

TRAINING A POPULATION OF **REINFORCEMENT LEARNING AGENTS**

Dr. Yaodong Yang www.yangyaodong.com 01/2022

Intelligence is learning from mistakes!

"… if a machine is expected to be infallible, it cannot also be intelligent. There are several mathematical theorems which say almost exactly that. But these theorems say nothing about how much intelligence may be displayed if a machine makes no pretence at infallibility…"

— Alan Turing, 1947

Multi-Agent Intelligence: learning from mistakes from multiple agents' interactions

Normal machine learning problems:

 $\|\nabla f(x)\|_2 = 0$

agents learn to reach some equilibrium

•Formulation & Challenges of Training A Population of RL Agents

Training A Population of RL Agents on Fully-Cooperative Games

Training A Population of RL Agents on Zero-Sum Games

• Some System Level Thinkings

Conclusions

•Formulation & Challenges of Training A Population of RL Agents

Training A Population of RL Agents on Fully-Cooperative Games

Training A Population of RL Agents on Zero-Sum Games

•Some System Level Thinkings

Conclusions

A Naive Example of Multi-Agent Learning

Traffic intersection is naturally a multi-agent system. From each driver's perspective, in order to perform the optimal action, he must take into account others' behaviours.

• When the drivers are rational, they will reach the outcome of a Nash Equilibrium. It is the outcome of interaction. Knowing it can predict future.

• Real-world decision making has cooperation & competition. For each agent, how to infer the belief of the other agents and make the optimal action is critical.

• The concept of using traffic light is in fact a correlated equilibrium in game theory.

• Many-agent system is when agents >> 2. It is a very challenging problem to compute equilibrium, thus making decisions.

Multi-Agent Reinforcement Learning

• Modelled by a Stochastic Game $(\mathcal{S}, \mathscr{A}^{\{1,...,n\}}, \mathscr{R}^{\{1,...,n\}}, \mathscr{T}, \mathscr{P}_0, \gamma)$

- \mathcal{S} denotes the state space,
- \mathcal{A} is the joint-action space $\mathcal{A}^1 \times \ldots \times \mathcal{A}^n$,
- $\mathcal{R}^i = \mathcal{R}^i(s, a^i, a^{-i})$ is the reward function for the i-th agent,
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ is the transition function based on the joint action,
- \mathcal{P}_0 is the distribution of the initial state, γ is a discount factor.
- Special case: $n = 1 \rightarrow \text{single-agent MDP}, |\mathcal{S}| = 1 \rightarrow \text{normal-form game}$
- **Dec-POMDP**: assume state is not directly observed, but agents have same reward function.

• Each agent tries to maximise its expected long-term reward: $V_{i,\boldsymbol{\pi}}(s) = \sum \gamma^{t} \mathbf{E}_{\boldsymbol{\pi},\mathcal{P}} \left\{ R_{i,t} \,|\, s_{0} = s, \boldsymbol{\pi} \right\}$ t = 0

 $Q_{i,\pi}(s,a) = R_i(s,a) + \gamma \mathbf{E}_{s'\sim p} \left[V_{i,\pi}(s,a) + \gamma \mathbf{E}_{s'\sim p} \right] = R_i(s,a) + \gamma \mathbf{E}_{s'\sim p} \left[V_{i,\pi}(s,a) + \gamma \mathbf{E}_{s'\sim p} \right] = R_i(s,a) + \gamma \mathbf{E}_{s'\sim p} \left[V_{i,\pi}(s,a) + \gamma \mathbf{E}_{s'\sim p} \right] = R_i(s,a) + \gamma \mathbf{E}_{s'\sim p} \left[V_{i,\pi}(s,a) + \gamma \mathbf{E}_{s'\sim p} \right] = R_i(s,a) + \gamma \mathbf{E}_{s'\sim p} \left[V_{i,\pi}(s,a) + \gamma \mathbf{E}_{s'\sim p} \right]$

A population

of agents

$$\big\}, \boldsymbol{\pi} = [\pi_1, \dots, \pi_N]$$

Multi-Agent Reinforcement Learning

- Value-based method:
 - The sense of optimality changes, now it depends on other agents ! $Q_{i,t+1}\left(s_{k},\boldsymbol{\pi}_{t}\right) = Q_{i,t}\left(s_{t},\boldsymbol{\pi}_{t}\right) + \alpha \left[R_{i,t}\right]$ $\pi_{i,t}(s, \cdot) =$ **solve**
 - Fully-cooperative game: agents share the same reward function $eval_i \{ Q_{\cdot,t}(s_{t+1}, \cdot) \} = \max Q_{i,t}(s_{t+1}, a)$ $solve_i \{ Q_{\cdot,t}(s_t, \cdot) \} = \arg \max$

• Fully-competitive game: sum of agents' reward is zero

$$\operatorname{eval}_{i}\left\{Q_{\cdot,t}(s_{t+1},\cdot)\right\} = \max_{\pi_{i}}\min_{a_{-i}} \operatorname{E}_{\pi_{i}}\left[Q_{i,t}(s_{t},a_{i},a_{-i})\right]$$

$$\operatorname{solve}_{i}\left\{Q_{\cdot,t}(s_{t},\cdot)\right\} = \arg\max_{\pi_{i}}\min_{a_{-i}} \mathbf{E}_{\pi_{i}}\left[Q_{i,t}(s_{t},a_{i},a_{-i})\right]$$

• Assuming agents share the either the same or completely opposite interest is a strong assumption.

$$\sum_{t+1}^{t+1} + \gamma \cdot \operatorname{eval}_{i} \left\{ Q_{\cdot,t}(s_{t+1}, \cdot) \right\} - Q_{i,t}\left(s_{t}, \boldsymbol{\pi}_{t}\right)]$$

$$\sum_{i} \left\{ Q_{\cdot,t}(s_{t}, \cdot) \right\}$$

$$\max_{a_i} \left(\max_{a^{-i}} Q_{i,t}(s_t, a_i, a_{-i}) \right)$$

Nash Equilibrium

$$\underset{s_{j} \sim \mu_{j} \quad \forall j \in [n]}{\mathbf{E}} \left[u_{i}\left(s_{1}, \dots, s_{n}\right) \right] \geq \underset{s_{i} \sim \mu_{i}}{\mathbf{E}} \left[u_{i}\left(s_{1}, \dots, s_{n}\right) \right] \quad \forall \mu_{i}' \in \Delta_{S_{i}}$$

- Mixed strategy Nash equilibrium always exists in finite player finite action games.
- For continuous utility games, the strategy set needs to be compact
- Note that $\mu'_i \in \Delta_{S_i}$ can be replaced by $a \in S_i$ because deviation is at most a pure strategy !
- In Markov game, the solution concept is Markov Perfect Equilibrium.

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent i is $\pi^i : \mathbb{S} \to \Delta(\mathbb{A}^i)$, i.e., $\forall s \in \mathbb{S}, \pi^i(s)$ is a probability distribution on \mathbb{A}^i .

Definition 5 (Markov Perfect Equilibrium (MPE)). A behavioral strategy profile π is called a Markov Perfect Equilibrium if

$$\forall s \in \mathbb{S}, i \in [n], \forall \tilde{\pi}^i \in \Delta^S_{A^i}, V^{\pi^i, \pi^{-i}}(s) \ge V^{\tilde{\pi}^i, \pi^{-i}}$$

• Let n players, $S = S_1 \times \cdots \times S_n$ is the joint strategy profile, $u_i : S \to \mathbb{R}$ is the utility function, Nash equilibrium is

Nash Equilibrium to MARL

• Value-based method:

$$\pi_{i,t}(s,\cdot) = \operatorname{solve}_{i} \left\{ Q_{\cdot,t}\left(s_{t},\cdot\right) \right\}$$
$$Q_{i,t+1}\left(s_{k},\boldsymbol{\pi}_{t}\right) = Q_{i,t}\left(s_{t},\boldsymbol{\pi}_{t}\right) + \alpha \left[R_{i,t+1} + \gamma \cdot \operatorname{eval}_{i} \left\{ Q_{\cdot,t}\left(s_{t+1},\cdot\right) \right\} - Q_{i,t}\left(s_{t},\boldsymbol{\pi}_{t}\right) \right]$$

Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents' policies

I. Solve the Nash Equilibrium for the current stage game **solve**_i { $Q \cdot (s, \cdot)$ }

2. Improve the estimation of the Q-function by the Nash value function. $eval_i \{Q_{\cdot,t}(s, \cdot)\} =$

Nash-Q algorithm [Junling 2003] computes Nash for the normal-form game at each state

• Nash-Q operator $\mathcal{H}^{\text{Nash}}Q(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) - \mathbf{E}_{s'}| R(s, \mathbf{a}) = \mathbf{E}_{s'} | R(s, \mathbf{a}) + \mathbf{E}_{s'} |$

$$\} = \operatorname{Nash}_{i} \left\{ Q_{\cdot,t}(s_{t}, \cdot) \right\}$$

$$= V_i(s, \operatorname{Nash}\left\{Q_{\cdot,t}(s_t, \cdot)\right\})$$

+
$$\gamma \mathbf{V}^{\text{Nash}}(s')$$
 is a contraction mapping.

Multi-Agent Intelligence Components

Multi-Agent Intelligence

Algorithmic Game Theory Fundamentals

+

Machine Learning Techniques

Autonomous Driving Gaming Al Metaverse Smart Grid / City

. . .

Ш

Equilibrium sets Solution Concept Learning Dynamics Analysis Mechanism Design

. . .

Reinforcement Learning Deep Learning Representation Learning

. . . .

Complexity of Computing Nash Equilibrium in Normal-Form Games

- Solving Nash Equilibrium is very challenging !
 More complexity results of solving Nash [Shoham 2007, sec 4][Conitzer 2002]
 - The solution concept of Nash comes from game theory but it is not their main interest to find solutions.
 - Complexity of solving two-player Nash is PPAD-Hard (intractable unless P=NP).
 - How to scale up multi-agent solution is open-question.
 - Approximate solution is still under development.

 $R_i(a_i, a_{-i}) \ge R_i(a'_i, a_{-i}) - \epsilon$ $\epsilon = .75 \rightarrow .50 \rightarrow .38 \rightarrow .37 \rightarrow .3393 \text{[Tsaknakis 2008]}$

- Equilibrium selection is problematic, how to coordinate agents to agree on Nash during training is unknown.
- Nash equilibrium assumes perfect rationality, but can be unrealistic in the real world.

