141

14

Safe Hosts in a Hostile
Environment

Probably the biggest cause of insecurity on the Internet is that the average host is not reasonably
secure when it arrives from the manufacturer. The manufacturers know this, but they tend to focus
on features and time-to-market instead of security. A secure computer usually has fewer services,
and may be less convenient to use. Unless the product has security as its specific target, security
tends to be overlooked. Most people tend to choose convenience over security. (Even reputable
“security people” often take shortcuts and cheat a little.)

In this chapter, we supply a definition of “secure,” and discuss the characteristics of various
Internet hosts that we think meet this definition. Then we can configure a safe host, a safe haven,
which can be used as a base to administer and manage other hosts.

A collection of such secure hosts can form a safe community using secure network transport.
This community should be quite resistant to network attack from outside the community save one
threat: denial-of-service attacks, which are discussed in Section 5.8.

What Do We Mean by “Secure”?

For the next few chapters, we use a restricted meaning for the word “secure” when applied to a
host. There is no such thing as absolute security. Whether a host is penetrated depends on the
time, money, and risk that an attacker is willing to spend, compared with the time, money, and
diligence we are willing to commit to defending the host.

A major problem of Internet security these days is that attackers generally don’t have to spend
much time or money, and experience virtually no risk, to break into an average Internet server.
For example, [Farmer, 1997] provides a survey of major Web servers and their likely network in-
securities. Web servers, the most public of hosts, were more likely to be running insecure services
than other hosts.

259

Licensed under a Creative Commons Attribution-Non-Commericial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license
https://creativecommons.org/licenses/by-nc-nd/4.0/



260

Safe Hosts in a Hostile Environment

14.2

We can do better. It is not that difficult to make a specific host highly resistant to anonymous
attack from the Internet. The trick is to have that host remain useful.

Non-networked attacks are possible, but are much riskier. The attacker may have to show up
on the premises, or pay off our system administrator, or kidnap the CEO’s dog. These risks may
be worth it to an attacker if the prize is valuable enough, but they are beyond the scope of this
book. Here we wish to insist that the attacker must be present to win.

In other words, for now we are saying that a host is “secure” if it cannot be successfully
invaded through network access alone. The attacker will have to try something more risky and
more traceable.

This is a fairly low standard to shoot for, and your installation may require much higher assur-
ances. What we present here should be a good start. We will leave it to you to post Marine guards,
pull the shutters, or take any other additional steps that you need.

Properties of Secure Hosts

A secure host has time-tested, robust, reliable network services, including the operating system.
Its administrators are strongly authenticated and/or need physical access to the host. Other users
add weakness, and should be avoided if possible. General access to a secure host should only
be permitted only from a very small number of secure hosts in the same community, and their
communication should be over private links or use strong encryption. Furthermore, any such
access must be restricted to equally secure hosts.

This can be done, even on an open network. It takes careful engineering and a relentlessly
paranoid approach.

A user may be authenticated by his or her physical presence in a building, leaving security to
the guard at the door, cameras, and suspicious co-workers. He or she may be authenticated by the
people who provide physical access to the machine. In some cases, biometrics may be used.

When traveling or calling in from home, a hardware token may be used (see Chapter 7.) It
is not sufficient to trust the phone company’s ANI (“caller ID”) plus a password on a call from
home over a phone line; even if you trust the phone switches and the law enforcement policies in
your country, phone phreaks can play amazing games. Besides, this makes an employee’s home
physical security a component of the company’s physical security. A spouse, child, or burglar
could break this.

Hardware tokens are still the best remote authentication, and we encourage their use, even
from home. You probably need keys to get into your home or car—why not to your computer
account?

A secure host runs robust network software. It is difficult, and probably impossible, to de-
termine if software is bug-free, but we can make some reasonable assumptions. The following
guidelines can offer some indication of software’s security:

* Is the program small and simple? Simple programs are more likely to be correct, and hence
secure.



Properties of Secure Hosts 261

A Trusted Computing Base and Open Source Software

In the general computing field, software is seldom written for naked hardware. (It is true
that the most common computers in the world are variants of the old Intel 8051, used in
cars, thermostats, and so on.) The rest of us program on an operating system, which gives
us an environment that helps us get the job done.

A Trusted Computing Base (TCB) is a programming environment that we place some
trust in to help us remain secure. If our foundation is unsafe, it may not matter how secure
the house is. The military envisioned various levels of trust in the famed Orange Book
[Brand, 1985], going all the way up to a TCB that has every line of code mathematically
proven to be correct.

This is impractical, and perhaps impossible. Even the U.S. Navy skipped this step
in designing its “smart ships”: One battle cruiser sat dead in the water for half an hour
because its TCB (Windows NT) could not handle an application’s division by zero. Where
can we get a decent, inexpensive TCB for our secure hosts?

The surprising answer is that some of the best candidates for TCBs are free. While
much of the free software on the Internet is overpriced, there is quality available. The
GNU project and the Free Software Foundation have produced some very high-quality
software, notably the gcc compiler. The GNU tools and other packages such as Perl have
enabled other developers to produce more.

When BSDI faced the legal challenge to liberate the Berkeley UNIX source code, sev-
eral versions of this time-tested kernel became available, including NetBSD, OpenBSD,
and FreeBSD. Linus Torvalds wrote his own kernel and gave it away, spawning Debian
Linux, Slackware, Red Hat Linux, and more. Each of these has its strengths and weak-
nesses, but in general they are quite good, and often run for months between reboots—a
good sign.

