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ABSTRACT
Machine Learning (ML) inference queries enable the execution of

complex predicates over databases and streams of unstructured

content. The increasing availability of ML model zoos allows for

the reuse of pre-trained models in ad-hoc ML inference queries. But

the problem of model assignment to the predicates is hard, espe-

cially when constraints (e.g. accuracy or execution time) have to

be satisfied, and the complexity of the query increases. We propose

a method for optimizing ML inference queries that aims at picking

the best models to use in a given query, according to constraints

on accuracy or execution time. We define the constraint-based ML
inference query optimization problem, and formulate it as a Mixed

Integer Programming (MIP) problem. We prove that the ML infer-

ence query optimization problem under constraints is NP-hard, and

propose an optimizer aiming at high efficiency and effectiveness.

Our optimizer can navigate a massive search space and find (close

to) optimal query plans on various model zoos, outperforming base-

lines and complementing existing work on probabilistic predicates.

Our approach can achieve up to 7x speedup on query execution

time and 10% improvement in terms of accuracy performance.

1 INTRODUCTION
Machine learning (ML) is increasingly used across application do-

mains such as video analytics [24, 58], autonomous driving [56],

content moderation [16], traffic monitoring [41] and crowd detec-

tion [27]. ML models are commonly used to enable ML inference
queries over unstructured documents (i.e. text, images, videos) that

are stored in databases, or produced by data streams. An ML in-

ference query evaluates the presence of (a combination of) known

entities to filter the documents, or to trigger a specific action. Take,

for instance, the scenario of a self-driving car: when the camera

feed detects (at certain proximity) that a person is crossing the

road, or that another car has turned its emergency lights on, the car

has to trigger an emergency action (e.g., breaking hard). Figure 1

exemplifies the inference query, as expressed in SQL.

Model Zoos. While ML models can be (and often are) trained for

specific inference queries, there is a growing interest in the reuse

and re-purposing of pre-trained ML models [22]. This shift, mostly

motivated by computational, economic, and environmental reasons,

is evident from the proliferation of public, pre-trained ML model

zoos such as HuggingFace, Tensorflow Hub, and PyTorch Hub
1
.

These model zoos contain thousands of pre-trained models for

diverse ML inference needs (e.g. recognition of classes/objects/con-

cepts). The models are described by metadata about their inference

capabilities (e.g. identified object classes), and performance (e.g.

accuracy and execution time). Thanks to model zoos, complex ML

1
https://huggingface.co/, https://www.tensorflow.org/, https://pytorch.org/hub/

SELECT frame_id,

mlpred(img, ’road’, model5 ) AS road,

mlpred(img, ’person’, model0 ) AS person,

mlpred(img, ’emergency light’, model5 ) AS light,

mlpred(img, ’car’, model3 ) AS car
FROM video_stream - - tuple contains img, and frame_id
WHERE (road AND person) OR (light AND car)

Figure 1: This query evaluates mlpred as a user-defined function
(UDF). mlpred receives an image/frame (img) as input, an object class
to identify (e.g. person), and an ML model (e.g. model5). The UDF, as
a predicate, evaluates the presence of the class in the given image.
For simplicity, we omit spatial predicates and other complex spatial
relationships among detected objects.

inference queries could be executed through the re-use of existing

ML models, allowing for great flexibility in the definition of ad-hoc

queries. In the example of Figure 1, ML models (e.g. model1) are
chosen by a practitioner by hand. As the size of model zoos and the

complexity of queries increase, a query optimizer could automate

the assignment of a specific (set of) MLmodel(s) from the model zoo.

That way, data analysts/engineers can focus on the analytical task

at hand, while ML researchers and engineers can independently

focus on ML model development and enhancement.

Optimization. ML inference queries are often subject to specific

performance constraints [28, 39]. If an ML inference query is eval-

uated over a live video, as in our example, model execution time is

a fundamental objective as each frame should be processed within

1/30th of a second. Other applications [13, 18, 25, 26, 33, 55] impose

multiple constraints (e.g. execution time and accuracy). A query op-
timizer’s job is to automatically assign ML models that can answer

to constrained ML inference queries where various predicates may

have conflicting time or accuracy objectives.

Classic query optimization [23, 30] and predicate ordering [19,

31] approaches do not apply in this setting. In ML inference queries,

the mapping of a model to a predicate needs to happen dynami-

cally, accounting for the capabilities of models in the model zoo, as

well as the models’ accuracy and performance tradeoffs. Differently

to traditional relational predicates, ML models produce probabilis-
tic outcomes. It requires a particular formulation to calculate the

accuracy of ML models over a query plan that includes arbitrary

combinations of conjunctive and disjunctive predicates.

Original Contributions. We describe an approach for the opti-

mization of ML inference queries under constraints (Figure 2). The

approach selects the best ML models for an ad-hoc query, given a

cost (e.g., evaluate each data item within 100ms) or accuracy con-

straint (e.g., evaluate a query with 90% accuracy). We address the

problem using a Mixed Integer Programming (MIP) approach, with

https://huggingface.co/
https://www.tensorflow.org/
https://pytorch.org/hub/
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the optimization goal of either maximizing inference accuracy, or

minimizing total execution time.

We model both ML model assignment and predicate ordering

in a MIP formulation (indicated as order-optimal optimizer). The

model assignment deals with the mapping of models to predicates,

and predicate ordering decides the order in which to apply them.

The contributions of this paper can be summarized as follows:

• We show that the problem of ML inference query optimiza-

tion under constraints is NP-hard (Section 3).

• We formulate the problem at hand as a (MIP) and propose

a MIP-based optimizer that takes into account model as-

signment (Section 5) and predicate ordering (Section 6). To

scale the MIP formulation further, we show how to linearize

product formulations.

• Our approach is the first to consider selectivity (the proba-

bility of an inference predicate to evaluate true) of model-

based predicates to arrange their order of execution.

• We evaluate our order-optimal optimizer against two base-

lines and the work using probabilistic predicates (PP) [39]

(Section 7), showing that our order-optimal optimizer can

generate plans that significantly outperform the baselines

in diverse model repositories on different constraint set-

tings.

2 RELATEDWORK
Multimedia Query Systems. Multimedia databases date back to

the 90s starting with Fagin’s Garlic system. They retrieved media

from a database system according to a weight (i.e., accuracy in

our case) [14], and CVQL [34], which dealt with queries over raw

videos. Our system shares ideas and motivation with CVQL [34]

and our modeling uses notions from Garlic [14]. However, our work

does not consider fuzziness at query time, as Garlic did. Instead,

our query optimizer considers accuracy during query planning,

but considers the results of the classifier as correct at query time.

Finally, modern systems like Velox [12], Macrobase [4], VideoStorm

[59], SVQ [57] and others [21] can benefit from our optimizer.

ML Inference Query Optimization. The development of spe-

cialized models for fast inference of object detection queries has

received considerable attention [6, 20, 22, 38, 45]. More recently,

related research is targeting the processing efficiency of larger ML

pipelines [2, 7, 8, 26, 39, 52]. NoScope [26] and PP [39] filtered irrel-

evant frames by training and deploying special lightweight binary

classifiers, and Tahoma [2] trained models and constructed model

cascades to process video frames. The cheaper models are trained to

achieve very low false negative rates, so that they did not filter out

valid tuples/images/frames, since these can be validated by more

accurate and expensive models downstream.

The most related work to ours is PP [39]. The main idea behind

PPs is to train specialized models to achieve a high data reduction

rate in order to avoid the application of more expensive models up

in the query tree. Our work is complementary, as it aims at reusing

the plethora of existing models available in public and enterprise

model zoos without retraining, and at optimally navigating the

performance to accuracy trade-off of existing models. PP generates

query plans for ML inference queries by first pre-selecting the

predicates with a greedy solution before optimizing the query plan,

thus the query plan is suboptimal. We provide a general solution

for the model selection and predicate ordering problem and it can

be used to perform better plans than PP. We proved that with an

experiment in Section 7.5.

Predicate optimization. Traditionally, relational database man-

agement systems have optimized disjunctive queries by converting

Boolean questions into either CNF or DNF [23]. Disjuncts within

Boolean factors or conjunctive predicates can be ordered optimally

(locally) by ranking with the ratio between cost and selectivity

[17, 32]. Works have proposed to apply bypass techniques to re-

duce cost by avoiding expensive predicates altogether [29]. The

scope of this work extends the traditional problem by optimizing

various objectives beyond cost, i.e., accuracy. The traditional se-

lection predicates do not yield uncertainty values and thus do not

cause accuracy issues.

Multiple-Objective Query Optimization. We model the ML in-

ference query optimization problem presented in this paper as a

multiple-objective query optimization problem with a bounded

objective method. In particular, our work can consider execution

time as the objective and accuracy as the constraint, and vice versa.

