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Why Online Learning?

When our actions affect other people and their actions affect our
objectives, we need to consider their incentives, and choose our actions in
anticipation of theirs. This increase in complexity also occurs in situations
involving multiple decision-making machines (e.g., self-driving cars),
automated systems (e.g., algorithmic stock trading), or living organisms
(e.g., groups of cells).
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General Online Learning Setting

Online Convex Learning

Shalev-Shwartz et al. [2012]
Input: A convex set S
For t = 1, 2, ...
predict a vector wt ∈ S
receive a convex loss function ft : S → R
suffer loss ft(wt)

The goal of the player is to:

min
w

T∑
t=1

ft(wt)

This minimization is impossible to achieve in adversary setting
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No-regret Algorithms

RegretT (u) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(u)

If we compare with the best-fixed strategy in the hindsight:

RegretT (S) = max
u∈S

RegretT (u)

Definition 1 (Cesa-Bianchi and Lugosi [2006])

Let f1, f2, . . . be a sequence of loss function played by the environment. An
algorithm of the player that generates a sequence of strategies w1,w2, . . .
is called a no-regret algorithm if we have

lim
T→∞

RegretT (S)

T
= 0
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No-dynamic regret algorithm

DynamicRegretT (S) = max
u1,u2,...∈S

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut)

Definition 2 (Dinh et al. [2021b])

Let f1, f2, . . . be a sequence of loss functions played by the environment.
An algorithm of the player that generates a sequence of strategies
w1,w2, . . . is called a no-dynamic-regret algorithm if we have

lim
T→∞

InstantRegretT (S)

T
= 0
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Online Learning: Follow the Leader

The most natural learning rule is to use the strategy that has minimal loss
on all past rounds:

Definition 3

The agent is said to play the Follow the Leader (FTL) with σ-strongly
convex regularizer: F (x) if the agent updates the strategy as follows:

wt = argmin
x∈S

Gt(w) =
t−1∑
i=1

ft(w).
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Failure of FTL

Against a specific loss function (e.g., Quadratic loss function:
ft(w) = ∥w − zt∥2), FTL is a no-regret algorithm with the regret bound:

O(log(T )).

However, in general cases, FTL is not a no-regret algorithm.

Figure: Failure of FTL in linear loss function (Shalev-Shwartz et al. [2012])
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Online Learning algorithm with No-regret Properties

We now consider general form of no-regret algorithms, namely Follow the
Regularized Leader (e.g., see Abernethy et al. [2008]).

Definition 4

The agent is said to play the FTRL with σ-strongly convex regularizer:
F (x) if the agent updates the strategy as follows:

wt = argmin
x∈S

Gt(w) =
t−1∑
i=1

fi (w) +
1

µ
F (w).
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Regret Analysis of FTRL

Theorem 5

Let the agent follows FTRL with the sequence of linear loss function
ft(w) = ⟨w , zt⟩ for all t, S = Rd and the regularizer R(w) = 1

2η∥w∥2.
Then for a set U = {u : ∥u∥ ≤ B}, we have:

RegretT (U) ≤ O(
√
T ).

Under mild conditions (i.e., the loss functions are Lipschitz), the choice of
regularizer and action space S can be relaxed.
FTRL covers a large set of well-known no-regret algorithms. For instance,
In the case of Euclidean regularizer, the FTRL becomes the famous Online
Mirror Descent with lazy projection (e.g. see Shalev-Shwartz et al.
[2012]). If the negative entropy function is used as the regularizer, then
FTRL results in a fixed step-size Multiplicative Weight Update (MWU).
MWU (Freund and Schapire [1999]) is a very important no-regret
algorithm that has been extensively studied in the literature.
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Multiplicative Weight Update

Appling FTRL with the simplex action space S = ∆n and negative entropy
function regularizer:

R(w) =
1

η

∑
i

w(i) log(w(i)),

result in the Multiplicative Weight Update Algorithm: (Freund and
Schapire [1999])

wt+1(i) = wt(i)
e−µteTi zt

Zt
Where Zt is a normalization factor:

Zt =
n∑

i=1

wt(i)e
−µteTi zt , µt ∈ [0, 1) is a parameter of the algorithm

and ei is the unit-vector with value 1 at the i element.
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2. Two-player zero-sum game

This game is described by a matrix An×m with entries in [0, 1].
The rows of A represent the “pure” strategies of the row player and the
columns of A represent the “pure” strategies of the column player.

If the row player chooses a mixed strategy x ∈ ∆n and the column player
chooses a mixed strategy y ∈ ∆m, then the payoff the row player receives
will be −xTAy and the column player payoff is xTAy .