Why can we tend to trust software often maintained by dozens or even thousands of
developers? Because we can audit it at our leisure, take a look under the hood, and see
how it works. We can find bugs and even recompile it. And thousands of other eyes do as
well. While it is true that back doors can be inserted, we have a better chance of finding
them. The world helps us audit the software.

But the public does miss errors in such software. Source code is comforting, butitisn’t
a panacea.




262

Safe Hosts in a Hostile Environment

* Is it widely tested and used? The leading edge is the bleeding edge; let someone else blaze
the trail for you, if you can.

* Is source code available? This is not a guarantee—Kerberos version 4 was available in
source form for years before an important security bug was found.! But it helps.

* Is the author finicky about details? Does the software remain in beta-test for a long time, and
with minor tweaks? A careful programmer has better habits, and it shows in the product.
Bugs are rare. (Wietse Venema fits this description as well as any one we know.) Of course,
software can sit in beta too long. We simply lack the technology to know when the software
is absolutely, positively ready.

¢ A client is more likely to be secure from a directed attack than a server. A server must
be available all the time, and deal with any comer. Clients usually run while the user is
watching, though of course it is nearly impossible to understand what a complex system is
doing. Clients are more likely targets of opportunity, when a Web browser or mail reader
encounters some evil software.

* Does the software have a continuing history of security problems? If so, chances are good it
will have more, especially if the same developer or developers are working on it. Repeated
patches to security-critical code are a bad sign.

* Was security designed into the program from the beginning? Retrofits usually don’t fit very
well. You want every line of text coded with the thought of attacks in mind. Often, the
fundamental design is the most security-critical aspect, and that’s difficult to change late in
the game.

* How does the author deal with the possibility of buffer overflows? (Dave Presotto, the
author of the upas mailer [Presotto, 1985], wrote his own string library to avoid such
problems—and he did this in 1984, years before the Morris Worm called attention to the
problem. He wasn’t worried about attacks; he just didn’t like to write buggy code.)

* Does it run with unnecessary privileges? (On many systems, xterm, the standard terminal
emulator for X11, runs with root privileges. As the late Fred Grampp once remarked in
a similar context, “you don’t give privileges to a whale.”) Unnecessary privileges often
denote a lazy programmer who didn’t want to take the time to do things the right way.

A secure host trusts only other secure hosts, and only as far as it needs to. Don’t give full
access to a remote host, even a trusted one, if lesser access will do. This is the concept of least
privilege, and it tends to limit vulnerability and damage if attacks do succeed. Carefully question
people who say they need full access, and try to find a better solution.

Secure hosts must communicate over secure channels. A channel may be a private serial line
or Ethernet. It may be some form of cryptography over a public network. This does not necessarily
mean a fully encrypted link, though it can. Sometimes it is good enough to use authenticated and

1. See CERT Advisory CA-96.03



Properties of Secure Hosts 263

signed messages, with the text in the clear. To our knowledge, use of this last form of cryptography
is acceptable to even the most repressive governments, because they can read the messages. They
have no acknowledged need to forge messages and interfere with our web of trust.

14.2.1 Secure Clients

Most network interactions on the Internet use the client/server model. A client calls another host
for some service. This asymmetry extends to the kinds of computers that are typically used as
clients and servers.

Windows and Macintoshes

The most common client is a PC running a recent flavor of Microsoft’s Windows. Windows 3.1
was not distributed with TCP/IP network software; you had to buy it separately. Each supplier
had its own particular configurations, network servers, and defaults. Most machines were used as
clients only, but sometimes ran dangerous server software by default. A port scan of one security
specialist’s PC discovered an anonymous FTP server on the host—he had no idea it was running,
and had to figure out how to shut it off. Such a PC is not a secure host.

Starting with Windows 95, the TCP/IP stack was built into the operating system. These client
machines did not have default TCP/IP services turned on, which made the basic host reasonably
secure from overt network attack. If file- or print-sharing were turned on, though, various suspect
services were started on TCP ports 137—139. This is still true.

A wide variety of things can be done to improve the security of a Windows host. Some services
can be turned off or configured for tighter security. There is personal firewall software, which can
block external access to services and add a layer of protection. Applications that process content
created elsewhere usually have options to turn off dangerous features like macros and execution
of remotely supplied programs.

Of course, virus scanners are a vital part of a network-connected component. E-mail from
friends may contain viruses, or even be sent by viruses and worms. The great flexibility and vast
array of features available on a Windows box offer countless opportunities to corrupt the host, and
very few defensive layers are available to contain these threats.

With the introduction of .NET, Microsoft has enabled great flexibility for establishing security
policy on Windows machines. The basic idea behind the .NET Framework is that programs are
packaged as assemblies containing code and metadata. The metadata includes information such as
a strong name, based on a public key whose private component was used to sign the code portion.
These assemblies are cryptographically sealed containers; the strong names, which consist of a
public key and a signature, are used as credentials. In the execution environment, an administrator
sets a policy; the policy examines the credentials to determine whether or not to execute the code in
the assembly, and if so, which resources the methods can access. Assemblies that are developed
using .NET tools are called managed code and may be allowed more access to the executing
host than other code, depending on whether or not they carry the right credentials. The system
examines the execution stack to see if particular method calls are allowed. This is necessary
because it is possible for managed code to call into unmanaged code. Thus, the runtime execution



264

Safe Hosts in a Hostile Environment

environment must examine the call stack to make sure that all of the calls leading up to a particular
method call are managed code, and that they all have enough privilege to execute.

