

08	
 Fall	

yaSSL | h t tp : / /www.yass l .com

Implementing CyaSSL as an SSL Provider on the Android Platform
A Step-by-Step Guide	

White Paper
	

ANDROID SSL PROVIDER | 2

 2010 yaSSL | http://www.yassl.com

TABLE OF CONTENTS

INTRODUCTION .. 3

WHAT ARE TLS AND SSL? .. 3

JAVA SECURITY PROVIDERS (A BRIEF OVERVIEW) ... 3

PREPARING A BUILD ENVIRONMENT ... 5
Setting up Your Machine ... 5
Downgrading Java to JDK 1.5 ... 6

THE ANDROID PLATFORM .. 7
Installing Repo .. 7
Initializing a Repo Client .. 8
Getting the Source Files .. 8
Verifying Git Tags .. 8
Setting up the Environment .. 8
Initial Platform Build Process ... 9

THE ANDROID EMULATOR – MAKING LIFE SIMPLER .. 9

JAVA SSL COMPONENTS OVERVIEW .. 10
CyaSSL Shared Library ... 10
Java Provider Code ... 11

INSTALLATION OF THE CYASSL SHARED LIBRARY .. 11

INSTALLATION OF THE JAVA PROVIDER ... 11

TESTING PLATFORM MODIFICATIONS ... 12
Re-building the Android Platform ... 12
Emulator Execution ... 13

WRITING AN ANDROID APPLICATION USING SSL ... 14

IMPORTING ADDITIONAL CERTIFICATES INTO ANDROID .. 16

TROUBLESHOOTING ... 16

CONCLUSION .. 16

ABOUT THE AUTHOR ... 17

REFERENCES ... 18

ANDROID SSL PROVIDER | 3

 2010 yaSSL | http://www.yassl.com

I. INTRODUCTION

The Android platform has quickly become one of the most popular mobile operating systems
both by developers and end users. As such, security is a high priority, but so is the
sometimes-conflicting goal of minimizing resource usage. By default, the Android platform
uses OpenSSL to provide Java developers with SSL functionality. By using CyaSSL instead,
developers gain a smaller size footprint as well as a faster SSL implementation.

The goal of this White Paper is to provide insight and instruction on how to install CyaSSL as
a Java SSL provider alongside OpenSSL on the Android Platform. In doing so, developers will
have the option to choose CyaSSL for SSL functionality through the Java API’s “javax.net.ssl”
package and gain the advantages that the CyaSSL library has to offer.

II. WHAT ARE TLS AND SSL? (IN A NUTSHELL)

TLS (Transport Layer Security) and its predecessor SSL (Secure Socket Layer) are
cryptographic protocols that provide security for communications over networks such as the
Internet (Transport Security Layer, 2010). Originally created by Netscape, TLS and SSL allow
client/server applications to create an encrypted link and ensure that all traffic being sent and
received is private and secure. Most typically, SSL and TLS perform unilateral authentication
between client and server, meaning that only the server is authenticated. Also supported is
bilateral authentication, where both the identity of the server and client are authenticated.

TLS and SSL provide this secure layer through the use of public/private key encryption. A
message encrypted with a public key can only be decrypted using the associated private key.
The public key is usually publically available, so that anyone can encrypt a message with this
key. Only the owner of that public key (the holder of the private key) may decrypt the
message once encrypted. There are multiple algorithms that may be used by TLS and SSL to
perform this encryption. For an in depth look at TLS and SSL, consider reading the Wikipedia
page on the subject:

http://en.wikipedia.org/wiki/Transport_Layer_Security

III. JAVA SECURITY PROVIDERS (A BRIEF OVERVIEW)

The Java platform contains a set of security APIs consisting of several major areas (public key
infrastructure, authentication, secure communication, and access control), all of which are
only interfaces defining a “contract” for provider implementations to meet. This gives Java
programmers the ability to use a single API to gain desired security functionality while still
allowing those developers to plug in their desired implementation under that API.