- Two-player general-sum normal-form game:
 - Compute NE \rightarrow **PPAD-Hard**
 - Count number of NE \rightarrow **#P-Hard**
 - Check uniqueness of NE \rightarrow NP-Hard
 - Guaranteed payoff for one player \rightarrow NP-Hard
 - Guaranteed sum of agents payoffs \rightarrow NP-Hard
 - Check action inclusion / exclusion in NE \rightarrow NP-Hard
- Stochastic game:
 - Check pure-strategy NE existence \rightarrow **PSPACE-Hard**
- Best response for arbitrary strategy → Not Turingcomputable, even can not be implemented by a Turing PC.
 - It holds for two-player symmetrical game with finite time length.

A Gentle Touch on PPAD

- Complexity theory 101 an intuitive explanation:
 - Recall the NP for a decision problem as

Definition 4.2.1 (NP) A decision problem Q is in NP if there exists a polynomial time algorithm V(I,X) such that

- V(I,X) = YES
- 2. If I is a NO instance of Q then V(I, X) = NO for all X
- But the decision problem of "is there a Nash equilibrium?" is always true proved by Nash himself.
- solutions have to be verified in P-time, but also to find a solution!

1. If I is a YES instance of Q then there exists some X such that |X| is polynomial in |I| and

• We need a new complexity class of Functional NP (FNP) to describe the search problems: not only do

• Two-player Nash will be FNP because we can check whether Nash is true by checking the best responses.

• However, two-player Nash will not be FNP-hard. To prove that, we need to show it is not FNP-Complete.

A Gentle Touch on PPAD

- Two-player Nash is not FNP-complete.
 - Completeness is build on the notion of reduction:
 - A(I), which is of Q, and then use B to find a solution of B(X) of I.

Theorem: Two-player Nash is not FNP-complete

• We can proof that if two-player Nash is FNP-hard then NP=coNP (verifying "No" instance in P-time).

- + Proof by showing that if true, we can find a certificate of NO instances for SAT problems.
- + SAT problem: find a and b such that "a AND NOT b" is satisfied. SAT is known to be NP-complete.
- + Since most theorists think that NP \neq coNP, this is strong evidence that 2-Player Nash is not FNP-
- We need a new class that has complete problems for the search tasks: Polynomial Parity **Argument Directed (PPAD)**

Theorem: Two-player Nash is PPAD-complete.

Definition 4.2.2 We say that P reduces to Q (denoted as $P \leq_p Q$) if there exist polynomial-time algorithms A and B such that

- 1. A maps instances of P to instances of Q,
- 2. If I is a YES instance of P than A(I) is a YES instance of Q, and
- 3. If X is a witness for A(I), then B(x) is a witness of I (if I is a YES instance) or NO (if I is a NO instance).

If we want to solve P, it suffices to solve Q: to solve instance I of problem P, we can first find a solution of X of

Complexity of Computing Nash Equilibrium in Stochastic Games

 Solving Nash Equilibrium in normal-form games is PPAD-hard; we expect solving Nash in stochastic games can only be harder ! But it is not.

Theorem: Computing Markov Perfect Equilibrium in N-Player SGs is PPAD-complete.

 $\forall s \in \mathbb{S}, \pi^i(s)$ is a probability distribution on \mathbb{A}^i .

Markov Perfect Equilibrium if

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent i is $\pi^i : \mathbb{S} \to \Delta(\mathbb{A}^i)$, i.e., **On the Complexity of Computing Markov Perfect Equilibrium in General-Sum Stochastic Games** Yuhao Li* Xiaotie Deng* **Definition 5** (Markov Perfect Equilibrium (MPE)). A behavioral strategy profile π is called a Center on Frontiers of Computing Studies Center on Frontiers of Computing Studies Peking University Peking University xiaotie@pku.edu.cn yuhaoli.cs@pku.edu.cn $\forall s \in \mathbb{S}, i \in [n], \forall \tilde{\pi}^i \in \Delta^S_{A^i}, V^{\pi^i, \pi^{-i}}(s) \ge V^{\tilde{\pi}^i, \pi^{-i}}(s).$ David Henry Mguni Jun Wang **Yaodong Yang** Huawei R&D UK University College London King's College London davidmguni@hotmail.com jun.wang@cs.ucl.ac.uk yaodong.yang@outlook.com

- Meaning computing Nash in SGs is unlikely to be NP-hard unless NP \neq coNP.

+ Short answer is we don't know yet. Similar to we don't know if P=NP. But highly likely NO.

• PPAD problems can always have exp-time algorithms, can we have P-time solutions ?

Summary of Complexity Results

NEXPTIME-hard (Bernstein et al., 2002).

https://arxiv.org/abs/2011.00583

Figure 1.5: Landscape of different complexity classes. Relevant examples are: 1) solving NE in two-player zero-sum game is P (Neumann, 1928). 2) solving NE in twoplayer general-sum game is PPAD-hard (Daskalakis et al., 2009). solving NE in three-player zero-sum game is also PPAD-hard (Daskalakis and Papadimitriou, 2005). 3) checking the uniqueness of NE is NP-hard (Conitzer and Sandholm, 2002). 4) checking whether pure-strategy NE exists in stochastic game is PSPACE-hard (Conitzer and Sandholm, 2008). 5) solving Dec-POMDP is

What your Mum thinks

ARTIFICIAL INTELLIGENCE MACHINE CONSCIOUSNESS

An Artificial Intelligence Tries to Kill her Creator

🗇 TEMONTH'S AGO 🗇 READ TIME: 8 MINUTES 🕮 BY RAÛL ARRABALES 🔅 LEAVE A COMMENT

99

Spanish researchers discover a bot trying to kill her creator. This Artificial Intelligence, designed to fight in First-Person Shooter video games, was surprised while looking for a way to end the life of her creator in the real world.

Something undescribable :)

What you think you are doing

Multi-player general-sum games with high-dimensional continuous state-action space

Training a Population of Reinforcement Learners is Hard !

What you are actually doing

Two-player discrete-action game in a grid world.

• Formulation & Challenges of Training A Population of RL Agents

Training A Population of RL Agents on Fully-Cooperative Games

Training A Population of RL Agents on Zero-Sum Games

•Some System Level Thinkings

Conclusions

Fully-cooperative Games

- In the fully-cooperative games, all agents share the same reward $R^1 = R^2 = \cdots = R^N$.
- One way to solve such games are through centralised approach, learning $Q^i(s, a^1, a^2, \ldots, a^n)$ via TD error.
- The beauty of applying MARL methods lies in its decentralisable; as a result, centralised training with decentralised execution is used.
- For value-based CTDE methods, a common assumption is to assume individual-global-max condition holds.

$$\underset{a \in \mathscr{A}}{\operatorname{arg\,max}} \ Q_{tot}(s, a) = \left(\underset{a_1 \in \mathscr{A}}{\operatorname{arg\,max}} \ Q_1\left(s_1, a_1\right), \dots, \underset{a_n \in \mathscr{A}}{\operatorname{arg\,max}} Q_n\left(s_n, a_n\right)\right)$$
$$\mathscr{L}(\theta) = \mathbb{E}_{(s, a, r, s') \in D} \left[\left(r + \gamma V\left(s'; \theta^{-}\right) - Q_{tot}(s, a; \theta)\right)^2 \right]$$

• To implement the above assumption, methods such as VDN, QMIX, Q-DPP, QPLEX are used.

• VDN: $Q_{tot}(s, \mathbf{a}) = \sum_{i=1}^{n} Q_i\left(s^i, a^i; \theta^i\right), \text{ QMIX: } \frac{\partial Q_{tot}}{\partial Q_a} \ge 0, \forall a \in A, \text{ Q-DPP: } Q^{\pi}(o, a) := \log \det \left(\mathscr{L}_{Y=\{(o_1, a_1), \dots, (o_N, a_N)\} \in \mathscr{C}(o^t)}\right)$

• QPLEX:
$$V_{tot}(s) = \sum_{i=1}^{n} V_i(s_i)$$
 and $A_{tot}(s, a) = \sum_{i=1}^{n} \lambda_i$

 $(s, a)A_i(s_i, a_i)$, where $\lambda_i(s, a) > 0$

IGM Condition Can Fail in Cooperative Games

- The individual-global-max condition simply **fail** in some cooperative tasks.
 - $r(a^1, a^2) = a^1 \cdot a^2$. Every agent *i* takes its action a^i from its policy μ^i , which is an action.
 - Suppose that $(\mu^1, \mu^2) = (1, -1)$. The value function is thus $V(s) = E[r(a^1, a^2)] = \mu^1 \mu^2 = -1$.
 - The advantage of agent I is $A_1(s, a^1) = Q_1(s, a)$
 - The advantage of agent 2 is $A_2(s, a^2) = a^2 + 1$, and the joint advantage is $A(s, a) = Q(s, a) - V(s) = r(a^1, a^2) + 1 = a^1 \cdot a^2 + 1.$

 - $(a_{\max}^1, a_{\max}^2) \neq a_{\max}$, meaning that the advantage-based IGM does not hold in this game.

geneal-sum games fully cooperative competitive

• Consider two agents (1,2) that take actions $a^1, a^2 \in \{-10, -9, \dots, 9, 10\}$. They receive the reward

$$(a^{1}) - V(s) = E[r(a^{1}, a^{2}) | a^{1}] - \mu^{1}\mu^{2} = -a^{1} + 1,$$

• We can see that the maximising action for agent 1 is $a_{\text{max}}^1 = -10$, and for agent 2 it is $a_{\text{max}}^2 = 10$.

• However, the global maximising action is either $a_{max} = (-10, -10), or, a_{max} = (10, 10)$. Hence, we have

Multi-Agent Policy Gradient Methods

- - Fully Decentralised PG:
 - CTDE PG:

• Multi-agent CTDE methods can have huge variance.