Notably, the problem at hand can also be modeled with other meth-

ods for multiple-objective optimization [42, 53, 54], which seeks to

find the set of query plans that dominate all others in terms of the

trade-off between two conflicting objectives. However, the prob-

lem we tackle in this paper is different from the classic single- and

multi-objective query optimization problems in existing literature

due to the special treatment that accuracy requires as well as the

consideration of predicate ordering in our specific problem setting.

Probabilistic Databases. Our work connects to probabilistic data-

bases because the inference for each input is uncertain: it relates to

the effectiveness of the selected model that identifies a predicate.

Before a model is executed, the inference outcome is unknown.

Therefore, we model the “metadata” of the ML models and generate

query plans based on the metadata. Instead, probabilistic databases

model the uncertainty probability of the tuples and generate query

results according to an uncertainty bound [51].

3 PROBLEM DEFINITION
In this section, we define the notions of amodel zoo and its metadata,

and ML inference query. Also, we formalize the ML inference query
optimization problem and discuss its complexity. In this work, we

only consider ML classification models.

3.1 Metadata of a Model Zoo
A model zoo is a repository of pre-trained ML models [1, 47, 50,

60], also known as model hubs. Building model zoos has become a

popular mechanism for sharing and developing ML models. In a

recent work [36], we have designed a conceptual metadata model

for model zoos, and developed an open-source tool
2
that retrieves,

stores and searches suchmodel metadata.We retrieved performance

metadata such as inference accuracy (specific to a model’s class),

as shown in Table ??, and inference execution time, as shown in

Table 3.2. The tool also gathers dataset-related metadata such as the

selectivity of a predicate per inference class, that is an estimation

2
https://modelsearch.io

https://modelsearch.io


Optimizing ML InferenceQueries under Constraints

of the fraction of data instances (e.g. images) for a certain object

class in the ML inference query in a given dataset. The construction

and maintenance (update) of the model zoo and its metadata is

orthogonal to this work, which we take as given inputs.

We formalize the metadata representation of a model zoo [36]

R as R(𝑀, 𝐼, 𝑃,𝐴,𝐶), where 𝑀 denotes the set of pre-trained ML

models; 𝐼 denotes the set of classes that 𝑀 can infer; 𝑃 denotes

the corresponding set of a Boolean predicate over the inference

classes 𝐼 ; 𝐴 and 𝐶 represent the matrices with the dimensions of

|𝑀 | × |𝑃 |, which store the values of model accuracy and execution

time, respectively. Continuing with the running example in Fig-

ure 1, we have𝑀 = {𝑚𝑜𝑑𝑒𝑙 0,𝑚𝑜𝑑𝑒𝑙 1, . . .}, 𝐼 = {𝑟𝑜𝑎𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛, . . .},
𝑃 = {𝑝𝑟𝑜𝑎𝑑 , 𝑝𝑝𝑒𝑟𝑠𝑜𝑛, . . .}. 𝐴 is depicted in ?? while 𝐶 is depicted in

subsection 3.2.

3.2 ML Inference Queries
Our formalization of ML inference queries is inspired by Unions of

Conjunctive Queries (UCQs) [10]. UCQs are a fundamental class

of database query language, which corresponds to the subset of

relational algebra containing selection, projection, join and union

(SPJU). Drawing upon UCQs, our goal is to express an inference

need on a given dataset such as images, which is satisfied through

the execution of one or more ML models on the input data items.

Given a model zoo R(𝑀, 𝐼, 𝑃, 𝐴,𝐶), we write an ML inference query

in the form of (𝑝1 (𝑚1) ∧ ...∧𝑝𝑖 (𝑚𝑖 )) ∨ ...∨ (𝑝 𝑗 (𝑚 𝑗 ) ∧ ...∧𝑝𝑘 (𝑚𝑘 )),
where each 𝑝𝑙 is a Boolean predicate representing the inference

class inferred by the ML model 𝑚𝑙 (1 ≤ 𝑙 ≤ 𝑘). According to

the closed-world assumption (CWA), we assume that an input ML

inference query 𝑄 can be answered by a given model zoo R. Note
that𝑚1, . . . ,𝑚𝑘 are not necessarily distinct, since it is possible that

one model is selected for multiple predicates. Consider the below

query of running example. In Fig 3d,𝑚𝑜𝑑𝑒𝑙 5 is selected for both

𝑝𝑙𝑖𝑔ℎ𝑡 and 𝑝𝑟𝑜𝑎𝑑 .

𝑝𝑟𝑜𝑎𝑑 𝑝𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑙𝑖𝑔ℎ𝑡 𝑝𝑐𝑎𝑟

model 0 ∞ 25 ∞ ∞
model 1 ∞ 35 ∞ ∞
model 2 ∞ ∞ ∞ 20

model 3 ∞ ∞ ∞ 40

model 4 5 ∞ 5 ∞
model 5 10 ∞ 10 ∞

Table 1: Execution time𝐶 of models in a model zoo.

𝑝𝑟𝑜𝑎𝑑 𝑝𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑙𝑖𝑔ℎ𝑡 𝑝𝑐𝑎𝑟

model 0 0 0.90 0 0

model 1 0 0.95 0 0

model 2 0 0 0 0.91

model 3 0 0 0 0.93

model 4 0.94 0 0.91 0

model 5 0.96 0 0.95 0

Table 2: Example accuracy 𝐴 of models in a model zoo.

𝑞 : (𝑝road (𝑚4) ∧ 𝑝person (𝑚1)) ∨ (𝑝light (𝑚4) ∧ 𝑝car (𝑚3))

CNF and DNF queries. An ML inference query 𝑄 and its sub-

queries 𝑄𝑖 are Boolean queries. In above definition, 𝑄 is in the

disjunctive normal form (DNF), where the subformulas𝑄1 ∨ · · · ∨𝑄𝑙
are connected by disjunctions. A sentence in DNF can be equiv-

alently transformed to its conjunctive normal form (CNF), where
the subformulas are connected by conjunctions. For example, the

equivalent CNF of 𝑞 is:

(𝑝road (𝑚4) ∨ 𝑝light (𝑚4)) ∧ (𝑝road (𝑚4) ∨ 𝑝car (𝑚3)) ∧
(𝑝person (𝑚1) ∧ 𝑝light (𝑚4)) ∧ (𝑝person (𝑚1) ∨ 𝑝car (𝑚3))

In the rest of the paper, for brevity, we will refer to ML inference
queries in CNF simply as CNF queries (similarly for the DNF ones).

3.3 Optimization of ML Inference Queries
Given an ML inference query 𝑄 , we aim for two optimization tar-

gets. The first target is the execution time: the goal is to select the

models that minimize the execution time of the query. However,

since accuracy and execution time may conflict, the query with the

lowest execution time may also suffer from low accuracy. There

are multiple ways to deal with conflicting objectives, such as multi-

objective optimization [43]. In this work, we deal with this conflict by
establishing bounds: an upper bound on execution time, when optimiz-
ing for accuracy; and a lower bound for accuracy, when optimizing
for execution time. In the following, we formalize the definitions of

these two problem variants.

Definition 1 (Accuracy-maximizingModelAssignment (AMA)

Problem). Given a model zoo R, an ML inference query 𝑄 , and an
upper bound 𝐶𝑏𝑜𝑢𝑛𝑑 on execution time, the goal is to assign a model
𝑚 ∈ 𝑀 for each predicate 𝑝 ∈ 𝑃 , which maximizes the accuracy 𝑎𝑄
with the constraint of execution time 𝑐𝑄 . The form of the objective
function is:

Maximize: 𝑎𝑄 = 𝑓𝑎𝑐𝑐 (𝑄)
Subject to: 𝑐𝑄 ⩽ 𝐶𝑏𝑜𝑢𝑛𝑑

In the above definition, we denote the function to compute 𝑎𝑄
as 𝑓𝑎𝑐𝑐 (𝑄), which will be elaborated in Section 5.1. The cost of the

query plan 𝑐𝑄 is measured by the average inference time on one

data instance. 𝐶𝑏𝑜𝑢𝑛𝑑 represents the given execution time bound

that the computation cost of the query should respect.

Use case. The problem in Definition 1 specifies the bounding of

the execution time. It is a typical requirement in use cases where

execution speed is of importance, as in the query of Figure 1.