According to the Java Provider documentation, this architecture was designed around three
main design principles. The following principles are taken from the Oracle Java SE
Documentation (Oracle):

ANDROID SSL PROVIDER | 4

 2010 yaSSL | http://www.yassl.com

1. Imp lementa t ion Independence

Applications do not need to implement security themselves. Rather, they can request
security services from the Java platform. Security services are implemented in providers
(see provider diagram, below), which are plugged into the Java platform via a standard
interface. An application may rely on multiple independent providers for security
functionality.

2 . Imp lementa t ion in te roperab i l i t y

Providers are interoperable across applications. Specifically, an application is not bound
to a specific provider, and a provider is not bound to a specific application.

3 . A lgor i thm ex tens ib i l i t y

The Java platform includes a number of built-in providers that implement a basic set of
security services that are widely used today. However, some applications may rely on
emerging standards not yet implemented, or on proprietary services. The Java platform
supports the installation of custom providers that implement such services.

Under this provider architecture, multiple providers for a service may be installed side by side.
In the case of having multiple providers for a service, each provider is given an order of
priority in which it should be used by the Java platform.

Figure 1 :
The structure of the Java
Provider framework, showing
specifically the javax.net.ssl
package and how individual
providers can be “plugged in”
to the Provider Framework.

ANDROID SSL PROVIDER | 5

 2010 yaSSL | http://www.yassl.com

In this paper, the focus will be on SSL. The javax.net.ssl Java API package is responsible for
supplying SSL functionality to the Java platform. The diagram above gives a general overview
of how SSL providers, or more generally, providers, are organized within the Java platform.
The CyaSSL provider is what will be installed into the Android platform in the following steps.

Java security providers are listed and prioritized in a file called “java.security” on OS X and
Linux, or “java.properties” on the Android platform. On OS X, Linux, and Android this file is
most likely found at the locations listed below. The details of this file will be covered in
section 9, “Configuring a Java Security Provider on Android.”

Java Security Properties File:

 System/Library/Frameworks/JavaVM.framework/Home/lib/security/java.security [OS X]
 $JAVA_HOME/lib/security/java.security [Linux]
 /libcore/security/src/main/java/java/security/security.properties [Android]

IV. PREPARING A BUILD ENVIRONMENT

First things first, the local build environment needs to be setup to accommodate for the
Android build system. This paper and the included instructions were written based on the
requirements and status of the Android build system at the time of writing. Given the speed
at which the Android system evolves, procedures and requirements will change over time.

To build the Android source files, either Linux or OS X must be installed on the development
machine. Windows is not currently supported. Further, the most current version of OS X,
Snow Leopard, is not supported due to incompatibilities with Java 6. The remainder of this
paper will assume that the operating system of choice is 32-bit Linux. Some of the following
information was collected from the Android project website. For setup information relating to
non-32-bit-linux, reference the Android project site
(http://source.android.com/source/download.html)

Setting Up Your Machine

The local build environment must have the following installed:

• Git 1.5.4 or newer and the GNU Privacy Guard
• JDK 5.0, update 12 or higher. Java 6 is not currently supported. Instructions for

downgrading are explained below.
• flex, bison, gperf, libsdl-dev, libesd0-dev, libwxgtk-dev (optional), build-essential, zip,

curl

To install the above packages using apt-get, issue the following command:

$ sudo apt-get install git-core gnupg sun-java5-jdk flex bison gperf libsdl-dev libesd0-
dev libwxgtk2.6-dev build-essential zip curl libncurses5-dev zlib1g-dev

A few additional tools and notes:

• Valgrind (a suite that will help find memory leaks, stack corruption, array bounds
overflow, etc.) may be useful during Android development.
$ sudo apt-get install valgrind

• Intrepid (8.10) users may need a newer version of libreadline:
$ sudo apt-get install lib32readline5-dev

