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

4.1.1 location attribute information item with include [owner]

The location attribute information item has the following Infoset properties:

A [local name] of location .

A [namespace name] which has no value.

A location attribute information item is of type xs:anyURI . Its actual value is the location of some
information about the namespace identified by the targetNamespace attribute information item of the
containing definitions element information item.

74

4.1 Including Descriptions

If the URI indicated by location is not dereferenceable or does not resolve to a WSDL document then
the processor MUST fail immediately. That is, include elements MUST be processed immediately by
WSDL processors.

The actual value of the targetNamespace attribute information item of the included WSDL document
MUST match the actual value of the targetNamespace attribute information item of the
definitions element information item which is the [parent] of the include element information
item.

4.2 Importing Descriptions
<definitions>
 <import
 namespace="xs:anyURI"
 location="xs:anyURI"? >
 <documentation />?
 </import>
</definitions>

The WSDL import element information item, like the include element information item (see 4.1
Including Descriptions [p.73]) also allows for the separation of the different components of a WSDL
description into independent descriptions, but in this case with different target namespaces, which can be
imported as needed. This technique helps writing clearer WSDL descriptions by separating the definitions
according to their level of abstraction, and maximizes reusability.

The WSDL import element information item is modeled after the XML Schema import element
information item (see [XML Schema: Structures [p.85]], section 4.2.3 "References to schema components
across namespaces"). Specifically, it can be used to import components from WSDL descriptions that do
not share a target namespace with the importing document. Components in directly imported descriptions
are part of the component model of the importing description. Directly imported means that component
importation is not transitive; components imported by one of the imported documents are not available to
the original importing document unless the are imported directly by that document. The imported
components can be referenced by QName.

Using the import construct is a necessary condition for making components from another namespace
available to a WSDL description. That is, a WSDL description MUST NOT refer to components in a
namespace other than the target namespace unless an import statement for that namespace is present. The
same considerations apply to schemas embedded in an imported WSDL description (see 3.1.2 Embedding
XML Schema [p.71]). More explicitly, components defined by an XML schema document embedded
inside an imported WSDL description are NOT made available to the importer unless the latter contains an
explicit xs:import statement to that purpose.

This specification DOES NOT preclude repeating the import element information item for the same
value of the namespace attribute information item as long as they provide different values for the
location attribute information item. Repeating the import element information item for the same
namespace value MAY be used as a way to provide alternate locations to find information about a given
namespace.

75

4.2 Importing Descriptions

Furthermore, this specification DOES NOT require the location attribute information item to be
dereferenceable. If it is not dereferenceable then no information about the imported namespace is provided
by that import element information item. It is possible that such lack of information results in QNames
in other parts of a WSDL Definitions component to become broken references (see 2.18 QName
resolution [p.68]). Such broken references are not errors of the imports element information item but
rather QName resolution errors which must be detected as described in 2.18 QName resolution [p.68] .

The import element information item has the following Infoset properties:

A [local name] of import .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED namespace attribute information item as described below in 4.2.1 namespace
attribute information item [p.76] .

An OPTIONAL location attribute information item as described below in 4.2.2 location
attribute information item with import [owner] [p.77] .

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/08/wsdl".

Zero or more element information item amongst its [children], as follows:

An optional documentation element information item (see 5. Documentation [p.77]).

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/08/wsdl".

4.2.1 namespace attribute information item

The namespace attribute information item has the following Infoset properties:

A [local name] of namespace .

A [namespace name] which has no value.

The namespace attribute information item is of type xs:anyURI . Its actual value indicates that the
containing WSDL document MAY contain qualified references to WSDL definitions in that namespace
(via one or more prefixes declared with namespace declarations in the normal way). This value MUST
NOT match the actual value of the enclosing WSDL document targetNamespace attribute
information item. If the import statement results in the import of a WSDL document then the actual value
of the namespace attribute information item MUST be identical to the actual value of the imported
WSDL document’s targetNamespace attribute information item.

76

4.2 Importing Descriptions

4.2.2 location attribute information item with import [owner]

The location attribute information item has the following Infoset properties:

A [local name] of location .

A [namespace name] which has no value.

The location attribute information item is of type xs:anyURI . Its actual value is the location of
some information about the namespace identified by the namespace attribute information item.

The location attribute information item is optional. This allows WSDL components to be constructed
from information other than serialized XML 1.0. It also allows the development of WSDL processors that
have a priori (i.e., built-in) knowledge of certain namespaces.

5. Documentation
<documentation>
 [extension elements]*
</documentation>

WSDL uses the optional documentation element information item as a container for human readable
and/or machine processable documentation. The content of the element information item is arbitrary
character information items and element information items ("mixed" content in XML Schema[XML
Schema: Structures [p.85]]). The documentation element information item is allowed inside any
WSDL element information item.

The documentation element information item has:

A [local name] of documentation .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

Zero or more attribute information items in its [attributes] property.

Zero or more child element information items in its [children] property.

Zero or more character information items in its [children] property.

6. Language Extensibility
In addition to extensibility implied by the Feature and Property components described above, the schema
for WSDL has a two-part extensibility model based on namespace-qualified elements and attributes. An
extension is identified by the qname consisting of its namespace URI and its element name. The meaning
of an extension SHOULD be defined (directly or indirectly) in a document that is available at its
namespace URI.

77

5. Documentation

6.1 Element based Extensibility

WSDL allows extensions to be defined in terms of element information items. Where indicated herein,
WSDL allows namespace-qualified element information items whose [namespace name] is NOT
"http://www.w3.org/2004/08/wsdl" to appear among the [children] of specific element information items
whose [namespace name] is "http://www.w3.org/2004/08/wsdl". Such element information items MAY be
used to annotate WSDL constructs such as interface, operation, etc.

It is expected that extensions will want to add to the existing properties of components in the component
model. The specification for an extension element information item should include definitions of any such
properties and the mapping between the XML representation of the extension and the properties in the
component model.

The WSDL schema also defines a base type for use by extensibility elements. Example 6-1 [p.78] shows
the type definition. The use of this type as a base type is optional. The element declarations which serve as
the heads of the defined substitution groups are all of type "xs:anyType".

Extensibility elements are commonly used to specify some technology-specific binding. They allow
innovation in the area of network and message protocols without having to revise the base WSDL
specification. WSDL recommends that specifications defining such protocols also define any necessary
WSDL extensions used to describe those protocols or formats.

Example 6-1. Base type for extensibility elements

<xs:complexType name=’ExtensibilityElement’ abstract=’true’ >
 <xs:attribute ref=’wsdl:required’ use=’optional’ />
</xs:complexType>

6.1.1 Mandatory extensions

Extension elements can be marked as mandatory by annotating them with a wsdl:required attribute
information item (see 6.1.2 required attribute information item [p.79]) with a value of "true". A
mandatory extension is an extension that MAY change the meaning of the element to which it is attached,
such that the meaning of that element is no longer governed by this specification. Instead, the meaning of
an element containing a mandatory extension is governed by the meaning of that extension. Thus, the
definition of the element’s meaning is delegated to the specification that defines the extension.

An extension that is NOT marked as mandatory MUST NOT invalidate the meaning of any part of the
WSDL document. Thus, a NON-mandatory extension merely provides additional description of
capabilities of the service. This specification does not provide a mechanism to mark extension attributes as
being required. Therefore, all extension attributes are NON-mandatory.

Note:

A mandatory extension is considered mandatory because it has the ability to change the meaning of the
element to which it is attached. Thus, the meaning of the element may not be fully understood without
understanding the attached extension. A NON-mandatory extension, on the other hand, can be safely
ignored without danger of misunderstanding the rest of the WSDL document.

78

6.1 Element based Extensibility

If a WSDL document declares an extension, Feature or Property as optional (i.e., NON-mandatory), then
the provider agent MUST NOT assume that the requester agent supports that extension, Feature or
Property, unless the provider agent knows (through some other means) that the requester agent has in fact
elected to engage and support that extension, Feature or Property.