The .NET Framework provides powerful tools to control software. At the same time, it in-
troduces all kinds of risks. Code that is signed the right way can execute as trusted local code,
regardless of its origin. For example, two business partners in remote areas can put executables
on the Web that will run on each others’ hosts. This puts quite a value on the private signing keys
of those organizations. The trade-off between security and complexity is a recurring theme in
this book; .NET takes complexity to new heights. The book that Microsoft put out to explain the
security framework [LaMacchia et al., 2002] is 793 pages long. It is filled with warnings to ad-
ministrators about commands and settings that they should use with extreme caution. Is this safe?
In our opinion, .NET provides more rope than any previous environment in such widespread use.

A Macintosh’s configuration can vary based on the operating system version and third-party
software. OS/X.2 (Jaguar) ships with most services off by default. A glaring exception is the
Rendezvous service, which implements the mDNS protocol. The purpose of Rendezvous is to
automatically discover computers, printers, and other devices on an IP network, without requiring
user configuration. We suggest you turn this off, unless you really need it. A few other services
are on by default, including print server configuration (the IPP protocol), a syslog daemon, and a
couple of open ports to support Netlnfo.

Client software can threaten the security of the client; Web browsers leap to mind. These are
huge programs with histories of security problems. To minimize these threats to the clients, turn
off Java, JavaScript, browser plug-ins, and ActiveX, if you can. Of course, many useful network
sites stop working when you do so. A computer that runs foreign programs with faulty or no
containment is not secure; the host may be secure if these are disabled.

Single-User, UNix-Like Systems

Many people have their own workstations or laptops running one of the UNIX-style operating
systems, such Linux or FreeBSD. They don’t share these machines with anyone. If properly
secured and maintained, these are the most trustable clients available. They share files with no
one, and allow no logins except through the console. All or most services are turned off (see
Section 14.4). But these machines may still run browsers and other elephants.

Sometimes, even local use of local hardware on a workstation, like a video camera, can open
the host up to possible attack. SGI hosts accessed their local cameras through a network con-
nection, as user root. (Why didn’t they use UNIX sockets or shared memory instead of network
sockets?) In more recent versions of Irix, they even accessed the DNS resolver through an NFS-
style query, opening a number of serious holes in what used to be a securable workstation.

Multi-User Hosts

In our experience, it is hard to make multi-user, general purpose hosts secure. The crowd tends to
desire services like NFS, and dislikes strong authentication, preferring the ease of passwords.

We will allow such community machines limited access to secure hosts through carefully
configured services. See, for example, our anonymous FTP service in Section 8.7.



Hardware Configuration 265

14.3

14.2.2 Secure Servers

Servers run on many different platforms. At this writing, the fastest and cheapest tend to be UNIX-
based, though your religion may vary. We suggest that you select servers that run the operating
system you know best. You are less likely to make rookie mistakes, and can concentrate on
securing the services.

A safe server runs safe services. This book is mostly about safe and unsafe services. If you
can’t decide whether you can trust a service, use the list of suggestions in Section 14.2.

A secure server generally has very few users, probably only the administrators. We find that
users are a tremendous burden on a system. They complicate and compromise security arrange-
ments. We suggest that you avoid them. It is reasonable to give each administrator a separate
account, and monitor the use of the su command to help audit changes.

Section 14.4 describes the procedure to secure a UNIX-like client or server.

14.2.3 Secure Routers and Other Network Elements

Like all hosts, routers and similar network elements should run only the services they absolutely
need. This is especially important given the vital role they play in gluing our networks together.
Network elements include routers, switches, hubs, firewalls, cable modems, wireless base stations,
dial-in boxes (“NAS”), back-end authentication servers, and so on.

There are several concerns for these devices: administrative access, network services (as
usual), and default passwords come to mind. Many network devices are configured once, at in-
stallation, and then forgotten. This configuration can be done at the console, a terminal connected
to a serial port. Remote access is often not needed unless you are running a large network with
geographically diverse equipment. All network services should be shut off. (In some cases, you
can shut off SNMP; if you can’t, use SNMPv3, with its cryptographic authentication.)

Watch your trust model. We’ve seen a case where gear that was going to be on customer
premises had a wired-in password on all units. If a single Bad Guy reverse-engineered it or
wiretapped the management traffic, all such units would be vulnerable.

Some network elements do require frequent reconfiguration. These need secure access and
strong authentication to remain trustable. At least, change the default administrative password; an
astonishing number of important network elements still have the manufacturer’s default passwords
installed.

Hardware Configuration

Don’t skimp on the hardware supplied for each server machine. A generous hardware configura-
tion will reduce the need to upgrade a system, and reduce the corresponding interruption. In these
days of cheap PCs, the hardware costs are nearly zero compared to the cost of competent system
administration.

Configure plenty of memory, and make sure that it is easy to get more. It is cheap, improves
performance, and provides some resistance to denial-of-service attacks.



266

Safe Hosts in a Hostile Environment

14.4

Install plenty of disk space: big disks are cheap. FTP, Web pages, spool files, and log files all
can take a lot of space, and are likely to grow faster than you think. It is also nice to have spare
disk partitions for backup. Large disk partitions are much harder to overflow with network traffic.

Field-Stripping a Host

UNIX system administration is a nightmare.