ANDROID SSL PROVIDER | 6

 2010 yaSSL | http://www.yassl.com

Downgrading Java to JDK 1.5

Depending on the build environment, if JDK 1.5 is not the current Java installation, it is
necessary to roll back to JDK 1.5. To accomplish this, follow the steps below:

1. Download JDK 1.5 from the Oracle website. At the time of writing it was found here:
http://java.sun.com/javase/downloads/5u22/jdk

2. If downloading for Linux, the download will be similar to: jdk-1_5_0_22-linux-
i586.bin. The following steps assume that you are installing it at /usr/lib/jvm.
Execute the following commands to install:

$ sudo mkdir /usr/lib/jvm
$ sudo mv ~/jdk-1_5_0_22-linux-i586.bin /usr/lib/jvm
$ cd /usr/lib/jvm
$ sudo chmod +x jdk-1_5_0_22-linux-i586.bin
$ sudo ./jdk-1_5_0_22-linux-i586.bin

After executing these commands, there will be a /usr/lib/jvm/jdk-1.5.0_22 directory.
The original jdk-1_5_0_22-linux-i586.bin may be deleted.

3. Now the symbolic links must be updated to Java 1.5. Execute the following

commands to update the most commonly used Java executables so that they will
point to the Java 1.5 installation.

$ cd /usr/bin
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/java java
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/jar jar
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/javac javac
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/javadoc javadoc
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/javah javah
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/javap javap
$ sudo ln -sf /usr/lib/jvm/jdk1.5.0_22/bin/javaws javaws

4. Verify that Java 1.5 has been installed correctly by executing the following command:

$ java –version

The output of this command should be something that reflects a Java 1.5 installation:

java version "1.5.0_22"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_22-b03)
Java HotSpot(TM) Client VM (build 1.5.0_22-b03, mixed mode, sharing)

5. Lastly, edit the file /etc/jvm and add the Java 1.5 installation to the top of the list, as

follows. An example of what this file should look like can be seen on the top of the
following page.

$ sudo gedt /etc/jvm

ANDROID SSL PROVIDER | 7

 2010 yaSSL | http://www.yassl.com

This file defines the default system JVM search order. Each
JVM should list their JAVA_HOME compatible directory in this file.
The default system JVM is the first one available from top to
bottom.

/usr/lib/jvm/jdk1.5.0_22
/usr/lib/jvm/java-6-sun
/usr/lib/jvm/java-6-sun-1.6.0.20
/usr/lib/jvm/java-6-openjdk
/usr

(Example Contents of /etc/jvm)

V. THE ANDROID PLATFORM

After the local build environment has been set up, the Android source needs to be
downloaded. This section will cover the steps necessary to download the Android platform
source and explain how to build both the entire Android platform and only specific projects.

Working with and contributing to the Android platform is done through the use of Git and
Repo. Git is an open-source version control system designed to handle very large projects
that are distributed over multiple repositories (Android Source). In Android, Git is used for
local operations such as local branching, commits, diffs, and edits. Repo on the other hand,
is a tool built by Google on top of Git. According to Google, “Repo helps manage the many
Git repositories, does the uploads to the revision control system, and automates parts of the
Android development workflow. Repo is not meant to replace Git, only to make it easier to
work with Git in the context of Android.” The following sections follow the steps outlined by
the Android Project source documentation (Google).

For more information about using Git and Repo, see the Android Project page, here:
http://source.android.com/source/git-repo.html

Installing Repo

To install, initialize, and configure Repo, the following steps should be taken:

1. Make sure there is a ~/bin directory in your home directory, and check to make sure
that this bin directory is in your path:
$ cd ~
$ mkdir bin
$ echo $PATH

2. Download the repo script and make sure it is executable:
$ curl http://android.git.kernel.org/repo >~/bin/repo
$ chmod a+x ~/bin/repo

ANDROID SSL PROVIDER | 8

 2010 yaSSL | http://www.yassl.com

Initializing a Repo Client

Before the Android source can be checked out, a Repo client must be initialized. The
following steps will initialize a repo client using a specified manifest and prepare your working
directory for pulling files from the Android repository.