On the other hand, a requester agent MAY engage an extension, Feature or Property that is declared as
optional in the WSDL document. Therefore, the provider agent MUST support every extension, Feature or
Property that is declared as optional in the WSDL document, in addition to supporting every extension,
Feature or Property that is declared as mandatory.

Note:

If finer-grain, direction-sensitive control of extensions, Features or Properties is desired, then such
extensions, Features or Properties may be designed in a direction-sensitive manner (from requester or from
provider) so that either direction may be separately marked required or optional. For example, instead of
defining a single extension that governs both directions, two extensions could be defined -- one for each
direction.

6.1.2 required attribute information item

WSDL provides a global attribute information item with the following Infoset properties:

A [local name] of required .

A [namespace name] of "http://www.w3.org/2004/08/wsdl".

A [specified] property with a value of "true".

The type of the required attribute information item is xs:boolean.

6.2 Attribute-based Extensibility

WSDL allows qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2004/08/wsdl" to appear on any element information item whose namespace name IS
"http://www.w3.org/2004/08/wsdl". Such attribute information items can be used to annotate WSDL
constructs such as interfaces, bindings, etc.

WSDL does not provide a mechanism for marking extension attribute information items as mandatory.

6.3 Extensibility Semantics

As indicated above, it is expected that the presence of extensibility elements and attributes will result in
additional properties appearing in the component model.

The presence of an optional extensibility element or attribute MAY therefore augment the semantics of a
WSDL document in ways that do not invalidate the existing semantics. However, the presence of a
mandatory extensibility element MAY alter the semantics of a WSDL document in ways that invalidate
the existing semantics.

79

6.2 Attribute-based Extensibility

Note:

Authors of extensibility elements should avoid altering the existing semantics in ways that are likely to
confuse users.

7. Locating WSDL Documents
As an XML vocabulary, WSDL documents or fragments or references to WSDL components (via
QNames) MAY appear within other XML documents. In such scenarios it could be necessary to provide
some hints on where additional WSDL information for a given namespace can be found in order to help
with QName resolution 2.18 QName resolution [p.68] .

This specification defines a global attribute, wsdlLocation in the namespace
"http://www.w3.org/2004/08/wsdl-instance" for this purpose (hereafter referred to as
"wsdli:wsdlLocation"). This global attribute MAY appear on any XML element which allows attributes
from other namespaces to occur. It MUST NOT appear on a wsdl:definitions element or any of its
children/descendants.

7.1 wsdli:wsdlLocation attribute information item

WSDL provides a global attribute information item with the following Infoset properties:

A [local name] of wsdlLocation .

A [namespace name] of "http://www.w3.org/2004/08/wsdl-instance".

The type of the wsdlLocation attribute information item is a list xs:anyURI. Its actual value MUST be
a list of pairs of URIs; where the first URI of a pair, which MUST be an absolute URI as defined in [IETF
RFC 2396 [p.84]], indicates a WSDL namespace name, and, the second a hint as to the location of a
WSDL document defining WSDL components for that namespace name. The second URI of a pair MAY
be absolute or relative.

8. Conformance

8.1 Document Conformance

An element information item whose namespace name is "http://www.w3.org/2004/08/wsdl" and whose
local part is definitions conforms to this specification if it conforms to the XML Schema for that
element as defined by this specification family and additionally adheres to all the constraints contained in
this specification.

Note that the WSDL language is defined in terms of the component model defined by this specification.
As such, it is explicitly NOT a conformance requirement to be able to process documents encoded in a
particular version of XML, in particular XML 1.1 [XML 1.1 [p.87]].

80

7. Locating WSDL Documents

8.2 XML Information Set Conformance

This specification conforms to the [XML Information Set [p.85]]. The following information items MUST
be present in the input infosets to enable correct processing of WSDL documents:

Document Information Items with children and base URI properties.

Element Information Items with namespace name, local name, children, attributes, base URI and
parent properties.

Attribute Information Items with namespace name, local name and normalized value properties.

Character Information Items with character code, element content whitespace and parent properties.

8.3 Processor Conformance

This section defines a class of conformant WSDL processors that are intended to act on behalf of a party
that wishes to make use of a Web service (i.e., the requester entity or requester agent), rather than the party
that implements the Web service (i.e., the provider entity or provider agent).

An extension element is said to be processed if the WSDL processor decides (through whatever means)
that its parent (an element information item in the "http://www.w3.org/2004/08/wsdl" namespace) will be
processed. Note that it is possible for WSDL processors to process only a subset of a given WSDL
document. For instance, a tool may wish to focus on interfaces and operations only, and ignore bindings.

A conformant WSDL processor MUST adhere to the following rules:

Except as noted below for mandatory extensions, a conformant WSDL processor MUST accept any
legal WSDL document as defined by this specification.

A conformant WSDL processor MUST fault if a portion of a WSDL document is illegal according to
this specification and the WSDL processor attempts to process that portion.

A conformant WSDL processor MUST support at least XML Schema as a type system language.

A conformant WSDL processor MUST fail if it processes an element containing a wsdl:include
statement having a URI that is not dereferenceable to a legal WSDL document.

If a mandatory extension (i.e., a mandatory element, feature or property) is processed, a conformant
WSDL processor MUST either agree to fully abide by all the rules and semantics signaled by that
extension, or immediately cease processing (fault). In particular, if the WSDL processor does not
recognize the extension, it MUST fault. If the WSDL processor recognizes the extension, and
determines that the extension in question is incompatible with any other aspect of the document
(including other required extensions), it MUST fault.

A conformant WSDL processor MAY safely ignore a NON-mandatory extension or feature that it
does not recognize or that it does not choose to implement.

81

8.2 XML Information Set Conformance

Note:

If a WSDL document declares an extension or feature as optional, then if that extension or feature
could apply to messages sent by the provider agent as well, then the provider agent MUST NOT send any
messages that requires the requester agent to support that extension or feature. The requestor, on the othe
hand, MAY engage that extension or feature in messages it sends to the provider.

If finer-grain control of extensions and features is desired then such extensions and features must be
designed in a direction (from requestor or from provider) sensitive manner so that any direction may be
marked required or optional.

If a wsdl:definitions element is processed, a conformant WSDL processor MUST also process the
wsdl:import, wsdl:include, and wsdl:types children of that element.

If a wsdl:interface element is processed, a conformant WSDL processor MUST also process the
wsdl:operation, wsdl:fault, wsdl:feature, and wsdl:property children of that element.

If a wsdl:binding element is processed, a conformant WSDL processor MUST also process the
wsdl:operation, wsdl:fault, wsdl:feature, and wsdl:property children of that element.

If a wsdl:operation element is processed, a conformant WSDL processor MUST also process the
wsdl:input, wsdl:output, wsdl:infault, wsdl:outfault, wsdl:feature, and wsdl:property children of that
element.

If a wsdl:property element is processed, a conformant WSDL processor MUST also process the
wsdl:value and wsdl:constraint children of that element.

9. XML Syntax Summary (Non-Normative)
<definitions targetNamespace="xs:anyURI" >
 <documentation />?

 <import namespace="xs:anyURI" location="xs:anyURI"? >
 <documentation />?
 </import>*

 <include location="xs:anyURI" >
 <documentation />?
 </include>*

 <types>
 <documentation />?
 </types>

 <interface name="xs:NCName" extends="list of xs:QName"? styleDefault="list of xs:anyURI"? >
 <documentation />?

 <fault name="xs:NCName" element="xs:QName"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </fault>*

82

9. XML Syntax Summary (Non-Normative)

 <operation name="xs:NCName" pattern="xs:anyURI" style="list of xs:anyURI"? safe="xs:boolean"? >
 <documentation />?

 <input messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </input>*

 <output messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </output>*

 <infault ref="xs:QName" messageLabel="xs:NCName"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </infault>*

 <outfault ref="xs:QName" messageLabel="xs:NCName"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </outfault>*

 <feature ... />*

 <property ... />*
 </operation>*

 <feature uri="xs:anyURI" required="xs:boolean"? >
 <documentation />?
 </feature>*

 <property uri="xs:anyURI" required="xs:boolean"? >
 <documentation />?