—DENNIS M. RITCHIE

A typical UNIX-style system comes with many available network services. If all these services
are turned off, and only a very few carefully selected services are installed, such a machine can be
highly resistant to invasion from the network. These services may still be susceptible to denial-
of-service attacks, and the system’s TCP/IP implementation itself might be crashed by carefully
crafted packets, but the data and programs on the host are very likely to remain uncorruptible by
known or theoretical network hacking methods.

It isn’t hard to strip most services from a host; most appear in /etc/inetd.conf. The
remaining ones come from programs that are started at system boot time.

It has surprised us how often administrators of important hosts have failed to turn off unnec-
essary services. Even if you think we are too severe in our judgment of the safety of particular
services, clearly it is a good idea to turn off those that you don’t use.

A number of UNIX-like operating systems are available. The details for field-stripping these
vary, but the goal is the same: Remove the network doors into the computer. Some possible
options include the following:

Linux There are several versions of Linux. Many allow you to install minimal versions of the
system, in which case field-stripping is not required. These can be quite spartan, which is
good. Linux system administration details are quite different from the older, commercial
UNIX systems.

FreeBSD This BSD variant was designed for server speed. Some of the authors tend to use this one,

but it is a close call between it and the other two BSD systems.

OS/X This is Apple’s UNIX-based operating system, based on FreeBSD. It provides a platform
for running Macintosh programs with nice GUIs, as well as the standard UNIX with X
Windows. It is rapidly gaining in popularity.

NetBSD Designed to run on a wide variety of hardware, this is an excellent choice for embedded sys-

tems. Note that running something that isn’t a SPARC or a Pentium will give you practical
immunity to most garden-variety attack-smashing attacks.

OpenBSD The maintainers focus on security issues. Their diligence has helped them avoid some of

the vulnerabilities found in other systems. A good choice. Many of the application-level
fixes have been ported to Linux and the other BSDs.



Field-Stripping a Host 267

Solaris An old UNIX workhorse.

A computer should be configured before connecting it to a network, as it will be running
unsafe network services by default. We perform this configuration, and indeed most of its system
administration, through its console. Following are the things we do to prepare a UNIX-like host
for a hostile environment:

1. Comment out all the lines in /etc/inetd.conf. By default, we want none of these
services turned on. If a specific one is needed, turn it on. We comment these out, rather than
deleting them, because we might want to temporarily turn one on during setup. Figure 14.1
shows a fairly typical inetd. conf file before editing.

2. If no services are needed in /etc/inetd.conf, disable the call to inetd. This program
has grown too much over the decades—don’t run it if you don’t need it.

3. Reboot the machine and run ps to make sure that inetd is gone. Then run
netstat -a

(Netstat is the best auditing tool in the business.) There will still be network services show-
ing, doubtless served by daemons run in the start-up script.

4. Disable the daemons that run these network services. They will probably include sendmail
(SMTP), rpcbind, rstatd, and so on.

5. Reboot and repeat until no unwanted network services are running. At this point, our netstat
might look like the following:

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 0.0.0.0.syslog 0.0.0.0.%

syslog is a useful program for collecting logs. Most versions can be run without a network
listener (switches “-s -s” on FreeBSD.) Many systems want to print documents but don’t
have a local printer, or need to send but not receive mail. They can be configured to do so
without running any network services.

6. When the netstat shows what we want, we run a final ps to see what processes are running
after a fresh reboot. Here’s a list from an old SGI Irix system:

UID PID PPID C STIME TTY TIME CMD

root 0 0 0 09:55:29 2 0:01 sched
root 1 0 0 09:55:29 2 0:00 /etc/init
root 2 0 0 09:55:29 2 0:00 vhand
root 3 0 0 09:55:29 2 0:00 bdflush
root 4 0 0 09:55:29 2 0:00 munldd
root 5 0 0 09:55:29 2 0:00 vfs_sync
root 342 1 0 09:55:50 tport 0:00 -csh



268

Safe Hosts in a Hostile Environment

root 7 0 0 09:55:29 2 0:00 shaked

root 8 0 0 09:55:29 2 0:00 xfsd

root 9 0 0 09:55:29 2 0:00 xfsd

root 10 0 0 09:55:29 2 0:00 xfsd

root 11 0 0 09:55:29 2 0:00 xfsd

root 12 0 0 09:55:29 72 0:00 pdflush

root 343 1 0 09:55:50 ttydl 0:00 /sbin/getty ttydl co_9600
root 130 1 0 09:55:41 2 0:00 /usr/etc/inetd

root 65 1 0 09:55:35 2 0:00 /usr/etc/syslogd

root 344 1 0 09:55:50 ttyd2 0:00 /sbin/getty -N ttyd2 co_9600
root 243 1 0 09:55:45 2 0:00 /sbin/cron

root 364 353 6 10:01:03 tport 0:00 ps -ef

root 353 342 0 09:56:12 tport 0:00 sh

Unless you are very familiar with the operating system, there will probably be daemons
you don’t understand. Most of these are familiar, and we think we (dimly) understand their
function. Shaked was a new one to us. Its process ID suggests that it is involved with the
file system. The man pages say nothing. The string “shake” does not appear in the startup
directory.

. ITtis also work checking the /etc/passwd and /etc/group files. Try to figure out the

functions of accounts you don’t understand. Make sure there are passwords on each account
that has a login shell. Accept no default passwords.

. Check for world-writable files in /etc. We once saw a production host heading out the

door with world-write permissions on /etc/group. There should be no world-writable
file in the main executable directories either. Newer systems seem to get this right.