1. Create an empty directory to hold your working files:
$ mkdir mydroid
$ cd mydroid

2. Run “repo init” to bring down the latest version of Repo with all of its most recent

bug fixes. You must specify a URL for the manifest.
$ repo init -u git://android.git.kernel.org/platform/manifest.git

If you would like to check out a branch other than the “master”, specify it using the
–b option:

$ repo init -u git://android.git.kernel.org/platform/manifest.git -b cupcake

3. When prompted, configure Repo with your real name and email address. If you plan
on submitting code to the Google platform source, use an email address that is
associated with a Google Account.

A successful initialization of Repo will result in a message such as “repo initialized in
/mydroid.”

Getting the Source Files

After Repo has been set up, in order to pull down files into your working directory from the
Android repositories specified in the manifest, run the command “$ repo init.” The Android
source files will be located in your working directory under their project names.

Verifying Git Tags

Each tag in the Google repository will be signed with a GnuPG key. You can verify tags by
importing this public key into your GnuPG key database. To do this, follow the steps outlined
in the Android Source Documentation under the “Verifying Git Tags” heading, here:
http://source.android.com/source/download.html.

Setting up the Environment

To set up the environment to build the source for a generic device and generic product, run
the following two commands. The first sets some environment variables for the Android build
system, and the second builds the emulator. Run these commands from the platform root in
your working directory.

 $ source build/envsetup.sh
 $ lunch 1

ANDROID SSL PROVIDER | 9

 2010 yaSSL | http://www.yassl.com

Initial Platform Build Process

The steps up to this point have prepared the build environment and the Android platform.
The next step is to build the Android platform source. The Android platform uses a monolithic
system, meaning that the Android source is one big build tree. Any part of the build can
reference any other part of the build via relative filenames.

There are two ways to build the Android platform, either by using the regular “make”
command, or the Google “mmm” command. In the Android build system the “mmm”
command will build the entire platform, whereas “mm” will build a specific project.

To build the entire platform, change to the working directory, and run the make (or mmm)
command:

 $ cd ~/mydroid
 $ make

If you wanted to build only a specific project, such as the “libcore” project, change to the
“libcore” directory and run the “mm” command:

 $ cd ~/mydroid/libcore
 $ mm

VI. THE ANDROID EMULATOR – MAKING LIFE SIMPLER

To make testing and debugging modifications to the Android platform easier, Google has
created an Android emulator. This emulator is highly customizable – allowing custom
hardware configurations, providing a log output, allowing shell access, and much more.

Before using the emulator, it needs to be downloaded. It comes bundled with the Android
SDK, which is available for download here: http://developer.android.com/sdk/index.html.

Once the SDK has been downloaded, a variety of tools will be found in the <Android-
SDK>/tools directory, where <Android-SDK> is the root directory of the SDK. These tools will
include the emulator, and the Android Debug Bridge (adb).

ANDROID SSL PROVIDER | 10

 2010 yaSSL | http://www.yassl.com

VII. JAVA SSL PROVIDER COMPONENTS OVERVIEW

The CyaSSL Java SSL provider is composed of two main parts: the CyaSSL shared library
and the Java provider code (using JNI to communicate between Java and the CyaSSL C
library). The Android platform is divided into several layers, which are shown in Figure 2,
above. The two layers being affected during the SSL Provider installation are the Libraries
and Android Runtime layers. In order to continue, the CyaSSL Java SSL Provider must be
downloaded from the yaSSL website, here:

http://ww.yassl.com/yaSSL/Download_More.html

CyaSSL is a C language based SSL library targeted for embedded and RTOS environments,
primarily because of its small size and speed. CyaSSL is also commonly used in applications
for standard operating environments because of its royalty free pricing and cross platform
support. It supports the industry standards up to the current TLS 1.2 level, and is up to 20
times smaller than OpenSSL. User benchmarking and feedback reports dramatically better
performance when using CyaSSL versus OpenSSL.