Theorem 1. The CTDE and DT estimate $\operatorname{Var}_{\mathbf{s}_{0:\infty} \sim d_{\theta}^{0:\infty}, \mathbf{a}_{0:\infty} \sim \pi_{\theta}} \left[\mathbf{g}_{C}^{i} \right] - \operatorname{Var}_{\mathbf{s}_{0:\infty}}$ where $B_i = \sup_{s,a} \left\| \nabla_{\theta^i} \log \pi^i_{\theta} \left(a^i | s \right) \right\|, \epsilon$

• Apart from IGM condition in value based methods. There are multi-agent PG methods that execute CTDE.

$$(\mathbf{s}_t, \mathbf{a}_t^i) \nabla_{\theta^i} \log \pi_{\theta}^i (\mathbf{a}_t^i | \mathbf{s}_t)$$

$$g_{C}^{i} = \sum_{t=1}^{\infty} \gamma^{t} \hat{Q}\left(s_{t}, a_{t}^{-i}, a_{t}^{i}\right) \nabla_{\theta^{i}} \log \pi_{\theta}^{i}\left(a_{t}^{i} \mid s_{t}\right)$$

 $g_{\rm D}^i = \sum_{i} \gamma^t \hat{Q}^i$

$$\begin{aligned} \text{fors of MAPG satisfy} & \text{it is only linear in } n \, !\\ \sim d_{\theta}^{0:\infty}, \mathbf{a}_{0:\infty} \sim \pi_{\theta} \left[\mathbf{g}_D^i \right] \, \leq \, \frac{B_i^2}{1 - \gamma^2} \sum_{j \neq i} \epsilon_j^2 \, \leq \, (n - 1) \frac{(\epsilon B_i)^2}{1 - \gamma^2} \\ \epsilon_i = \sup_{s, \mathbf{a}^{-i}, a^i} \left| A_{\theta}^i(s, \mathbf{a}^{-i}, a^i) \right|, \text{ and } \epsilon = \max_i \epsilon_i \,. \end{aligned}$$

• The more agents (n), the more explorations (ϵ) from others, the larger the gradient of CTDE policy gradients.

Multi-Agent Policy Gradient Methods

- One can apply the baseline trick to reduce the variance for MAPG estimation \bigcirc
 - MAPG baselien trick: $g_C^i(b) = \sum_{t=1}^{\infty} \gamma^t \left[\hat{Q}\left(s_t, a_t^{-i}, a_t^{i} \right) \right]$
 - COMA is $b(s, a^{-i}) = \hat{Q}^{-i}(s, a^{-i})$, but still large variance
 - The variance of MAPG can be decomposed into

 $\mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}, \mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right] = \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C}, t}^{i}(b) \right] \right]$ $= \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C},t}^{i}(b) \right] \right] + \mathbb{E}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbf{Var}_{\mathbf{a}_{t}^{-i} \sim \mathbf{s}_{t}^{-i}} \right]$ $= \mathbf{Var}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathbf{C},t}^{i}(b) \right] \right] + \mathbb{E}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbf{Var}_{\mathbf{a}_{t}^{-i} \sim d_{\boldsymbol{\theta}}^{t}} \right]$ Variance from state Variance from other agents' actions

- The optimal baseline that gives the minimal var $\min_{b(s,\boldsymbol{a}^{-i})} \operatorname{Var}_{a^{i} \sim \pi_{\boldsymbol{\theta}}^{i}} \left[\left(\hat{Q}\left(s, \boldsymbol{a}^{-i}, a^{i} \right) - b\left(s, \boldsymbol{a}^{-i} \right) \right) \nabla_{\boldsymbol{\theta}^{i}} \log \pi_{\boldsymbol{\theta}}^{i} \left(a^{i} \mid s \right) \right]$
- Apply the baseline by $\hat{Q}(s, a^{-i}, a^i) b^{\text{optimal}}$

Settling the Variance of Multi-Agent Policy Gradients

Jakub Grudzien Kuba*.1,2, Muning Wen*.3, Yaodong Yang^{†,4}, Linghui Meng⁵,

Shangding Gu⁵, Haifeng Zhang⁵, David Henry Mguni², Jun Wang⁶

$$\left|\nabla_{\theta^{i}}\right| - b\left(\mathbf{s}_{t}, a_{t}^{-i}\right) \int \nabla_{\theta^{i}} \log \pi_{\theta}^{i}\left(a_{t}^{i} \mid \mathbf{s}_{t}\right)$$

Theorem 2. The COMA and DT estimators of MAPG satisfy

$$\mathbf{Var}_{\mathbf{s}_{0:\infty} \sim d_{\theta}^{0:\infty}, \mathbf{a}_{0:\infty} \sim \pi_{\theta}} \left[\mathbf{g}_{COMA}^{i} \right] - \mathbf{Var}_{\mathbf{s}_{0:\infty} \sim d_{\theta}^{0:\infty}, \mathbf{a}_{0:\infty} \sim \pi_{\theta}} \left[\mathbf{g}_{D}^{i} \right] \leq \frac{(\epsilon_{i}B_{D})}{1 - \epsilon_{i}B_{D}}$$

$$\begin{aligned} & \left[\mathbf{b} \right] \right] + \mathbb{E}_{\mathbf{s}_{t} \sim d_{\boldsymbol{\theta}}^{t}} \left[\mathbf{Var}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}} \left[\mathbf{g}_{\mathsf{C},t}^{i}(b) \right] \right] & (6) \\ & \left[\mathbb{E}_{\mathsf{a}_{t}^{i} \sim \pi_{\boldsymbol{\theta}}^{i}} \left[\mathbf{g}_{\mathsf{C},t}^{i}(b) \right] \right] + \mathbb{E}_{\mathsf{a}_{t}^{-i} \sim \pi_{\boldsymbol{\theta}}^{-i}} \left[\mathbf{Var}_{\mathsf{a}_{t}^{i} \sim \pi_{\boldsymbol{\theta}}^{i}} \left[\mathbf{g}_{\mathsf{C},t}^{i}(b) \right] \right] \right] \\ & \left[\mathbb{E}_{\mathsf{a}_{t}^{i} \sim \pi_{\boldsymbol{\theta}}^{i}} \left[\mathbb{E}_{\mathsf{a}_{t}^{i} \sim \pi_{\boldsymbol{\theta}}^{i}} \left[\mathbf{g}_{\mathsf{C},t}^{i}(b) \right] \right] \right] + \mathbb{E}_{\mathsf{s}_{t} \sim d_{\boldsymbol{\theta}}^{i}, \mathsf{a}_{t}^{-i} \sim \pi_{\boldsymbol{\theta}}^{-i}} \left[\mathbf{Var}_{\mathsf{a}_{t}^{i} \sim \pi_{\boldsymbol{\theta}}^{i}} \left[\mathbf{g}_{\mathsf{C},t}^{i}(b) \right] \right] \right] . \end{aligned}$$

Variance from agent *i*'s action

Finnce is

$$b^{\text{optimal}}(s, a^{-i}) = \frac{\mathbb{E}_{a^{i} \sim \pi_{\theta}^{i}}\left[\hat{Q}\left(s, a^{-i}, a^{i}\right) \| \nabla_{\theta^{i}} \log \pi_{\theta}^{i}\left(a^{i} \mid s\right)\right]}{\mathbb{E}_{a^{i} \sim \pi_{\theta}^{i}}\left[\| \nabla_{\theta^{i}} \log \pi_{\theta}^{i}\left(a^{i} \mid s\right)\|^{2}\right]}$$

$$(s, a^{-i}), \text{ and then follow PG.}$$

Optimal Baseline has Excellent Performance

• OB is a plug-and-play trick that can be used in any existing MAPG methods such as MAPPO, COMA

ai	$\psi^i_{\theta}(\mathbf{a}^i)$	$\pi^i_{\theta}(\mathbf{a}^i)$	$x^i_{\psi^i_{\theta}}(\mathbf{a}^i)$	$\hat{Q}(\boldsymbol{a}^{-i},\mathbf{a}^i)$	$\hat{A}^i(\boldsymbol{a}^{-i},\mathbf{a}^i)$	$\hat{X}^i(\boldsymbol{a}^{-i},\mathbf{a}^i)$	Method	Variance
1	log 8	0.8	0.14	2	-9.7	-41.71	MAPG	1321
2	0	0.1	0.43	1	-10.7	-42.71	COMA	1015
3	0	0.1	0.43	100	88.3	56.29	OB	673

Figure 2: Toy Example

Settling the Variance of Multi-Agent Policy Gradients

Jakub Grudzien Kuba*,1,2, Muning Wen*,3, Yaodong Yang^{†,4}, Linghui Meng⁵,

Shangding Gu⁵, Haifeng Zhang⁵, David Henry Mguni², Jun Wang⁶

Quick Summary for MARL in Cooperative Games

- What we have discussed so far:

Proposition 1. Let's consider a fully-cooperative game with an even number of agents n, one state, and the joint action space $\{0,1\}^n$, where the reward is given by $r(0^{n/2}, 1^{n/2}) = r(1^{n/2}, 0^{n/2}) = 1$, and $r(a^{1:n}) = 0$ for all other joint actions. Let \mathcal{J}^* be the optimal joint reward, and \mathcal{J}^*_{share} be the optimal joint reward under the shared policy constraint. Then

$$\frac{\mathcal{J}_{share}^*}{\mathcal{J}^*} = \frac{2}{2^n}.$$

[Jakub et. al. NeurIPS 2021]

Can we have a MARL method that avoid all four above limitations ? Yes !

• Fully-centralised approach: learning $Q^i(s, a^1, a^2, \ldots, a^n)$ is not scalable for population of agents.

• Value-based methods: require IGM condition, which may not hold in some cooperative games.

Policy-based methods: incur large policy gradient estimation variance & credit assignment issue.

• Parameter sharing approach: $\pi^i = \pi^j = \pi_{\theta}$ can lead to exponentially worse outcomes, e.g.,

Figure 1: Example of differentiable game with $r(a^1, a^2) = a^1 a^2$. We initialise agents' 1-D Gaussian policies with $\mu^1 = -0.25$, $\mu^2 =$ 0.25.

Multi-Agent TRPO Method

- All starts from this "powerful" Lemma.
 - First, we define some new notations

Multi-agent state-action value function

 $Q_{\pi}^{i_{1:k}}(s, \boldsymbol{a}^{i_{1:k}}) = \mathbb{E}_{\boldsymbol{a}}$

Multi-agent advantage function

 $A_{\pi}^{i_{1:k}}(s, \boldsymbol{a}^{j_{1:m}}, \boldsymbol{a}^{i_{1:k}}) = Q_{\pi}^{j}$

Advantage decomposition lemma:

$$A_{\pi}^{i_{1:m}}(s, a^{i_{1:m}}) = \sum_{j=1}^{m} A_{\pi}^{i_{j}}(s, a^{i_{1:j-1}}, a^{i_{j}})$$

TRUST REGION POLICY OPTIMISATION IN MULTI-AGENT REINFORCEMENT LEARNING

Jakub Grudzien Kuba^{1,2*}, Ruiqing Chen^{3,*}, Munning Wen⁴, Ying Wen⁴, Fanglei Sun³, Jun Wang⁵, Yaodong Yang^{6,†}

¹University of Oxford, ²Huawei R&D UK, ³ShanghaiTech University, ⁴Shanghai Jiao Tong University ⁵University College London ⁶King's College London [†]yaodong.yang@kcl.ac.uk

$$\left[Q_{\pi}(s, a^{i_{1:k}}, a^{-i_{1:k}})\right]$$

$$d_{\pi}^{i_{1:m},i_{1:k}}(s, a^{j_{1:m}}, a^{i_{1:k}}) - Q_{\pi}^{j_{1:m}}(s, a^{j_{1:m}})$$

• Note: this does not need any assumptions such as IGM, it holds naturally in any cooperative games!

