
Advances of Multi-agent Learning
(in Gaming AI)

Yaodong Yang
www.yangyaodong.com

Huawei R&D UK
University College London

August 2020

Reinforcement Learning China Summer School

http://www.yangyaodong.com

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Why Multi-agent Learning ?

Reinforcement learning turns data/knowledge into closed-loop decision making.

Multi-agent learning deal with interactions among the learning agents.

Data

Knowledge

Data

Decisions

Knowledge

interactions happen!

Multi-agent Learning for Autonomous Driving

When the drivers are rational, they will reach the outcome of a Nash
Equilibrium. It is the outcome of interaction. Knowing it can predict future.

Real-world decision making has cooperation & competition. For each agent, how
to infer the belief of the other agents and make the optimal action is critical.

The concept of using traffic light is in fact a correlated equilibrium.

Many-agent system is when # of agents >> 2. It is a very challenging problem.

(0, 0) (1, 2)
(2, 1) (0, 0)

Yield

Rush

Yield Rush

normal-form gamescenario

Traffic intersection is naturally a multi-agent system. From each driver’s perspective, in order to perform the
optimal action, he must take into account others’ behaviours.

Multi-agent Learning for Machine Learning

Two-player zero-sum game Generative Adversarial Network→

CycleGANs

StyleGAN

min
θg

max
θd

[Ex∼pdata
log Dθd

(x) + Ez∼p(z) log(1 − Dθd(Gθg
(z)))]

player 1 player 2

Problem Formulation: Singe-agent Reinforcement Learning

Learn the optimal behaviour through trial-and-errors from the environment.

Modelled by a Markov Decision Process (MDP)

 denotes the state space,
 is the action space,

 is the reward function,
 is the state transition function,

 is the distribution of the initial state, is a discount factor.

The goal is to find the optimal policy that maximises expected reward:

Discounted reward:

Time-average reward:

(𝒮, 𝒜, ℛ, 𝒯, 𝒫0, γ)
𝒮
𝒜
ℛ = ℛ(s, a)
𝒯 : 𝒮 × 𝒜 × 𝒮 → [0,1]
𝒫0 γ

π

Vπ(s) =
∞

∑
t=0

γtEπ,𝒫 {Rt |s0 = s, π}

Vπ(s) = lim
T→∞

T

∑
t=0

1
T

Eπ,𝒫 {Rt |s0 = s, π}

State,
RewardAction

Agent

Environment

Solution to Single-Agent RL

Value-based method (learn the Q-function):

 is a contraction-mapping operator.

Policy-based method (learn the policy parameterised by):

Q(s, a) = rj(s, a) + γEs′ ∼p[vπ (s′)]

Qnew(st, at) ← Q(st, at)

old value

+ α
⏟

learning rate

⋅

temporal difference

(Rt⏟
reward

+ γ
⏟

discount factor

⋅ max
a

Q(st+1, a)

estimate of optimal value

new value (temporal difference target)

− Q(st, at)

old value
)

ℋQ(s, a) = Es′ (R(s, a) + γ max
b

Q (s′ , b))
πθ(⋅ |st) θ

J(θ) = ∑
s∈S

dπ(s)Vπ(s) = ∑
s∈S

dπ(s) ∑
a∈𝒜

πθ(a |s)Qπ(s, a), dπ(s) = lim
t→∞

𝒫 (st = s |s0, πθ)

Δθ ∝ ∇θJ(π) = Es,a[∇θlog π(s, a) ⋅ Qπ(s, a)]
Push the parameters towards the
direction where the reward is large

Occupancy measure on state
induced by following in the MDPπθ

Problem Formulation: Multi-agent Reinforcement Learning

Modelled by a Stochastic Game

 denotes the state space,
 is the joint-action space ,

 is the reward function for the i-th agent,
 is the transition function based on the joint action,

 is the distribution of the initial state, is a discount factor.
Special case: single-agent MDP, normal-form game
Dec-POMDP: assume state is not directly observed, but agents have same reward function.

Each agent tries to maximise its expected long-term reward:

(𝒮, 𝒜{1,…,n}, ℛ{1,…,n}, 𝒯, 𝒫0, γ)
𝒮
𝓐 𝒜1 × … × 𝒜n

ℛi = ℛi(s, ai, a−i)
𝒯 : 𝒮 × 𝓐 × 𝒮 → [0,1]
𝒫0 γ

n = 1 → |𝒮 | = 1 →

Vi,π(s) =
∞

∑
t=0

γtEπ,𝒫 {Ri,t |s0 = s, π}, π = [π1, …, πN]

Qi,π(s, a) = Ri(s, a) + γEs′ ∼p [Vi,π (s′)]

… …

Many

Environment

Two-player stochastic
game example

𝒜1

𝒜2

Value-based method:

The sense of optimality changes, now it depends on other agents !

Fully-cooperative game: agents share the same reward function

Fully-competitive game: sum of agents' reward is zero

Assuming agents share the either the same or completely opposite interest is a strong assumption.

πi,t(s, ⋅) = solvei{Q⋅,t(st, ⋅)}

evali{Q⋅,t(st+1, ⋅)} = max
a

Qi,t(st+1, a)

solvei{Q⋅,t(st, ⋅)} = arg max
ai

(max
a−i

Qi,t(st, ai, a−i))

evali{Q⋅,t(st+1, ⋅)} = max
πi

min
a−i

Eπi[Qi,t(st, ai, a−i)]
solvei{Q⋅,t(st, ⋅)} = arg max

πi

min
a−i

Eπi[Qi,t(st, ai, a−i)]

Solution to Multi-Agent RL

fully
cooperative

geneal-sum
games

fully
competitive

Qi,t+1 (sk, πt) = Qi,t (st, πt) + α[Ri,t+1 + γ ⋅ evali{Q⋅,t(st+1, ⋅)} − Qi,t (st, πt)]

The Sense of Optimality in a Multi-Agent System
Unlike single-agent RL, “optimality” has many definitions in a multi-agent system:

 minimal regret, Stackelberg equilibrium, evolutionary stable strategy, correlated
equilibrium, Pareto optimal, Nash equilibrium, etc.
□ □ □ □

□ ◼

Bri(π−i) = arg max
πi

Eai∼πi,a−i∼π−i[Ri(ai, a−i)]

Solution to Multi-Agent RL

Value-based method:

Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

1. Solve the Nash Equilibrium for the current stage game

2. Improve the estimation of the Q-function by the Nash value function.

 Nash-Q operator is a contraction mapping.

πi,t(s, ⋅) = solvei {Q⋅,t (st, ⋅)}
Qi,t+1 (sk, πt) = Qi,t (st, πt) + α[Ri,t+1 + γ ⋅ evali {Q⋅,t (st+1, ⋅)} − Qi,t (st, πt)]

solvei {Q ⋅⋅t (s, ⋅)} = Nashi {Q⋅,t(st, ⋅)}

evali {Q⋅,t(s, ⋅)} = Vi(s, Nash {Q⋅,t(st, ⋅)})
ℋNashQ(s, a) = Es′ [R(s, a) + γVNash (s′)]

Solution to Multi-Agent RL

Policy-based method (objective):

Stochastic policy gradient:

Deterministic policy gradient:

Centralised training with decentralised execution methods further learn critics in a centralised way.

Yet, PG methods have no theoretical guarantee in even linear-quadratic games [Mazumdar 2019].