CyaSSL Shared Library

The CyaSSL shared library is compiled (at the time of writing) from the CyaSSL 1.5.6 source
code by the Android build system into the shared library “libcyassl.so.” This library contains
all the functions that would be found in the CyaSSL library on a regular desktop installation
and is the foundation of the CyaSSL Java SSL provider.

The source files which will be installed into the Android platform are found in the provider
download under the /external/cyassl directory.

Figure 2: Android platform layer composition

ANDROID SSL PROVIDER | 11

 2010 yaSSL | http://www.yassl.com

Java Provider Code

The Java provider code utilizes JNI to provide communication between Java code and native
C and C++ code. Because of this, there are two separate parts: the Java code files and the
native C++ file.

The source files which will be installed into the Android platform are found in the provider
download under the /libcore/yassl directory. This directory contains both the Java code and
the C++ native code.

VIII. INSTALLATION OF THE CYASSL SHARED LIBRARY

In this document, <Android-Platform> is used to represent the location where the Android
platform source root is located. The CyaSSL Java SSL provider is dependent upon the
CyaSSL shared library; therefore, the shared library will be installed first.

1. Since we are installing a new library, we’re going to create a new folder under the
“/external” directory in the Android platform. Most third party shared libraries being
placed into the Android platform should be installed in the “/external” directory. To
do this, copy the “cyassl” directory from “src/external/cyassl” of the provider
download to the “/external” directory of the Android platform. This folder should now
be located at:

<Android-Platform>/external/cyassl

These source files will be compiled into libcyassl.so by the Android build system
using the rules in the “/external/cyassl/src/Android.mk” file.

2. Open <Android-Platform>/build/core/prelink-linux-map.map and add a new entry for

libcyassl.so under the heading “# libraries for specific apps or temporary libraries." It
should look similar to the following:

libcyassl.so 0x9C500000 # [~1M] for external/cyassl

Note that libraries should be aligned on 1MB boundaries.

3. Open the file <Android-Platform>/dalvik/libnativehelper/Android.mk and add

libcyassl.so to the “shared_libraries” list.

IX. INSTALLATION OF THE JAVA SSL PROVIDER

Now that the shared library has been installed, the rest of the provider may be installed.

1. The existing SSL provider in Android (Apache Harmony using OpenSSL), is located in
the “/libcore” directory. The CyaSSL provider will be installed there as well for
consistency. To begin, copy the "yassl" directory from "src/libcore/yassl" of the
provider source to the "/libcore" directory of the Android platform. This folder should
now be located at:

<Android-Platform>/libcore/yassl

ANDROID SSL PROVIDER | 12

 2010 yaSSL | http://www.yassl.com

2. The CyaSSL SSL Provider initialization method (in the native C++ code) must be
registered with the Android platform so that the native methods can be registered
with the Dalvik VM at runtime. Unlike a desktop Java installation, Dalvik handles JNI
slightly different in that it requires a function to be written to explicitly register every
native method that needs to be made available to the JVM. This method is the one
that needs to be added to libnativehelper’s Register.c file. Open the file <Android-
Platform>/dalvik/libnativehelper/Register.c.

Add the "register_com_yassl_xnet_provider_jsse_NativeCrypto" method under the
entry for the existing provider. When added, it should look as follows:

if (register_org_apache_harmony_xnet_provider_jsse_NativeCrypto(env) != 0)
goto bail;
if (register_com_yassl_xnet_provider_jsse_NativeCrypto(env) != 0)
goto bail;

3. The last step is to configure the provider to act as the default SSL provider for Java.

To do this, open the "security.properties" file (located at <Android-
Platform>/libcore/security/src/main/java/java/security/security.properties). Make the
following changes to configure the CyaSSL provider:

a. Add the following line to the list of providers. This line needs to be above the

default "org.apache.harmony.xnet.provider.jsse.JSSEProvider" provider. Note
the numbers beside each provider. These reflect the priority of the provider. It
might be necessary to re-number this list after inserting the new provider.