• This can offer some new insights for cooperative MARL algorithm design. We can walk away from IGM.

Multi-Agent TRPO Method

- We can design a monotonic-improvement procedure based on the Lemma
 - Assuming agent order $i_{1\cdot n}$, based on the Lemma, we can make the following update:
 - First, select \bar{a}^{i_1} so that $A^{i_1}(s, \bar{a}^{i_1}) > 0$
 - Then, for the rest agent m = 2, ..., n, agent i
- This leads to Multi-Agent TRPO update that has monodically improving property

Definition 2. Let π be a joint policy, $\bar{\pi}^{i_{1:m-1}}$ be some other joint policy of agents $i_{1:m-1}$, and $\hat{\pi}^{i_m}$ be some other policy of agent i_m . Then

$$L_{\pi}^{i_{1:m}}\left(\bar{\pi}^{i_{1:m-1}}, \hat{\pi}^{i_{m}}\right) \triangleq \mathbb{E}_{s \sim \rho_{\pi}, \mathbf{a}^{i_{1:m-1}} \sim \bar{\pi}^{i_{1:m-1}}, \mathbf{a}^{i_{m}} \sim \hat{\pi}^{i_{m}}} \left[A_{\pi}^{i_{m}}\left(s, \mathbf{a}^{i_{1:m-1}}, \mathbf{a}^{i_{m}}\right)\right].$$

Lemma 2. Let π be a joint policy. Then, for any joint policy $\overline{\pi}$, we have

$$\mathcal{J}(\bar{\pi}) \geq \mathcal{J}(\pi) + \sum_{m=1}^{n} \left[L_{\pi}^{i_{1:m}} \left(\bar{\pi}^{i_{1:m-1}}, \bar{\pi}^{i_{m}} \right) - CD_{KL}^{max}(\pi^{i_{m}}, \bar{\pi}^{i_{m}}) \right].$$

MARL surrogate loss

MA Trust Region

TRUST REGION POLICY OPTIMISATION IN MULTI-AGENT REINFORCEMENT LEARNING

Jakub Grudzien Kuba^{1,2*}, Ruiqing Chen^{3,*}, Munning Wen⁴, Ying Wen⁴, Fanglei Sun³, Jun Wang⁵, Yaodong Yang^{6,1} ¹University of Oxford, ²Huawei R&D UK, ³ShanghaiTech University, ⁴Shanghai Jiao Tong University ⁵University College London ⁶King's College London [†]yaodong.yang@kcl.ac.uk

$$\bar{a}_m$$
 selects \bar{a}^{i_m} so that $A^{i_m}(s, \bar{a}^{i_{1:m-1}}, \bar{a}^{i_m}) > 0$

• We can know that if every term is positive, then $A_{\pi}^{i_{1:m}}(s, a^{i_{1:m}})$ is improving monotonically in time

Multi-Agent TRPO Method

Algorithm 1 Multi-Agent Policy Iteration with Monotonic Improvement Guarantee

- 1: Initialise the joint policy $\pi_0 = (\pi_0^1, \dots, \pi_0^n)$.
- 2: for $k = 0, 1, \dots$ do
- 3:
- Compute $\epsilon = \max_{s,a} |A_{\pi_k}(s, a)|$ and $C = \frac{4\gamma\epsilon}{(1-\gamma)^2}$. 4:
- Draw a permutaion i1:n of agents at random. 5:
- for $m = 1 : n \operatorname{do}$ 6:

Make an update $\pi_{k+1}^{i_m} = \arg \max_{\pi^{i_m}}$

9: end for

Monotonic improvement property for MARL

Theorem 2. A sequence $(\pi_k)_{k=0}^{\infty}$ of joint policies updated by Algorithm 1 has the monotonic improvement property, i.e., $\mathcal{J}(\pi_{k+1}) \geq \mathcal{J}(\pi_k)$ for all $k \in \mathbb{N}$.

MA-TRPO in practice: using natural gradient

7:

$$\begin{aligned} \theta_{k+1}^{i_m} &= \operatorname*{arg\,max}_{\theta_{i_m}} \mathbb{E}_{s \sim \rho_{\pi_{\theta_k}}, \mathbf{a}^{i_1:m-1} \sim \pi_{\theta_{k+1}}^{i_1:m-1}, \mathbf{a}^{i_m} \sim \pi_{\theta}^{i_m}} \left[A_{\pi_{\theta_k}}^{i_m}(\mathbf{s}, \mathbf{a}^{i_1:m-1}, \mathbf{a}^{i_m}) \right], \\ &\text{subject to } \mathbb{E}_{s \sim \rho_{\pi_{\theta_k}}} \left[D_{\mathrm{KL}} \left(\pi_{\theta_k}^{i_m}(\cdot|\mathbf{s}), \pi_{\theta}^{i_m}(\cdot|\mathbf{s}) \right) \right] \leq \delta. \end{aligned}$$

MA-PPO in practice: using clip objective

$$\mathbb{E}_{\mathbf{s}\sim\rho_{\boldsymbol{\pi}_{\boldsymbol{\theta}_{k}}},\mathbf{a}^{\sim}\boldsymbol{\pi}_{\boldsymbol{\theta}_{k}}}\left[\min\left(\frac{\pi_{\theta^{i_{m}}}^{i_{m}}\left(\mathbf{a}^{i}|\mathbf{s}\right)}{\pi_{\theta_{k}^{i_{m}}}^{i_{m}}\left(\mathbf{a}^{i}|\mathbf{s}\right)}M^{i_{1:m}}\left(\mathbf{s},\mathbf{a}\right),\operatorname{clip}\left(\frac{\pi_{\theta^{i_{m}}}^{i_{m}}\left(\mathbf{a}^{i}|\mathbf{s}\right)}{\pi_{\theta_{k}^{i_{m}}}^{i_{m}}\left(\mathbf{a}^{i}|\mathbf{s}\right)},1\pm\epsilon\right)M^{i_{1:m}}\left(\mathbf{s},\mathbf{a}\right)\right)\right].$$

TRUST REGION POLICY OPTIMISATION IN MULTI-AGENT REINFORCEMENT LEARNING

Jakub Grudzien Kuba^{1,2*}, Ruiqing Chen^{3,*}, Munning Wen⁴, Ying Wen⁴, Fanglei Sun³, Jun Wang⁵, Yaodong Yang^{6,1} ¹University of Oxford, ²Huawei R&D UK, ³ShanghaiTech University, ⁴Shanghai Jiao Tong University ⁵University College London ⁶King's College London [†]yaodong.yang@kcl.ac.uk

Compute the advantage function $A_{\pi_k}(s, a)$ for all state-(joint) action pairs (s, a).

$$\left[L_{\pi_k}^{i_{1:m}}\left(\pi_{k+1}^{i_{1:m-1}}, \pi^{i_m}\right) - CD_{\mathrm{KL}}^{\max}(\pi_k^{i_m}, \pi^{i_m})\right].$$

Multi-Agent TRPO is the New SOTA in MARL

TRUST REGION POLICY OPTIMISATION IN MULTI-AGENT REINFORCEMENT LEARNING

Jakub Grudzien Kuba^{1,2}*, Ruiqing Chen^{3,*}, Munning Wen⁴, Ying Wen⁴, Fanglei Sun³, Jun Wang⁵, Yaodong Yang^{6,†} ¹University of Oxford, ²Huawei R&D UK, ³ShanghaiTech University, ⁴Shanghai Jiao Tong University ⁵University College London ⁶King's College London [†]yaodong.yang@kcl.ac.uk

Multi-Agent TRPO with Safe Constraints

- Taking safe constraints into account in the MARL process
 - consider additional cost functions: $J_i^i(\pi) \triangleq \mathbb{I}$
 - We can derive the expected cost changes by

of one of its costs. The following inequality holds

$$J_{j}^{i}(\bar{\pi}) \leq J_{j}^{i}(\pi) + L_{j,\pi}^{i}(\bar{\pi}^{i}) + v_{j}^{i} \sum_{h=1}^{n} D_{KL}^{max}(\pi^{h}, \bar{\pi}^{h}), \text{ where } v_{j}^{i} = \frac{4\gamma \max_{s,a^{i}} |A_{j,\pi}^{i}(s, a^{i})|}{(1-\gamma)^{2}}.$$

guarantee both monotonic improvement and satisfy safety constraint

Algorithm 1: Safe Multi-Agent Policy It 1: Initialise a safe joint policy $\pi_0 = (\pi_0^1)$ 2: for $k = 0, 1, \dots$ do Compute the advantage functions 3: (s, a), agents *i*, and constraints $j \in$ Compute $v = \frac{4\gamma \max_{s,a} |A_{\pi_k}(s,a)|}{(1-\gamma)^2}$, a Draw a permutaion $i_{1:n}$ of agents a 5: for h = 1 : n do 6: Compute the radius of the KL-co 7: Make an update $\pi_{k+1}^{i_k} = \arg \max_{k+1}$ 8: where $\overline{\Pi}^{i_h}$ is a subset of safe pol $\overline{\Pi}^{i_h} = \left\{ \pi^{i_h} \in \Pi^{i_h} \; \middle| \; D_{\mathrm{KL}}^{\max}(\pi^{i_h}_k, \pi^{i_h}) \right.$ $J_{j}^{i_{h}}(\pi_{k}) + L_{j,\pi_{k}}^{i_{h}}(\pi^{i_{h}}) + v_{j}^{i_{h}}$ 9: end for

10: end for

MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

Shangding Gu¹, Jakub Grudzien Kuba^{2,*}, Munning Wen³, Ruiqing Chen⁴, Ziyan Wang⁵, Zheng Tian^{4,5}, Jun Wang⁵, Alois Knoll¹, Yaodong Yang⁶ ¹Technical University of Munich ²University of Oxford ³Shanghai Jiao Tong University ⁴ShanghaiTech University ⁵University College London ⁶King's College London yaodong.yang@kcl.ac.uk

$$\Xi_{\mathbf{s}_0 \sim \rho^0, \mathbf{a}_{0:\infty} \sim \pi, \mathbf{s}_{1:\infty} \sim p} \Big[\sum_{t=0}^{\infty} \gamma^t C_j^i(\mathbf{s}_t, \mathbf{a}_t^i) \Big] \le c_j^i, \quad \forall j = 1, \dots, m^i$$

Lemma 2. Let π and $\overline{\pi}$ be joint policies. Let $i \in N$ be an agent, and $j \in \{1, \ldots, m^i\}$ be an index

• This result suggests that when the changes in policies of all agents are sufficiently small, each agent i

can learn a better policy by only considering its own surrogate return and surrogate costs.

eration with Monotonic Improvement Property

$$\frac{n}{n}, \pi_{0}^{n}, \frac{n}{n}, \frac{n}{n}$$

Multi-Agent TRPO with Safe Constraints

(c) Safe HalfCheetah: 2x3-Agent (left), 3x2-Agent (middle), 6x1-Agent (right)

MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

Shangding Gu¹, Jakub Grudzien Kuba^{2,*}, Munning Wen³, Ruiqing Chen⁴, Ziyan Wang⁵, Zheng Tian^{4,5}, Jun Wang⁵, Alois Knoll¹, Yaodong Yang⁶ ¹Technical University of Munich ²University of Oxford ³Shanghai Jiao Tong University ⁴ShanghaiTech University ⁵University College London ⁶King's College London [†]yaodong.yang@kcl.ac.uk

ManyAgent Ant-2x3

HalfCheetah-2x3 task

•Formulation & Challenges of Training A Population of RL Agents

Training A Population of RL Agents on Fully-Cooperative Games

Training A Population of RL Agents on Zero-Sum Games

•Some System Level Thinkings

Conclusions

Multi-Agent Reinforcement Learning in Zero-Sum Games

Great advantages have been made in 2019!