Definition 2 (Execution time-minimizing Model Assign-

ment (EMA) Problem). Given a model zoo R(𝑀, 𝐼, 𝑃,𝐴,𝐶), an ML
inference query𝑄 , and a lower bound on accuracy𝐴𝑏𝑜𝑢𝑛𝑑 , the goal is
to assign a model𝑚 ∈ 𝑀 for each predicate 𝑝 ∈ 𝑃 , which minimizes
the average execution time on each tuple, i.e., 𝑐𝑄 , with the constraint
that the minimum accuracy of the query 𝑎𝑄 stays above a lower
bound 𝐴𝑏𝑜𝑢𝑛𝑑 . The form of the objective function is:

Minimize: 𝑐𝑄 = 𝑓𝑡𝑖𝑚𝑒 (𝑄)
Subject to: 𝑎𝑄 ⩾ 𝐴𝑏𝑜𝑢𝑛𝑑

In the above definition, we denote the function to compute 𝑐𝑄 as

𝑓𝑡𝑖𝑚𝑒 (𝑄), which will be elaborated in Section 5.2.
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ML Inference Query

Inputs

U

ML model-based predicates

Model Zoo Metadata
Classes:    {carr , person, …}
Accuracy: {

car: {accu:.89, rec:.83, pr:.8,…}
person: { accu: .7, …}

Execution Time: 43ms

Dataset Metadata
Selectivity per class:

car: 0.02, person: 0.2, …

MIP-based Query Optimizer

Parameterization
Model Assignment 

(Section 4)

Model Assignment 
& Predicate Ordering 

(Section 5)

Query plan generator

Outputs

Order-optimal Plan

U

model 5 model 3 model 5

model 1 model 1model 5

Model-optimal Plan

U

model 5 model 3model 1 model 5

MIP Solver

Figure 2: Approach overview.

Use case. Lower bounds on accuracy are expected in many ML

inference queries. When the query is not used on a critical func-

tionality (such as taking the correct turn rather than breaking for

a pedestrian), a certain degree of accuracy could be sacrificed for

a faster execution time, as long as the actual accuracy meets the

minimum design requirement.

3.4 Complexity Analysis
In the following, we will show that solving the AMA problem

(Definition 1) is NP-hard. For simplicity, we will consider the special

case of our problem where 𝑖) the queries are conjunctive, i.e., 𝑄 :

𝑝0∧· · ·∧𝑝𝑟 and 𝑖𝑖) a givenmodel can only answer a single predicate.

TheMultiple Choice Knapsack Problem (MCKP). Our problem
of assigning an ML model from a model zoo to every predicate of

a query, is very similar to the Multiple-Choice Knapsack Problem

(MCKP) [48], a generalization of the classic knapsack problem. The

MCKP receives a set of items in disjoint classes, and its goal is to

select exactly one item out of each class of items, maximizing the

total value of items, while not exceeding the given weight capacity

of the knapsack.

Theorem 1. The Accuracy-maximizingModel Assignment Problem

is NP-hard.

Proof Sketch. The MCKP problem can be mapped to the AMA

problem as follows. The items in MCKP are mapped to the models

that need to be selected in the AMA problem. Moreover, those ML

models will be divided into different classes, one class for each

predicate that a model can cover (e.g., all models that can detect

a “car” , would belong to the same class), as for items divided

into different classes. For the needs of this reduction, we consider

the special case that a model covers a single predicate, instead of

multiple ones. The logarithm of accuracy of the selected model can

be mapped as the value of the item. The total value of the items can

be calculated as the sum of logarithms of accuracy. The weight of

each item (model) can be directly mapped to the execution time of

the selected model. Thus, the execution time bound of our original

problem can be mapped to the total weight of the items.

A solution to the AMA problem selects exactly one model from

each class (like MCKP does with items from each class), respecting

the execution time constraint (weight in MCKP) and maximizing

accuracy. Similar mechanism can be applied to map MCKP to EMA

problem
3
by mapping the item profit with model execution time

and the item weight with logarithm of the accuracy.

4 APPROACH OVERVIEW
As depicted in Figure 2, users can define an ML inference query

with ML model-based predicates. To optimize the query our MIP-

based optimizer receives the metadata of a model zoo containing

information about the available models and their performance in

terms of accuracy and execution time. The input of our query opti-

mizer also includes the selectivity metadata, i.e., statistics regarding

a predicate selectivity. Both types of metadata are retrieved from a

metadata management tool [36]. The query optimizer then parses

and optimizes the query. With the model zoo metadata alone (yel-

low dashed arrow), the resulting query plan is 𝑖) a model-optimal
query plan that minimizes query execution time, adhering to an

accuracy constraint, or vice versa. In addition, by utilizing the se-

lectivity metadata, our query optimizer produces 𝑖𝑖) a model- &
order-optimal query plan (red dashed arrows). Such a query plan

is more desirable: in addition to assigning the selected models for

each predicate, it optimizes the order in which ML-based predicates

are executed. The plan follows bypass processing [31], in which

each branch only executes a specific set of the data with significant

results, resulting in less query execution time.

4.1 Challenges
Tackling the accuracy/execution time trade-off. In an ML infer-

ence query, a predicate can be inferred by multiple models (Figure

3(a)). A naive planning approach would assign the models greedily

as in Figure 3(b): for each predicate, the model with the highest

accuracy is selected, as long as it meets the constraint, which leads

to exponential complexity. To tackle this challenge, we propose an

MIP-based formulation (section 5) by parameterizing the factors

relevant to AMA/EMA problems, e.g., variables for model assign-

ment. Figure 3(c) shows our approach, which produces the best

possible assignment of models by examining all predicates before

allocating them. Thus, it provides better overall accuracy compared

to the greedy optimizer.

3
Proving the same for the EMA problem of Definition 2 is very similar, and we omit it

for the sake of space.
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Time constraint: 80

model 4

model 5

model 0

model 1

model 4

model 5

model 2

model 3

𝑝𝑟𝑜𝑎𝑑 𝑝𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑙𝑖𝑔ℎ𝑡 𝑝𝑐𝑎𝑟

∩ ∩

∪

(a) Logical query plan

model 4 model 1 model 4 model 3

𝑝𝑟𝑜𝑎𝑑 𝑝𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑙𝑖𝑔ℎ𝑡 𝑝𝑐𝑎𝑟

∩ ∩

∪
Accuracy 0.97, Time 80

(b) Greedy query plan

model 5 model 0 model 5 model 3

𝑝𝑟𝑜𝑎𝑑 𝑝𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑙𝑖𝑔ℎ𝑡 𝑝𝑐𝑎𝑟

∩ ∩

∪
Accuracy 0.982, Time 75

(c) Model-optimal query plan

model 5

model 1 model 1

model 5 model 3 model 5

𝑝𝑙𝑖𝑔ℎ𝑡

𝑝𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑝𝑒𝑟𝑠𝑜𝑛

𝑝𝑟𝑜𝑎𝑑 𝑝𝑐𝑎𝑟 𝑝𝑟𝑜𝑎𝑑

∪
Accuracy 0.99, Time 48.7

true

false

(d) Order-optimal query plan

Figure 3: Alternative query plans for the running example query.

Predicate ordering. Not all data instances are equally likely to

have a positive outcome for the query. By considering predicates

selectivity it is possible to arrange the execution order ofmodels, and

generate order-optimal plans using bypass processing [31]. Without

loss of generality, we assume that selectivity is a property of an

existing labeled dataset, and is known in advance. Selectivity is

further applied by the query optimizer to generate query plans for

unknown/unlabeled data. As shown in Figure 3(d), compared to

the aforementioned alternatives, this query plan is more effective

in terms of minimizing the number of data instances (e.g., images)

that have to be processed for answering the query. We explain the

formulation of selectivity-related variables in Section 6.

4.2 Assumptions
Our approach is a natural extension of relational databases: we

consider multimedia data such as images or text, instead of rela-

tional tuples. In this work, an image can be seen as a tuple, and

the inference classes of that image can be seen as boolean columns.

This paper makes three assumptions.

(1) First, similar to relational DBMS query optimization works,

this paper makes the attribute-value independence assump-

tion [46]. This assumption translates to our setting as fol-

lows: the data distributions of inference classes within a
dataset are independent of each other. For instance, we con-

sider the probabilities of a road or a person being found

in an same image to be independent. This is a common

assumption made by query optimization works [11, 44].

We make that assumption because it greatly simplifies our

calculations of model accuracy (section 5), and plan to lift

it in future work.

(2) Second, we assume that the classification decisions that a
model makes are independent. This assumption allows us to

simplify the calculation of selectivities for predicate-order

optimization (section 6).

(3) Finally, we assume that the characteristics of datasets on

which the models have been trained/tested (accuracy on

a given class, class distributions, etc.) are the same as the

unseen dataset that we are querying. This means that if

the optimizer chooses a given order of predicate execution,

then that order will indeed be effective when the query is

evaluated (section 7).

5 MODEL ASSIGNMENT AS A MIP
In this section, we present a mixed-integer programming formula-

tion for the ML inference query optimization problems as defined

in Definition 1 and Definition 2.

Model-assignment variables. To perform model assignment we

need to allocate exactly one model to each predicate. Given a model

zoo R(𝑀, 𝐼, 𝑃, 𝐴,𝐶) we define the decision variables, denoted as

𝑋𝑚,𝑝 , where𝑚 ∈ 𝑀 and 𝑝 ∈ 𝑃 . We represent the set of all possible

decision variables of R as 𝑋 . The decision variable 𝑋𝑚,𝑝 is a binary

variable that indicates whether a model is selected:

𝑋𝑚,𝑝 =

{
1, 𝑖 𝑓 𝑚𝑜𝑑𝑒𝑙 𝑚 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Based on decision variables 𝑋𝑚,𝑝 , we now define the constraints.