Row player:min xTAy ,

Column player:max xTAy .
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Online Learning Application: Finding Nash Equilibrium in
two-player zero-sum games
The John von Neumann’s minimax theorem (Neumann [1928]) :

max
y∈∆m

min
x∈∆n

x⊤Ay = min
x∈∆n

max
y∈∆m

x⊤Ay = v , (1)

for some v ∈ R. We call a point (x∗, y∗) satisfying the minimax theorem
inequation 1 the minimax equilibrium of the game.
Throughout the paper, we use the notation f (x) := maxy∈∆m x⊤Ay .
Since A is a non-zero matrix with entries in [0, 1], we have f (x) ≥ 0. Note
that (xl , y∗) which satisfy f (xl)− v ≤ ϵ are ϵ-Nash equilibria(i.e.,
maxy∈∆m x⊤Ay − x⊤Ay ≤ ϵ and x⊤Ay −minx∈∆n x⊤Ay ≤ ϵ ) and ϵ = 0
implies xl is the Nash equilibrium of the row player.

Theorem 6

In two-player zero-sum games, if both players follow no-regret algorithms,
then the average strategy of both players convergence to the Nash
Equilibrium of the game.
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Proof of average convergence to NE

Sketch of proof.
Since both player follows a no-regret algorithm, we then have:

T∑
t=1

x⊤
t Ayt − min

x∈∆n

T∑
t=1

x⊤Ayt = O(
√
T ) =⇒ min

x∈∆n

x⊤Aȳ =
1

T

T∑
t=1

x⊤
t Ayt − O(

1√
T
).

Similarly, we have:

max
y∈∆m

x̄⊤Ay =
1

T

T∑
t=1

x⊤
t Ayt + O(

1√
T
)

Thus we have:

x̄⊤Aȳ ≥ min
x∈∆n

x⊤Aȳ =
1

T

T∑
t=1

x⊤
t Ayt − O(

1√
T
) = max

y∈∆m

x̄⊤Ay − O(
1√
T
)

x̄⊤Aȳ ≤ max
y∈∆m

x̄⊤Ay =
1

T

T∑
t=1

x⊤
t Ayt + O(

1√
T
) = min

x∈∆n

x⊤Aȳ + O(
1√
T
).
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Convergence to Coarse Correlated Equilibrium in
general-sum game

If follow the distribution σ over all possible combinations is no worse than
always following some fixed strategy, then σ is a coarse correlated
Equilibrium i.e.,:

∀i , s ′i Es∼σ l(s) ≤ Es∼σ l(s
′
i , s−i )

Theorem 7

In a general-sum game with a finite number of players and a finite number
of strategies for each player. If each player follows a no-regret algorithm,
then the empirical distribution of the dynamic converges to a coarse
correlated equilibrium.
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Non-Last Round Convergence Properties
We consider the simple matching pennies game. The pay-off of the game
is:

head tail

head (1,-1) (-1,1)
tail (-1,1) (1,-1)

Table: Payoff in Matching Pennies game (Bailey and Piliouras [2018])

tail, tail head,tail

t=0.5

tail, tail head,tail

t=1/t1/3

MWU vs MWU

Figure: MWU vs MWU after 2500 iterations with different step sizes
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4. Asymmetric setting

The goals of the column player are:

1 no-dynamic-regret

2 stable strategies (i.e the strategy of the column player converges)

In order to achieve that, we need the following assumptions:

1 the row player follows a no-regret type algorithms.

2 the column player can estimate his minimax equilibrium strategy.

Assumption (2) can arise in many applications:

1 asymmetric games where the column player knows the matrix A of
the game.

2 the column player can intentionally estimate his minimax equilibirium
of game while playing.
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Convergence of the row player

Lemma 8

Suppose that the row player follows a common no-regret algorithm such as
MWU, OMD, FTRL, LMWU or OMWU. Then, the column player cannot
achieve last round convergence and the no-regret property if the row
player’s strategy does not converge to a minimax equilibrium of the game.
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The LRCA Algorithm

Algorithm 1: Last Round Convergence in Asymmetric algorithm
(LRCA)

Input: Current iteration t, past feedback x⊤t−1A of the row player
Output: Strategy yt for the column player
if t = 2k − 1, k ∈ N then

yt = y∗

end
if t = 2k , k ∈ N then

et := argmaxe∈{e1,e2,...em} x
⊤
t−1Ae; f (xt−1) := maxy∈∆m x⊤t−1Ay

αt :=
f (xt−1)−v

max ( n
4
,2)

yt := (1− αt)y
∗ + αtet

end
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MWU vs LRCA

Lemma 9

Assume that the row player follows the MWU algorithm with a
non-increasing step size µt such that there exists t ′ ∈ N with µt′ ≤ 1. If
the column player follows LRCA then