A General Solver to Two-Player Zero-Sum Games

Output: the reward (R^1, \ldots, R^N)

Black-box multi-agent game engine

Input: a joint strategy (π^1, \ldots, π^N)

Our algorithm:

$$\mathbf{Br}^{i}(\pi^{-i}) = \arg\max_{\pi^{i}} \mathbf{E}_{a^{i} \sim \pi^{i}, a^{-i} \sim \pi^{-i}} \Big[R^{i} \Big(a^{i} \Big) \Big]$$

Exploitability $\Big(\pi \Big) = \sum_{i=1}^{2} R^{i} \Big(\mathbf{Br}^{i}(\pi^{-i}), \pi^{-i} \Big) \Big]$

Nash Equilibrium in Two-Player Zero-Sum Games

• von Neumann theorem: Two-player Nash can be computed in P-time through linear programmes (LP). **Dual problem Prime problem** row player maximises the worst situation column player's view $\min v$ max v $v \in \mathbb{R}$ $v \in \mathbb{R}$ s.t. $\mathbf{q}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \leq v \cdot \mathbf{1}$ s.t. $\mathbf{p}^{\mathsf{T}}\mathbf{A} \geq v \cdot \mathbf{1}$

 $\mathbf{p} \geq \mathbf{0}$ and $\mathbf{p}^{\mathsf{T}}\mathbf{1} = 1$

- The v^* is the Nash value

 - proof: $v \leq v^*$ due to definition of v^* , $v \geq v^*$ due to being the LP solution. • corollary: all Nash value are the same (saddle point is unique in bimatrix game).
- The (p, q) is the Nash equilibrium:
 - proof: suppose the player plays x, y instead of p, q

•
$$x^T A q = \sum_{i=1}^N x_i (Aq)_i \le \max_{i \in [N]} (Aq)_i = v_c = v^*, p^T A y = \sum_{j=1}^N x_j (Aq)_j \le \sum_{i \in [N]} (Aq)_i = v_c = v^*, p^T A y = \sum_{j=1}^N x_j (Aq)_j \le \sum_{i \in [N]} (Aq)_i \le \sum_{i \in [N]$$

 $\min \sup f(x, y) = \sup \min f(x, y)$ • Sion's minimax theorem generalises to quasi-convex/concave functions $x \in X \quad y \in Y$ $y \in Y \quad x \in X$

Minimax theorem zero-duality gap for convex problems $\max \min \mathbf{p}^{\mathsf{T}} \mathbf{A} \mathbf{q}$ p $= \min \max \mathbf{p}^{\mathsf{T}} \mathbf{A} \mathbf{q}$ $\mathbf{q} \geq \mathbf{0}$ and $\mathbf{q}^{\mathsf{T}} \mathbf{1} = 1$ q р

 $\sum_{j \in [M]} (p^T A)_j y_j \ge \min_{j \in [M]} (p^T A)_j = v_r = v^*, \text{ thus no incentives to deviate.}$

When and Why we need Population-based Methods?

Output: the reward (R^1, \ldots, R^N)

Black-box multi-agent game engine

Regret based methods: Poker Type

Input: a joint strategy (π^1, \ldots, π^N)

When planning is feasible (game tree is easily accessible), existing techniques can solve the games really well.

Perfect-information games:

MCTS, alpha-beta search, AlphaGO series (AlphaZero, MuZero, etc)

Imperfect-information:

CFR series (DeepCFR, Libratus/Pluribus, Deepstack), XFP/NFSP series

Population based methods: StarCraft type

When planning is not feasible. StarCraft has 10^{26} choices per time step vs. the whole tree of chess 10^{50} (Texas holdem 10^{80} , GO 10^{170}). Enumerating all policies' actions at each state and then playing a best response is infeasible.

Solution: training a population of RL agents, treat each RL agent as one "pure strategy" and solve the game at a meta level where an agent is a RL model of a player, and we need a population of those agents (due to non-transitivity).

Life up the problem to the meta level (i.e., the policy level)

- One strategy / policy corresponds to one "agent" . A player by a population of agents.
- We now need to study the meta-game: the game of a game, the problem problem.
- We need to build that population of agents such that the player is unexploitable.

meta-game analysis

• A player in zero-sum games usually have multiple strategies (Rock, Paper, Scissor).

A Player has a a population of Agents

Formulation of Population Based Learning in Zero-Sum Games

• Let's formulate the self-play process.

- They can be considered as two neural networks.
- Define a functional-form game (FFG) [Balduzzi 2019] to be represented by a function

- ϕ represents the game rule, it is anti-symmetrical.
- $\phi > 0$ means agent 1 wins over agent 2, the higher $\phi(v, w)$ the better for agent 1.
- with $\phi_{\mathbf{w}}(\bullet) := \phi(\bullet, \mathbf{w})$, we can have the best response defined by:

$$v' := Br(w) = Oracle(v, \phi_w)$$

• Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example **PPO + PBT** as we have mentioned early, or other optimiser such as evolutionary algorithm.

• Suppose two agents, agent 1 adopts policy parameterised by $v \in \mathbb{R}^d$, and agent 2 adopts policy $w \in \mathbb{R}^d$.

$(\cdot))$ s.t. $\phi_{\mathbf{w}}(\mathbf{v}') > \phi_{\mathbf{w}}(\mathbf{v}) + \epsilon$

Naive Self-play Will Not Work

Question: Can we use it as a general framework to solve any games?

PPO + Self-play = Panacea ? Algorithm 2 Self-play input: agent v₁ for t = 1, ..., T do $\mathbf{v}_{t+1} \leftarrow \text{oracle} (\mathbf{v}_t, \phi_{\mathbf{v}_t}(\bullet))$

end for output: v_{T+1}

$$(\pi^1, \pi^2) \to (\pi^1, \pi^{2,*} = \operatorname{Br}(\pi^1)) \to (\pi^{1,*} = \operatorname{Br}(\pi^{2,*}), \pi^{2,*})$$

It depends. In most of the games, it does not work.

self-plays

Naive Self-play Will Not Work

• It is because of Non-Transitivity

Rock-Paper-Scissor game:

- Disc game:
 - $\phi(\mathbf{v}, \mathbf{w}) = \mathbf{v}^{\mathsf{T}} \cdot \begin{pmatrix} 0, -1 \\ 1, 0 \end{pmatrix} \cdot \mathbf{w} = v_1 w_2 v_2 w_1$

Game Decomposition

• Every FFG can be decomposed into two parts [Balduzzi 2019]

 $FFG = Transitive game \bigoplus Non-transitive game$

- Let $v, w \in W$ be a compact set and $\phi(v, w)$ prescribe the flow from v to w, then this is a natural result after applying combinatorial hodge theory [liang 2011].
- We can write any games ϕ as summation of two **orthogonal** components grad(f)(v, w) := f(v) - f(w) div(ϕ)(v) := $\int_W \phi(v, w) \cdot dw$ curl(ϕ)(u, v, w) := $\phi(u, v) + \phi(v, w) - \phi(u, w)$

$$\phi = \operatorname{grad} \circ \operatorname{div}(\phi) + (\phi - \operatorname{grad} \circ \operatorname{div}(\phi))$$

 $curl(\cdot)=0$

Transitive game

Example on Rock-Paper-Scissor

	R	Р	S
R	0,0	-3x, 3x	3y, -3y
P	3x, -3x	0, 0	-3z, 3z
S	-3y, 3y	3z, -3z	0,0

i.	R	Р	S
R	(y-x),(y-x)	(y-x),(x-z)	(y-x),(z-y)
Р	(x-z),(y-x)	(x-z),(x-z)	(x-z),(z-y)
S	(z-y),(y-x)	(z-y),(x-z)	(z-y),(z-y)

Transitive game

 $div(\cdot)=0$

Non-transitive game

R	P	S
0, 0	-(x+y+z),(x+y+z)	(x+y+z), -(x+y+z)
(x+y+z), -(x+y+z)	0, 0	-(x+y+z),(x+y+z)
-(x+y+z),(x+y+z)	(x+y+z), -(x+y+z)	0, 0

	R	P	S
R	(x-y), (x-y)	(z-x),(x-y)	(y-z), (x
Ρ	(x-y), (z-x)	(z-x),(z-x)	(y-z), (z
S	(x-y), (y-z)	(z-x),(y-z)	(y-z), (y

╈

Non-transitive game

What is Transitivity ?

• Every FFG can be decomposed into two parts

 $FFG = Transitive game \oplus Non-transitive game$

- **Transitive Game**: the rules of winning are transitive across different players. v_t beats v_{t-1} , v_{t+1} beats $v_t \rightarrow v_{t+1}$ beats v_{t-1}
 - Example: Elo rating (段位) offers rating scores $f(\cdot)$ that assume transitivity. $\phi(\mathbf{v}, \mathbf{w}) = \operatorname{softmax}(f(\mathbf{v}) - f(\mathbf{w}))$
 - Larger score means you are likely to win over players with lower scores. Elo score is widely used in GO and Chess.

 - This explains why you don't want to play with rookies, when $f(v_t) \gg f(w)$, $\nabla_{\mathbf{v}}\phi\left(\mathbf{v}_{t},\mathbf{w}\right)pprox\mathbf{0}$

What is Non-Transitivity ?