Choosing exactly one model per predicate. The constraints

guarantee that exactly one model is selected and assigned for each

predicate in the query. Since 𝑋𝑚,𝑝 is set to 1 when a model𝑚 is

assigned for predicate 𝑝 , among all the decision variables for the

same predicate 𝑝 , only one decision variable has the value of 1. That

is, the sum of decision variable 𝑋𝑚,𝑝 for different models but for

the same predicate is 1. We express this constraint as:∑︁
𝑚∈𝑀

𝑋𝑚,𝑝 = 1 (1)

This equation alone is not sufficient since it is possible for the

optimizer to assign the cheapest model to every predicate and may

result in 0% accuracy. This issue is somewhat mitigated by setting

an upper bound on 𝑋𝑚,𝑝 using 𝐴𝑏𝑜𝑢𝑛𝑑 :

𝑋𝑚,𝑝 ⩽ ⌈𝐴𝑚,𝑝 ⌉ (2)

which ensures that only models with non-zero accuracy on a predi-

cate can be assigned. By setting this upper bound, the size of the

search space also becomes smaller as the optimizer discards these

non-valid solutions.
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5.1 Query Accuracy Calculation
In what follows, we explain the procedure of calculating query

accuracy 𝑎𝑄 , i.e., 𝑓𝑎𝑐𝑐 (𝑄) in Definition 1.

For example, given the query 𝑞 in Section 3.2, the accuracy is

computed as follows:

𝑓𝑎𝑐𝑐 (𝑞) =(𝑎𝑟𝑜𝑎𝑑 · 𝑎𝑝𝑒𝑟𝑠𝑜𝑛) + (𝑎𝑙𝑖𝑔ℎ𝑡 · 𝑎𝑐𝑎𝑟 )
− (𝑎𝑟𝑜𝑎𝑑 · 𝑎𝑝𝑒𝑟𝑠𝑜𝑛) · (𝑎𝑙𝑖𝑔ℎ𝑡 · 𝑎𝑐𝑎𝑟 )

In this work, we assume that the predicates are independent and

we did not consider the effect of correlation between predicates

(See 4.2 for explanations). Similar assumption has been made in

[39]. If two predicates are independent, we can regard the accuracy

as the probability of getting true predictions. Thus we can compute

the accuracy model following probability theory.

With decision variable 𝑋𝑚,𝑝 and accuracy value 𝐴𝑚,𝑝 , we now

turn to calculate the accuracy of a query, i.e., 𝑓𝑎𝑐𝑐 (𝑄). Recall that
an ML inference query can come in as DNF or CNF. The first step

of calculating 𝑎𝑄 for a DNF query is to calculate the accuracy of

the individual conjunctive subexpressions by using the following

formula:

𝑓𝑎𝑐𝑐 (𝑄) =
∏
𝑝∈𝑃
(
∑︁
𝑚∈𝑀

𝐴𝑚,𝑝𝑋𝑚,𝑝 ) (3)

The disjunction of the accuracy values of the conjunctive subex-

pressions is computed with the following formula:

𝑓𝑎𝑐𝑐 (𝑄) =
∑︁
𝑝∈𝑃

∑︁
𝑚∈𝑀

𝐴𝑚,𝑝𝑋𝑚,𝑝 −
∏

𝑖∈{𝑝0,𝑝1}

∑︁
𝑚∈𝑀

𝐴𝑚,𝑖𝑋𝑚,𝑖

+
∏

𝑗∈{𝑝0,𝑝1,𝑝2}

∑︁
𝑚∈𝑀

𝐴𝑚,𝑗𝑋𝑚,𝑗 − ...

+ (−1) |𝑃 |−1
∏
𝑝∈𝑃
(
∑︁
𝑚∈𝑀

𝐴𝑚,𝑝𝑋𝑚,𝑝 )

(4)

The calculation of 𝑓𝑎𝑐𝑐 (𝑄) for a CNF query is conducted similarly:

first we calculate all the individual disjunctive subexpressions with

Eq 4, and then calculate the final conjunction of those disjunctions

with the formula of Eq 3. To summarize, for a CNF query or DNF

query, we will parse different operators and compute the accuracy

according to the query.

5.2 Modeling the Execution Time
In this subsection, we will introduce how to represent the problem

if we only consider model assignment, and how to compute 𝑓𝑡𝑖𝑚𝑒
in Definition 2. Suppose that a user sets a constraint on execution

time. There are situations where a given model will be assigned to

multiple predicates. In this case, however, the model’s execution

time should be measured only once: the model can be executed

once on the input and can output predictions for multiple classes.

Therefore we define a binary variable 𝐵𝑚 to indicate the assignment

of the model 𝑚, where 𝑚 ∈ 𝑀 . We use 𝐵 to denote the set of

variables 𝐵𝑚 for different models in𝑀 . If the model𝑚 is selected,

possibly more than once, the corresponding variable 𝐵𝑚 is set to 1,

otherwise it is set to 0.

We first enforce that 𝐵𝑚 has to be non-zero if at least one 𝑋𝑚,𝑝
is non-zero, by setting 𝑋𝑚,𝑝 as a lower boundary for 𝐵𝑚 :

Table 3: Variables in formalization.

Symbol Domain Semantic

𝑋𝑚,𝑝 {0,1} If model𝑚 is assigned to predicate 𝑝

𝐵𝑚 {0,1} If model𝑚 is selected

𝑂𝑝,𝑗 {0,1} If predicate 𝑝 is answered in the 𝑗 th execution step

𝐺𝑔,𝑗 {0,1} If the predicates within the same group (conjunction / disjunc-

tion) have all been answered

𝐻𝑔,𝑗 R The percentage of data being computed at step 𝑗 when predi-

cates in group 𝑔 have all been answered

𝑊𝑔,𝑗 R The percentage of data being computed at step 𝑗 considering

the predicates in the same group have been answered

𝑄𝑔,𝑝,𝑗 R The product of 𝐻𝑔,𝑗−1 and𝑂𝑝,𝑗−1

𝑆
𝐽

𝑗
R The percentage of data being selected in step 𝑗

𝑌𝑚,𝑝,𝑗 R The product of 𝑆
𝐽

𝑗
, 𝑋𝑚,𝑝 , and𝑂𝑝,𝑗

𝑅𝑚,𝑗 R The execution time of running model𝑚 at step 𝑗

𝑋𝑚,𝑝 ⩽ 𝐵𝑚 (5)

In this case 𝑋𝑚,𝑝 “pushes” 𝐵𝑚 upwards. To reduce the size of the

search space we introduce an upper bound as well, making sure

that 𝐵𝑚 can only become non-zero if there is at least one 𝑋𝑚,𝑝 that

is non-zero:

𝐵𝑚 ⩽
∑︁
𝑝∈𝑃

𝑋𝑚,𝑝 (6)

Finally, the execution time for the query plan is :

𝑓𝑡𝑖𝑚𝑒 (𝑄) =
∑︁
𝑚∈𝑀

𝐶𝑚𝐵𝑚 (7)

Objective functions. To conclude, with Eq(4) and Eq(7), we have

transformed the two problem variants in Section 3.3 to a matter of

MIP by defining two objective functions as below.

Given an execution time constraint (solving problem described in

Definition 1):

Maximize: 𝑓𝑎𝑐𝑐 (𝑄)
Subject to: 𝐸𝑞(1), 𝐸𝑞(2), 𝐸𝑞(5), 𝐸𝑞(6), 𝑓𝑡𝑖𝑚𝑒 (𝑄) ⩽ 𝐶𝑏𝑜𝑢𝑛𝑑

Given an accuracy constraint (solving the problem in Definition 2):

Minimize: 𝑓𝑡𝑖𝑚𝑒 (𝑄)
Subject to: 𝐸𝑞(1), 𝐸𝑞(2), 𝐸𝑞(5), 𝐸𝑞(6), 𝑓𝑎𝑐𝑐 (𝑄) ⩾ 𝐴𝑏𝑜𝑢𝑛𝑑

6 PREDICATE ORDERING AS MIP
Algorithm 1 outlines the main steps of our proposed order-optimal

query optimizer. To distinguish the known and unknown vari-

ables in an objective function, we use 𝐾 to present the list of input

variables. It includes the given ML inference query 𝑄 and model

repository 𝑅 (defined in Section 3), objective type 𝑇 (execution

time or accuracy) and bound 𝛽 (𝐶𝑏𝑜𝑢𝑛𝑑 or 𝐴𝑏𝑜𝑢𝑛𝑑 ). We write the

objective functions introduced in Section 5 as 𝑓 (𝐾,𝑋 ), where 𝐾 is

known and we try to decide the value of 𝑋 . Our main contribution

lies in line 2 in Algorithm 1. We design variables (e.g., 𝑂 , 𝐺) that

represent predicate ordering and predicate selectivity. They allow

us to transform 𝑓 (𝐾,𝑋 ) to new objective functions 𝑓 ′ (𝐾,𝑋,𝑂,𝐺)
with embedded information of predicate order, cost, and accuracy.