J(θ) = Es∼P,a∼π[
N

∑
i=1

Ri(s, a)]

∇θi
J (θi) = Es∼𝒫,a∼π [∇θi

log πi (ai |si) Qπ
i (s, ai, a−i)]

∇θi
J (θi) = Es,a[∇θi

πi (ai |si)∇ai
Qπ

i (s, ai, a−i)
ai=πi(si)]

ℒ (ϕi) = Es,a,r,s′ [(Qπ
ϕi (s, ai, a−i) − y)2], y = Ri + γQπ′

ϕi (s, a′ i, a′ −i)
a′ j=π′ j(sj)

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Tractability of Multi-agent Learning

Solving Nash Equilibrium is very challenging !

The solution concept of Nash comes from game theory
but it is not their main interest to find solutions.

Complexity of solving two-player Nash is PPAD-Hard
(intractable unless P=NP).

How to scale up multi-agent solution is open-question.

Approximate solution is still under development.

Equilibrium selection is problematic, how to coordinate
agents to agree on Nash during training is unknown.

Nash equilibrium assumes perfect rationality, but can be
unrealistic in the real world.

Ri (ai, a−i) ≥ Ri (a′ i, a−i) − ϵ
ϵ = .75 → .50 → .38 → .37 → .3393 [Tsaknakis 2008]

More complexity results of solving Nash
[Shoham 2007, sec 4][Conitzer 2002]

Two-player general-sum normal-form game:
Compute NE PPAD-Hard
Count number of NE #P-Hard
Check uniqueness of NE NP-Hard
Guaranteed payoff for one player NP-Hard
Guaranteed sum of agents payoffs NP-Hard
Check action inclusion / exclusion in NE NP-Hard

Stochastic game:
Check pure-strategy NE existence PSPACE-Hard
Best response for arbitrary strategy Not Turing-
computable.
It holds for two-player symmetrical game with finite time
length.

→
→

→
→
→

→

→
→

Tractability of Multi-agent Learning

Copyright: Yaodong

As a result ….

what you are actually doingwhat you think you are doing

Multi-player general-sum games
with high-dimensional continuous
state-action space

Two-player discrete-action
game in a grid world.

what you Mum thinks

Something undescribable :)

As a result ….

“For the field to advance one cannot simply define arbitrary learning strategies, and
analyse whether the resulting dynamics converge in certain cases to a Nash equilibrium or
some other solution concept of the stage game. This in and of itself is not well motivated.”

As a result ….

“So, what is the question?” I believe is gaming AI, but at a meta-game level!

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Why Focus on Gaming AI ?

“Drosophila” to genetics is what “games” to AI research.

Games drives the research of AI frontiers.

Simple rules but with deep concepts.

Designing winning strategies are intriguing, thousands of years of history.

Microeconomic encapsulates real world business, e.g., energy system,
auction system, Uber order-dispatching.

Games is a multi-agent system with co-evolution learners.

Great place for landing multi-agent reinforcement learning techniques.

Games are fun by itself, and gaming business is a cash cow
for making profits.

Autonomous driving is a “game” at the behavioural
selection level.

The Behaviour Selector subsystem is responsible for choosing
the current driving behaviour, such as lane changing/keeping,
intersection handling, traffic light handling, etc.

[Badue et. al 2019][SMARTS autonomous driving simulator, Huawei]

Why Focus on Gaming AI ?

Why Zero-sum Games in Particular ?

Many questions in machine learning itself are inherently zero-sum.

Training GANs.

All kinds of Poker games, chess, GO, stock market, etc.

The idea of maximising the worst-case scenario, i.e., robustness.

Two-player Zero-sum games in tabular case has solution.

There are many ways to solve a two-player zero-sum games, e.g., LP, minimising regret.

In many-player case, there exists standard evaluation algorithms, e.g., NashConv / exploitability.

There are still a lot of very hard open-questions in the zero-sum games.

For example, how to find a saddle point in non-convex non-concave setting. This in turn can help better
understand the tools we are developing in the deep learning era.

Multi-agent Learning for Gaming AI

Jan 2016 Dec 2017

technique of single-agent
decision-making is mature

AlphaGO Series

July 2018

Capture-the-flag (DeepMind)

techniques of multi-agent decision-making is getting mature !

Jan 2019 Apr 2019 July 2019 Sep 2019

AlphaStar (DeepMind)

Dota2 (OpenAI)

Pluribus Poker (FAIR)

Hide and Seek (OpenAI)

Great advantages have been made in 2019!

Our Goal: to find some good policies that can solve the game

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

“good”
strategy

()π1,* . . . , πN,*

input output

Our algorithm:

Multi-agent policy evaluation

Multi-agent policy improvement

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

A Naive Self-play Approach to Our Goal

Let’s do the alchemy for multi-agent learning.

Define the “good” to be winning ratio/maximising reward.

Select one learning algorithm: PPO/TRPO, MADDPG/QMIX.

Select one hyper-parameter tuning model:, e.g., PBT [Jaderberg 2017].

Start to self-play: iteratively do best response.

Master equation of designing gaming AIs for any types of games.

PPO + PBT + Self-play = Nothing unhackable

(π1, π2) → (π1, π2,* = Br(π1)) → (π1,* = Br(π2,*), π2,*)

self-plays

A Naive Self-play Approach to Our Goal

Let’s formulate the self-play process.
Suppose two agents, agent 1 adopts policy parameterised by , and agent 2 adopts policy .
They can be considered as two neural networks.
Define a functional-form game (FFG) [Balduzzi 2019] to be represented by a function

 represents the game rule, it is anti-symmetrical.
 means agent 1 wins over agent 2, the higher the better for agent 1.

with , we can have the best response defined by:

Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example
PPO + PBT as we have mentioned early, or other optimiser such as evolutionary algorithm.

v ∈ ℝd w ∈ ℝd

ϕ
ϕ > 0 ϕ(v, w)

ϕw(∙) := ϕ(∙ , w)

ϕ : V × W → ℝ

v′ := Br(w) = Oracle(v, ϕw(⋅)) s.t. ϕw (v′) > ϕw(v) + ϵ

ϕ :

Let’s formulate the self-play process.

A Naive Self-play Approach to Our Goal

PPO + PBT + Self-play = Nothing unhackable

(π1, π2) → (π1, π2,* = Br(π1)) → (π1,* = Br(π,2*), π2,*)

Or,
even worse

Behavorial cloning on existing players’ data + PPO
= Nothing unhackable

(π1, π2) → (π1, π2,* = Br(π1))

v′ := Br(w) = Oracle(v, ϕw(⋅)) s.t. ϕw (v′) > ϕw(v) + ϵRecall

Question: Can we use it as a general framework to solve any games?

It depends. In most of the games, it does not work.

PPO + PBT + Self-play = Nothing unhackable

The Naive Approach of Self-play Will Not Work

See some counter-examples

Rock-Paper-Scissor game:

Disc game:

or any games that meets the Conservation law

The Naive Approach of Self-play Will Not Work

∫W
ϕ(v, w) ⋅ dw = 0, ∀v ∈ W

ϕ(v, w) = v⊤ ⋅ (0, −1
1, 0) ⋅ w = v1w2 − v2w1

[
0 1 −1

−1 0 1
1 −1 0]

Theoretically, Self-play Does Not Work

Every FFG can be decomposed into two parts [Balduzzi 2019]

Let be a compact set and prescribe the flow from to , then this is
a natural result after applying combinatorial hodge theory [Jiang 2011].

If we define gradient, divergence, and curl operators to be

We can write any games as summation of two orthogonal components

v, w ∈ W ϕ(v, w) v w

ϕ

FFG = Transitive game ⊕ In-transitive/Cyclic game

grad(f)(v, w) := f(v) − f(w)
div(ϕ)(v) := ∫

W
ϕ(v, w) ⋅ dw

curl(ϕ)(u, v, w) := ϕ(u, v) + ϕ(v, w) − ϕ(u, w)

ϕ = grad ∘ div(ϕ)
curl(⋅)=0

+ (ϕ − grad ∘ div(ϕ))
div(⋅)=0

Transitive game Cyclic game

Note: these are different
operators from basic calculus

Every FFG can be decomposed into two parts

Transitive Game: the rules of winning are transitive across different players.