• Every FFG can be decomposed into two parts

- - observed in modern MOBA games.

does not hold. Self-play will lead to cyclic loops forever.

 $FFG = Transitive game \bigoplus Non-transitive game$

• Non-transitive Game: the rules of winning are not-transitive across players.

 v_t beats v_{t-1} , v_{t+1} beats $v_t \leftrightarrow v_{t+1}$ beats v_{t-1}

• Mutual dominance across different types of modules in a game. This is commonly

For this types of game, self-play is not helpful at all because transitivity assumption

Visualisation of Transitive and Non-Transitive Games

• Let us define the evaluation matrix for a population of N agents to be $\mathbf{A}_{\mathfrak{P}} := \left\{ \phi \left(\mathbf{w}_{i}, \mathbf{w}_{j} \right) : \left(\mathbf{w}_{i}, \mathbf{w}_{j} \right) \in \mathfrak{P} \times \mathfrak{P} \right\} =: \phi \left(\mathfrak{P} \otimes \mathfrak{P} \right)$

the Appendix.

Figure 1. Low-dim gamescapes of various basic game structures. Top row: Evaluation matrices of populations of 40 agents each; colors vary from red to green as ϕ ranges over [-1, 1]. Bottom row: 2-dim embedding obtained by using first 2 dimensions of Schur decomposition of the payoff matrix; Color corresponds to average payoff of an agent against entire population; EGS of the transitive game is a line; EGS of the cyclic game is two-dim near-circular polytope given by convex hull of points. For extended version see Figure 6 in

[Balduzzi 2019]

The Spinning Top Hypothesis

•Real-world games are mixtures of both transitive and in-transitive components, e.g., Go, DOTA, StarCraft II.

- Though winning is often harder than losing a game, finding a strategy that always loses is also challenging.
- Players who regularly practice start to beat less skilled players, this corresponds to the transitive dynamics.
- At certain level (the red part), players will start to find many different strategy styles. Despite not providing a universal advantage against all opponents, players will counter each other within the same transitive group. This provide direct information of improvement.
- As players get stronger to the highest level, seeing many strategy styles, the outcome relies mostly on skill and less on one particular game styles (以不变应万变).

Figure 1: High-level visualisation of the geometry of Games of Skill. It shows a strong transitive dimension, that is accompanied by the highly cyclic dimensions, which gradually diminishes as skill grows towards the Nash Equilibrium (upward), and diminishes as skill evolves towards the worst possible strategies (downward). The simplest example of non-transitive behaviour is a cycle of length 3 that one finds e.g. in the Rock Paper Scissors game.

Measuring the Non-Transitivity

• A theoretical lower bound of the size of non-transitivity [Czarnecki 2020]

n-bit communicative game

Definition 1. Consider the extensive form view of the win-draw-loss version of any underlying game; the underlying game is called *n*-bit communicative if each player can transmit $n \in \mathbb{R}_+$ bits of information to the other player before reaching the node whereafter at least one of the outcomes 'win' or 'loss' is not attainable.

bit: how many action one can take before the outcome of the game is predetermined

Theorem 1. For every game that is at least *n*-bit communicative, and every antisymmetric win-loss payoff matrix $\mathbf{P} \in \{-1, 0, 1\}^{\lfloor 2^n \rfloor \times \lfloor 2^n \rfloor}$, there exists a set of $\lfloor 2^n \rfloor$ pure strategies $\{\pi_1, ..., \pi_{\lfloor 2^n \rfloor}\} \subset \Pi$ such that $\mathbf{P}_{ij} = \mathbf{f}^{\dagger}(\pi_i, \pi_j)$, and $\lfloor x \rfloor = \max_{a \in \mathbb{N}} a \leq x$.

n-bit game = there exists at least a non-transitive circle of size 2^n

Results on GO and MOBA games:

Proposition 1. The game of Go is at least 1000-bit communicative and contains a cycle of length at least 2^{1000} .

Proposition 2. Modern games, such as StarCraft, DOTA or Quake, when limited to 10 minutes play, are at least 36000-bit communicative.

Measuring the Non-Transitivity

- A practical way of measurement through meta-game analysis
 - Computing n-bit communicative game needs full tree traversing, thus intractable
 - Deciding a graph has a path of length higher than k is NP-hard \blacklozenge
 - One needs to approximate.
 - Method I, count the number of RPS cycles.

$$N_{i+1} = \operatorname{supp}(\mathbb{N})$$

Approximating Longest Directed Paths and Cycles

Andreas Björklund¹, Thore Husfeldt¹, and Sanjeev Khanna^{2*}

¹ Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.

thore@cs.lu.se ² Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104. sanjeev@cis.upenn.edu

Abstract. We investigate the hardness of approximating the longest path and the longest cycle in directed graphs on n vertices. We show that neither of these two problems can be polynomial time approximated within $n^{1-\epsilon}$ for any $\epsilon > 0$ unless P = NP. In particular, the result holds for digraphs of constant bounded outdegree that contain a Hamiltonian cycle.

• when k=3, we can compute by constructing $A_{i,i} = 1 \iff \phi_{i,i} > 0$, then $diag(A^3)$

• Method II, at each transitivity level, we can measure the Nash Clustering

Definition 3. Nash clustering C of the finite zero-sum symmetric game strategy Π set by setting for each $i \ge 1$: $N_{i+1} = \operatorname{supp}(\operatorname{Nash}(\mathbb{P}|\Pi \setminus \bigcup_{j \le i} N_j))$ for $N_0 = \emptyset$ and $\mathbb{C} = (N_j : j \in \mathbb{N} \land N_j \neq \emptyset)$.

strategies that at the higher level of transitivity

Measuring the Non-Transitivity in Chess

- Real-world data set from human players on Chess
 - We study one billion human player records from Lichess platform
 - Human Chess players presents the spinning-top pattern, which verifies the hypothesis

https://arxiv.org/pdf/2110.11737.pdf

Non-Transitivity Harms Training !

Example on training AlphaStar:

Example on training Soccer AI:

Table 2: Average goal difference \pm one standard deviation across 5 repetitions of the experiment.

A vs built-in AI	4.25 ± 1.72
B vs A	11.93 ± 2.19
B vs built-in AI	-0.27 ± 0.33

[Karol 2020, table 2]

Example on training AlphaGO:

[Silver 2016, table 9]

Dealing With Non-Transitivity Helps Save Training Time

THE NASH DISTRIBUTION OVER COMPETITORS AS THE ALPHASTAR LEAGUE PROGRESSED AND NEW COMPETITORS WERE CREATED. THE NASH DISTRIBUTION, WHICH IS THE LEAST EXPLOITABLE SET OF COMPLEMENTARY COMPETITORS, WEIGHTS THE NEWEST COMPETITORS MOST HIGHLY, DEMONSTRATING CONTINUAL PROGRESS AGAINST ALL PREVIOUS COMPETITORS.

[AlphaStar Blog]

Game	Total Strategies	Size of Nash suppo		
3-Move Parity Game 2	160	1		
5,4-Blotto	56	6		
AlphaStar	888	3		
Connect Four	1470	23		
Disc Game	1000	27		
Elo game + noise=0.1	1000	6		
Elo game	1000	1		
Go (boardsize=3,komi=6.5)	1933	13		
Misere (game=tic tac toe)	926	1		
Normal Bernoulli game	1000	5		
Quoridor (boardsize=3)	1404	1		
Random game of skill	1000	5		
Tic Tac Toe	880	1		
Transitive game	1000	1		
Triangular game	1000	1		

Table 2: Size of the Nash Support of Games

[Le Ceong Dinh 2021]

Understanding Non-Transitivity Helps Develop Algorithms !

- Topological structure at the policy space affects the efficiency of training algorithm.
 - for example, there is a reason why we need diversity in the policy space.

improvement in terms of the Nash clustering $\exists_{k \leq i} \pi \in \mathbb{C}_k$.

•

Theorem 3. If at any point in time, the training population \mathcal{P}^t includes any full Nash cluster $\mathbf{C}_i \subset \mathcal{P}^t$, then training against \mathcal{P}^t by finding π such that $\forall_{\pi_i \in \mathcal{P}^t} \mathbf{f}(\pi, \pi_j) > 0$ guarantees transitive

on chess, large population size (thus more diversity) will have a phase change in the strength ! Chess 1000

Understanding Non-Transitivity Helps Develop Efficient Algorithms !

StarCraft micro-management BiCNet, deep MARL methods -2 GPUs, -2 days

2019.1

2017.1

StarCraft full game (AlphaStar) Populating-based Training Training for single agent costs 14 days, 16 TPUs/Agent, 200 years of real-time play.

2020.11

Dota 2 full game (OpenAl Five) Population-based + Rapid training system 28,000 CPUs, 100 GPUs, 180 years of plays per day

2019.4

王者荣耀 (绝悟)

Populating-based Competitive Self-play + Policy distillation 35,000 CPUs, 320 GPUs, begin to converge after 336 hours

Understanding Non-Transitivity Helps Develop Efficient Algorithms !