"security.provider.3=com.yassl.xnet.provider.jsse.JSSEProvider"

b. Change the "ssl.SocketFactory.provider" entry to point to the new CyaSSL

Provider. After modification, it should read as follows:

"ssl.SocketFactory.provider=com.yassl.xnet.provider.jsse.SocketFactoryImpl"

X. TESTING PLATFORM MODIFICATIONS

At this point, the CyaSSL provider is fully installed into the Android platform. The next step is
to build the platform with the new provider installed and make sure there are no build errors
come up. If no errors arise during the platform build, the provider should then be loaded into
the emulator to make sure the platform loads correctly with the new provider installed.

Re-building the Android Platform

To rebuild the entire Android platform, follow the steps as they were executed before. All
commands should be run from the Android platform source root. The build process can take
a significant amount of time depending on the build environment.

$ source build/envsetup.sh [Sets environment variables]
$ lunch 1 [Builds the emulator]
$ make [Builds the Android Platform]

ANDROID SSL PROVIDER | 13

 2010 yaSSL | http://www.yassl.com

On a side note, keep in mind that it is possible to rebuild only one project (such as the
CyaSSL shared library) to test that the shared library builds correctly using the “mm”
command:

$ cd external/cyassl
$ mm

The result of the complete Android platform build process is three main image files:

<Android-Platform>/out/target/product/generic/ramdisk.img
<Android-Platform>/out/target/product/generic/system.img
<Android-Platform>/out/target/product/generic/userdata.img

ramdisk.img – A small partition which is mounted as read-only by the kernel at boot time, it
only contains /init and a few configuration files. It is used to start /init which will boot the rest
of the system images and run the init procedure.

system.img – A partition image that will be mounted as / and contains all system binaries. In
other words, this is the image file that contains all of the changes that were made above. This
image will be the highest concern when testing with the emulator.

userdata.img – This image is only used when the –wipe-data option is used with the
emulator. In a normal emulator execution, a default userdata image will be used. The –wipe-
data option copies the contents of userdata.img into the default userdata image, therefore,
not saving any data from a previous session.

Of these, system.img is of the highest concern. This is the image that contains the majority of
the system, and all of the changes that have been made with the addition of the CyaSSL SSL
Provider.

Emulator Execution

At this point, the Android SDK should already be downloaded. If not, refer to Section 6, “The
Android Emulator – Making Life Simpler.” Once the SDK has been downloaded, the emulator
will be located in the <Android-SDK>/tools directory.

To use the emulator, an Android Virtual Device must first be created. Android Virtual Devices
are configurations of emulator options, which in turn allow developers to better model a
physical android device. They hold configuration information such as a hardware profile, a
mapping to a system image, a dedicated storage area, and much more. To create an
Android Virtual Device, the “android” application is used. This application (android) is found
under the tools directory of the SDK as well. A new Virtual Device may be created using the
following command (issued from the /tools directory):

$ android create avd -n <desired-name> -t <target-version>

Where <desired-name> is what the Android Virtual Device will be called and <target-version>
is the desired target platform. Available targets can be viewed by running the following
command:

$ android list targets

ANDROID SSL PROVIDER | 14

 2010 yaSSL | http://www.yassl.com

After the Android Virtual Device has been created, the emulator can be loaded with the built
images using the following command: (Note that although this command spans multiple lines,
it should be written on a single)

$ emulator -avd <virtual-device-name> -system <Android-Platform>/out/
target/product/generic/system.img -data <Android-Platform>/out/
target/product/generic/userdata.img -ramdisk <Android-Platform>/
out/target/product/generic/ramdisk.img