 <value> xs:anyType </value>?

 <constraint> xs:QName </constraint>?
 </property>*
 </interface>*

 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI" >
 <documentation />?

 <fault ref="xs:QName" >
 <documentation />?

 <feature ... />*

 <property ... />*
 </fault>*

 <operation ref="xs:QName" >

83

9. XML Syntax Summary (Non-Normative)

 <documentation />?

 <input messageLabel="xs:NCName"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </input>*

 <output messageLabel="xs:NCName"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </output>*

 <feature ... />*

 <property ... />*
 </operation>*

 <feature ... />*

 <property ... />*
 </binding>*

 <service name="xs:NCName" interface="xs:QName" >
 <documentation />?

 <endpoint name="xs:NCName" binding="xs:QName" address="xs:anyURI"? >
 <documentation />?

 <feature ... />*

 <property ... />*
 </endpoint>*

 <feature ... />*

 <property ... />*
 </service>*
</definitions>

10. References

10.1 Normative References

[IETF RFC 2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, Author. Internet Engineering
Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt.

[IETF RFC 2396]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

84

10. References

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt

[IETF RFC 2732]
Format for Literal IPv6 Addresses in URL’s., R. Hinden, B. Carpenter, L. Masinter Authors. Internet
Engineering Task Force, December 1999. Available at http://www.ietf.org/rfc/rfc2732.txt.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised
6 October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

[XML Information Set]
XML Information Set, J. Cowan and R. Tobin, Editors. World Wide Web Consortium, 24 October
2001. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

[XML Schema: Structures]
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 2 May 2001. This version of the XML Schema Part 1
Recommendation is http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of
XML Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1.

[XML Schema: Datatypes]
XML Schema Part 2: Datatypes, P. Byron and A. Malhotra, Editors. World Wide Web Consortium, 2
May 2001. This version of the XML Schema Part 2 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502. The latest version of XML Schema Part
2 is available at http://www.w3.org/TR/xmlschema-2.

[RFC 3023]
IETF "RFC 3023: XML Media Types", M. Murata, S. St. Laurent, D. Kohn, July 1998. (See
http://www.ietf.org/rfc/rfc3023.txt.)

[WSDL MediaType]
IETF Internet Draft "The ’application/wsdl+xml’ media type", @@@. (Work to be done once we
have consensus on the media type).

[WSDL 2.0 Bindings]
Web Services Description Language (WSDL) Version 2.0 Part 3: Bindings, H. Haas, P. Le
HÃ©garet, J-J. Moreau, D. Orchard, J. Schlimmer, Editors. World Wide Web Consortium, 3 August
2004. This version of the "Web Services Description Language (WSDL) Version 2.0 Part 3:
Bindings" Specification is available at http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803.
The latest version of "Web Services Description Language (WSDL) Version 2.0 Part 3: Bindings" is
available at http://www.w3.org/TR/wsdl20-bindings.

[WSDL 2.0 Predefined Extensions]
Web Services Description Language (WSDL) Version 2.0 Part 2: Predefined Extensions, M. Gudgin,
A. Lewis, and J. Schlimmer, Editors. World Wide Web Consortium, 3 August 2004. This version of
the "Web Services Description Language (WSDL) Version 2.0 Part 2: Predefined Extensions"
Specification is available at http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803. The

85

10.1 Normative References

http://www.ietf.org/rfc/rfc2732.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc3023.txt
http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803
http://www.w3.org/TR/wsdl20-bindings
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803

latest version of "Web Services Description Language (WSDL) Version 2.0 Part 2: Predefined
Extensions" is available at http://www.w3.org/TR/wsdl20-extensions.

[WSDL 2.0 RDF Mapping]
Web Services Description (WSDL) Version 2.0: RDF Mapping, XYZ, Editors. World Wide Web
Consortium, 3 August 2004. This version of the "Web Services Description Version 2.0: RDF
Mapping" Specification is available at
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803. The latest version of "Web Services
Description Version 2.0: RDF Mapping" is available at http://www.w3.org/TR/wsdl20-extensions.

[Character Model for the WWW]
Character Model for the World Wide Web 1.0: Fundamentals, M. Durst, F. Yergeau, R. Ishida, M.
Wolf, T. Texin, Editors. W3C Working Draft, 25 February 2004. Available at
http://www.w3.org/TR/charmod/.

[TAG URI FINDING]
TAG Finding on URI Comparison, X. Foo, Y. Bar, Authors. W3C Technical Architecture Group,
Month, Year. Draft available at http://www.textuality.com/tag/uri-comp-4.

[Web Architecture]
Architecture of the World Wide Web, First Edition, Ian Jacobs, Editor. W3C Technical Architecture
Group, December, 2003. Available at http://www.w3.org/TR/2003/WD-webarch-20031209/.

[ISO/IEC 10646]
ISO/IEC 10646-1:2000. Information technology -- Universal Multiple-Octet Coded Character Set
(UCS) -- Part 1: Architecture and Basic Multilingual Plane (See http://www.iso.ch for the latest
version.)

[Unicode]
The Unicode Consortium, The Unicode Standard, Version 4 , ISBN 0-321-18578-1, as updated from
time to time by the publication of new versions. (See
http://www.unicode.org/unicode/standard/versions for the latest version and additional information
on versions of the standard and of the Unicode Character Database).

10.2 Informative References

[IETF RFC 2045]
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, N.
Freed, N. Borenstein, Authors. Internet Engineering Task Force, November 1996. Available at
http://www.ietf.org/rfc/rfc2045.txt.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[SOAP 1.1]
Simple Object Access Protocol (SOAP) 1.1, D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Winer, Editors. World Wide Web Consortium, 8 May
2000. This version of the Simple Object Access Protocol 1.1 Note is
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

[SOAP 1.2 Part 1: Messaging Framework]
SOAP Version 1.2 Part 1: Messaging Framework, M. Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, H. Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. This version of

86

10.2 Informative References

http://www.w3.org/TR/wsdl20-extensions
http://www.w3.org/TR/wsdl20-extensions
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803
http://www.w3.org/TR/wsdl20-extensions
http://www.w3.org/TR/wsdl20-extensions
http://www.w3.org/TR/charmod/
http://www.w3.org/2001/tag/findings
http://www.textuality.com/tag/uri-comp-4
http://www.w3.org/TR/2003/WD-webarch-20031209/
http://www.unicode.org/versions/Unicode4.0.1/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

the "SOAP Version 1.2 Part 1: Messaging Framework" Recommendation is
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. The latest version of "SOAP Version 1.2
Part 1: Messaging Framework" is available at http://www.w3.org/TR/soap12-part1/.

[XML Linking]
XML Linking Language (XLink) Version 1.0, S. DeRose, E. Maler, D. Orchard, Editors. World Wide
Web Consortium, 27 June 2001. This version of the XML Linking Language 1.0 Recommendation is
http://www.w3.org/TR/2001/REC-xlink-20010627. The latest version of XML Linking Language 1.0
is available at http://www.w3.org/TR/xlink.

[WSDL 1.1]
Web Services Description Language (WSDL) 1.1, E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, Authors. World Wide Web Consortium, 15 March 2002. This version of the Web
Services Description Language 1.1 Note is http://www.w3.org/TR/2001/NOTE-wsdl-20010315. The
latest version of Web Services Description Language 1.1 is available at http://www.w3.org/TR/wsdl.

[WSDL 2.0 Primer]
Web Services Description (WSDL) Version 2.0: Primer, K. Sankar, K. Liu, D. Booth, Editors. World
Wide Web Consortium, 3 August 2004. The editors’ version of the Web Services Description
Version 2.0: Primer document is available from http://www.w3.org/2002/ws/desc/.

[WSD Requirements]
Web Services Description Requirements, J. Schlimmer, Editor. World Wide Web Consortium, 28
October 2002. This version of the Web Services Description Requirements document is
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028. The latest version of Web Services
Description Requirements is available at http://www.w3.org/TR/ws-desc-reqs.