9. Perhaps install IP filtering on the closed ports to ensure that nothing is getting through.

This approach is piecemeal, and not nearly as complete as running something like COPS. But
a little wandering can turn up some interesting things, and we may not have a compiler on this
host, which COPS requires.

The kernel may need some reconfiguration. If you aren’t using IPv6 yet, it might be a good
idea to turn it off in the kernel.

Other changes we might want to make to a secure host include the following:

e Set /etc/motd to warn all users that they might be monitored and prosecuted. On a

restricted host, warn all users that they are not allowed on the machine. The notice about
monitoring is considered necessary, or at least helpful, by some legal authorities in some
jurisdictions.

* Configure extra disk partitions, and be generous with the space. Remember that the outside

world has the ability to fill the logs, spool directory, and FTP directories. Each of these
should be in a separate large disk partition.

» Use static routes. Do not run routed on the external host: Whose information would you

trust, anyway?



Field-Stripping a Host 269

ftp stream tcp nowait root /usr/etc/ftpd ftpd -1

telnet stream tcp nowait root /usr/etc/telnetd telnetd

shell stream tcp nowait root /usr/etc/rshd rshd

login stream tcp nowait root /usr/etc/rlogind rlogind

exec stream tcp nowait root /usr/etc/rexecd rexecd

finger stream tcp nowait guest /usr/etc/fingerd fingerd

http stream tcp nowait nobody ?/var/www/server/httpd httpd

wn-http stream tcp nowait nobody ?/var/www/server/wn-—httpd

bootp dgram udp wait root /usr/etc/bootp bootp

tftp dgram udp wait guest /usr/etc/tftpd tftpd -s /usr/local/boot

ntalk dgram udp wait root /usr/etc/talkd talkd

tcpmux stream tcp nowait root internal

echo stream tcp nowait root internal

discard stream tcp nowait root internal

chargen stream tcp nowait root internal

daytime stream tcp nowait root internal

time stream tcp nowait root internal

echo dgram udp wait root internal

discard dgram udp wait root internal

chargen dgram udp wait root internal

daytime dgram udp wait root internal

time dgram udp wait root internal

sgi-dgl stream tcp nowait root/rcv /usr/etc/dgld dgld —-IM -tDGLTSOCKET
#uucp stream tcp nowait root /usr/lib/uucp/uucpd uucpd

# RPC-based services: These use rpcbind instead of /etc/services.
mountd/1 stream rpc/tcp wait/lc root /usr/etc/rpc.mountd mountd
mountd/1 dgram rpc/udp wait/lc root /usr/etc/rpc.mountd mountd
sgi_mountd/1l stream rpc/tcp wait/lc root /usr/etc/rpc.mountd mountd
sgi_mountd/1l dgram rpc/udp wait/lc root /usr/etc/rpc.mountd mountd
rstatd/1-3 dgram rpc/udp wait root /usr/etc/rpc.rstatd rstatd
walld/1 dgram rpc/udp wait root /usr/etc/rpc.rwalld rwalld
rusersd/1 dgram rpc/udp wait root /usr/etc/rpc.rusersd rusersd
rquotad/1 dgram rpc/udp wait root /usr/etc/rpc.rquotad rquotad
sprayd/1 dgram rpc/udp wait root /usr/etc/rpc.sprayd sprayd
bootparam/1 dgram rpc/udp wait root /usr/etc/rpc.bootparamd bootparam

#ypupdated and rexd are somewhat insecure, and not really necessary
#ypupdated/1 stream rpc/tcp wait root /usr/etc/rpc.ypupdated ypupdated

#rexd/1 stream rpc/tcp wait root /usr/etc/rpc.rexd rexd
sgi_videod/1 stream rpc/tcp wait root ?/usr/etc/videod videod
sgi_fam/1 stream rpc/tcp wait root ?/usr/etc/fam fam
#sgi_toolkitbus/1l stream rpc/tcp wait root/rcv /usr/etc/rpc.toolkitbus
sgi_snoopd/1l stream rpc/tcp wait root ?/usr/etc/rpc.snoopd snoopd
sgi_pcsd/1 dgram rpc/udp wait root ?/usr/etc/cvpcsd pcsd
sgi_pod/1 stream rpc/tcp wait root ?/usr/etc/podd podd
sgi_xfsmd/1 stream rpc/tcp wait root ?/usr/etc/xfsmd xfsmd

ttdbserverd/1l stream rpc/tcp wait root ?/usr/etc/rpc.ttdbserverd rpc.ttdbserverd
# TCPMUX based services

tcpmux/sgi_scanner stream tcp nowait root ?/usr/lib/scan/net/scannerd scannerd
tcpmux/sgi_printer stream tcp nowait root ?/usr/lib/print/printerd printerd

Figure 14.1: The default /etc/inetd. conf file for Irix 6.2. Do any of these programs running as root
have security problems? (Some lines were cut short and comments edited to fit the page.)




270

Safe Hosts in a Hostile Environment

* Take a full dump of the host, and save the tapes or CD-ROMs forever. Make sure they are
readable. Do this before plugging in the cable that allows external access for the first time.
These are “day-zero backups,” and they are your last resort if someone breaks into your
machines.