There are several other useful emulator options that may be added to the above command if
desired. A few are listed below, but for a complete list see the official Android Emulator
webpage (http://developer.android.com/guide/developing/tools/emulator.html)

 -verbose [Verbose Output]
 -nocache [Don’t use a cache]
 -show-kernel [Print Kernel messages to the terminal window]

Once the emulator is running, the logcat output can be viewed by running the following
command in a new terminal window (Assuming the current directory is <Android-SDK>/tools):

 $ adb logcat

XI. WRITING AN ANDROID APPLICATION USING SSL

After the CyaSSL Java SSL provider has been installed and built into the Android platform, it
is helpful to create a simple Android application that makes use of the javax.net.ssl package
to make sure the provider was installed correctly. Details regarding the setup of the Android
Application development environment will be omitted, and the focus will lie on the application
code itself. For instructions on setting up a development environment for Android
applications (Using Eclipse), please refer to the official Android documentation
(http://developer.android.com/sdk/index.html).

The following steps will explain how to write a simple SSL client application for Android. This
application is very simple and minimalistic – acting only as a simple client that makes a “GET”
request to “www.google.com” using SSL. A TextView is used to display text to the Android
screen. After creating a new project, the following code will go inside of the “public void
onCreate()” method. For source code examples similar to this, download the CyaSSL Java
SSL Provider from the yaSSL website and look in the ‘examples’ directory:
(http://yassl.com/yaSSL/Download_More.html).

1. First off, set the ContentView and create a new TextView, allowing it to scroll and setting a

default text size:

 setContentView(R.layout.main);
 TextView tv = new TextView(this);
 tv.setMovementMethod(new ScrollingMovementMethod());

tv.setTextSize(12);

2. Create a Socket Factory using the default Socket Factory (as defined in the
java.properties file):

 // Create a socket factory
 SSLSocketFactory f = (SSLSocketFactory) SSLSocketFactory.getDefault();

ANDROID SSL PROVIDER | 15

 2010 yaSSL | http://www.yassl.com

3. Create a Socket and print out the Socket information. Also create a BufferedReader and

BufferedWriter for reading and writing to the socket, and a new string to hold the
response from Google. The printSocketInfo(…) method will be shown later.

 // Create a socket, print socket info
 SSLSocket c = (SSLSocket) f.createSocket("www.google.com", 443);
 printSocketInfo(c, tv);

 BufferedWriter w = new BufferedWriter(new
 OutputStreamWriter(c.getOutputStream()));

BufferedReader r = new BufferedReader(new
InputStreamReader(c.getInputStream()));

 String m = null;

4. Send our GET message and flush the BufferedWriter:

 w.write("GET / HTTP/1.0\n\n");

w.flush();

5. While we are still getting information back through the socket from www.google.com,
append it to the TextView. Close the BufferedReader, BufferedWriter, and SSLSocket:

 while((m = r.readLine()) != null){
 tv.append(m+"\n");
 }
 w.close();
 r.close();

c.close();

6. Set the ContentView to the TextView:

setContentView(tv);

7. Here is the printSocketInfo(…) function, which prints information about the socket and
session that have been created:

 public void printSocketInfo(SSLSocket s, TextView tv)
 {
 tv.append("\n Socket class: "+s.getClass());
 tv.append("\n Remote address = "+s.getInetAddress().toString());
 tv.append("\n Remote port = "+s.getPort());
 tv.append("\n Local socket address = "+s.getLocalSocketAddress().toString());
 tv.append("\n Local address = "+s.getLocalAddress().toString());
 tv.append("\n Local port = "+s.getLocalPort());
 tv.append("\n Need client authentication = "+s.getNeedClientAuth());