[XPointer Framework]
XPointer Framework,Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh, Editors. World Wide
Web Consortium, 22 November 2002. This version of the XPointer Framework Proposed
Recommendation is http://www.w3.org/TR/2003/REC-xptr-framework-20030325/ The latest version
of XPointer Framework is available at http://www.w3.org/TR/xptr-framework/.

[XML 1.1]
Extensible Markup Language (XML) 1.1 , T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
Francois Yergau, and John Cowan, Editors. World Wide Web Consortium, 04 February 2004, edited
in place 15 April 2004. This version of the XML 1.1 Recommendation is
http://www.w3.org/TR/2004/REC-xml-20040204. The latest version of XML 1.1 is available at
http://www.w3.org/TR/xml11.

A. The "application/wsdl+xml" Media Type

Editorial note: JJM 20021107

This was lifted from the SOAP 1.2 specification, and needs to be edited to reflect WSDL’s own
requirements. For example, the WG has not reached consensus on whether to use "text/xml",
"text/wsdl+xml" or "application/wsdl+xml".

This appendix defines the "application/wsdl+xml" media type which can be used to describe WSDL 2.0
documents serialized as XML. It is referenced by the corresponding IANA registration document [WSDL
MediaType [p.85]].

87

A. The "application/wsdl+xml" Media Type

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/wsdl
http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028
http://www.w3.org/TR/ws-desc-reqs/
http://www.w3.org/TR/ws-desc-reqs/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/xml11

A.1 Registration

MIME media type name:

application

MIME subtype name:

wsdl+xml

Required parameters:

none

Optional parameters:
charset

This parameter has identical semantics to the charset parameter of the "application/xml" media
type as specified in [RFC 3023 [p.85]].

Encoding considerations:

Identical to those of "application/xml" as described in [RFC 3023 [p.85]], section 3.2, as applied to
the WSDL document infoset.

Security considerations:

See section A.2 Security considerations [p.89] .

Interoperability considerations:

There are no known interoperability issues.

Published specification:

This document and [WSDL 2.0 Bindings [p.85]].

Applications which use this media type:

No known applications currently use this media type.

Additional information:
File extension:

WSDL documents are not required or expected to be stored as files.

Fragment identifiers:

88

A.1 Registration

Either a syntax identical to that of "application/xml" as described in [RFC 3023 [p.85]], section
5 or the syntax defined in C. URI References for WSDL constructs [p.90] .

Base URI:

As specified in [RFC 3023 [p.85]], section 6.

Macintosh File Type code:

TEXT

Person and email address to contact for further information:

@@@ <@@@@>

Intended usage:

COMMON

Author/Change controller:

The WSDL 2.0 specification set is a work product of the World Wide Web Consortium’s Web
Service Description Working Group. The W3C has change control over these specifications.

A.2 Security considerations

Editorial note: JJM 20021107

Are there any security considerations other than the standard ones.

This media type uses the "+xml" convention, it shares the same security considerations as described in
[RFC 3023 [p.85]], section 10.

B. Acknowledgements (Non-Normative)
This document is the work of the W3C Web Service Description Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical order): David Booth
(W3C), Allen Brookes (Rogue Wave Softwave), Helen Chen (Agfa-Gevaert N. V.), Roberto Chinnici
(Sun Microsystems), Ugo Corda (SeeBeyond), Glen Daniels (Sonic Software), Paul Downey (British
Telecommunications), Youenn Fablet (Canon), Martin Gudgin (Microsoft Corporation), Hugo Haas
(W3C), Hao He (The Thomson Corporation), Tom Jordahl (Macromedia), Jacek Kopecky (Digital
Enterprise Research Institute (DERI)), Amelia Lewis (TIBCO Software, Inc.), Kevin Canyang Liu (SAP),
Jonathan Marsh (Microsoft Corporation), Peter Madziak (Agfa-Gevaert N. V.), Josephine Micallef (SAIC
- Telcordia Technologies), Jeff Mischkinsky (Oracle Corporation), Dale Moberg (Cyclone Commerce),
Jean-Jacques Moreau (Canon), Mark Nottingham (BEA Systems, Inc.), David Orchard (BEA Systems,
Inc.), Bijan Parsia (University of Maryland), Arthur Ryman (IBM), Adi Sakala (IONA Technologies),

89

B. Acknowledgements (Non-Normative)

http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/

Jeffrey Schlimmer (Microsoft Corporation), Igor Sedukhin (Computer Associates), Jerry Thrasher
(Lexmark), William Vambenepe (Hewlett-Packard Company), Asir Vedamuthu (webMethods, Inc.),
Sanjiva Weerawarana (IBM), Ãmit YalÃ§Ä±nalp (Oracle Corporation), Prasad Yendluri (webMethods,
Inc.).

Previous members were: Lily Liu (webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup), Stefano Pogliani (Sun Microsystems),
William Stumbo (Xerox), Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and
Technology), Tim Finin (University of Maryland), Laurent De Teneuille (L’Echangeur), Johan Pauhlsson
(L’Echangeur), Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen (U.S. Department of
Defense, U.S. Air Force), Philippe Le HÃ©garet (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO Software, Inc.), Steve
Graham (Global Grid Forum), Steve Tuecke (Global Grid Forum), Michael Mahan (Nokia), Bryan
Thompson (Hicks & Associates), Ingo Melzer (DaimlerChrysler Research and Technology), Sandeep
Kumar (Cisco Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne
(Electronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA Technologies), Mike
McHugh (W. W. Grainger), Michael Mealling (Verisign), Waqar Sadiq (Electronic Data Systems), Yaron
Goland (BEA Systems, Inc.).

The people who have contributed to discussions on www-ws-desc@w3.org are also gratefully
acknowledged.

C. URI References for WSDL constructs (Non-Normative)
This appendix provides a syntax for URI references for named components found in a WSDL document.
This includes the top level components: interface, binding and service and the subordinate components:
operation, fault, and endpoint. The URI references are easy to understand and compare, while imposing no
burden on the WSDL author.

C.1 WSDL URIs

There are two main cases for WSDL URIs:

the URI of a WSDL document

the URI of a WSDL namespace

The URI of a WSDL document can be dereferenced to give a resource representation that contributes
component definitions to a single WSDL namespace. If the media type is set to the WSDL media type,
then the fragment identifiers can be used to identify the main components that are defined in the
document.

However, in keeping with the recommendation in 2.1.1 The Definitions Component [p.11] that the
namespace URI be dereferencible to a WSDL document, this appendix specifies the use of the namespace
URI with the WSDL fragment identifiers to form a URI-reference.

90

C. URI References for WSDL constructs (Non-Normative)

http://lists.w3.org/Archives/Public/www-ws-desc/

C.2 Fragment Identifiers

The following fragment identifier syntax is compliant with the [XPointer Framework [p.87]].

The URI in a URI-reference for a WSDL component is the {target namespace} property of either the
component itself, in the case of interfaces, bindings, and services, or the {target namespace} property of
an ancestor component. The URI provided by the {target namespace} property is combined with a
fragment identifier, where the fragment identifier is constructed from the {name} property of the
component and the {name} properties of its ancestors as a path according to Table C-1 [p.91] . In that
table the first column gives the name of the WSDL component as the [local name] of the element
information item that represents that construct in a WSDL document. Columns two and three populate the
variables x and y respectively. These variables are then used to construct the fragment in column four.

Table C-1. Rules for determining fragments for WSDL constructs

Construct x y Fragment

interface {name} property of interface n/a interface(x)

operation {name} property of operation {name} property of parent interfaceoperation(y/x)

fault {name} property of fault {name} property of parent interfacefault(y/x)

binding {name} property of binding n/a binding(x)

service {name} property of service n/a service(x)

endpoint {name} property of endpoint {name} property of parent serviceendpoint(y/x)

Note that the above rules are defined in terms of component properties rather the XML Infoset
representation of the component model.