14.5 Loading New Software

Where do you get new software from? Whether it’s OpenSSH, a Web browser, ISIEX, or desktop
synchronization software, most people download programs from the net. In fact, there are very
convenient programs, such as dselect and fink on Linux and OS/X, respectively, that can keep track
of which packages you have on your machine, and provide a convenient way to download, install,
and configure new programs in a few simple steps. Linux programs are distributed in convenient
Red Hat Package Manager (RPM) archives. Often, these contain binaries. Programs for Windows
and the Macintosh are distributed as similar self-extracting packages.

The ports collection for FreeBSD contains almost 4,000 programs—packages that people
download from the net. The packages often come with checksums, but of course these only guar-
antee that the download matches the checksum; they say nothing about whether or not the code
is malicious. An attacker can modify checksums that came from the same site as the download—
checksums stored elsewhere require more work. Sometimes, for security reasons, the managers
of the ports collection make changes to standard packages. An example of this is a package called
Xbreaky, which had a setuid bit set. The FreeBSD and NetBSD ports patched the installa-
tion files to turn off that bit. That was fortunate, because it turned out to have a security hole.
Interestingly, OpenBSD, which is supposed to be the most secure, did not catch this.

Digital signatures could help, in theory [Rubin, 1995]. Microsoft does this with ActiveX.
However, they require that end hosts have the public key of the code signers, along with programs
for checking signatures. A difficult question is who should sign the code. If the authors sign it,
then the archive cannot make any changes to it, and the public key distribution problem is more
difficult. If archive maintainers sign code, then they have to verify that it is not malicious. Their
signature means that the code has not changed since they signed it, but that does not mean that
the code writer was not malicious, nor that the code was not modified before the person actually
signed it. In other words, digital signatures at most provide accountability, not security.

There are those who maintain that it is safer to distribute source code than binaries. We caution
against taking this assumption too far. Perhaps it is true that because many people are likely to
download the program, and some of them might actually look at the code, and some of them
might actually be qualified to tell if there are security problems, that it is safer to compile your
own source than to download binaries. However, there is nothing inherently safer about source
code, and you can compile a Trojan horse on your machine just as easily as the attacker can on his
or hers. Answer this: Have you read and understood the source code to, say, Apache, the popular
open-source Web server? Hint: There are over 1,000 files, comprising more than 300,000 lines of
code.



Administering a Secure Host 271

14.6 Administering a Secure Host

Secure hosts provide special problems for the system administrator. Stronger security usually
makes system administration less convenient, as usual. At least the sysadmin doesn’t have to
meet the access demands of a large user community, because these hosts seldom have many direct
users. Of course, many people may depend on the proper functioning of, for example, a KDC.

14.6.1 Access

System administrators need access to secure hosts, often from their homes and at late hours.
Because a secure host is usually an important one, they rightly point out that a troubled system
will be down until they can gain access to it.

Similarly, an ISP needs access to far-flung routers and other network elements. The most
common monitoring method is SNMP, and that’s a risky choice. (See Section 3.6 for a discussion
of the protocol.) Even read-only SNMP access to a firewall’s configuration information can leak
information useful to the attacker. You should disable SNMP write access if you can; it’s rarely
a useful way to configure a network element. SNMPv3 is a much better choice, as it has strong
security built in; if you can’t run it, use packet filters to prevent outsiders from sending SNMP
packets to your network elements. You need SNMP access; the Bad Guys don’t.

Many routers accept telnet sessions, but the risks of that are obvious. You can often use ssh, a
better choice.

Conversely, access through the Public Switched Telephone Network (PSTN) can expose the
router to phone-based attacks, unless strong authentication is available. Besides, your network
management software probably can’t talk over a serial line.

By far, the safest way to access a secure host is through its physical console, at the machine
itself. This reduces access security to the realm of physical security.

If physical access is not feasible, telephone access through a modem to the serial port, with
strong authentication, is the next best choice. (You may need that anyway, for emergency access
when your network is having a bad hair day.) The calling machine or terminal must be secure,
of course. In this case, where does the host keep the keys needed for strong authentication? If it
has to connect to an authentication server over a network, how do you access it if the network is
down?

Ssh is probably a reasonable choice if the calling host itself is secure. Remember that there
are hacking tools that can take over a user’s keyboard on a multi-user host if the host has been
compromised.

Other protocols, such as IPsec, newer versions of SNMP, or perhaps even encrypted PPTP
may be an option. In any case, you should carefully consider the consequences if your access
method is compromised.

14.6.2 Console Access

One can sit at the console itself, though these often reside in noisy computer rooms. System ad-
ministration is better performed in a quieter, more relaxing atmosphere. Often, several computers



272

Safe Hosts in a Hostile Environment

share a console through some sort of serial or video switch. This enables us to stack the computers
in a rack, with a single terminal or display head.

Here we rely on physical security to protect the host, which is reasonable. Sometimes our host
will even lack a root password: If someone can touch the computer, we have already lost. This
assumes that there are no other ways to log in to the host, which is true for most of the computers
we leave in a dirty environment. It doesn’t hurt to have the extra layer—the password—to further
protect us. But that may not add very much. Use of an empty root password focuses the mind on
security wonderfully.

When console access is through a remote serial line, it should be protected by some strong
authentication. It is reasonable to require a one-time password for incoming phone access to a
console.

We used to have a simple RS-232 hardware switch installed that selected between a local
console terminal and the remote dial-up access. Console server software allows multiple admin-
istrators to connect to the same port simultaneously. One quickly develops a protocol to avoid
stepping on one another’s work. There are a number of fine commercial console servers; a nice
free one is available from http://www.conserver. com.