Example: Elo rating (段位) offers rating scores that assume transitivity.

Larger score means you are likely to win over players with lower scores.

Elo score is widely used in GO, Chess, Battle of Arena.

This explains why you don’t want to play with rookies, when ,

f(⋅)

f(vt) ≫ f(w)

FFG = Transitive game ⊕ In-transitive/Cyclic game

vt beats vt−1, vt+1 beats vt → vt+1 beats vt−1

ϕ(v, w) = softmax(f(v) − f(w))

∇vϕ (vt, w) ≈ 0

Theoretically, Self-play Does Not Work

Every FFG can be decomposed into two parts

Cyclic Game: the rules of winning are not-transitive across different players.

Mutual dominance across different types of modules in a game. This is commonly
observed in modern MOBA games.

For this types of game, self-play is not helpful at all because transitivity
assumption does not hold. Self-play will lead to looping forever.

FFG = Transitive game ⊕ In-transitive/Cyclic game

vt beats vt−1, vt+1 beats vt ↛ vt+1 beats vt−1

Theoretically, Self-play Does Not Work

Physical Meaning of Decomposition in Normal-form Games

Any normal-form games can be decomposed into two parts [Candogan 2010]:

Transitive (Potential game): the single-agent component in the multi-agent learning.

Cyclic (Harmonic game): the origin of limited cycles, uniformly random strategy is always a Nash.

Example of decomposition:

Normal-form Game = Potential Game ⊕ Hamonic Game

= + +

Eπi,π−i [Ri (s, ai
s, a−i

s)]−Eπ′ i,π−i [Ri (s, a′ i
s , a−i

s)]
= Eπi,π−i [𝒫 (s, ai

s, a−i
s)] − Eπ′ i,π−i [𝒫 (s, a′ i

s , a−i
s)]

(0, 0) (1, 2)

(2, 1) (0, 0)

0 2

2 1

Let us define the evaluation matrix for a population of agents to beN

Visualisation of Transitive and In-transitive Games

[Balduzzi 2019]

ϕ(vi, wj)

A𝔓 := {ϕ(wi, wj) : (wi, wj) ∈ 𝔓 × 𝔓} =: ϕ(𝔓 ⊗ 𝔓)

Empirically, Self-play Did Not Work Either!

If we put the top-3 winner models together into one map,
the top player will no longer perform the best.

www.drive-ml.com

http://www.drive-ml.com

Example on training AlphaStar:

self-play can give you agents that are strong in terms of Elo, however, if one makes it
compete against its previous strategies, it still loses.

This shows that naive self-play will not work in real-world games simply because the
cyclic dynamics, or, in other words, the agent will forget what has learned.

[Vinyals 2019, Table 3]

Empirically, Self-play Did Not Work Either!

http://www.drive-ml.com

Deep
Learning

Multi-agent
Intelligence

Reinforcement
Learning

Game
Theory

David Silver:

“AI = RL + DL”

I believe, in the next step:

Multi-agent AI = GT + RL + DL

Deep Learning:
 powerful functional approximator

Reinforcement Learning:
 optimal decision-making framework

Game Theory:
 theoretical framework for modelling multi-agent system
 analytical tools for evaluating agents’ policies

通用智能和群体智能

The Lesson: Understanding Game Structures are Critical !

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Recall Our Goal

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

“good”
strategy

()π1,* . . . , πN,*

input output

Our algorithm:

Multi-agent policy evaluation

Multi-agent policy improvement

Real World Games Look Like Spinning Tops.

[Czarnecki 2020]

Real-world games are mixtures of both transitive and
in-transitive components, e.g., Go, DOTA, StarCraft II.

Though winning is often harder than losing a game,
finding a strategy that always loses is also challenging.

Players who regularly practice start to beat less skilled
players, this corresponds to the transitive dynamics.

At certain level (the red part), players will start to find
many different strategy styles. Despite not providing a
universal advantage against all opponents, players will
counter each other within the same transitive group.
This provide direct information of improvement.

As players get stronger to the highest level, seeing many
strategy styles, the outcome relies mostly on skill and
less on one particular game styles (以不变应万变).

Understanding the game structure helps develop solutions

[Czarnecki 2020]

We should have a clear idea of why we use a method rather than hacking by trail and error from
the beginning. Never use “reinforcement learning” to design reinforcement learning algorithms!

where
self-play

works}

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

An important intuition of solving games is to train many policies, a population of them. In RPS, if we
have a population of three players, each of them plays R/P/S, and we randomise over which player to
pick, then no one will ever be able to exploit us.

On the other hand, enumerating every possible atomic state-action pairs is impossible for real-world
games. We have to model on the higher-level policy level, e.g., aggressive/passive styles of policies,
rather than state-action level.

Understanding meta-games can help design both new games, and, new game solvers.

It is called a meta-game, or, empirical game, or, the problem problem, or, autocurricula.

The Necessity of Studying Meta-games.

Two-player stochastic
game example

atomic
action

a policy/
a model

shift focus to a
meta-game

In the meta-game analysis, we assume a player can have many copies of itself, each of
the copy can play different strategies.

The “policy” in meta games mean how many copies of that player in the population
play that particular type of policy, namely, a policy of policy.

Terminology on Meta-Games.

Reinforcement Learning Game Theory Meta-game Analysis

More examples of meta-games on AlphaGO and AlphaStar.

[Silver 2016, table 9]

a policy/
a model

[AlphaStar blog]

How Does Meta-games Look Like

1. How can we evaluate the population of policies in a
meta-game, especially games with limited cycles?

2. How can we develop new policies based on the existing
population of policies?

Our algorithm:

1. Multi-agent policy evaluation

2. Multi-agent policy improvement

The Target of Studying Meta-games.

In the meta-game analysis, we can ask two critically important questions:

[Tuyls 2018] proved that a Nash for meta-game is an approximate Nash for the underlying game.

Define the Nash for the N-player K-strategy meta-game to be .

If we define the reward of the underlying game to be , , and

One can further use Hoeffding equation to have a finite-sample bound on how many samples are
needed in order to control with high probability .

x = (x1, . . . , xN),
K

∑
j=1

xi
j = 1 ∀i ∈ N

ri(πi, π−i) ri = E[̂ri]

n
ϵ 1 − δ

Relationships between Meta-games and Underlying games

Eπ∼x [̂ri(π)] = max
πi

Eπ−i∼x−i [̂ri (πi, π−i)], ∀i ∈ N

ϵ = sup
π,i

∣ ̂ri(π) − ri(π) |

max
π

Eπ−i∼x−i [ri (πi, π−i)] − Eπ∼x [ri(π)]Distance to the Nash
of the underlying game

≤ max
πi

Eπ−i∼x−i [̂ri (πi, π−i)] − Eπ∼x [̂ri(π)]
=0 since x is a Nash equilibrium for ̂ri

+ max
πi

Eπ−i∼x−i [ri (πi, π−i) − ̂ri (πi, π−i)]
≤ϵ

−Eπ∼x [ri(π) − ̂ri(π)]
≤ϵ

≤ 2ϵ

P(sup
π,i

ri(π) − ̂ri(π) < ϵ) ≥ (1 − 2e(−2ϵ2n))
KN+1

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Elo create a rating by averaging the historical performance. Assuming the true

probability of agent beating agent is , Elo approximates it by

through minimising the cross entropy by

Suppose the -th match pits against , and binary outcome is , then the rating updates

With enough race data, Elo ratings will converge to , historical average.