[Czarnecki 2020]

Solutions: Fictitious Play [Brown 1951]

- learning agent then takes the best response to this empirical average distribution.
 - $a_i^{t,*} \in \mathbf{BR}_i \left(p_{-i}^t = \frac{1}{t} \right)$
 - $p_i^{t+1} = \left(1 \frac{1}{t}\right)$
- Examples:

• Maintain a belief over the historical actions that the opponent has played, and the

$$\sum_{\tau=0}^{t-1} \mathcal{F}\left\{a_{-i}^{\tau} = a, a \in \mathbb{A}\right\}$$

$$- p_{i}^{t} + \frac{1}{t} a_{i}^{t,*}, \text{ for all } i$$

• It guarantees to converge, in terms of the Nash value, in two-player zero-sum games, potential games and 2×2 games, and, the average policy converge to the Nash strategy.

t	p_1^t	p_2^t	$ a_1^t $	$ a_2^t $
0	(3/4, 1/4)	(1/4, 3/4)	В	a
1	(3/4, 5/4)	(5/4, 3/4)	Α	b
2	(7/4, 5/4)	(5/4, 7/4)	B	a
3	(7/4, 9/4)	(9/4, 7/4)	Α	b
:	:	:	:	:

 ∞ (1/2, 1/2) (1/2, 1/2)

Generalised Weakened Fictitious Play [Leslie 2006]

$$\begin{aligned} \mathbf{Br}_{i}^{\epsilon}(p_{-i}) &= \left\{ p_{i}: R_{i}\left(p_{i}, p_{-i}\right) \geq R_{i}\left(\mathbf{Br}_{i}(p_{-i}), p_{-i}\right) - \epsilon \right\} \\ p_{i}^{t+1} &= \left(1 - \alpha^{t+1}\right) p_{i}^{t} + \alpha^{t+1}\left(\mathbf{Br}_{i}^{\epsilon}(p_{-i}) + M_{i}^{t+1}\right), \text{ for all } i \\ \\ t \to 0, \epsilon^{t} \to 0, \ \sum_{t=1}^{k} \alpha^{t} = \infty, \left\{M^{t}\right\} \text{ meets } \lim_{t \to \infty} \sup_{k} \left\{ \left\|\sum_{i=t}^{k-1} \alpha^{i+1} M^{i+1}\right\| \text{ s.t. } \sum_{i=t}^{k-1} \alpha^{i+1} \leq T \right\} = 0. \end{aligned}$$

$$\begin{aligned} \mathbf{Br}_{i}^{\epsilon}(p_{-i}) &= \left\{ p_{i}: R_{i}(p_{i}, p_{-i}) \geq R_{i}(\mathbf{Br}_{i}(p_{-i}), p_{-i}) - \epsilon \right\} \\ p_{i}^{t+1} &= \left(1 - \alpha^{t+1}\right) p_{i}^{t} + \alpha^{t+1} \left(\mathbf{Br}_{i}^{\epsilon}(p_{-i}) + M_{i}^{t+1}\right), \text{ for all } i \\ t \to \infty, \alpha_{t} \to 0, \epsilon^{t} \to 0, \ \sum_{t=1}^{t} \alpha^{t} = \infty, \left\{ M^{t} \right\} \text{ meets } \lim_{t \to \infty} \sup_{k} \left\{ \left\| \sum_{i=t}^{k-1} \alpha^{i+1} M^{i+1} \right\| \text{ s.t. } \sum_{i=t}^{k-1} \alpha^{i+1} \leq T \right\} = 0. \end{aligned}$$

• Recovers normal Fictitious Play when α'

• Why important: it allows us to use a broad class of best responses such as RL algorithms, and also, the policy exploration in e.g. soft-Q learning. Also, GWFP makes FP no-regret by introducing the perturbation term M.

It releases the FP by allowing approximate best response and perturbed average strategy updates, while maintaining the same convergence guarantee if conditions met.

$$t = 1/t, \epsilon_t = 0, M_t = 0.$$

Solutions: Double Oracle [McMahan 2003]

Algorithm 1 Double Oracle (McMahan et al., 2003) 1: Input: A set Π, C strategy set of players 2: Π_0, C_0 : initial set of strategies 3: for t = 1 to ∞ do if $\Pi_t \neq \Pi_{t-1}$ or $C_t \neq C_{t-1}$ then 4: Solve the NE of the subgame G_t : 5: $(\pi_t^*, c_t^*) = \arg \min_{\pi \in \Delta_{\Pi_t}} \arg \max_{c \in \Delta_{C_t}} \pi^\top Ac$ Find the best response a_{t+1} and c_{t+1} to (π_t^*, c_t^*) : 6: $a_{t+1} = \arg \min_{a \in \Pi} a^{\top} A c_t^*$ $c_{t+1} = \arg \max_{c \in C} \pi_t^* Ac$ Update $\Pi_{t+1} = \Pi_t \cup \{a_{t+1}\}, C_{t+1} = C_t \cup \{c_{t+1}\}$ 7: else if $\Pi_t = \Pi_{t-1}$ and $C_t = C_{t-1}$ then Terminate 9: end if 10: 11: end for

Double Oracle best responds to the opponent's Nash equilibrium at each iteration.

• To solve the game before seeing all pure strategies (not all of them are in Nash), much faster than LP, but In the worst-case scenario, it recovers to solve the original game.

> ■iteration 0: restricted game R vs R ■iteration 1: solve Nash of restricted game (1, 0, 0), (1, 0, 0)• unrestricted \mathbf{Br}^1 , $\mathbf{Br}^2 = \mathbf{P}$, \mathbf{P} ■iteration 2: solve Nash of restricted games (0, 1, 0), (0, 1, 0)• unrestricted \mathbf{Br}^1 , $\mathbf{Br}^2 = \mathbf{S}$, \mathbf{S} ■iteration 3: solve Nash of restricted game (1/3, 1/3, 1/3), (1/3, 1/3, 1/3) ■iteration 4: no new response, END • output (1/3, 1/3, 1/3)

Double Oracle [McMahan 2003]

- coarse correlated equilibrium in multi-player general-sum games.
- Convergence proof:
 - DO finally recovers to solve the whole game
- Correctness proof:

 - $\forall p, V(p, q_j) \ge v \Rightarrow \forall p, \max_q V(p, q) \ge v$ $\forall q, V(p_j, q) \leq v \Rightarrow \max V(p_j, q) \leq v$

• It guarantees to converge to Nash equilibrium in two-player zero-sum games, and

• DO stops at the j-th sub-game, we can prove no new best responses are added

 $\Rightarrow \forall p, \max_{q} V(p_j, q) \le \max_{q} (p, q)$ p_i must be the minimax optimal, q_i vice versa

Policy Space Response Oracle = Double Oracle with RL Agent

- A generalisation of double oracle methods on meta-games, with the best responser is implemented through deep RL algorithms.
- A meta-game is (Π, U, n) where $\Pi = (\Pi_1, \dots, \Pi_n)$ is the set of policies for each agent and $U: \Pi \to \mathbb{R}^n$ is the reward values for each agent given a joint strategy profile.
- σ_{-i} is distribution over $(\Pi_1^0, \ldots, \Pi_1^T)$, a.k.a meta-solver
- PSRO generalises all previous methods by varying σ_{-i} .
 - independent learning: $\sigma_{-i} = (0, ..., 0, 0, 1)$
 - self-play: $\sigma_{-i} = (0, ..., 0, 1, 0)$
 - fictitious play: $\sigma_{-i} = (1/T, 1/T, \dots, 1/T, 0)$
 - PSRO: $\sigma_{-i} = \operatorname{Nash}(\Pi^{T-1}, U)$ or $\operatorname{RD}(\Pi^{T-1}, U)$

Algorithm 1: Policy-Space Response Oracles **input** : initial policy sets for all players Π Compute exp. utilities U^{Π} for each joint $\pi \in \Pi$ Initialize meta-strategies $\sigma_i = \text{UNIFORM}(\Pi_i)$ while epoch e in $\{1, 2, \dots\}$ do for player $i \in [[n]]$ do for many episodes do select opponent policies Sample $\pi_{-i} \sim \sigma_{-i}$ compute the best response Train oracle π'_i over $\rho \sim (\pi'_i, \pi_{-i})$ augment strategy pool $\Pi_i = \Pi_i \cup \{\pi_i'\}$ Compute missing entries in U^{Π} from Π solve the new meta game Compute a meta-strategy σ from U^{Π}

Output current solution strategy σ_i for player i

PART II: PSRO Methods and Its Variations

Oliver Slumbers

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

• NAC

• α -PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

Contents

Rectified Nash

- Diverse-PSRO
- Unified Behavioural + Response Diversity
- •NAC
- •*a*-PSRO
- •Joint PSRO
- Pipeline PSRO
- Mixed Oracles / Opponents

Meta-Game Structure [Czarnecki et al. 2020]

Diversity disappears and skill becomes the dominant factor, l.e. the game becomes fully transitive

Diverse game-styles are prevalent and perform similarly to each-other, i.e. we are in the non-transitive layer

Interesting games display a particular spinning-top structure

Why is Diversity Important?

improvement in terms of the Nash clustering $\exists_{k < i} \pi \in \mathbb{C}_k$.

- can help you break out of in-transitive regions faster.
- autonomous driving and gaming AI applications.

Theorem 3. If at any point in time, the training population \mathcal{P}^t includes any full Nash cluster $\mathbf{C}_i \subset \mathcal{P}^t$, then training against \mathcal{P}^t by finding π such that $\forall_{\pi_j \in \mathcal{P}^t} \mathbf{f}(\pi, \pi_j) > 0$ guarantees transitive

• Diversity matters because the more diverse the population pool, the less exploitable. Promoting diversity

• In real-world applications, you want policies to cover different skill-sets. This is a realistic need from

Gamescapes

- A crucial component in characterising a population is that of the empirical gamescape
- Measure all ways agents can and are observed to interact with eachother

- Schur Decomposition of certain payoff matrices paints an intuitive picture
- Games show an obvious gamescape structure

Obvious linear/transitive structure

Given population \mathfrak{P} of n agents with evaluation matrix $\mathbf{A}_{\mathfrak{P}}$, the corresponding empirical gamescape (EGS) is

 $\mathcal{G}_{\mathfrak{P}} := \{ \text{convex mixtures of rows of } \mathbf{A}_{\mathfrak{P}} \}.$

Obvious cyclic/non-transitive structure

PSRO-rN [Balduzzi et al. 2019] - Algorithm

Definition 4. Denote the rectifier by $\lfloor x \rfloor_+ := x$ if $x \ge 0$ and $\lfloor x \rfloor_+ := 0$ otherwise. Given population \mathfrak{P} , let p be a Nash equilibrium on $A_{\mathfrak{B}}$. The effective diversity of the population is:

$$d(\mathfrak{P}) := \mathbf{p}^{\mathsf{T}} \cdot \left\lfloor \mathbf{A}_{\mathfrak{P}} \right\rfloor_{+} \cdot \mathbf{p} = \sum_{i,j=1}^{n} \left\lfloor \phi(\mathbf{w}_{i}, \mathbf{w}_{j}) \right\rfloor_{+} \cdot p_{i} p_{j}.$$

Effective diversity quantifies how the best agents in a population exploit each other - **Dominant Agent = 0 Diversity**

Figure 3. A: Rock-paper-scissors. B: Gradient updates obtained from PSRO_{rN}, amplifying strengths, grow gamescape (gray to blue). C: Gradients obtained by optimizing agents to reduces their losses shrink gamescape (gray to red).

Intuition: improving ones strengths allows for exploration of the strategy space

key changes: only selecting opponents that you already beat (i.e. rectifying the Nash)

$$\mathbf{v}_{t+1} \leftarrow \operatorname{oracle}\left(\mathbf{v}_{t}, \sum_{\mathbf{w}_{i} \in \mathfrak{P}_{t}} \mathbf{p}_{t}[i] \cdot \left[\phi_{\mathbf{w}_{i}}(\bullet)\right]_{+}\right)$$

Proposition 6. If p is a Nash equilibrium on $A_{\mathfrak{P}}$ and $\sum_{i} p_i \phi_{\mathbf{w}_i}(\mathbf{v}) > 0$, then adding \mathbf{v} to \mathfrak{P} strictly enlarges the empirical gamescape: $\mathcal{G}_{\mathfrak{P}} \subsetneq \mathcal{G}_{\mathfrak{P} \cup \{\mathbf{v}\}}$.