RE (x∗||x2k−1)−RE (x∗||x2k+1) ≥
1

2
µ2kα2k(f (x2k−1)−v) ∀k ∈ N : 2k ≥ t ′,

Theorem 10

Let A be an n ×m non-zero matrix with entries in [0, 1]. Assume that the
row player follows the MWU algorithm with a non-increasing step size µt

such that limT→∞
∑T

t=1 µt = ∞ and there exists t ′ ∈ N with µt′ ≤ 1. If
the column player plays LRCA then there exists a minimax equilibrium x̄∗,
such that limt→∞ RE (x̄∗||xt) = 0 and thus limt→∞ xt = x̄∗ almost
everywhere.
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MWU vs LRCA: coutinue

Lemma 11

In the case of constant learning rate µt = µ, we have the complexity of
the algorithm in order to achieve f (x)− v ≤ ϵ is

4 log(n)/µ

ϵ2
.
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FTRL vs LRCA

Theorem 12

Assume that the row player follows the FTRL with σ-strongly convex
regularizer: F(x) with fixed step size µ. Then if the column player follows
the Algorithm 1 (LRCA), there will be last round convergence to the
minimax equilibrium.

Lemma 13

the FTRL with negative entropy regularizer becomes the MWU with
constant step size µ. However, when µ varies in each update, then the two
algorithms can be significantly different and thus the analysis in Theorem
10 is necessary. The complexity of the algorithm in order to achieve
f (x)− v ≤ ϵ is

O(
2n2µ

ϵ2
).
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General No-Regret Algorithms vs LRCA

Definition 14

A no-regret algorithm is stable if ∀t : yt = y∗ =⇒ xt+1 = xt .

Theorem 15

Assume that the row player follows a stable no-regret algorithm and n is
the dimension of the row player’s strategy. Then, by following LRCA, for
any ϵ > 0, there exists l ∈ N such that Regretl

l = O( ϵ
2

n ) and f (xl)− v ≤ ϵ.

Note that (xl , y
∗) which satisfy f (xl)− v ≤ ϵ are ϵ-Nash equilibria and

ϵ = 0 implies xl is the Nash equilibrium of the row player. For no-regret
algorithms with optimal regret bound Regretl = O(

√
l), following

Theorem 15, the row player will reach an ϵ-Nash equilibrium in at most
O(n

2

ϵ4
) rounds.
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No-dynamic-Regret LRCA

Theorem 16

Assume that the row player follows the above-mentioned no-regret type
algorithms: MWU, FTRL. If there exists a fully mixed minimax strategy
for the row player, then by following LRCA, the column player will achieve
the no-dynamic-regret property with the instant-regret satisfying

RT ≤ IRT = O
(√

n log(n)T 3/4
)
. Furthermore, in the case the row player

uses a constant learning rate, we have IRT = O
(√

n log(n)T 1/2
)
.
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4. Application and Discussion

tail, tail head,tail

t=0.5

tail, tail head,tail

t=1/t1/3

MWU vs MWU
MWU vs LRCA

Figure: MWU vs LRCA after 2500 iterations with different step sizes
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Application: System Design

The column player is also a designer of the game.
The goal of the column player is to guide his opponent to pick a mixed
strategy which is favourable for the system designer.
The column player needs to:

1 design an appropriate payoff matrix A whose unique minimax solution
contains the desired mixed strategy of the row player

2 strategically interact with the row player during a sequence of plays in
order to guide his opponent to converge to that desired behaviour

See Dinh et al. [2020] for more detail.
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Last round convergence in symmetric setting: Optimistic
Multiplicative Weight Update

Motivation:

wt = argmin
x∈S

Gt(w) =
t−1∑
i=1

fi (w) +
1

µ
F (w).

wt = argmin
x∈S

Gt(w) =
t−1∑
i=1

fi (w) + ft(w) +
1

µ
F (w).

wt = argmin
x∈S

Gt(w) =
t−1∑
i=1

fi (w) + ft−1(w) +
1

µ
F (w).
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Last round convergence in symmetric setting: OMWU

Algorithm 2: Optimistic Multiplicative Weights Update

Input: learning rate η > 0, exploiting rate α > 0,
f1 = f2 = [1/n, . . . , 1/n].
Output: Next update

ft+1(i) =
ft(i)eη(2ei

⊤Ayt−ei
⊤Ayt−1)∑

j ft(j)e
η(2ej⊤Ayt−ej⊤Ayt−1)

,

ei denotes the unit-vector with weight of 1 at i-component.

Theorem 17 (Daskalakis and Panageas [2018])

In a two-player zero-sum game with unique Nash equilibrium, if both
players follow OMWU with sufficiently small learning rate η, then the
dynamic converges last round to the Nash Equilibrium of the game.
Furthermore, OMWU can achieve a near-optimal convergence rate (up to
logarithm factor) to CCE in general-sum games.
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Online Learning with Large-size games

Understanding games with large action spaces is a critical topic in a variety
of fields from economics to operations research and artificial intelligence.
Conventional no-regret algorithms require the computational complexity to
depend on the size of the game (i.e., size of game matrix A), thus when
the game size is large, these algorithms will surrender.