It is important not to connect to these consoles from a compromised host. If someone taps that
session, the outside machine is breached. You don’t want your console session hijacked.

Physical access to the console is less convenient for system administration, but should be
impossible for a typical hacker. And many secure hosts don’t require frequent access after they
have been set up. Again, though, you need to balance that against the requirements for availability.

14.6.3 Logging

Logging is essential when administering a host in a hostile environment. It tells us what is going
on, and may be essential to forensics. When attackers break into a machine, the first thing they
go for are the logs. Therefore, it is important to ensure that the logs are robust against attack. The
best way to do that is to make the logs unmodifiable from the machine. For example, burning
them onto CDs periodically guarantees that the attacker will not be able to erase or delete them.

Logging to a drop safe is a great idea—bytes check in but they don’t check out. Syslog has a
nice facility for doing this, by sending the log messages to another machine for safekeeping. One
problem that is not avoided by write-only logs is that attackers can create so many logged events
that they fill the disk and further logging is unsuccessful. You may be able to avoid this with a
disk that is large enough. (Attackers may also try to talk directly to your log server. Be sure that
your filter rules prevent this.)

What do you do with all those logs? If you are an expert, you can look at them yourself. You
can write or acquire tools for parsing log files into more readable form. There are also commercial
companies to whom you can send your logs, and they will help you determine if you are under
attack. While this is not very useful for real-time attack detection, there is some value to knowing
that someone was trying to break in, even if they were unsuccessful. Moreover, if the logs are
append-only (so an invader cannot change them), they can be useful for post mortem analysis.



Administering a Secure Host 273

For log processing, it is very important to have time synchronized among your machines. Even
a few seconds of skew can really mess things up. NTP is well-suited for this.

14.6.4 Backup

Backups are always important, but safe hosts often have special backup needs. If there is the
slightest chance that they may be hacked, it is invaluable to have a dump of the system made
before the hackers touched the machine. This day-zero backup is a source of clean binaries,
useful for checksum and comparison with newer, possibly modified files.

A day-zero backup should be taken before a host sees its first network packet, and additional
full dumps made after patches or other major updates to the system. These backups should be
stored well out of harm’s way, and should be kept until the system is decommissioned.

They also should be checked. We know of one site some years ago that religiously backed up
their data to the video track of a VCR—but the data was supposed to go to the audio track. Every
backup was useless; too often, problems like this are not discovered until the backup is needed.
(We still have painful memories of an all-night session rebuilding a system whose disk controller
died 30 minutes after the backup tapes were found to be useless, and 30 minutes before the new
emergency backup was to be taken.)

Backups can be made with dump or tar, compressed, and written on a large empty partition
on the local disk. This file can be shipped to safer places via scp.

Backups can be written to a local tape drive. A newer option is backup to CD. These are a
handy and relatively permanent form of storage. Of course, the (possibly compressed) data has to
fit on the CD. DVDs hold more data, but they’re expensive. Besides, the standards seem to be in
a state of flux; you may not be able to read your old backups in a few years.

A computer should be backed up to some media off the machine, and perhaps off-site. The
frequency of backup varies depending on how often important things change on the host. We have
had some network servers that we back up once a year. The basic software does not change. It is
easy to forget, though, and it is better to back up too often than not enough.

Most backups are needed because the system administrator made a mistake. A file may be
accidentally edited or deleted. These boneheaded errors happen to all of us on occasion. A nightly
backup to a separate partition on the same computer can save the administrator an embarrassing
walk to the backup tapes. It is reasonable to us dd to back up the root partition to an empty
partition. Make sure the backup partition is bootable.

Important binaries are often copied before they are updated, providing an easy recovery path:

mv inetd oinetd && mv ninetd inetd

Another point to consider is the physical security of the backup media. You probably want
to keep off-site copies; however, if Bad Guys get their hands on a backup, they’ll be able to read
sensitive files, possibly including secret cryptographic keys.



274

Safe Hosts in a Hostile Environment

14.6.5 Software Updates

The software in these trusted hosts needs to be updated. While it is true that we have left little
exposed to the elements, sometimes important updates have to be installed. This is especially true
for network services like sshd. We count on this service a lot, and sometimes a serious flaw is
found.

How do we update a safe-haven host? We can update software from a trusted CD-ROM, or
install new ROMs in network elements. This last approach offers high assurance that you are
getting the code you expect, but it risks hardware problems. ROM updates are falling out of
favor—ROMs have mostly been replaced by flash memory now, with software updates. (The
thought of what a piece of malware can do to a flash-resident BIOS is scary.)

We can copy new software out to relevant hosts using encrypted links. Many use rdist or rsync
over ssh links.

The client can attach to a network server to obtain updates. This is dangerous: How does the
client know it is connecting to the correct server? Has the server been compromised, and now
contain modified software? Did the software support team add back doors or other security holes
to the software? If the vendor or the connection path is compromised, the local client will import
Trojan software, and the client is lost.

This client pull approach is used across the industry: Netscape, Microsoft, Linux, the BSD
systems, Mac OS/X, and others like the FreeBSD “ports” collection all obtain their software from
remote servers. This software is compiled and installed with high system privileges. Certificates
and checksums are available to mitigate these problems, but they are often ignored.

Though client pull has dangers, its simplicity is a strong plus, especially for client hosts owned
by naive computer users. We think the advantages far outweigh the risks for standard hosts, but
they are quite dangerous for the safe-haven hosts we are relying upon.