Elo cannot deal with in-transitive games, since .
In RPS, is (1/2, 1/2, 1/2), thus no predictive power about the game.

Elo can be biased by weak players that intend to lose (刷分水军/演员) [Balduzzi 2018].

(r1, . . . rN)
i j pij ̂pij = softmax(ri − rj)

t i j St
i,j

pij = p̄ij = ∑
n

Sn
ij

Nij

curl(logitP) = 0
pij

Policy Evaluation on Meta Games via Elo Ratings

ℓElo (pij, ̂pij) = − pij log ̂pij − (1 − pij) log (1 − ̂pij)

rt+1
i ← rt

i−η ⋅ ∇ri
ℓElo (St

ij, ̂pt
ij) = rt

i+η ⋅ (St
ij − ̂pt

ij)

Treat meta game as a normal-form game, and compute Nash equilibrium by LP.

In two-player zero-sum discrete case, it can be solved in polynomial time. The
matrix is anti-symmetrical, i.e., .

The minimax theorem is a natural outcome of the duality theorem in LP.

A𝔓 A𝔓 = − A⊤
𝔓

Policy Evaluation on Meta Games via Nash Equilibrium

A𝔓 := {ϕ(wi, wj) : (wi, wj) ∈ 𝔓 × 𝔓} =: ϕ(𝔓 ⊗ 𝔓)

Prime problem

max
v∈ℝ

v

 s.t. p⊤A𝔓 ⪰ v ⋅ 1

p ⪰ 0 and p⊤1 = 1

min
v∈ℝ

v

 s.t. q⊤A⊤
𝔓 ⪯ v ⋅ 1

q ⪰ 0 and q⊤1 = 1

Dual problem Minimax theorem

max
p

min
q

p⊤A𝔓q

= min
q

max
p

p⊤A𝔓q
/

Cons of Nash equilibrium:

Only tractable in two-player zero-sum tabular case. Multi-player general-sum is PPAD-hard.

It is a fixed point due to the Brouwer fix-point theorem.

What Nash can tell, including its generalisation such as correlated or coarse correlate equilibrium, is
the time-averaged behaviour; it tells us little about the “dynamical” behaviour of the actual system.

But some dynamics will not only converge to Nash, but they also cycle. Or, they do not end up with
Nash at all. The following theorem can summarise.

Policy Evaluation on Meta Games via Nash Equilibrium

Poincaré–Bendixson Theorem:

Given a differentiable real dynamical system defined on an open subset of the plane, every non-empty
compact ω-limit set of an orbit, which contains only finitely many fixed points, is either

a fixed point
a periodic orbit
a connected set composed of a finite number of fixed points together with homoclinic and
heteroclinic orbits connecting these.

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Replicator dynamics is a framework of dynamical system that describes the time
dependencies of the players’ behaviours.

Think of an infinitely-sized population of agents, let be the proportion of agents in the population

who play the strategy among many possible strategies. In a two-player (i.e. two populations)
game, let be the payoff matrix, RD describes the continuous-time evolution of .

RD only works in symmetrical game or anti-symmetrical game .

xk

kth K−
(A, B) (xk, yk)

A = B⊤ A = − B⊤

Policy Evaluation on Meta Games via Replicator Dynamics

dxk

dt
= xk [(Ay)k − xTAy],

dyk

dt
= yk [(xTB)k

− xTBy]
current proportion,

replicating itself
current payoff against the

opponent population

payoff for the strategykth

payoff matrix for the
other population

Physical Meaning of Replicator Dynamics

Replicator dynamics is deeply rooted with reinforcement learning.
In Cross Learning and finite action-set automata (RL back to the old times), with normalised reward,

, we have the learning rule of the probability of selecting the -th action as:

We can then write the expected change in policy i by:

Assuming to take infinitesimal step in , we have

0 ≤ r ≤ 1 i

lim δ → 0 πt+δ(i) = πt(i) + δΔπt(i)

π(i) ← π(i) + {r − π(i)r if i = j
−π(i)r otherwise

E[Δπ(i)] = π(i)[Ei[r] − π(i)Ei[r]] + ∑
j≠i

π(j)[−Ej[r]π(i)]
= π(i)[Ei[r] − ∑

j

π(j)Ej[r]]

·π(i) = π(i)[Ei[r] − ∑j π(j)Ej[r]]

Physical Meaning of Replicator Dynamics

Replicator dynamics is deep rooted with reinforcement learning.
Q-learning can be derived equivalently as a variant of RD with exploration [Kianercy 2012].

In the stateless RL setting, one can write Q-learning update rule as

the continuous limit of the above update rule is

and naturally, the policy withe exploration is written as

differentiating the Boltzmann policy w.r.t to time, we can have

plug in the reward functions

Qi(t + 1) = Qi(t) + α [ri(t) − Qi(t)] Note, no is needed here!max

xi(t) = eQi(t)/T

∑k eQk(t)/T , i = 1,2,⋯, n

·Qi(t) = α [ri(t) − Qi(t)]

·xi

xi
= [ri − ∑n

k=1 xkrk] − T∑n
k=1 xk ln

xi

xk

·xi = xi[(Ay)i − x ⋅ Ay+TX ∑
j

xj ln(xj /xi)]
·yi = yi[(Bx)i − y ⋅ Bx+TY ∑

j

yj ln(yj /yi)]
New term on

entropy

Many RL algorithms are equivalent to the variants of replicator dynamics.
Besides Q-learning, policy gradient can also be written as RD [Hennes 2020].

“Perhaps a thing is simple if you can describe it fully in several different ways, without
immediately knowing that you are describing the same thing” —— R. Feynman

[Bloembergen 2015]

What does Replicator Dynamics suggest

Battle of sexes Prison’s Dilemma Rock-Paper-Scissor

AlphaGo version comparison AlphaGo version comparisonAlphaGo meta game
[Tuyls 2018]

Solution Concept of Replicator Dynamics

The equilibrium points of replicator dynamics is evolutionary stable strategy (ESS).
ESS is new way to define “optimality”, similar to the optimality defined in Nash means best response.

ESS means the strategy cannot be invaded by any alternative strategies from natural selection.

ESS is a refinement of Nash, it is a special type of Nash that is evolutionary stable.

On a symmetrical game, Nash equilibrium is:

ESS refines Nash:

Examples of Nash that is not ESS, (A, A)/(B,B) are Nash but only (B,B) is ESS. A is not an ESS, so B
can neutrally invade a population of A strategists and predominate, because B scores higher against B
than A does against B.

R(π, π) ≥ R(π′ , π), π′ ≠ π

R(π, π) ≥ R(π′ , π) & R(π, π′) ≥ R(π′ , π′), π′ ≠ π

A cannot dominate B, since R(B,A)=R(A,A)
but B can dominate A, since R(B,B)>R(A,B)

Pros & Cons of Replicator Dynamics

Pros of RD
RD offers continuous-time dynamics, compared to fixed point Nash, provide insights into micro-
dynamical structures of games, e.g., flows, basins of attraction, and equilibria.

It provides a new angel to evaluate the policies in a game from a population perspective.

The solution concept describes the stability in the sense of evolution (优胜劣汰).

It can sift out unstable Nash equilibrium, e.g. the (2/5, 3/5) in battle of sexes.

Cons of RD
It can only apply on two-player several-policy meta game due to the inherently-coupled dynamics.

It cannot work on general-sum games, the payoff has to be either symmetrical game , or
asymmetrical games .

The equilibrium is not unique.

A = B⊤

A = − B⊤

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Weakness of Evaluation Metrics for Meta-games so far.