C.3 Extension Elements

WSDL has an open content model. It is therefore possible for an extension to define new components. The
XPointer Framework scheme for components added by extensions is:

extension(extension-namespace, extension-specific-syntax)

where extension-namespace is the namespace that identifies the extension, e.g. for SOAP the namespace is
http://www.w3.org/2003/06/wsdl/soap12, and extension-specific-syntax is defined by the extension. The
owner of the extension must define any components contributed by the extension and a syntax for
identifying them.

91

C.2 Fragment Identifiers

C.4 Example

Consider the following WSDL located at http://example.org/TicketAgent.wsdl:

Example C-1. URI References - Example WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://example.org/TicketAgent.wsdl20"
 xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"
 xmlns:wsdl="http://www.w3.org/2004/08/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2004/08/wsdl wsdl20.xsd">

 <wsdl:types>
 <xs:import schemaLocation="TicketAgent.xsd"
 namespace="http://example.org/TicketAgent.xsd" />
 </wsdl:types>

 <wsdl:interface name="TicketAgent">
 <wsdl:operation name="listFlights" pattern="http://www.w3.org/2004/08/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:listFlightsRequest"/>
 <wsdl:output element="xsTicketAgent:listFlightsResponse"/>
 </wsdl:operation>

 <wsdl:operation name="reserveFlight" pattern="http://www.w3.org/2004/08/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:reserveFlightRequest"/>
 <wsdl:output element="xsTicketAgent:reserveFlightResponse"/>
 </wsdl:operation>
 </wsdl:interface>
</wsdl:definitions>

Its conceptual elements have the following URI-references:

Example C-2. URI References - Example URIs

http://example.org/TicketAgent.wsdl20#interface(TicketAgent)
http://example.org/TicketAgent.wsdl20#operation(TicketAgent/listFlights)
http://example.org/TicketAgent.wsdl20#operation(TicketAgent/reserveFlight)

D. Migrating from WSDL 1.1 to WSDL 2.0 (Non-Normative)
This section will attempt to document some of the migration concerns of going from WSDL 1.1 to WSDL
2.0. We do not claim that all migration problems will be addressed here.

D.1 Operation Overloading

WSDL 1.1 supported operation overloading and WSDL 2.0 removes it. This section will provide some
rationale for it and provide hints on how to work around some scenarios.

92

D. Migrating from WSDL 1.1 to WSDL 2.0 (Non-Normative)

D.2 PortTypes

Port types have been renamed to interfaces. We now have interface inheritance.

D.3 Ports

Ports have been renamed to endpoints.

E. Examples of Specifications of Extension Elements for
Alternative Schema Language Support. (Non-Normative)

E.1 DTD

A DTD may be used as the schema language for WSDL. It may not be embedded; it must be imported. A
namespace must be assigned. DTD types appear in the {element declarations} property of 2.1.1 The
Definitions Component [p.11] and may be referenced from the wsdl:input , wsdl:output and
wsdl:fault elements using the element attribute information item.

The prefix, dtd, used throughout the following is mapped to the namespace URI
"http://www.example.org/dtd/".

The dtd:import element information item references an external Document Type Definition, and has
the following infoset properties:

A [local name] of import.

A [namespace name] of "http://www.example.org/dtd".

One or two attribute information items, as follows:

A REQUIRED namespace attribute information item as described below.

An OPTIONAL location attribute information item as described below.

E.1.1 namespace attribute information item

The namespace attribute information item sets the namespace to be used with all imported element
definitions described in the DTD. It has the following infoset properties:

A [local name] of namespace.

A [namespace name] which has no value.

The type of the namespace attribute information item is xs:anyURI.

93

E. Examples of Specifications of Extension Elements for Alternative Schema Language Support. (Non-Normative)

The WSDL author should ensure that a prefix is associated with the namespace at the proper scope
(probably document scope).

E.1.2 location attribute information item

The location attribute information item, if present, provides a hint to the processor as to where the
DTD may be located. Caching and cataloging technologies may provide better information than this hint.
The location attribute information item has the following infoset properties:

A [local name] of location.

A [namespace name] which has no value.

The type of the location attribute information item is xs:anyURI.

E.1.3 References to Element Definitions

The element attribute information item MUST be used when referring to an element definition
(<!ELEMENT>) from a Message Reference component; referring to an element definition from a
Interface Fault component is similar. The value of the element definition MUST correspond to the content
of the namespace attribute information item of the dtd:import element information item. The local
name part must correspond to an element defined in the DTD.

Note that this pattern does not attempt to make DTDs namespace-aware. It applies namespaces externally,
in the import phase.

E.2 RELAX NG

A RELAX NG schema may be used as the schema language for WSDL. It may be embedded or imported;
import is preferred. A namespace must be specified; if an imported schema specifies one, then the [actual
value] of the namespace attribute information item in the import element information item must
match the specified namespace. RELAX NG provides both type definitions and element declarations, the
latter appears in the {element declarations} property of 2.1.1 The Definitions Component [p.11]
respectively. The following discussion supplies the prefix rng which is mapped to the URI
"http://www.relaxng.org/ns/structure/1.0".

E.2.1 Importing RELAX NG

Importing a RELAX NG schema uses the rng:include mechanism defined by RNG, with restrictions on its
syntax and semantics. A child element information item of the types element information item is defined
with the Infoset properties as follows:

A [local name] of include.

A [namespace name] of "http://www.relaxng.org/ns/structure/1.0".

94

E.2 RELAX NG

Two attribute information items as follows:

A REQUIRED ns attribute information item as described below.

An OPTIONAL href attribute information item as described below.

Additional attribute information items as defined by the RNG specification.

Note that WSDL restricts the rng:include element information item to be empty. That is, it cannot
redefine rng:start and rng:define element information items; it may be used solely to import a
schema.

E.2.1.1 ns attribute information item

The ns attribute information item defines the namespace of the type and element definitions imported
from the referenced schema. If the referenced schema contains an ns attribute information item on its
grammar element information item, then the values of these two attribute information items must be
identical. If the imported grammar does not have an ns attribute information item then the namespace
specified here is applied to all components of the schema as if it did contain such an attribute information
item. The ns attribute information item contains the following Infoset properties:

A [local name] of ns.

A [namespace name] which has no value.

The type of the ns attribute information item is xs:anyURI.

E.2.1.2 href attribute information item

The href attribute information item must be present, according to the rules of the RNG specification.
However, WSDL allows it to be empty, and considers it only a hint. Caching and cataloging technologies
may provide better information that this hint. The href attribute information item has the following
Infoset properties:

A [local name] of href.

A [namespace name] which has no value.

The type of the href attribute information item is xs:anyURI.

E.2.2 Embedding RELAX NG

Embedding an RNG schema uses the existing top-level rng:grammar element information item. It may
be viewed as simply cutting and pasting an existing, stand-alone schema to a location inside the
wsdl:types element information item. The rng:grammar element information item has the following
Infoset properties:

95

E.2 RELAX NG

A [local name] of grammar.

A [namespace name] of "http://www.relaxng.org/ns/structure/1.0".

A REQUIRED ns attribute information items as described below.

Additional attribute information items as specified for the rng:grammar element information item
in the RNG specification.

Child element information items as specified for the rng:grammar element information item in the
RNG specification.

E.2.2.1 ns attribute information item

The ns attribute information item defines the namespace of the type and element definitions embedded in
this schema. WSDL modifies the RNG definition of the rng:grammar element information item to
make this attribute information item required. The ns attribute information item has the following infoset
properties:

A [local name] of ns.

A [namespace name] which has no value.

The type of the ns attribute information item is xs:anyURI.

E.2.3 References to Element Declarations

Whether embedded or imported, the element definitions present in a schema may be referenced from a
Message Reference or Interface Fault component.

A named rng:define definition MUST NOT be referenced from the Message Reference or Interface Fault
components.

A named Relax NG element declaration MAY be referenced from a Message Reference or Interface Fault
component. The QName is constructed from the namespace (ns attribute information item) of the schema
and the content of the name attribute information item of the element element information item An
element attribute information item MUST NOT be used to refer to an rng:define element
information item.