When software updates are automated without user control, there are inherent risks. How do
you know that the update, which is perhaps being distributed because of a security flaw, does not
have a flaw itself? Programs such as RealPlayer for Windows often make users’ lives miserable
until they agree to upgrade to newer versions. You have to go through at least three different
pop-up windows every time you run the program if an update is available. Software that insists on
updating itself is a pain. Software that continuously updates itself without informing the user is
dangerous and downright impolite. An extreme example of this is the TiVo video recorder: When
the company updates the operating system, it automatically downloads a new system image to all
users, along with a message indicating where to find the new user manual for the new features.
Users are given no choice about upgrading.

When you are given a choice about updating software, there are several things to consider.
There is really no way to understand all of the patches that a vendor issues, not just for the average
user, but even for advanced programmers and administrators. If a machine is a production server,
you need to test it in a lab. For home machines, perhaps you should test the update on a less
important machine before putting it on the machine that you use to do your taxes. In the U.S., you
don’t want to do anything to that machine on April 14 if you have not filed your tax return yet.

Some software comes with license agreements that specify update policies. For example,
Windows Media Player states that Microsoft has the right to remotely change the software on



Administering a Secure Host 275

your machine if they believe that there is a digital rights management (DRM) violation. That is,
if Microsoft suspects that there is a way to defeat the copy protection of content, they have the
right to change the software on the customers’ machines, without the customer’s consent. In other
words, when you install software on important machines, you should look at the fine print in the
agreements to ensure that not only will you make the decision about when to upgrade, but that
you will have the opportunity to make a decision at all.

Almost no one takes the time to read and try to understand the click-through license agree-
ments.

How often should software on a minimal, high-security system be updated? There is a tension
here. Updates take time, and mistakes can open unintended holes. If the system is running no
network services, but is just routing packets, the original software might be good enough. This is
certainly not true for most network services; flaws are eventually found, and the software needs to
be updated. Most successful system cracks involve well-known problems for which patches exist.

When a security flaw is found in a vital network service, it has to be fixed quickly. If the oper-
ating system hasn’t been kept up-to-date, a sudden upgrade may require changes and installations
that would have been better done at a quieter time. Conversely, a patch has a 20% chance of being
wrong or needing further modifications—see the discussion of optimal timing in [Beattie et al.,
2002].

Network administrators have to keep up with software releases of their vital servers as well.
For example, we watched and waited for security holes in bind to appear. It is an essential service,
a persistent daemon, and tends to run as root. A hole would have a widespread affect on critical
services, a ripe arena for the propagation of worms. Furthermore, DNS is a service that must
be available to random Internet hosts. CERT Advisory CA-1998-05, “Multiple Vulnerabilities in
BIND,” was issued on 8 April 1998. How fast did people upgrade their critical software?

We started a scan of bind version numbers about two months after the CERT advisories. We
checked the versions of bind on some 1,000 name servers for a year and a half to examine the
propagation of safe software on critical services. The results are shown in Figure 14.2. Niels
Provos and Peter Honeyman [2001] have run a similar analysis of dangerous ssh servers at the
University of Michigan. It takes a while for people to catch up, even when the upgrade is vital.

Finally, the initial patches to a severe problem may be flawed themselves, requiring repeated
updates. For example, CERT Advisory CA-2002-18 reported a serious problem with OpenSSH.
Four levels of patches came out within three weeks of the original announcement, and it turned
out that some of the patches also included a Trojan horse (see CERT Advisory CA-2002-24)!
Deciding when it is right to install patches to software is a tough judgment call.

14.6.6 Watching the Roost

We should monitor our safe-haven hosts. Do they emit unusual packets? Have important files
changed? Do the logs have unusual entries?

A number of programs watch systems and the networks around them. Programs such as
Tripwire can check for modified files on a host.

Programs like snort, clog, and even tcpdump can watch network traffic fairly simply. They
can discard expected traffic and report unusual activity. Chapter 15 covers this in more detail.



276 Safe Hosts in a Hostile Environment

600 —|
500 — ,evf"‘v""'-"-"""‘"?'%:e 8.1.2
vl .
*"n".“ . .
” (4
w’ﬂ .
£ 400 ﬁ’/
> ¢
2 re
8 300 #
c £
2 ¥
g
S 200—
100 —
0—

Figure 14.2: Versions of bind running on a number of hosts following the announcement of a major security
hole. The security hole appeared in versions 4.9.5, 4.9.6, 4.9.7, and 8.1.1. Even though the scans started
some two months after the bugs were announced, the adoption curves are clear.



Skinny-Dipping: Life Without a Firewall 277

14.7 Skinny-Dipping: Life Without a Firewall

If your safe client is sufficiently attack-resistant, and your network access needs are well-defined
and well-constrained, it is feasible to connect safely to the Internet without a firewall. Connecting
to the Internet without a firewall is like skinny-dipping: some unusual extra freedom, but with an
added element of danger. It focuses the security-minded wonderfully.

Such hosts run few or no network servers: ssh may be it for incoming connections. If the sys-
tem is used to read mail or browse the Web, these programs should be too stupid to run viruses,
plug-ins, Java, JavaScript, or anything else imported from the outside world. In fact, these pro-
grams should be run jailed, which is difficult and inconvenient. Better kernel support for running
untrusted clients is needed for nearly all current operating systems.

The lack of firewall does allow unusual testing and services.