Elo rating:
cannot deal with in-transitive games.
cannot tell the dynamics of strategy strength/weakness.
cannot stay unbiased to redundant weak agents.

Nash equilibrium:
cannot scale to more than two players in non-zerosum games.
cannot guarantee uniqueness of equilibrium.
cannot tell the dynamics of strategy strength/weakness.

Replicator dynamics:
cannot scale to more than two players.
cannot deal with general-sum games (either or).
cannot guarantee uniqueness of equilibrium.

Key requirements: in-transitive, dynamical, multi-player, general-sum, tractable, unique, stable.

A = B⊤ A = − B⊤

-Rank: A General Solution Concept for Game Evaluationα

father of PPAD class

-Rank is a new type of evaluation metric that can
deal with both transitive and in-transitive game dynamics.
model the flow of dynamics of strategy evolutions, rather than being a fixed point.
scale to multi-player general-sum cases.
tractable to be computed, equilibrium can be solved in polynomial time w.r.t the size of meta game.
equilibrium point is unique, and, (evolutionary) stable.

α

We knew functional-form games and normal-form games can be decomposed:

-Rank is inspired by the Conley’s fundamental theorem on dynamical system:

This suggests that a flow is either a part of a “recurrent chain”, or on its way to converge
to a “recurrent chain”.

The “recurrent chain” component of a game corresponds to the Sink Strongly Connected
Component (SSCC) of the response graph.

α

-Rank: A General Solution Concept for Game Evaluationα

FFG = Transitive game ⊕ In-transitive/Cyclic game

Normal-form Game = Potential Game ⊕ Hamonic Game

Any flow on a compact metric space decomposes into a
gradient-like part that leads to a recurrent part

[Conley1978]

[Balduzzi 2019]

[Candogan 2010]

Unifying them can
be a very good

research topic 😄

The response graph of a game is the graph in which the nodes are joint strategy profiles,
edges indicates if the deviating player can achieve larger reward.

Response graph assume one player changes its policy at each time. The graph is sparse!

The Sink Strongly Connected Component (SSCC) of the response graph is the subset of
nodes in which there are no outbound edges but only inbound edges.

A node in the flow is either a part of a “recurrent chain”, or on its way to a “recurrent chain”.

The Sink Strongly Connected Component of the Response Graph

Game Response Graph

two SSCC here.

SSCC captures the long-term dynamical interactions between agents.

On the response graph, considering a random walk, following the edges, no matter
which node you start from, you will end up converging to the SSCC.

This process can be modelled through a Markov Chain, and the stationary distribution
of the Markov Chain is exactly SSCC.

To make sure the stationary distribution exists and unique. The chain has to be
irreducible, meaning every nodes can “travel” to every other nodes.

To meet such requirement, -Rank creates a so-called, Markov-Conley chain, where the
edges are “soft”.

α

Modelling the SSCC through a Markov Chain
Response Graph

-Rank Algorithm α

ρπi,a, ̂πi,b (π−i) =
1 − e−α(𝒫i(πi,a, π−i) − 𝒫i(̂πi,b, π−i))

1 − e−mα(𝒫i(πi,a, π−i) − 𝒫i(̂πi,b, π−i))

[T]⇡join,⇡̂joint =

8
><

>:

1PN
l=1(kl�1)

⇢⇡i,a,⇡̂i,b (⇡�i) , if |⇡joint\⇡̂joint| = 1

1�
P

⇡̂ 6=⇡jont
[T]⇡joint,⇡̂, if ⇡joint = ⇡̂joint

0, if |⇡joint\⇡̂joint| � 2
<latexit sha1_base64="hZhrgo2u5O3Hb6nY4l5aIcbscRk=">AAAEJnicrVNLj9MwEPYmPJby6sKRi0WF1JXaKukFDlRawYUTWqTt7kp1qRzXab11nNR2EJXXv4YLf4ULh0UIceOn4Dy0og844SjJZOabmW++2FHGmdJB8HPP82/cvHV7/07j7r37Dx42Dx6dqjSXhA5JylN5HmFFORN0qJnm9DyTFCcRp2fR4nURP/tApWKpONGrjI4TPBMsZgRr55oceC9Re3QynhiUMfdIsJ7LxFykTFjbgWiOdRGx6yFtrR0gTmONDIrojAmDpcQra7hFscTEhNYglScTwwehfW/e2hLdXjiH7YZIstlcH1qI5DytW7MOxOsdnSeydWIJ6TJbZzqcph81NJDFsIJcbg3gWEIUYbJQHKv5P2apil4OQogQDLsV8Ws4RIIu4Ub1UoLduuk14WwHweJaI7xZrUwa/J1gwStwRZfLHE93v64//78uEM2cAH1ExbT+zVWghw4nzVbQC8oFt42wNlqgXseT5hWapiRPqNDEdVejMMj02JXVjHBqGyhXNHPU8IyOnClwQtXYlNvcwmfOM4VxKt0tNCy9f2YYnCi1SiKHLAZRm7HCuSs2ynX8YmyYyHJNBakaxTmHOoXFmYFTJinRfOUMTCRzXCGZY7fPtTtZDSdCuDnytnHa74VBL3zXbx29quXYB0/AU9AGIXgOjsAbcAyGgHifvC/elffN/+x/9b/7Pyqot1fnPAZry//1G4WtbYg=</latexit><latexit sha1_base64="hZhrgo2u5O3Hb6nY4l5aIcbscRk=">AAAEJnicrVNLj9MwEPYmPJby6sKRi0WF1JXaKukFDlRawYUTWqTt7kp1qRzXab11nNR2EJXXv4YLf4ULh0UIceOn4Dy0og844SjJZOabmW++2FHGmdJB8HPP82/cvHV7/07j7r37Dx42Dx6dqjSXhA5JylN5HmFFORN0qJnm9DyTFCcRp2fR4nURP/tApWKpONGrjI4TPBMsZgRr55oceC9Re3QynhiUMfdIsJ7LxFykTFjbgWiOdRGx6yFtrR0gTmONDIrojAmDpcQra7hFscTEhNYglScTwwehfW/e2hLdXjiH7YZIstlcH1qI5DytW7MOxOsdnSeydWIJ6TJbZzqcph81NJDFsIJcbg3gWEIUYbJQHKv5P2apil4OQogQDLsV8Ws4RIIu4Ub1UoLduuk14WwHweJaI7xZrUwa/J1gwStwRZfLHE93v64//78uEM2cAH1ExbT+zVWghw4nzVbQC8oFt42wNlqgXseT5hWapiRPqNDEdVejMMj02JXVjHBqGyhXNHPU8IyOnClwQtXYlNvcwmfOM4VxKt0tNCy9f2YYnCi1SiKHLAZRm7HCuSs2ynX8YmyYyHJNBakaxTmHOoXFmYFTJinRfOUMTCRzXCGZY7fPtTtZDSdCuDnytnHa74VBL3zXbx29quXYB0/AU9AGIXgOjsAbcAyGgHifvC/elffN/+x/9b/7Pyqot1fnPAZry//1G4WtbYg=</latexit><latexit sha1_base64="hZhrgo2u5O3Hb6nY4l5aIcbscRk=">AAAEJnicrVNLj9MwEPYmPJby6sKRi0WF1JXaKukFDlRawYUTWqTt7kp1qRzXab11nNR2EJXXv4YLf4ULh0UIceOn4Dy0og844SjJZOabmW++2FHGmdJB8HPP82/cvHV7/07j7r37Dx42Dx6dqjSXhA5JylN5HmFFORN0qJnm9DyTFCcRp2fR4nURP/tApWKpONGrjI4TPBMsZgRr55oceC9Re3QynhiUMfdIsJ7LxFykTFjbgWiOdRGx6yFtrR0gTmONDIrojAmDpcQra7hFscTEhNYglScTwwehfW/e2hLdXjiH7YZIstlcH1qI5DytW7MOxOsdnSeydWIJ6TJbZzqcph81NJDFsIJcbg3gWEIUYbJQHKv5P2apil4OQogQDLsV8Ws4RIIu4Ub1UoLduuk14WwHweJaI7xZrUwa/J1gwStwRZfLHE93v64//78uEM2cAH1ExbT+zVWghw4nzVbQC8oFt42wNlqgXseT5hWapiRPqNDEdVejMMj02JXVjHBqGyhXNHPU8IyOnClwQtXYlNvcwmfOM4VxKt0tNCy9f2YYnCi1SiKHLAZRm7HCuSs2ynX8YmyYyHJNBakaxTmHOoXFmYFTJinRfOUMTCRzXCGZY7fPtTtZDSdCuDnytnHa74VBL3zXbx29quXYB0/AU9AGIXgOjsAbcAyGgHifvC/elffN/+x/9b/7Pyqot1fnPAZry//1G4WtbYg=</latexit><latexit sha1_base64="hZhrgo2u5O3Hb6nY4l5aIcbscRk=">AAAEJnicrVNLj9MwEPYmPJby6sKRi0WF1JXaKukFDlRawYUTWqTt7kp1qRzXab11nNR2EJXXv4YLf4ULh0UIceOn4Dy0og844SjJZOabmW++2FHGmdJB8HPP82/cvHV7/07j7r37Dx42Dx6dqjSXhA5JylN5HmFFORN0qJnm9DyTFCcRp2fR4nURP/tApWKpONGrjI4TPBMsZgRr55oceC9Re3QynhiUMfdIsJ7LxFykTFjbgWiOdRGx6yFtrR0gTmONDIrojAmDpcQra7hFscTEhNYglScTwwehfW/e2hLdXjiH7YZIstlcH1qI5DytW7MOxOsdnSeydWIJ6TJbZzqcph81NJDFsIJcbg3gWEIUYbJQHKv5P2apil4OQogQDLsV8Ws4RIIu4Ub1UoLduuk14WwHweJaI7xZrUwa/J1gwStwRZfLHE93v64//78uEM2cAH1ExbT+zVWghw4nzVbQC8oFt42wNlqgXseT5hWapiRPqNDEdVejMMj02JXVjHBqGyhXNHPU8IyOnClwQtXYlNvcwmfOM4VxKt0tNCy9f2YYnCi1SiKHLAZRm7HCuSs2ynX8YmyYyHJNBakaxTmHOoXFmYFTJinRfOUMTCRzXCGZY7fPtTtZDSdCuDnytnHa74VBL3zXbx29quXYB0/AU9AGIXgOjsAbcAyGgHifvC/elffN/+x/9b/7Pyqot1fnPAZry//1G4WtbYg=</latexit>