We elaborate the variable definitions, their computation rules in
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Table 4: Constraints in formalization.

Eq index Constraints

Eq(1) ∀𝑝 :

∑
𝑚∈𝑀 𝑋𝑚,𝑝 = 1

Semantics: Only select one model for each predicate

Eq(2) ∀𝑝,𝑚: 𝑋𝑚,𝑝 ⩽ ⌈𝐴𝑚,𝑝 ⌉
Only assign a model to a predicate it can successfully infer-

ence on

Eq(5,6) ∀𝑚,𝑝 : 𝑋𝑚,𝑝 ⩽ 𝐵𝑚 ; 𝐵𝑚 ⩽
∑

𝑖∈𝑃 𝑋𝑚,𝑖

Identify whether model𝑚 is selected

Eq(8,9) ∀ 𝑗 :∑𝑝∈𝑃 𝑂𝑝,𝑗 = 1; ∀𝑝 :

∑
𝑗⩽|𝑃 |−1𝑂𝑝,𝑗 = 1

At each step, only one predicate is answered

Eq(13) ∀𝑔 ∀ 𝑗 ∀𝑝 ∈ 𝑃𝑔 :𝐺𝑔,𝑗 ⩽
∑

0⩽𝑘⩽𝑗−1𝑂𝑝,𝑘

Variables are applicable if all the predicates are answered

within the same group

Eq(14) ∀𝑔∀ 𝑗 :𝑊𝑔,𝑗 = 1 −𝐺𝑔,𝑗𝑆𝑔

Determines the selectivity produced by group 𝑔 in step 𝑗

Eq(15,16) 𝐻𝑔,𝑗 = 𝐻𝑔,𝑗−1 · (1 −
∑

𝑝∈𝑃𝑔 𝑂𝑝,𝑗−1 (1 − 𝑆𝑃𝑝 ) )
𝐻 ′𝑔,𝑗 = max(1 − ∑

𝑝∈𝑃𝑔 𝑂𝑝,𝑗 ,𝐺𝑔,𝑗 , 𝐻𝑔,𝑗 )
Determines the selectivity produced by the predicate in the

same group

Eq(17) ∀ 𝑗 : 𝑆 𝑗 =
∏

𝑔⩽|𝑔𝑟𝑜𝑢𝑝 |𝑊𝑔,𝑗𝐻𝑔,𝑗

Selectivity at step 𝑗

Eq(18) ∀𝑚∀ 𝑗 : 𝑍𝑚,𝑗 =
∑

𝑝∈𝑃 𝑌𝑚,𝑝,𝑗𝐶𝑚,𝑝 ;

∀𝑚∀𝑝∀ 𝑗𝑌𝑚,𝑝,𝑗 ⩽ 𝑀 · 𝑋𝑚,𝑝 ; 𝑌𝑚,𝑝,𝑗 ⩽ 𝑀 ·𝑂𝑝,𝑗 ;

𝑌𝑚,𝑝,𝑗 ⩾ 𝑆
𝐽

𝑗
− (2 − 𝑋𝑚,𝑝 −𝑂𝑝,𝑗 )𝑀 ; 0 ⩽ 𝑌𝑚,𝑝,𝑗 ⩽ 𝑆

𝐽

𝑗
;

Determines the cost of executing model𝑚 at step 𝑗

Section 6.1, and 6.2, and the transformed objective functions in 6.3.

Finally, in Section 6.4 we explain how we apply an MIP solver to

obtain the values of unknown variables 𝑋 , 𝑂 , 𝐺 , and use them to

generate the optimized query plan that performs bypass processing

(i.e., Algorithm 2).

6.1 Predicate-order Variables
To order the predicates we consider steps of an ML inference query.

We assume sequential model execution and use a step to represent

the execution of one predicate in the query.

To allocate exactly one predicate at one step we introduce the

binary variables 𝑂𝑝,𝑗 ∈ 𝑂 , where 𝑝 ∈ 𝑃 . 𝑗 represents the step and

its value is the index of the order with the range of [0, |𝑃 | − 1]. The
variable 𝑂𝑝,𝑗 indicates whether predicate 𝑝 is evaluated during the

step 𝑗 .

𝑂𝑝,𝑗 =

{
1, if predicate 𝑝 is answered at step 𝑗

0, otherwise

Algorithm 1: Order-optimal Optimizer

Input :ML inference query𝑄 , model repository 𝑅, objective type𝑇 , bound

𝛽

Output :Query plan 𝑜𝑝𝑡𝑃𝑙𝑎𝑛 for query𝑄

1 𝐾 ← [𝑄,𝑅,𝑇 , 𝛽 ] // input variables

2 𝑓 ′ (𝑋,𝑂,𝐺,𝐾 ) ← 𝑂𝑟𝑑𝑒𝑟𝑂𝑝𝑡 (𝑓 (𝑋,𝐾 ) )// transform obj func

3 𝑋,𝑂,𝐺 ← 𝑀𝐼𝐿𝑃_𝑆𝑜𝑙𝑣𝑒𝑟 (𝑓 ′ (𝑋,𝑂,𝐺,𝐾 ) )
4 𝑜𝑝𝑡𝑃𝑙𝑎𝑛 ← 𝑄𝑢𝑒𝑟𝑦𝑃𝑙𝑎𝑛𝐺𝑒𝑛 (𝑋,𝑂,𝐺 )
5 return 𝑜𝑝𝑡𝑃𝑙𝑎𝑛

Table 5:𝑂𝑝,𝑗 with different predicates and steps

p

j 0 1 2 3

𝑝road 0 0 1 0

𝑝person 0 1 0 0

𝑝light 1 0 0 0

𝑝car 0 0 0 1

Continuing with the running example, Table 5 shows an example

of a possible order of the four predicates. The order is 𝑝light →
𝑝person→ 𝑝road→ 𝑝car.

Answering exactly one predicate at each step. Similar to Eq(1),

we design the following constraint to restrict the number of predi-

cates executed at each step 𝑗 :∑︁
𝑝∈𝑃

𝑂𝑝,𝑗 = 1, (8)

A similar constraint is set on the execution of the predicates, i.e.,

each predicate 𝑝 must be executed once:

|𝑃 |−1∑︁
𝑗=0

𝑂𝑝,𝑗 = 1 (9)

6.2 Considering Selectivity and Order
Before establishing a cheap order of execution we need to measure

the cost of the plan. The cost of a query plan depends highly on the

order of predicate evaluation if we consider selectivity. The lower

the selectivity of a model, the more data tuples/items can be filtered

out, which reduces the computation time. However, the amount of

saved computation can be easily offset with high model execution

time. For instance, a very expensive predicate/model that is very

selective may not save costs if it is run for all input tuples/images

of a dataset. This is a cost-based decision that we model in the

following.

6.2.1 Predicate Ordering on Two Simple Types ofQueries. Before in-
troducing predicate ordering on anML inference query, we first con-

sider two simpler cases: conjunction-only queries and disjunction-

only queries.

Conjunction-only queries. Consider an ML inference query with

only conjunctions of predicates, i.e., in the form of𝑄 : 𝑝1 ∧ · · · ∧𝑝𝑟 .
Predicate ordering for such queries is straightforward: the selectiv-

ity of the query would be the product of the selectivity of all the

predicates in the query. We define the selectivity of the predicates
as 𝑆𝑃𝑝

4
, where 𝑝 ∈ 𝑄 . The selectivity of the conjunctive query is∏

𝑝∈𝑄 𝑆
𝑃
𝑝 . Taking into account the selectivity and cost of a predi-

cate, as well as their execution order for a query𝑄 , the cost𝐶𝑄 can

be calculated as follows (simplified version):

𝐶𝑄 = 𝐶0 +𝐶1𝑆𝑃0 +𝐶2𝑆
𝑃
0
𝑆𝑃
1
+ ... +𝐶 |𝑟 |−1

∏
𝑖∈[0, |𝑟 |−2]

𝑆𝑃𝑖 (10)

4
Due to the need to distinguish between selectivity of predicates 𝑆𝑃 (dataset-defined

constants) versus groups 𝑆𝐺 ( query-dependent constants) versus timesteps 𝑆 𝐽 (MIP

variables), the superscript denotes which type of selectivity is meant, and the subscript

the set indexation.
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Disjunction-only queries. Next, we consider an ML inference

query with only disjunctions of predicates, i.e., in the form of 𝑄 :

𝑝1 ∨ · · · ∨ 𝑝𝑟 . For such a query𝑄 , the selectivity of the query is the

multiplication of 1 − 𝑆𝑃𝑝 for each predicate 𝑝 ∈ 𝑄 . The cost of this
query is (simplified version):

𝐶𝑄 =𝐶0 +𝐶1 (1 − 𝑆𝑃0 ) +𝐶2 (1 − 𝑆
𝑃
0
) (1 − 𝑆𝑃

1
)

+ ... +𝐶𝑟−1
∏

𝑖∈[0,𝑟−2]
(1 − 𝑆𝑃𝑖 ) (11)

6.2.2 Predicate Ordering on CNF or DNF queries. Now we explain

predicate ordering on an ML inference query in CNF or DNF. In all

the following examples we will continue with the running example

query 𝑞.