We solve this
problem by proposing a new algorithm: online single oracle, a combination
of the double oracle method and conventional no-regret algorithms MWU.
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Online Single Oracle

1: Input: Player’s pure strategy set Π
2: Init. effective strategies set: Π0 = Π1 = {aj}, aj ∈ Π
3: for t = 1 to T do
4: if Πt = Πt−1 then
5: Compute πt by the MWU
6: else if Πt ̸= Πt−1 then
7: Start a new time window Ti+1 and

Reset πt =
[
1/|Πt |, . . . , 1/|Πt |

]
, l̄ = 0

8: end if
9: Observe lt and update the average loss in Ti : l̄ =

∑
t∈Ti

lt/|Ti |
10: Calculate the best-response: at = argminπ∈Π⟨π, l̄ ⟩
11: Update the set of strategies: Πt+1 = Πt ∪ {at}
12: end for
13: Output: πT , ΠT
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Regret Bound of OSO (Dinh et al. [2021c])

Theorem 18 (Regret Bound of OSO)

Let l1, l2, . . . , lT be a sequence of loss vectors played by an adversary, and
⟨·, ·⟩ be the dot product, OSO is a no-regret algorithm with

1

T

( T∑
t=1

〈
πt , lt

〉
− min

π∈Π

T∑
t=1

〈
π, lt

〉)
≤

√
k log(k)√
2T

,

where k = |ΠT | is the size of the effective strategy set in the final time
window.
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Performance of ODO

Figure: Average payoff against MWU adversary
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Performance of ODO

Figure: Convergence to Nash Equilibrium

Le Cong Dinh (UOS) Online Learning and Its Applications in Games August 20, 2022 33 / 38



Performance of ODO
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Figure: Convergence to Nash Equilibrium in large size normal form game with
3396 pure strategies
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Extension to Online Markov Decision Processes
We consider OMDPs where at each round t ∈ N, an adversary can choose
the loss function lt based on the agent’s history {π1, π2, . . . , πt−1}. At
time t, given state xt ∈ S , the agent chooses an action at ∈ A, then the
agent moves to a new random state xt+1 which is determined by the fixed
transition model P(xt+1|xt , at). Simultaneously, the agent receives an
immediate loss lt(xt , at), in which the loss function lt : S × A → R is
bounded in [0, 1] and chosen by the adversary from a simplex
∆L := {l ∈ R|S ||A||l =

∑L
i=1 xi li ,

∑L
i=1 xi = 1, xi ≥ 0 ∀i} where

{l1, l2, . . . , lL} are the loss vectors of the adversary.
The goal of the agent is to have minimum policy regret with respect to
the best fixed policy in hindsight:

RT (π) = EX ,A

[
T∑
t=1

lπt
t (Xt ,At)

]
− EX ,A

[
T∑
t=1

lπt (X
π
t ,A

π
t )

]
, (2)

where lπt
t denotes the loss function at time t while the agent follows

π1, . . . , πT and lπt is the adaptive loss function against the fixed policy π
of the agent.
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MDP-Online Oracle Expert

Algorithm 3: MDP-Online Oracle Expert(Dinh et al. [2021a])

1: Input: Sets A1
0, . . .A

S
0 of effective strategy set in each state

2: for t = 1 to ∞ do
3: πt = BR(l̄ )
4: if πt(s, .) ∈ As

t−1 for all s then
5: As

t = As
t−1 for all s

6: Using the expert algorithm Bs with effective strategy set As
t and the feedback

Qπt ,lt (s, .)
7: else if there exists πt(s, .) /∈ As

t−1 then
8: As

t = As
t−1 ∪ πt(s, .) if πt(s, .) /∈ As

t−1

9: As
t = As

t−1 ∪ a if πt(s, .) ∈ As
t−1 where a is randomly selected from the set

A/As
t−1.

10: Reset the expert algorithm Bs with effective strategy set As
t and the feedback

Qπt ,lt (s, .)
11: end if
12: l̄ =

∑T
i=T̄i

lt
13: end for
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Regret Bound of MDP-OOE

Theorem 19 (Dinh et al. [2021a])

Suppose the agent uses MDP-OOE in our online MDPs setting, then the
policy regret can be bounded by:

RT (π) = O(
√
τ2Tk log(k) +

√
T log(L)).

Le Cong Dinh (UOS) Online Learning and Its Applications in Games August 20, 2022 37 / 38



Discussion

Further questions?
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