F. Part 1 Change Log (Non-Normative)

F.1 WSDL Specification Changes

Date Author Description

20040802 RRC
Removed paragraph added per resolution of issue 211 (undone per action item 5 of
the 2004-07-29 concall).

96

F. Part 1 Change Log (Non-Normative)

20040802 RRC Added clarification on the meaning of required language extensions.

20040802 RRC Added operation name requirement to the Interface component section.

20040802 RRC
Added introductory text for the Property Component (per action item 2 of the
2004-07-29 concall).

20040727 RRC Made the Property component independent of XML Schema (issue 248).

20040727 SW Issue 243 text

20040727 SW Incorporated Paul’s words for issue 235

20040727 SW Added MarkN’s text for issue 211

20040727 SW
Added note to processor conf rules for optional extensions and features about what
optional means.

20040727 SW
Removed contentious area ed note thing per decision to do those via minority
opinions.

20040722 HH Defined wsdls:int for http:code.

20040721 RRC
Made almost all set-valued properties optional and added a rule to default them to
the empty set, per agenda item 7 of 2004-07-15 concall.

20040715 RRC
Marked the {message label} property of the Message Reference and Fault
Reference components as required.

20040715 RRC Made the {style} property into a set of xs:anyURI.

20040714 RRC Added definition of simple types used by the component model (issue 177).

20040713 RRC Added clarification to interface extensions per issue 220.

20040713 RRC Added clarification to Binding Operation section (issue 227).

20040713 RRC
Fixed references to Interface Fault components in the Fault Reference component
section.

20040713 RRC Added description of pseudo-schema syntax.

20040714 SW Made f&p allowed in the remaining places and updated composition rules

20040713 SW Added negative conformance criteria: not required to process XML1.1 etc.

20040713 SW Corrected reference to frag ID syntax to for issue 209

20040713 SW Implemented Jonathan’s proposal for issue 160.

20040713 SW Put ednote in contentious areas asking for extra feedback.

20040712 RRC
Marked all component model properties as REQUIRED or OPTIONAL (issue
213).

97

F.1 WSDL Specification Changes

20040712 RRC Added definition for equivalence of list-typed values.

20040712 RRC Clarified RPC style rules for one-way operations (issue 215).

20040708 JJM Finished adding clarifications for non-XML type system extensibility.

20040708 JJM Include the definition of "actual value" from XML Schema (Issue 219).

20040708 JJM Added resolution to issue 218 (2004Jun/0276.html, including Mark’s amendment).

20040708 JJM
Component equivalence (2004Jun/0195.html, 2004Jun/0199.html and ref to the
charmod [Issue 210]).

20040706 RRC Added clarifications for non-XML type system extensibility.

20040706 RRC Expanded component model definition.

20040706 RRC Added clarification to section 2.1.1 per resolution of issue 222.

20040706 RRC Made it possible to use rpc style with schema languages other than XML Schema.

20040702 SW Made operation/@style be a list of URIs.

20040702 SW Had forgotten to map to the {type} property of binding.

20040625 SW Allowed F&P *nearly* everywhere. Sigh.

20040618 SW Changed F&P composition model to nearest enclosing scope.

20040618 SW Incorporated Jacek’s purpose of bindings text as appropriate.

20040526 SW Added @address to /definitions/service/endpoint per F2F decision

20040526 SW Added @type to /definitions/binding per F2F decision

20040519 SW Renamed wsoap12: to wsoap:.

20040323 JJM Commented out the (missing) property example.

20040322 RRC Added definition of wsdli:wsdlLocation attribute.

20040322 JJM Added faults to properties and features.

20040319 JJM Use lowercase "should" in notes.

20040319 JJM
Comment out features at service level. Uniformize scope between features and
properties.

20040318 JJM Moved normative notes into the main body of the document.

20040318 JJM Incorporated the property text from Glen.

20040318 JJM Addressed comments from Yuxiao Zhao.

20040318 JJM Updated the feature description, as per Glen and David Booth’s suggestions.

98

F.1 WSDL Specification Changes

20040317 RRC Removed redundant {styleDefault} property of the interface component.

20040317 JJM Include comments from Kevin.

20040315 RRC Added clarification on embedded XML schemas that refer to siblings.

20040315 RRC Updated RPC signature extension to use #in/#out/#inout/#return tokens.

20040315 RRC
Added explanatory text to types and modularization sections per resolution of issue
#102.

20040315 SW Change binding/{fault,operation}/@name to @ref

20040312 RRC Fixed appendix D to take the removal of wsdl:message into account.

20040312 RRC Added definition of wrpc:signature extension attribute.

20040311 SW Change fault stuff per decision to make faults first class in interfaces.

20040308 SW Renamed {message} property to {element} and @message to @element

20040305 SW Added {safety} property

20040227 MJG Merged in branch Issue143 containing resolution of issue 143

20040227 SW
Dropped {type definitions} property from definitions; leftover from <message>
days.

20040226 SW Working thru various edtodo items.

20040106 JS Per 18 Dec 2003 telecon decision, added text re: circular includes.

20031204 JS
Per 4 Dec 2003 telecon decision, removed redundant binding/operation/{infault,
outfault}/@messageReference.

20031105 JS
Added point to attributes task force recommendation accepted by the working
group.

20031104 JS

Mapping to component model for {message} of Fault Reference component
indicated that message attribute information item was optional, but the pseudo
syntax and XML representation indicated it was required. Made uniformly optional
to allow other type systems as was previously done for {message} of Message
Reference component.

20031104 JS
Renamed interface /operation /{input,output} /@body to ./@message and interface
/operation /{infault,outfault} /@details to ./@message per 4 Nov face-to-face
decision.

20031104 JS
Made interface /operation /{input,output,infault,outfault} /@messageReference
optional per 4 Nov face-to-face decision.

20031104 JS
Removed interface/operation/{input,output}/@header per 4 Nov face-to-face
decision.

99

F.1 WSDL Specification Changes

20031102 SW
Updated fault reference components to indicate that if operation’s MEP uses MTF
then the fault is in the opposite direction as the referenced message and if it use
FRM then its in the same direction. Per 10/30 telecon decision.

20031102 SW
Updated operation styles terminology per message #57 of Oct. and the RPC style
rules per message #58 of Oct. per decision on 10/30 telecon to consider those status
quo.

20031102 SW
Clarified wording in operation styles discussion to better explain the use of the
{style} attribute.

20031102 SW
Clarified wording in XML <-> component model mapping section for message
reference components to say that {body} and {headers} may not have a value.

20031102 SW
Made interface/operation/(input|output)/@messageReference REQUIRED per
10/30 telecon decision.

20031028 SW Renamed to wsdl20.xml and updated contents.

20031028 SW Updated bindings.

20031025 SW Updated faults.

20031013 JJM
Moved appendix C to a separate document, as per 24 Sep 2003 meeting in Palo
Alto, CA.

20031003 SW Softened <documentation> wording to allow machine processable documentation.

20031002 SW Changed binding/operation/@name to QName per edtodo.

20030930 SW Added placeholders for set-attr/get-attr operation styles.

20030929 SW Inserted Glen Daniels’ feature text.

20030919 RRC
Removed import facility for chameleon schemas and added a description of a
workaround.

20030918 JJM
Changed message pattern to message exchange pattern, as per WG resolution on 18
Sep. 2003

20030916 RRC Added editorial note for the missing RPC encoding style.

20030915 RRC
Yet more updates for REQUIRED, OPTIONAL; updated section 3 to reflect the
removal of "wsdl:message".

20030911 RRC
More updates for REQUIRED, OPTIONAL; removed diff markup; fixed example
C.4.

20030911 RRC
Renamed message reference "name" attribute and property to "messageReference";
fixed incorrect reference to "fault" element in the binding operation section.