Example 6.1. In this query 𝑞, 𝑝road and 𝑝person are the literals in
the first conjunction, while 𝑝light and 𝑝car are in the second conjunc-
tion. We refer to the predicates in the same conjunction subformula of
DNF queries (or in the same disjunction subformula in CNF queries)
as a group. 𝑞 is of DNF, and it has two groups (𝑝road, 𝑝person) and
(𝑝light, 𝑝car).

In the following, we aim to model predicate execution order

based on groups and optimize it with MIP. To this end, we define

three kinds of variables for presenting groups (𝐺), selectivity among

groups (𝑊 ), and selectivity within groups (𝐻 ).

Representing groups.𝐺 are binary variables representingwhether

all predicates in the same group have been fully evaluated at a given

step 𝑗 . If yes, the value of 𝐺𝑔,𝑗 ∈ 𝐺 is 1, otherwise it will be 0. 𝑔

(∈ {0, 1, ..., #𝑔𝑟𝑜𝑢𝑝𝑠}) refers to the index of different conjunction

groups, and 𝑗 refers to the step number. We add constraints of the

form 𝐺𝑔,𝑗 ⩽
∑
0⩽𝑘⩽𝑗−1𝑂𝑝,𝑘 , where 𝑝 ∈ 𝑃𝑔 . To make sure that the

value of 𝐺𝑔,𝑗 is set to 1 if all predicates in the same group 𝑔 have

been evaluated, we define the following constraints:

𝐺𝑔,𝑗 ⩾ 1 − |𝑃𝑔 | +
∑︁
𝑝∈𝑃𝑔

∑︁
0⩽𝑘⩽𝑗−1

𝑂𝑝,𝑘 . (12)

𝐺𝑔,𝑗 ⩽
∑︁

0⩽𝑘⩽𝑗−1
𝑂𝑝,𝑘 (13)

Representing selectivity among groups. We introduce the vari-

able𝑊𝑔,𝑗 to represent the percentage of data being processed at

every step when one group of predicates has all been answered.𝑊

is the set of all possible variables𝑊𝑔,𝑗 , and it models the effect of

the predicates from different groups. Thus, we can see that the se-

lectivity of the predicate can affect other predicates in other groups.

We use 𝐺 to compute, since 𝐺 indicates whether the predicates in

the same group have been answered. Moreover, there is a selectivity

for each group of conjunctions, 𝑆𝐺
0
= 𝑆𝑃road𝑆

𝑃
person for group 0 and

𝑆𝐺
1

= 𝑆𝑃light𝑆
𝑃
car for group 1. For CNF queries the selectivity for

each group is the probability that each disjunction returns true. For

DNF queries however, the selectivity for each group is the proba-

bility that each conjunction returns false. We model the reduction

rate of the current step as follows:

𝑊𝑔𝑖 , 𝑗 = 1 −𝐺𝑔𝑖 , 𝑗𝑆𝐺𝑔 (14)

Since the variables𝐺 are binary, when𝐺𝑔,𝑗 equals 1,𝑊𝑔,𝑗 equals

1 − 𝑆𝐺𝑔 , indicating that the proportion of data being selected for

further processing is 1 − 𝑆𝐺𝑔 . When 𝐺𝑔,𝑗 equals 0,𝑊𝑔,𝑗 equals 1,

which means that all the data should be processed. To continue with

the previous example, if𝐺0,3 equals 1, then𝑊0,3 equals 1−𝑆𝑃
0
, where

𝑆0 is the selectivity of (𝑝road ∧ 𝑝person), i.e., 𝑆𝐺0 = 𝑆𝑃road𝑆
𝑃
person as

mentioned above.

Representing selectivity within groups. 𝐻 are continuous vari-

ables representing the selectivity within the group at each step.

For each 𝐻𝑔,𝑗 ∈ 𝐻 , 𝑔 is the group index and 𝑗 the step number. 𝐻

models the effect of predicates in the same group.

We compute 𝐻 as follows:

𝐻𝑔,𝑗 = 𝐻𝑔,𝑗−1 · (1 −
∑︁
𝑝∈𝑃𝑔

𝑂𝑝,𝑗−1 (1 − 𝑆𝑃𝑝 )) (15)

As mentioned before unnecessary product variables should be

avoided in MIP. Products of binary and continuous variables can

oftentimes be linearized [3] without any error.

When all the predicates within a group is executed, then the

effect within the same group is demolished. Thus we introduce the

following equation to remove the effect from within group. We

introduce a new variable 𝐻 ′ to represent the new relationship.

𝐻 ′𝑔,𝑗 = max(1 −
∑︁
𝑝∈𝑃𝑔

𝑂𝑝,𝑗 ,𝐺𝑔,𝑗 , 𝐻𝑔,𝑗 ) (16)

The percentage of the data being processed at each step is af-

fected by the answered predicates within the same group and across

groups (𝑊 and 𝐻 ′). The percentage is represented as the selectivity
in each step, 𝑆

𝐽
𝑗
∈ 𝑆 , and can be computed as:

𝑆
𝐽
𝑗
=

|𝑔𝑟𝑜𝑢𝑝 |∏
𝑔=0

𝑊𝑔,𝑗𝐻
′
𝑔,𝑗 (17)

So far, we have obtained the measured image processing rate at

each step. At each stepwe have 𝑆
𝐽
𝑗
to indicate the current proportion

of images to process. With this variable we can further measure

the cost model of the plan.

Calculating the execution cost (time) of a query. We combine

the model assignment variables 𝑋𝑚,𝑝 ∈ 𝑋 to compute the cost

model. Considering the selectivity and model performance, we

define the variables 𝑍𝑚,𝑗 to represent the execution cost of a model

𝑚 for each step 𝑗 . The set of all possible variables 𝑍𝑚,𝑗 is 𝑅. The

cost of a query plan can be computed as follows:

𝑍𝑚,𝑗 = 𝑆
𝐽
𝑗

∑︁
𝑝∈𝑃

𝑋𝑚,𝑝𝑂𝑝,𝑗𝐶𝑚,𝑝 (18)

We apply a similar mechanism to linearize the equation by

adding additional variables. Transformations can be found in Table

4. The execution time of each model should be computed only once,

even though it can answer multiple predicates. The cost model is:∑︁
𝑚∈𝑀

max

0⩽𝑗⩽ |𝑃 |−1
𝑍𝑚,𝑗 (19)

For example, In Figure 3d,𝑚𝑜𝑑𝑒𝑙 6 is assigned to answer both

𝑝light and 𝑝road. If 𝑝light is answered prior to 𝑝road, we need to

only consider the execution time of the model when it is firstly

executed for 𝑝light.
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6.3 Objective Functions
Finally, our proposed order-optimal approach has transformed the

objective functions in Section 5.2 to the following forms. Given an

execution time constraint (solving the problem of Definition 1):

Maximize: 𝑓𝑎𝑐𝑐 (𝑄)
Subject to: 𝐸𝑞(8), 𝐸𝑞(9),

∑︁
𝑚∈𝑀

max

0⩽𝑗⩽ |𝑃 |−1
𝑍𝑚,𝑗 ⩽ 𝐶𝑏𝑜𝑢𝑛𝑑

Given an execution time constraint (solving the problem of Defini-

tion 2):

Minimize:

∑︁
𝑚∈𝑀

max

0⩽𝑗⩽ |𝑃 |−1
𝑍𝑚,𝑗

Subject to: 𝐸𝑞(8), 𝐸𝑞(9), 𝑓𝑎𝑐𝑐 (𝑄) ⩾ 𝐴𝑏𝑜𝑢𝑛𝑑

6.4 Query Plan Generation
With the above transformed objective functions ready, we obtain

the values of all defined variables, such as 𝑂 , 𝐺 . We use Gurobi 9.0

to solve the optimization problem. The solver generates the MIP

solutions, and we obtain the values of all the defined variables, then

with Algorithm 2 we generate the bypass plans.