-Rank [Shayegan et al 2019] defines the transitional probability between nodes by

Physical meaning of can be thought of as an evolutionary process above.

α

ρπi,a, ̂πi,b(π−i)
transition probability
of the Markov Chain

-Rank Algorithm α

-Rank uses in to control the “softness” of edges in the response graph, so

that the Markov Chain can be irreducible.

 means how likely a sub-optimal joint strategy is going to dominate an optimal joint strategy.
In experiments, it is usually set as a large number.

The unique stationary distribution of the Markov chain is

The rank of probability mass of is the output of -Rank. Computing is polynomial-time.

The physical meaning is the evolutionary strength/stability of joint strategy profile in terms of
how strong it can resisting mutations’s invasions. Caveat: this is not the same idea as ESS.

The connection of -Rank equilibrium to Nash equilibrium/ESS is unclear yet.

α α ρπi,a, ̂πi,b (π−i)

α

v α v

α

v = lim
t→∞

[T]t v0

-Rank answers the question of how to evaluate/rank joint-policies.
A solution concept based on Conley’s theorem & graph theory.

it can model recurrent chains (limited cycles) in dynamical system, e.g. Rock-Paper-Scissor game.
it is tractable in multi-player general-sum games.

α

Example:

1.Collect the pay-off values for different strategy profiles.

2.Construct the Markov Chain based on

3.Compute the stationary distribution

4.Rank the joint strategy profile based on probability of .

ρπi,a, ̂πi,b (π−i)
v = lim

t→∞
[T]t v0

v

-Rank Summaryα

ρπi,a, ̂πi,b (π−i) =
1 − e−α(𝒫i(πi,a, π−i) − 𝒫i(̂πi,b, π−i))

1 − e−mα(𝒫i(πi,a, π−i) − 𝒫i(̂πi,b, π−i))

-Rank Resultsα
AlphaGo version comparison

Biased RPS

-Rank: A Scalable Solution for -Rank [Yang 2020]αα α

Cost of Step 1

Cost of Step 2

Cost of Step 3

Conclusion:
1. We conjecture that solving -Rank is still NP-

Hard because the size of the Markov Chain is
exponential to the number of agents.

2. A polynomial-time solver on exponential-sized
input cannot be claimed as tractable.

3. Take TSP as example, one cannot claim a NP-
Hard problem solvable by just creating an
exponentially-sized input.

α
Example:

1. Collect the pay-off values for different strategy profiles.

2. Construct the Markov Chain based on

3. Compute the stationary distribution

4. Rank the joint strategy profile based on probability of .

ρπi,a, ̂πi,b (π−i)
v = lim

t→∞
[TT]t v0

v

1 m
illio

n r
ead

s

10K
 co

mment
s

-Rank: A Scalable Solution for -Rank [Yang 2020]αα α

Novelty 1: reformulate as a stochastic optimisation problem
Though cannot improve the time-complexity, but now can do early stopping for large meta-game solutions.

Saves time in getting the payoff values for the transition matrix of Markov chain.

min
v∈ℝn

1
n

n

∑
i=1

(vTci)2 − λ log (δ2 − [vT1 − 1]2) −
λ
n

n

∑
i=1

log (vi)

-Rankα

-Rankαα

kNv = lim
t→∞

[T]t v0

Adam/SGD/…

-Rank: A Scalable Solution for -Rank [Yang 2020]αα α

Novelty 2: Introducing a heuristics to start with a subset of strategies and then
increasingly expand the strategy space of each agent, we can decrease further.

Intuition: remove dominated strategy from the beginning and save the exploration time, and add any good
strategy back if we miss them wrongly in the initialisation.

k

All joint strategy profile involving “C" will not be SSCC,
removing “C” can save exploration time.

!"

Still exponential size, make smallerk

Scalability of -Rank on Large Meta-gamesαα

𝒪(225)

Random matrices

Ising Model Autonomous driving

Highway Driving 𝒪(105)

Roundabout driving 𝒪(53)

Top-rank strategy

Last-rank strategy

Top-rank
strategy

Last-rank
strategy

𝒪(55)

Give a meta-game with fixed set of players and strategies, we have introduced methods to
answer the questions of which joint strategy profile is “optimal”, specifically, we can know

what is definition of “optimality”

which metric suits transitive/in-transitive games

which metric is tractable in multi-player games

which metric can deal with general-sum games

which metric can induce stable equilibrium

which metric can induce unique equilibrium

which metric can model the flow of dynamics or being a fixed point

Summary of Meta-game Policy Evaluation

a policy/
a model

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

The next step is to develop new policies based on the existing policies in the pool.

Combining both gives us generalised approaches of multi-agent learning for games.