20030910 SW
Fixed message references and added proper use of REQUIRED etc. for the part
I’ve gone through so far.

100

F.1 WSDL Specification Changes

20030910 SW Updating spec; fixed up interface operation component more.

20030808 JCS Fixed errors found by IBM\Arthur.

20030804 JCS Removed Message component per 30 July-1 Aug meeting.

20030803 JCS
Replaced substitution groups with xs:any namespace=’##other’ per 3 July, 17 July,
and 24 July telecons.

20030801 JCS Made binding/@interface optional per 31 July meeting.

20030724 JCS Remove @targetResource per 17 July 2003 telecon.

20030612 JJM Incorporate revised targetResource definition, as per 12 June 2003 telcon.

20030606 JJM Refer to the two graphics by ID. Indicate pseudo-schemas are not normative.

20030604 JJM Fixed figures so they don’t appear as tables. Fixed markup so it validates.

20030603 JCS Plugged in jmarsh auto-generated schema outlines

20030529 MJG Fixed various issues with the XmlRep portions of the spec

20030527 MJG
Added text to 2.2.1 The Interface Component [p.14] and 2.2.3 Mapping
Interface’s XML Representation to Component Properties [p.18] indicating
that recursive interface extension is not allowed.

20030523 JJM Added pseudo-syntax to all but Type and Modularizing sections.

20030523 JJM Added the "interface" and "targetResource" attribute on <service>.

20030523 JJM
Fixed miscellaneous typos (semi-colon instead of colon, space after parenthesis,
etc.).

20030523 JJM Rewrote the service-resource text and merge it with the introduction.

20030522 JCS s/set of parts/list of parts/.

20030514 JJM Updated the service-resource figure, and split the diagram into two.

20030512 JJM Added service-resource drawing and description.

20030512 JJM Added syntax summary for the Interface component.

20030428 MJG

Various edits to 3. Types [p.68] , E. Examples of Specifications of Extension
Elements for Alternative Schema Language Support. [p.93] to accommodate
other type systems and spell out how extensibility elements/attributes play out in
such scenarios.

20030428 MJG
Added text to 1.2 Notational Conventions [p.7] regarding normative nature of
schema and validity of WSDL documents

101

F.1 WSDL Specification Changes

20030411 JJM
Allowed features and properties at the interface, interface operation, binding and
binding operation levels, as agreed at the Boston f2f
http://lists.w3.org/Archives/Public/www-ws-desc/2003Mar/0019.html.

20030411 JJM
Incorporate features and properties’ text from separate document and merged
change logs

20030313 MJG Changed title to include ’part 1’

20030313 MJG Changed port to endpoint

20030313 MJG Changed type to interface in binding

20030313 MJG Changed mep to pattern and message exchange pattern to message pattern

20030313 MJG Added text to D.2 PortTypes [p.93]

20030313 MJG Changed portType to interface

20030407 JJM Refined and corrected the definitions for features and properties.

20030304 JJM Filled in blank description of Feature and Property component.

20030303 MJG Skeleton Feature and Property components

20030305 MJG

Merged ComponentModelForMEPs branch (1.46.2.5) into main branch (1.54).
Below is change log from the branch:

Date Author Description

20030220 MJG Minor wording change at suggestion of JJM

20030212 MJG
Updated component model to include Fault Reference
component. Associated changes to Port Type Operation
component

20030211 MJG Changes to component model to support MEPs

20030228 MJG
Updated 4.2 Importing Descriptions [p.75] to be consistent in layout with other
XML rep sections. Detailed that documentation and extensibility attributes are
allowed, per schema

20030228 MJG
Updated 4.1 Including Descriptions [p.73] to be consistent in layout with other
XML rep sections. Detailed that documentation and extensibility attributes are
allowed, per schema

20030228 MJG
Updated 2.9.2 XML Representation of Binding Component [p.48] to list type
attribute

20030217 MJG Minor edits to wording in 2.4.1 The Interface Operation Component [p.22]

20030213 MJG Added xlink nsdecl to spec element

102

F.1 WSDL Specification Changes

20030213 MJG Incorporated text from dbooths proposal on semantics, per decision 20021031

20030213 MJG

Merged operationnames branch (1.37.2.3) into main branch (1.46). Below is the
change log from the branch.

Date Author Description

20030130 MJG
Updated binding section to match changes to port type
section WRT operation names

20030130 MJG
Added best practice note on operation names and target
namespaces to 2.4.1 The Interface Operation Component
[p.22]

20030122 MJG Started work on making operations have unique names

20030213 MJG
Change name of {message exchange pattern} back to {variety} to consolidate
changes due to MEP proposal

20030206 MJG Updated Appendix A to refer to Appendix C

20030204 MJG Tidied up appendix C

20030203 MJG Incorporated resolution to R120

20030124 MJG
Fixed error in 2.5.2 XML Representation of Message Reference Component
[p.32] which had name attribute information item on input, output and fault
element information item being mandatory. Made it optional.

20030123 JJM Change name of {variety} property to {message exchange pattern}

20030130 MJG
Updated binding section to match changes to port type section WRT operation
names

20030130 MJG
Added best practice note on operation names and target namespaces to 2.4.1 The
Interface Operation Component [p.22]

20030122 MJG Started work on making operations have unique names

20030122 MJG Added some <emph>, <el>, <att>, &AII;, &EII;, <el> markup

20030120 MJG Incorporated Relax NG section from Amy’s types proposal

20030120 MJG Incorporated DTD section from Amy’s types proposal

2003020 MJG Incorporated Amy’s types proposal except annexes

20030118 MJG Made some changes related to extensibility

20030118 MJG
Amended content model for operation to disallow fault element children in the
input-only and output-only cases

103

F.1 WSDL Specification Changes

20030118 MJG
Removed {extension} properties from Binding components and Port components.
Added text relating to how extension elements are expected to annotate the
component model.

20030117 MJG Made further edits related to extensibility model now using substitution groups

20030117 MJG Added initial draft of section on QName resolution

20030117 MJG Reworked section on extensibility

20030116 MJG
Added text regarding multiple operations with the same {name} in a single port
type

20030116 MJG Added section on symbol spaces

20030116 MJG Removed various ednotes

20030116 MJG Added section on component equivalence

20030116 MJG More work on include and import

20021201 MJG Did some work on wsdl:include

20021127 MJG Added placeholder for wsdl:include

20021127 MJG
Cleaned up language concerning targetNamespace attribute information item
2.1.2.1 targetNamespace attribute information item [p.13]

20021127 MJG
changed the language regarding extensibility elements in 2.1.2 XML
Representation of Definitions Component [p.12] .

20021127 MJG Moved all issues into issues document (../issues/wsd-issues.xml)

20021127 MJG Removed name attribute from definitions element

20021127 MJG Removed ’pseudo-schema’

20021121 JJM Updated media type draft appendix ednote to match minutes.

20021111 SW Added appendix to record migration issues.

20021107 JJM Incorporated and started adapting SOAP’s media type draft appendix.

20021010 MJG Added port type extensions, removed service type.

20020910 MJG Removed parameterOrder from spec, as decided at September 2002 FTF

20020908 MJG
Updated parameterOrder description, fixed some spelling errors and other types.
Added ednote to discussion of message parts

20020715 MJG AM Rewrite

20020627 JJM Changed a few remaining <emph> to either <att> or <el>, depending on context.

104

F.1 WSDL Specification Changes

20020627 SW Converted portType stuff to be infoset based and improved doc structure more.

20020627 SW Converted message stuff to be infoset based and improved doc structure more.

20020625 SW Mods to take into account JJM comments.

20020624 JJM Fixed spec so markup validates.

20020624 JJM Upgraded the stylesheet and DTD

20020624 JJM Added sections for references and change log.

20020624 JJM Removed Jeffrey from authors :-(Added Gudge :-)

20020620 SW Started adding abstract model

20020406 SW Created document from WSDL 1.1

105

F.1 WSDL Specification Changes

	Web Services Description Language †WSDL‡ Version 2.0 Part 1: Core Language
	W3C Working Draft 3 August 2004
	Abstract
	Status of this Document
	Short Table of Contents
	Table of Contents
	Appendices