 SSLSession ss = s.getSession();

 tv.append("\n Cipher suite = "+ss.getCipherSuite());
 tv.append("\n Protocol = "+ss.getProtocol());
 tv.append("\nPeer Host = "+ ss.getPeerHost());
 tv.append("\nPeer Port = "+ ss.getPeerPort());
 tv.append("\nIs Valid = "+ss.isValid());
 try {
 tv.append("\nPeer Principal Name = " + ss.getPeerPrincipal().getName());
 } catch (SSLPeerUnverifiedException ex) {
 Logger.getLogger(SSLTest.class.getName()).log(Level.SEVERE, null, ex);
 }

 String[] names = ss.getValueNames();

ANDROID SSL PROVIDER | 16

 2010 yaSSL | http://www.yassl.com

 for(String name: names){
 tv.append("\nName = "+name);
 }
 tv.append("\n\n");
 }

XII. IMPORTING ADDITIONAL CERTIFICATES INTO ANDROID

Just like a driver’s license identifies a person, a certificate provides identification for the online
world – identifying things such as servers and clients. SSL certificates are issued individually
to a specific domain and server and are authenticated by an SSL Certificate provider. When a
browser connects to a server, the server sends its certificate to the browser, allowing the
browser to verify the server to which it has connected.

Additional certificates may be added to an Android phone by loading them from an SD card
through the Settings menu:

1. Go to Phone Settings
2. Click on Location & Security
3. Click on Install from SD Card

The only supported certificate format at the time of writing is the .p12 format.

XIII. TROUBLESHOOTING

For help resolving issues relating to the material covered in this White Paper, please contact
support@yassl.com.

XIV. CONCLUSION

In this White Paper, we have covered how to install a Java SSL provider into the Android
platform, more specifically, the CyaSSL Java SSL Provider. The Android build process was
explained briefly, along with the Android emulator. By using CyaSSL in the Android platform
for application development instead of OpenSSL, developers are able to leverage both the
speed and size advantages of the CyaSSL library. The CyaSSL Java SSL provider can be
downloaded from the yaSSL Website for OS X, Linux, and Android. Additionally, yaSSL offers
downloads for CyaSSL, yaSSL, yaSSH, and the yaSSL Embedded Web Server.

ANDROID SSL PROVIDER | 17

 2010 yaSSL | http://www.yassl.com

XV. ABOUT THE AUTHOR

 Chris Conlon
 yaSSL

chris@yassl.com

Chris Conlon is a developer at yaSSL who recently began working with the Android platform.
Finding a balance between outdoor adventures and computing, Chris enjoys continually
learning and strives to bring new and helpful things to the technology community.

yaSSL (yet another SSL) is an open source Internet security company who's primary product
is an embedded SSL Library called CyaSSL, but also creates yaSSL, yaSSH, and the CyaSSL
Embedded Web Server. Its primary users are programmers building security functionality into
their applications and devices. yaSSL employs the dual licensing model, like MySQL, so it is
available under GPL and it is also available under commercial license terms. Support and
consulting are available for yaSSL as well. For any comments, questions, or inquiries, please
contact info@yassl.com.

yaSSL
1627 West Main St., Suite 237
Bozeman, MT 59715 USA
http://www.yassl.com

General Questions
Email: info@yassl.com
Phone: +1 (206) 369-4800

Licensing Questions
Email: licensing@yassl.com

Support:
Email: support@yassl.com

ANDROID SSL PROVIDER | 18

 2010 yaSSL | http://www.yassl.com

XVI. REFERENCES

Google. (n.d.). Get Android Source Code. Retrieved from
http://source.android.com/source/download.html

Oracle. (n.d.). How to Implement a Provider in the Java ™ Cryptography Architecture.

Retrieved from
http://download.oracle.com/javase/6/docs/technotes/guides/security/crypto/HowToIm
plAProvider.html

Transport Layer Security. (2010, August 16). In Wikipedia, The Free Encyclopedia. Retrieved

from
http://en.wikipedia.org/w/index.php?title=Transport_Layer_Security&oldid=379191826

yaSSL. (2010). Retrieved from http://www.yassl.com/yaSSL/Products.html