Policy Improvement on Meta-games

[Muller 2020]

Policy evaluation Policy improvement

Our algorithm:

1. Multi-agent policy evaluation

2. Multi-agent policy improvement

Let’s understand first how to do policy improvement on normal-form games where
the total number of strategy is known in advance, the best response is equivalent to a
search problem, e.g., Rock-Paper-Scissor. Two famous types of algorithms are fictitious
play & double oracle.

Then we move on to the general cases where there are infinite number of strategies,
and at each iteration we have to use RL algorithms to find a new policy that is the
best response, e.g. Poker, Go. This gives us Policy Space Response Oracles (PSRO).

Policy Improvement on Meta-games

Fictitious play /
Generalised weakened fictitious play

Double Oracle

Policy Space Response Oracles}Iterated best response

Recall that we have seen a naive approach to do policy improvement via self-play.

Given the best response is defined by

Self-play is essentially doing best response in an iterated way, given the opponent’s latest
policy , find a best response, e.g., through an RL algorithm.

Self-play only focuses on responding to the opponent’s latest strategy, which can lead to cyclic
behaviours in in-transitive games.

A better way is to look at the historical actions, which is the fictitious play.

π−i

Iterated Best Response

Bri(π−i) = arg max
πi

Eai∼πi,a−i∼π−i[Ri(ai, a−i)]

(π1, π2) → (π1, π2,* = Br(π1)) → (π1,* = Br(π,2*), π2,*)

Maintain a belief over the historical actions that the opponent has played, and the
learning agent then takes the best response to this empirical distribution.

It guarantees to converge, in terms of the Nash value, in two-player zero-sum games,
and, potential games which include fully-cooperative games.

Examples:

Fictitious Play [Brown 1951]

at,*
i ∈ BRi(pt

−i =
1
t

t−1

∑
τ=0

ℐ {aτ
−i = a, a ∈ 𝔸})

(1/2, 1/2) (1/2, 1/2)∞

pt+1
i = (1 −

1
t)pt

i +
1
t

at,*
i , for all i

It releases the FP by allowing approximate best response and perturbed average
strategy updates, while maintaining the same convergence guarantee if conditions met.

 , meets

Recovers normal Fictitious Play when .

Why important: it allows us to use a broad class of best responses such as RL
algorithms, and also, the policy exploration, e.g., the entropy term in soft-Q learning, can
now be considered through the term.

t → ∞ αt → 0,ϵt → 0, , {Mt}

αt = 1/t, ϵt = 0,Mt = 0

M

Generalised Weakened Fictitious Play [Leslie 2006]

pt+1
i = (1 − αt+1)pt

i + αt+1(Brϵ
i (p−i)+Mt+1

i), for all i

Brϵ
i (p−i) = {pi : Ri(pi, p−i) ≥ Ri(Bri(p−i), p−i) − ϵ}

lim
t→∞

sup
k

{
k−1

∑
i=t

αi+1Mi+1 s.t.
k−1

∑
i=t

αi+1 ≤ T} = 0∑
t=1

αt = ∞

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Double Oracle is also an iterated best response method, the difference is that, it best
responds to the opponent’s Nash equilibrium at each iteration.

If the newly added best response is already in the strategy pool, then terminate.

Why “oracle”: the search for a best response is guided by an oracle.

It guarantees to converge to minimax equilibrium in finite games.

Double Oracle [McMahan 2003]

[Bosansky 2016]

13π

23π

⋯

Example on solving RPS games.

Agents are initialised with only a subset of the all strategies, the intuition is that they
can solve the game before seeing all strategies of the game. In the worst-case
scenario, it recovers to solve the original game.

Double Oracle [McMahan 2003]

iteration 0: restricted game R vs R

iteration 1:

 solve Nash of restricted game
(1, 0, 0) , (1, 0, 0)

 unrestricted = P, P

iteration 2:

 solve Nash of restricted games

 (0, 1, 0) , (0, 1, 0)

 unrestricted = S, S

iteration 3:

solve Nash of restricted game

 (1/3, 1/3, 1/3) , (1/3, 1/3, 1/3)

iteration 4: no new response, END

output (1/3, 1/3, 1/3)

Br1, Br2

Br1, Br2

Time comparison to Linear Program

A generalisation of double oracle methods on meta-games.

Given opponents’ existing Nash meta-policies, the best
responser is implemented through deep RL algorithms.

A meta-game is where is the

set of policies for each agent and is the
reward values for each agent given a joint strategy profile.

 is distribution over , PSRO generalises all

previous methods by setting different forms of .

independent learning:

self-play:

fictitious play:

PSRO: or

(Π, U, n) Π = (Π1, . . . , Πn)
U : Π → ℝn

σ−i (Π0
1, . . . , ΠT

1)
σ−i

σ−i = (0,...,0,0,1)
σ−i = (0,...,0,1,0)

σ−i = (1/T,1/T, . . . ,1/T,0)
σ−i = Nash(ΠT−1, U) RD(ΠT−1, U)

Policy Space Response Oracle [Lanctot 2017]

expand the
payoff matrix

solve the new
meta game

compute the best response

select opponent policies

augment strategy pool

BTW, some MARL Techniques and its Deep Counterparts

[DeepMind MAS tutorial # 219]

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Retrospection on the Naive Self-play Approach

(π1, π2) → (π1, π2,* = Br(π1)) → (π1,* = Br(π,2*), π2,*)

Recall v′ := Br(w) = Oracle(v, ϕw(⋅)) s.t. ϕw (v′) > ϕw(v) + ϵ

Only work in transitive games Solution for in-transitive games

key changes: instead of only looking at the latest
opponent’s policy, best responding to the Nash
combination of its set of policies

[Balduzzi 2019]

Rectifying Nash for Diversity [Balduzzi 2019]

PSRO-Rectified-Nash:
promoting diversity in PSRO

key changes: only selecting opponents that I have
already won over, further rectifying the Nash equilibrium

vt+1 ← oracle(vt , ∑
wi∈𝔓t

pt[i] ⋅ ⌊ϕwi
(∙)⌋+)

Intuition: maintaining strength can keep
exploring larger and large strategy space

(强者恒强/马太效应)

diversity can also help explore the strategy space
more efficiently and effectively

[Balduzzi 2019]

My Comments on Modelling Diversity

Diversity matters because the more diverse your strategy pool is, the more un-exploitable
you are. Promoting diversity can help you walk out of the in-transitive region faster.

In real-world AI applications, you want your policies to be diverse enough, covering
different skill levels. This is a realistic need in autonomous driving and Gaming AI.

It is also a hot research topic. How to add diversity on the meta-game level is still unclear
yet. Existing approaches are mainly based on heuristics. One cannot solve by simply adding
an entropy term, because the diversity is among the policies in a meta-game.

PSRO-Rectified-Nash suggests to compare more against losers, but the prioritised
fictitious play in AlphaStar suggests completely the opposite. They contradict!

A very promising direction is to use Determinantial Point Process, see [Yang 2020b], which
is theoretically grounded in modelling repulsive particles from physics.

What We Have Learned so far

[Muller 2020]

Policy evaluation Policy improvement

Elo rating
Nash equilibrium

Replicator dynamics
-Rank/ -Rankα αα

iterated best response
fictitious play
double oracle

PSRO
PSRO-Nash/

PSRO-Rectified-Nash

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

input output

π*

PSRO- -Rank: A Generalised Approach for Multi-agent Training α

PSRO-Nash limitation: it relies on solving Nash, which is challenging in general cases.

A generalised approach is expected to solve more than two-player zero-sum games.

Remember the -Rank benefits: multi-player, general-sum, tractable, unique.

However, best response + -Rank simply does not converge to SSCC.

See the counter-example in [Muller 2020].