6.5 Inference Query Optimization in Practice
Our work can be applied in applications that require executing

composition of models given constraints. There are twomain trends

that incorporate ML models in a query in the database field, namely

in-database-ML and dataflow.

In-database Inference.Multiple works in the last years (e.g.,

[15, 28]) focus on bringing ML inference queries closer to the data

by natively supporting ML models within a database system, such

that practitioners can perform ML model training and inference on

database data through extended SQL queries. ML models can be

used within user defined functions (UDFs) – a common practice in

the database community [40, 61]. These works operate in a similar

fashion:MLmodels are executed as UDFs on incoming tuples during

query execution. In the context of our work, the query plans on the

right of Figure 2, would be translated to classic database UDF-based

filters and would be executed by any DBMS execution engine. For

this approach to work in our case, the original DBMS optimizer

needs to be extended in order to support ML query inference. To

this end, 𝑖) the UDFs have to be annotated with e.g., the classes

that they can recognize, and 𝑖𝑖) the information about the models

that can be executed alongside the model zoo metadata have to be

passed on to the optimizer.

Dataflow pipeline. At the smae time, we see a proliferation of

dataflow systems that are being used for ML inference (a.k.a. pre-

diction) queries. Prime examples of such works are Cloudflow [49]

and Pretzel [35], while in practice, a lot of ML inference queries

take place in stream processing engines [9]. In this approach the

inference queries are defined as dataflows where the data is read

from the sources, and then they are evaluated by dataflow opera-

tors. Our optimized query plans can be compiled to dataflows as

follows: a map receives an image, infers its labels and outputs the

labels alongside the original image, which are then forwarded to a

filter that outputs that image if the predicate is satisfied.

Algorithm 2: QueryPlanGen
Input : 𝑋 : matrix indicating selected models assigned to predicates

𝑂 : matrix indicating the execution order of predicates

Output :Query plan 𝑜𝑝𝑡𝑃𝑙𝑎𝑛

1 𝑇 ← model assignment for predicates identified from 𝑋

2 𝑆 ← execution order of predicates identified from𝑂

3 for each predicate 𝑝 running at each 𝑠𝑡𝑒𝑝 𝑠 in 𝑆 do
4 model𝑚 ← mapping from𝑇 given 𝑝

5 if All the predicates in group 𝑔 have all been executed then
6 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ← Boolean value of 𝑔 that keeps the Boolean

expression unsolved

7 end
8 𝑝𝑙𝑎𝑛 ← {𝑠, 𝑝,𝑚, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛}
9 add 𝑝𝑙𝑎𝑛 to 𝑜𝑝𝑡𝑃𝑙𝑎𝑛

10 for other predicate 𝑞 in the same group of 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 do
11 if 𝑝 has been executed then
12 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ← Boolean value of 𝑝 that keeps the Boolean

expression unsolved

13 𝑝𝑙𝑎𝑛 ← {𝑠, 𝑝,𝑚, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛}
14 add 𝑝𝑙𝑎𝑛 to 𝑜𝑝𝑡𝑃𝑙𝑎𝑛

15 end
16 end
17 end
18 return 𝑜𝑝𝑡𝑃𝑙𝑎𝑛

7 EXPERIMENTAL EVALUATION
7.1 Setup
7.1.1 Input Datasets. We used public datasets covering object de-

tection in images with COCO [37] which is the most well-known

real-world annotated dataset of images, as well as sentiment analy-

sis in text with TweetEval [5]. The data in TweetEval is real-world

data taken from twitter. COCO contains 123K images and 80 dis-

tinct classes of objects, lending themselves to complex queries with

multiple predicates. TweetEval is a corpus of tweets collected from

Twitter. It was generated for emotion recognition, hate speech de-

tection, sentiment analysis, etc. In our experiments, we use the

ground truth for the sentiment analysis task. There are 18 inference

classes, belonging to different categories, such as text sentiments,

entity types, etc. The ground truth for sentiment analysis was taken

from the original dataset, while for the rest, we inferred the ground

truth with the prediction of the best-performing models for the

task in our model zoo.

7.1.2 Model Zoos. We collected all of our pre-trained models from

public model zoos: HuggingFace, and PytorchHub. To navigate

the space of different model zoos that may be encountered in the

public space, we opted for curating four types of model zoos –

each with different characteristics in terms of included models, the

inference classes they support, as well as accuracy and performance

characteristics. Those are summarized in Table 6 and presented as

follows:

– Real-world Model Zoo ❶ . This model zoo contains 48 real-

world models that can tackle NLP tasks. Each model in this model

zoo, covers all inference classes of the NLP tasks.

– Real-world Model Zoo ❷ . This model zoo includes 33 models

that can be used in object detection tasks in images; each model in

this model zoo covers all object classes in COCO.

– Synthetic Model Zoos, derived from real-world: Model Zoo
❸ , Model Zoo ❹ , Model Zoo ❺ . These model zoos have been
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Table 6: Summary of model zoos

Repo. Name Modality
Class

Coverage
Performance
Variation

Number of
Models

Model Zoo ❶ Text All None 48

Model Zoo ❷ Image All None 33

Model Zoo ❸ Image 1 Accuracy, Cost 165

Model Zoo ❹ Image 13 (avg) Accuracy, Cost 165

Model Zoo ❺ Image All Accuracy, Cost 165

derived from Model Zoo ❷ . Each of the 33 models model has 5

variants; to that end, we have introduced a 0-30% accuracy penalty

to all models uniformly, while we have also added an execution time

penalty of 0-50%. By applying these variations we obtain 165 models

in total. These three model zoos differ in terms of the inference

classes that the models can answer (see Table 6).

7.1.3 Optimization Strategies. We compare five strategies for op-

timizing ML inference query given a certain constraint. Note that

there are two ways to execute the query plans: in sequential, i.e.,
not applying bypass and executing the plans in sequence; and in

bypass, i.e., executing the plan in bypass mechanism given certain

predicate execution order.

Baseline 1 - Sequential: Greedy. This optimizer applies greedy heuris-

tic and loops over predicates and selects the model with the highest

rank greedily, i.e.,
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑐𝑜𝑠𝑡 (similar to predicate ordering based on

rank). The optimizer stops when every predicate is assigned to a

model and the constraint is met.

Baseline 2 - Sequential: Model-optimal. The model selection opti-

mizer (Section 5) relies on MIP to optimize the model assignment

under constraints, as compared to the greedy optimizer that ap-

proximates model assignment.
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Figure 4: Average speedups of query execution time compared to
the Greedy approach on the query workload with different accuracy
constraints.

Table 7: Ex generate ample ML inference queries (accuracy measured
by F1-score, and cost measured by average inference time per in-
stance).

Modality Example Query Constraint

text

e.g., ner=person ∧ sentiment=negative ∧
(topic=news ∨ topic=sport)

e.g., accuracy > 80%

image e.g., person ∧ (car ∨ bike) ∧ emergency_light e.g., cost < 100 ms

Baseline 3 - Bypass: Greedy. This baseline extends Sequential: Greedy
by converting the plan into bypass plan given random predicate

execution order.

Baseline 4 - Bypass: Model-optimal. This baseline extends Sequen-
tial: Model-optimal by converting the plan into bypass plan given

random predicate execution order.

Bypass: Order-optimal. This approach jointly optimizes for both

model assignment and predicate ordering by considering the selec-

tivity of predicates in a dataset and create a bypass plan.

7.1.4 Evaluation metrics. We use F1-score to measure accuracy,

and milliseconds per instance for execution time. We divide each

dataset into a validation set (60%) and a test set (40%). We use the

validation set to measure selectivity on each dataset, as well as

execution time (assumption (3) applied here, see 4.2). The query

execution time shown in the following is obtained by executing the

queries on the test set.

7.1.5 Queries. Since there are no benchmark queries that we could

use from other works for our datasets, we adopted a similar ap-

proach as [39] to curate queries. We generate queries for two sce-

narios: comparing query quality and measuring optimization time.

Query performance. Wemanually curated 10 queries (exemplified

in Table 7) for image analysis (classes adopted from COCO), and 6

queries for text processing (tasks including name entity recognition,

topic classification and sentiment analysis), in CNF and DNF forms.

The queries range from 2 to 6 predicates with varying constraints

on either accuracy or execution cost.

Query optimization time.We generate a set of queries in different

complexity levels (the number of predicates ranging from 2 to 64),

in total, 60 queries in CNF and DNF. The classes are adopted from

COCO. For each predicate, we sample the classes with a uniform

distribution, where the predicates share the same probability of

being selected.

7.1.6 Accuracy & Exec. Time Constraints. We create a number of

experiment settings by enumerating different execution time and

accuracy bounds to verify optimizers’ performance on different

levels of constraints. The accuracy bounds are {70%, 80%, 90%, 95%},
representing relaxed targets, moderate target and restricted target.