	1. Introduction
	1.1 Web Service
	1.2 Notational Conventions
	1.3 WSDL Terminology

	2. Component Model
	2.1 Definitions
	2.1.1 The Definitions Component
	2.1.2 XML Representation of Definitions Component
	2.1.2.1 targetNamespace attribute information item

	2.1.3 Mapping Definitions' XML Representation to Component Properties

	2.2 Interface
	2.2.1 The Interface Component
	2.2.1.1 Operation Name Mapping Requirement

	2.2.2 XML Representation of Interface Component
	2.2.2.1 name attribute information item with interface [owner]
	2.2.2.2 extends attribute information item
	2.2.2.3 styleDefault attribute information item

	2.2.3 Mapping Interface's XML Representation to Component Properties

	2.3 Interface Fault
	2.3.1 The Interface Fault Component
	2.3.2 XML Representation of Interface Fault Component
	2.3.2.1 name attribute information item with fault [owner]
	2.3.2.2 element attribute information item with fault [owner]

	2.3.3 Mapping Interface Fault's XML Representation to Component Properties

	2.4 Interface Operation
	2.4.1 The Interface Operation Component
	2.4.1.1 Operation Style

	2.4.2 RPC Style
	2.4.2.1 wrpc:signature Extension
	2.4.2.2 XML Representation of the wrpc:signature Extension
	2.4.2.3 wrpc:signature Extension Mapping To Properties of an Interface Operation Component

	2.4.3 XML Representation of Interface Operation Component
	2.4.3.1 name attribute information item with operation [owner]
	2.4.3.2 pattern attribute information item with operation [owner]
	2.4.3.3 style attribute information item with operation [owner]
	2.4.3.4 safe attribute information item with operation [owner]

	2.4.4 Mapping Interface Operation's XML Representation to Component Properties

	2.5 Message Reference
	2.5.1 The Message Reference Component
	2.5.2 XML Representation of Message Reference Component
	2.5.2.1 messageLabel attribute information item with input , or output [owner]
	2.5.2.2 element attribute information item with input , or output [owner]

	2.5.3 Mapping Message Reference's XML Representation to Component Properties

	2.6 Fault Reference
	2.6.1 The Fault Reference Component
	2.6.2 XML Representation of Fault Reference Component
	2.6.2.1 ref attribute information item with infault , or outfault [owner]
	2.6.2.2 messageLabel attribute information item with infault , or outfault [owner]

	2.6.3 Mapping Fault Reference's XML Representation to Component Properties

	2.7 Feature
	2.7.1 The Feature Component
	2.7.1.1 Feature Composition Model
	2.7.1.1.1 Example of Feature Composition Model

	2.7.2 XML Representation of Feature Component
	2.7.2.1 uri attribute information item with feature [owner]
	2.7.2.2 required attribute information item with feature [owner]

	2.7.3 Mapping Feature's XML Representation to Component Properties

	2.8 Property
	2.8.1 The Property Component
	2.8.1.1 Property Composition Model

	2.8.2 XML Representation of Property Component
	2.8.2.1 uri attribute information item with property [owner]
	2.8.2.2 required attribute information item with property [owner]
	2.8.2.3 value element information item with property [parent]
	2.8.2.4 constraint element information item with property [parent]

	2.8.3 Mapping Property's XML Representation to Component Properties

	2.9 Binding
	2.9.1 The Binding Component
	2.9.2 XML Representation of Binding Component
	2.9.2.1 name attribute information item with binding [owner]
	2.9.2.2 interface attribute information item with binding [owner]
	2.9.2.3 type attribute information item with binding [owner]
	2.9.2.4 Binding extension elements

	2.9.3 Mapping Binding's XML Representation to Component Properties

	2.10 Binding Fault
	2.10.1 The Binding Fault Component
	2.10.2 XML Representation of Binding Fault Component
	2.10.2.1 ref attribute information item with fault [owner]
	2.10.2.2 Binding Fault extension elements

	2.10.3 Mapping Binding Fault's XML Representation to Component Properties

	2.11 Binding Operation
	2.11.1 The Binding Operation Component
	2.11.2 XML Representation of Binding Operation Component
	2.11.2.1 ref attribute information item with operation [owner]
	2.11.2.2 Binding Operation extension elements

	2.11.3 Mapping Binding Operation's XML Representation to Component Properties

	2.12 Binding Message Reference
	2.12.1 The Binding Message Reference Component
	2.12.2 XML Representation of Binding Message Reference Component
	2.12.2.1 messageLabel attribute information item with input or output [owner]
	2.12.2.2 Binding Message Reference extension elements

	2.12.3 Mapping Binding Message Reference's XML Representation to Component Properties

	2.13 Service
	2.13.1 The Service Component
	2.13.2 XML Representation of Service Component
	2.13.2.1 name attribute information item with service [owner]
	2.13.2.2 interface attribute information item with service [owner]

	2.13.3 Mapping Service's XML Representation to Component Properties

	2.14 Endpoint
	2.14.1 The Endpoint Component
	2.14.2 XML Representation of Endpoint Component
	2.14.2.1 name attribute information item with endpoint [owner]
	2.14.2.2 binding attribute information item with endpoint [owner]
	2.14.2.3 address attribute information item with endpoint [owner]
	2.14.2.4 Endpoint extension elements

	2.14.3 Mapping Endpoint's XML Representation to Component Properties

	2.15 Definition of the Simple Types Used in the Component Model
	2.15.1 string Type
	2.15.2 Token Type
	2.15.3 NCName Type
	2.15.4 anyURI Type
	2.15.5 QName Type
	2.15.6 boolean Type
	2.15.7 int Type

	2.16 Equivalence of Components
	2.17 Symbol Spaces
	2.18 QName resolution
	2.19 Comparing URIs

	3. Types
	3.1 Using W3C XML Schema Description Language
	3.1.1 Importing XML Schema
	3.1.1.1 namespace attribute information item
	3.1.1.2 schemaLocation attribute information item

	3.1.2 Embedding XML Schema
	3.1.2.1 targetNamespace attribute information item

	3.1.3 References to Element Declarations and Type Definitions

	3.2 Using Other Schema Languages

	4. Modularizing WSDL descriptions
	4.1 Including Descriptions
	4.1.1 location attribute information item with include [owner]

	4.2 Importing Descriptions
	4.2.1 namespace attribute information item
	4.2.2 location attribute information item with import [owner]

	5. Documentation
	6. Language Extensibility
	6.1 Element based Extensibility
	6.1.1 Mandatory extensions
	6.1.2 required attribute information item

	6.2 Attribute-based Extensibility
	6.3 Extensibility Semantics

	7. Locating WSDL Documents
	7.1 wsdli:wsdlLocation attribute information item

	8. Conformance
	8.1 Document Conformance
	8.2 XML Information Set Conformance
	8.3 Processor Conformance

	9. XML Syntax Summary †Non-Normative‡
	10. References
	10.1 Normative References
	10.2 Informative References

	A. The "application/wsdl+xml" Media Type
	A.1 Registration
	A.2 Security considerations

	B. Acknowledgements †Non-Normative‡
	C. URI References for WSDL constructs †Non-Normative‡
	C.1 WSDL URIs
	C.2 Fragment Identifiers
	C.3 Extension Elements
	C.4 Example

	D. Migrating from WSDL 1.1 to WSDL 2.0 †Non-Normative‡
	D.1 Operation Overloading
	D.2 PortTypes
	D.3 Ports

	E. Examples of Specifications of Extension Elements for Alternative Schema Language Support. †Non-Normative‡
	E.1 DTD
	E.1.1 namespace attribute information item
	E.1.2 location attribute information item
	E.1.3 References to Element Definitions

	E.2 RELAX NG
	E.2.1 Importing RELAX NG
	E.2.1.1 ns attribute information item
	E.2.1.2 href attribute information item

	E.2.2 Embedding RELAX NG
	E.2.2.1 ns attribute information item

	E.2.3 References to Element Declarations

	F. Part 1 Change Log †Non-Normative‡
	F.1 WSDL Specification Changes