α
α

zero-sum game, 0 < ϵ ≤ 1,ϕ > 1 response graph, X is the only SSCC

Note: a node should be a joint strategy,
since the strategy set is the same for
both agents, we only write for player 1

Best response + -Rank may not recover the SSCC of the response graph.

For bad initialisation, the best response will be trapped in bad “local” strategy subset.

α

A Counter-example of Best Response + -Rankα

Iteration 1

Iteration 2

Iteration 3

Iteration 4 - END

best response of C is C, so it terminates

Standard best response:

Preference-based Best Response (PBR): make the oracle return strategies that will
receive highest mass in the response graph of -Rank when added to the population.

If there exists multiple SSCC, then run PBR for every SSCC and return multiple PBRs.

Back to the previous example:

α

-PSRO: A Bespoke PSRO for -Rankα α

Bri(π−i) = arg max
πi

Eai∼πi,a−i∼π−i[Ri(ai, a−i)]

PBRi(π−i) ⊆ arg max
a∈S1

Ea−i∼π−i[1[Ri(a, a−i) > Ri(ai, a−i)]]

suppose (1/3, 1/3, 1/6, 1/6) on {A, B, C, D}
A beats C/D: 1/6 + 1/6 = 1/3
B beats A/D: 1/3 + 1/6 = 1/2
C beats B: 1/3
D beats C: 1/6
X beats ABCD: 1
PBR is X, add X into the response graph.

π−i =

count which node has the
largest input probability

weights of SSCC

A common benchmark is Kuhn Poker, and Leduc Poker via [OpenSpiel].

They are the “MNIST” for multi-agent gaming AI design. StarCraft is too heavy for testing.

The metric is the called NashConv/exploitability/distance to Nash. Unbeatable if reaching 0.

Caveat: there are content missing about the sequence form of extensive-form games in this
lecture, readers are recommended to read extensive-form fictitious play first [Heinrich 2015].

Testing Beds for PSRO-related Methods

NashCov(π) =
N

∑
i=1

Ri(Bri(π−i), π−i) − Ri(π)

[Muller 2020]

Contents
 Recap of Past Lectures

 Multi-agent learning basics

 Tractability of multi-agent problems

 Multi-agent Learning for Games
 Motivation of studying games

 When self-play does not work

 The landscape of real-world games

 The necessity of studying meta-games

 Policy Evaluation in Meta-games
 Elo rating

 Nash Equilibrium

 Replicator dynamics

 -Rank & -Rank

 Policy Improvement in Meta-games
 Iterated self-plays

 Fictitious play & generalised weaken fictitious play

 Double oracle & PSRO

 PSRO-Nash, PSRO-Rectified-Nash, -PSRO

α αα

α

Take-home Messages

 Multi-agent RL is challenging in general, a bottleneck is the infeasibility of Nash computation.

 A useful application for MARL technique is on the meta-game analysis in designing Gaming AI.

 In Gaming AI, a naive approach of self-plays will not be the general solution.

 Understanding the game structures is very important, transitive/in-transitive games have very
different policy evaluation and policy improvement methods.

Never use “reinforcement learning” to design reinforcement learning algorithms! We need to
know why and why not it works.

[Czarnecki 2020]

References
[Mazumdar 2019] Policy-Gradient Algorithms Have No Guarantees of Convergence in Linear Quadratic Games. Eric Mazumdar, Lillian J. Ratliff, Michael I. Jordan, S. Shankar Sastry

[Shoham 2007] MULTIAGENT SYSTEMS: Algorithmic, Game-Theoretic, and Logical Foundations. Yoav Shoham, Kevin Leyton-Brown

[Conitzer 2002] Complexity Results about Nash Equilibria. Vincent Conitzer, Tuomas Sandholm

[Badue et. al 2019] Self-Driving Cars: A Survey Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius Brito Cardoso, Avelino Forechi, Luan Jesus,
Rodrigo Berriel, Thiago Paixão, Filipe Mutz, Lucas Veronese, Thiago Oliveira-Santos, Alberto Ferreira De Souza

[Balduzzi 2019] Open-ended Learning in Symmetric Zero-sum Games. David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M. Czarnecki, Julien Perolat, Max Jaderberg, Thore
Graepel

[Vinyals 2019] Grandmaster level in StarCraft II using multi-agent reinforcement learning. Oriol Vinyals, Igor Babuschkin, […]David Silver

[Jaderberg 2017] Population Based Training of Neural Networks. Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals,
Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, Koray Kavukcuoglu

[candogan 2010] Flows and Decompositions of Games: Harmonic and Potential Games. Ozan Candogan, Ishai Menache, Asuman Ozdaglar, Pablo A. Parrilo

[Czarnecki 2020] Real World Games Look Like Spinning Tops. Wojciech Marian Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David Balduzzi, Max
Jaderberg

[Silver 2016] Mastering the game of Go with deep neural networks and tree search. David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis

[Alphastar blog] https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

[Tuyls 2018] A Generalised Method for Empirical Game Theoretic Analysis Karl Tuyls, Julien Perolat, Marc Lanctot, Joel Leibo, Thore Graepel.

[Yang 2020b] Multi-agent determinantal Q-learning. Yaodong Yang, Ying Wen, .., Jun, Wang

[Yang 2020] Practically Scaling α-Rank through Stochastic Optimisation. Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, Haitham Bou Ammar

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

References
[Balduzzi 2018] Re-evaluating Evaluation. David Balduzzi, Karl Tuyls, Julien Perolat, Thore Graepel

[Kianercy 2012] Dynamics of Boltzmann Q-Learning in Two-Player Two-Action Games. Ardeshir Kianercy, Aram Galstyan

[Hennes 2020] Neural Replicator Dynamics. Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Remi Munos, Julien Perolat, Marc Lanctot, Audrunas Gruslys, Jean-Baptiste
Lespiau, Paavo Parmas, Edgar Duenez-Guzman, Karl Tuyls

[Bloembergen 2015] Evolutionary Dynamics of Multi-Agent Learning: A Survey. Daan Bloembergen. Karl Tuyls. Daniel Hennes. Michael Kaisers

[Conley 1978] Isolated invariant sets and the Morse index. CC Conley

[Shayegan et al 2019] α-Rank: Multi-Agent Evaluation by Evolution. Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland, Jean-Baptiste
Lespiau, Wojciech M. Czarnecki, Marc Lanctot, Julien Perolat & Remi Munos

[Muller 2020] A Generalized Training Approach for Multiagent Learning. Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel Hennes, Luke
Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess, Thore Graepel, Remi Munos

[Brown 1951] G.W. Brown, Iterative solution of games by fictitious play, in: Activity analysis of production and allocation (T.C. Koopmans, Ed.), pp. 374-376, Wiley: New York, 1951.

[Leslie 2006] Generalised weakened fictitious pla. David S. Leslie 1. E. J.Collins ∗

[McMahan 2003] Planning in the Presence of Cost Functions Controlled by an Adversary
 H. Brendan McMahan Geoffrey J Gordon Avrim Blum

[Lanctot 2017] A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning. Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Perolat, David Silver, Thore Graepel

[DeepMind MAS tutorial] https://bit.ly/2Um0T9d

[Heinrich 2015] Fictitious Self-Play in Extensive-Form Games. Johannes Heirich, Marc Lanctot, David Silver

[Openspiel] OpenSpiel: A Framework for Reinforcement Learning in Games. https://github.com/deepmind/open_spiel

[Jiang 2011] Statistical ranking and combinatorial Hodge theory. Xiaoye Jiang, Lek-Heng Lim, Yuan Yao & Yinyu Ye

https://github.com/deepmind/open_spiel
javascript:;
javascript:;
javascript:;
javascript:;