We regard Baseline 1 as the reference and record the minimum time

constraint on which it can generate a query plan. The time con-

straints are set to be proportional to the minimum time constraint

with scales of {80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%}. We

observe that, when constraint scales are lower than 100% (mini-

mum time constraint, our approach (Bypass: Order-optimal) can
still generate plans while other baselines cannot.
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7.1.7 Hardware. We perform our experiments on a Ubuntu server

with a single GPU (Nvidia A40, 4GB RAM) and 24-core CPU.

7.2 Performance on Uniform Model Zoos
In this section, we observe the behavior of our optimizer using the

model zoos Model Zoo ❶ and Model Zoo ❷ . We first constrain

the accuracy (70% - 95%) and then constrain the execution time

(90% - 120%). We execute all the queries in the query workload and

report average speedups compared to the query plans generated

by the Sequential:Greedy optimizer. We present those speedups in

bar plots (e.g., Figure 4).

Constraining Accuracy. As seen in Figure 4, the first observation

is that using bypass plan can increase efficiency.We find out that the

differences in model performance are small, model zoos containing

very similar models in terms of architecture (e.g., transformer-based

for NLP models). In Model Zoo ❷ , we observe that most of the

time, a single model was enough to answer the complete query.

In those cases we do not observe any speedups or very limited

speedups across the two model zoos.

Constraining Execution Time. In this experiment we consider

the constraint of 100% to be the execution time that allowed the

Sequential:Greedy optimizer to find a solution to all the queries. We

constrain the execution time to gradually increase from 90% - 120%

to observe how the optimizers behave with different constraints.

The first observation (Figure 5) is that when we put a low constraint

on the execution time, our solution, Bypass:Order-optimal, succeeds

to find proper solutions. Since the models used in both model zoos

❶ and ❷ have very similar performance in terms of accuracy, we

do not observe large differences in accuracy.
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Figure 5: Accuracy of queries, given execution time constraints.

7.3 Performance on Model Zoos with Diverse
Model Distributions

In this section, we want to observe the effect of diverse performance

distributions and class coverage in model zoos. More specifically,

we run experiments using Model Zoo ❸ where each model an-

swers exactly one inference class and Model Zoo ❺ answering

all inference classes, and we want to see if in such constrained

environment the order optimizer can bring benefits. Finally, Model

Zoo ❹ (average of 13 inference classes per model) stands in the

middle of the two, offering possibilities for optimization but not as

many as in Model Zoo ❺

Constraining Accuracy. Figure 6 shows the average speedups

(more efficient compared to Sequential: Greedy) of all queries under
different accuracy constraints. We observe speedups when apply-

ing bypass plan to execute the models, compared to Greedy and

Model-optimal. In most cases, Bypass: Order-optimal outperforms

the baselines across all model zoos. Specifically, Bypass: Order-
optimal achieved up to 7x speedup in some cases, compared to

Sequential: Greedy. Compared to the previous experiments, we no-

tice that when the Bypass:Order-optimal optimizer is presented

with more opportunities, namely more models of different accu-

racy and execution time tradeoffs, it can navigate the search space

efficiently and optimize queries, resulting in great speedups. While

in Model Zoo ❺ most of the time one model is feasible to answer

the query, leading to limited speedups.

Constraining Execution Time. Figure 7 shows the accuracy of

all queries, for different values of execution time constraint. We ob-

serve that Bypass:Order-optimal consistently obtains higher query

accuracy than the baselines. Even though bypass is applied given a

model selection plan in Bypass:Greedy and Bypass:Model-optimal,

bypass plans do not gain benefits when execution time is con-

strained. By applying bypass plan, these two approaches may filter

some significant images in the early stage leading to a decrease in

performance. While Bypass: Order-optimal jointly optimizes for

both model selection and predicate ordering and can make use of

predicate ordering and perform early filtering, making better use

of execution time budget.

Summary. Using bypass plans can lead to higher efficiency, while

not necessarily increasing accuracy. The Bypass: Order-optimal

optimizer can speedup certain queries even by 7x compared to

Sequential:Greedy, and it can find optimal solutions, especially

given very diverse model zoos with different execution time and

accuracy tradeoffs.

7.4 Query Optimization Time
In this section, we evaluate the scalability of different approaches

(we exclude Baseline 3 and Baseline 4 in this case, since convert-

ing output to bypass plan can be executed in polynomial time.):

increasing the number of predicates is reminiscent of increasing the

number of items in a knapsack (see complexity analysis section 3).

Hence, we are interested in finding the limit of the Bypass:Order-

optimal optimizer, with respect to the number of predicates that

can be included in a query before it becomes too slow.
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Figure 6: The average speedups of query execution time compared to the Greedy approach on the query workload with different accuracy
(objective) bounds.
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Figure 7: The average accuracy performance on the query workload with different time (objective) constraint levels.

2 4 8 16 32 64
Number of predicates in a query

10
0

10
1

10
2

10
3

10
4

10
5

10
6

O
pt

im
iz

at
io

n 
tim

e 
(m

s)

0 0
1

5 5
13

3
6

17
29

66
130

66 79

460

483489
X X

(a) Constrained on accuracy

2 4 8 16 32 64
Number of predicates in a query

10
0

10
1

10
2

10
3

10
4

10
5

10
6

O
pt

im
iz

at
io

n 
tim

e 
(m

s)

1
1 1

2
3

54 6
12

31
94

227

15
49

222

9982

382166
XGreedy

Model-optimal
Order-optimal

(b) Constrained on execution time

Figure 8: Optimization time on queries with varying number of
predicates.

Query Plan Generation Time. We evaluate the efficiency of our

optimizers in generating a query plan by varying the number of

predicates in a query as shown in Figure 8. The experiments were

performed on Model Zoo ❹ (a medium size model zoo).

We observe that all the optimizers show very abrupt growth

with the increase of predicate number in a query, except the Se-

quential:Greedy approach, which verifies that the problem we are

tackling has a very high complexity (section 3). We observe that

the advanced optimizers require much longer time to generate a

plan as the number of predicates increase. We also observe that con-

straining on the execution time has yielded faster optimization time

than constraining on the accuracy, especially when the number of

predicates in a query is high. In fact, when accuracy is constrained,

the optimization time for 32 and 64 predicates did not finish (X).

The discrepancies between optimizing with accuracy constraints

versus time constraints in Figure 8 are likely due to the number of

product variables that have to be calculated for accuracy. Though

taking longer time to generate plans, for queries having up to 16

predicates, the time to answer a query is dominated by the total

inference time. Thus, for the majority of queries, the order-optimal

optimizer continues to offer considerable benefit in reducing exe-

cution time (see Figure 6), and this benefit will grow with the size

of the data.

7.5 Further Optimizing Probabilistic Predicates
In this experiment, we integrate the proposed order-optimal algo-
rithm in the probabilistic predicates (PP) [39] framework. We chose

order-optimal as it is the one that has shown to perform best. In

short, the goal of PP is to filter insignificant images at an early

stage by executing a set of efficient (but less accurate) models first.

Our approach can be integrated in PP by replacing PP’s early stage

plan. The threshold applied in PP regards recall: the proportion of

true positive labels. In the rest of the experiment, we refer to the

recall as accuracy. We generate plans subject to different accuracy

bounds and expect shorter execution time that translates to larger

throughput measured in frames per second (fps). The aim of PP

[39] is to increase execution efficiency. Thus, in this experiment,

we only compare the execution time given recall constraints. Our

order-optimal optimizer can be deployed to decide on both the

model selection when multiple probabilistic predicates are avail-

able, and also to set the order of predicate execution. To show this,

we crafted 5 example queries, two of which are the ones used in

the original paper [39].
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Figure 9: Comparison with PP on throughput (frames per second)
when accuracy (measured with recall) was under constrained.

The results are shown in Figure 9. In general, our order-optimal

optimizer improves throughput against PP in all but one queries.

Notably, the tighter the accuracy constraint, the better is the im-

provement that our optimizer achieves. The improvement is owed

to our optimizer’s capacity to optimally allocate the execution order

of predicates. PP orders predicates by rank, i.e.,
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑐𝑜𝑠𝑡 , within

conjunctions or disjunctions, while our order-optimal optimizer

specifies the order based on global cost instead.

8 CONCLUSIONS & FUTUREWORK
In this paper we addressed the problem of ML inference query

optimization, which regards the optimal selection of ML models

for answering an inference query under constraints. We formu-

lated the problem as an MIP to perform optimal model selection

and predicate ordering. Our optimizer that considers both model

selection and predicate ordering achieves high performance, es-

pecially when the constraints are tight. In future work, we will

consider additional objectives, such as model power consumption

and memory footprint. Further research can focus on 𝑖) exploring
multi-objective optimization problems, 𝑖𝑖) the application of ap-

proximation schemes in the MIP formulation of the problem and

𝑖𝑖𝑖) the lifting the assumptions made in this paper, considering

especially the correlation of inference classes and concept drift.
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