Algorithm 4 Response to rectified Nash (PSRO_{rN}) **input:** population \mathfrak{P}_1 for t = 1, ..., T do $\mathbf{p}_t \leftarrow \text{Nash on } \mathbf{A}_{\mathfrak{P}_t}$ for agent v_t with positive mass in p_t do $\mathbf{v}_{t+1} \leftarrow \text{oracle}\left(\mathbf{v}_t, \sum_{\mathbf{w}_i \in \mathfrak{P}_t} \mathbf{p}_t[i] \cdot \lfloor \phi_{\mathbf{w}_i}(\bullet) \rfloor_+\right)$ end for $\mathfrak{P}_{t+1} \leftarrow \mathfrak{P}_t \cup \{\mathbf{v}_{t+1} : \text{updated above}\}$ end for output: \mathfrak{P}_{T+1}

PSRO-rN [Balduzzi et al. 2019] - Results

Area

Diversity helps in exploring the strategy space more efficiently and effectively

Rectified Nash

• Diverse-PSRO

Unified Behavioural + Response Diversity

•NAC

• α -PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

I.Go back to first principles: diversity should be defined in terms of orthogonality.

 \blacklozenge

 $\mathsf{DPP}(\mathscr{L}) := \mathbb{P}_{\mathscr{L}}(Y = Y) \propto \det(\mathscr{L}_Y) = \mathrm{Vol}^2(\{w_i\}_{i \in Y})$

I.Go back to first principles: diversity should be defined in terms of orthogonality.

- Policy diversity can be measured by orthogonality of pay-off vectors, i.e., $\mathscr{L}_{S} = \mathbf{M}\mathbf{M}^{\dagger}$. •
- The expected cardinality of the DPP is the diversity metric.

Diversity (S) =
$$\mathbb{E}_{\mathbf{Y} \sim \mathbb{P}_{\mathscr{L}}}[|\mathbf{Y}|] = \operatorname{Tr}\left(\mathbf{I} - (\mathscr{L}_{S} + \mathbf{I})^{-1}\right)$$

 $\{S_1^i\}, \{S_1^i, S_2^i\}, \{S_1^i, S_2^i, S_3^i\}$ are 0, 1, 1.21 respectively.

Figure 1: Game-DPP. The squared volume of the grey cube equals to det $(\mathcal{L}_{\{S_1^i, S_2^i, S_3^i\}})$. Since S_2^i, S_3^i share similar payoff vectors, this leads to a smaller yellow area, and thus the probability of these two strategies co-occuring is low. The diversity (expected cardinality) of the population

I.Go back to first principles: diversity should be defined in terms of orthogonality.

- Policy diversity can be measured by orthogonality of pay-off vectors, i.e., $\mathscr{L}_{S} = \mathbf{M}\mathbf{M}^{\dagger}$. •
- The expected cardinality of the DPP is the diversity metric.

Diversity (S) = $\mathbb{E}_{Y \sim \mathbb{P}_{\varphi}}$ [

$$|\mathbf{Y}|] = \mathrm{Tr}\left(\mathbf{I} - \left(\mathscr{L}_{\mathbb{S}} + \mathbf{I}\right)^{-1}\right)$$

0.2

$$M = \begin{bmatrix} 0.0 & 0.8 & 0.1 \\ 0.9 & 0.0 & 0.7 \\ 0.9 & 0.2 & 0.7 \end{bmatrix} \rightarrow \mathbb{E}_{Y \sim \mathbb{P}_L}[|Y|] = 1.1$$
1.3

$$M = \begin{bmatrix} 0.0 & 0.8 & 0.1 \\ 0.9 & 0.0 & 0.7 \\ 0.9 & 0.3 & 0.7 \end{bmatrix} \rightarrow \mathbb{E}_{Y \sim \mathbb{P}_L}[|Y|] = 1.2$$

- Based on the diversity metric, we can design diversity-aware PSRO •
 - **Diverse PSRO** \blacklozenge

$$O^{1}(\pi^{2}) = \underset{\theta \in \mathbb{R}^{d}}{\operatorname{arg\,max}} \sum_{S^{2} \in \mathbb{S}^{2}} \pi^{2}(S^{2})$$

- Diverse α -PSRO (α -Rank as meta-solver) •
 - $\mathcal{O}(\pi^2) = \operatorname{argmax}_{\pi \in \Delta}$
- Importantly, we prove that \blacklozenge

Diversity (S) =
$$\mathbb{E}_{Y \sim \mathbb{P}_{\mathscr{L}}}[|Y|] = Tr\left(I - (\mathscr{L}_{S} + I)^{-1}\right)$$

 $\cdot \phi(S_{\theta}, S^2) + \tau \cdot \text{Diversity}(S^1 \cup \{S_{\theta}\})$

$$\Delta_{S^i} \operatorname{Tr} \left(I - (\mathscr{L}_{\mathbb{S}^i_t \cup \{\pi\}} + I)^{-1} \right)$$

Gamescape (S) \subsetneq Gamescape (S \cup { S_{θ} })

Figure 4. a) Performance of our diverse PSRO vs. PSRO, diverse PSRO vs. PSRO, on the Blotto Game, b) PCS-Score compar our diverse \alpha-PSRO vs. \alpha-PSRO on NFGs with variable sizes.

0					
00					
3	à				
				e	
13	10	n	0		

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

•NAC

•*α*-PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

Behavioural Diversity + Response Diversity

- Rectified PSRO & Diverse PSRO introduced the notion of response diversity (diversity of rewards)
- We want both the outcomes and the policies that lead to those outcomes to be diverse
- Diversity should include both response diversity, and behavioural diversity (diversity of the policies)

Method	Tool for Diversity	BD	RD	Game Type
DvD	Determinant	~	×	Single-agent
PSRO _N	None	×	×	n-player general-sum game
PSRO _{rN}	$L_{1,1}$ norm	×	1	2-player zero-sum game
DPP-PSRO	Determinantal point process	×	1	2-player general-sum game
Our Methods	Occupancy measure & convex hull	1	~	n-player general-sum game

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Xiangyu Liu¹, Hangtian Jia², Ying Wen¹, Yaodong Yang³, Yujing Hu², Yingfeng Chen², Changjie Fan² and Zhipeng Hu² ¹Shanghai Jiao Tong University, ²Netease Fuxi AI Lab, ³University College London

Behavioural Diversity + Response Diversity

$$\operatorname{Div}_{\operatorname{occ}}(\pi_{i}^{M+1}) = D_{f}(\rho_{\pi_{i}^{M+1},\pi_{E_{-i}}} \| \rho_{\pi_{i},\pi_{E_{-i}}})$$

measure).

$$\max R^{\operatorname{int}}(s,a) =$$

• Behavioural Diversity: Assume that we use the Nash distribution as our meta-solver, $\pi_E = (\pi_i, \pi_{E_i})$, we want a new policy π^{M+1} that has a different occupancy measure $\rho_{\pi}(s) = (1 - \gamma) \sum \gamma^t P(s_t = s \mid \pi)$ from π_E : t=0

• One can train a neural network $f_{\hat{\theta}}$ to fit $(s, \mathbf{a}) \sim \rho_{\pi_{E}}$, and then assign an intrinsic reward by encouraging the new policy to visit state-action pairs with a large prediction error (not covered by the existing occupancy

$$\left\|f_{\hat{\theta}}(s,\mathbf{a}) - f_{\theta}(s,\mathbf{a})\right\|^{2}$$

Behavioural Diversity + Response Diversity

• Response Diversity: we want the new policy π^{M+1} to expand the convex hull of the existing meta-game A_M by introducing a new payoff vector $\mathbf{a}_{M+1} := \left[\phi_i(\pi_i^{M+1}, \pi_{-i}^j)\right]_{j=1}^N$ that

 $\operatorname{Div}_{\operatorname{rew}}(\pi_i^{M+1}) =$

• the above equation has no closed form, but we can optimise a lower bound

$$\operatorname{Div}_{\mathsf{rew}}\left(\pi_{i}^{M+1}\right) \geq \mathbf{F}(\pi_{i}^{M+1}) = \frac{\sigma_{\min}^{2}(\mathbf{A})\left(1 - \mathbf{1}^{\mathsf{T}}\left(\mathbf{A}^{\mathsf{T}}\right)^{\dagger}\mathbf{a}_{n+1}\right)^{2}}{M} + \left\|\left(\mathbf{I} - \mathbf{A}^{\mathsf{T}}\left(\mathbf{A}^{\mathsf{T}}\right)^{\dagger}\right)\mathbf{a}_{n+1}\right\|^{2}$$

• However, how can we know the payoff \mathbf{a}_{M+1} before actually training the policy?

$$\frac{\partial F\left(\pi_{i}^{\prime}(\theta)\right)}{\partial \theta} = \left(\frac{\partial \phi_{i}\left(\pi_{i}^{\prime}(\theta), \pi_{-i}^{1}\right)}{\partial \theta}, ..., \frac{\partial \phi_{i}\left(\pi_{i}^{\prime}(\theta), \pi_{-i}^{M}\right)}{\partial \theta}\right) \frac{\partial F}{\partial \mathbf{a}_{M+1}}$$

the answer: we can train against π_{-i}^{M} based on the weights suggested by $\partial F/\partial \mathbf{a}_{M+1}$!

$$= \min_{\substack{1^{\mathsf{T}}\beta=1\\\beta\geq 0}} \left\| \mathbf{A}_{M}^{\mathsf{T}}\boldsymbol{\beta} - \mathbf{a}_{M+1} \right\|_{2}^{2}$$

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

•NAC

•*a*-PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

Neural Auto-Curricula

- Is Game-Theoretic knowledge (e.g. transitivity/non-transitivity/Nash) needed? Learn purely from data?
- learning algorithm?
- option as a meta-solver dependent on game structure & approximate best-responses.

Discovering Reinforcement Learning Algorithms	Meta-Gradient Reinforcement Learning with a Objective Discovered Online		
Junhyuk Oh Matteo Hessel Wojciech M. Czarnecki Zhongwen Xu Hado van Hasselt Satinder Singh David Silver	Zhongwen Xu, Hado van Hasselt, Matteo Hessel Junhyuk Oh, Satinder Singh, David Silver DeepMind		
DeepMind	{zhongwen, hado, mtthss, junhyuk, baveja, davidsilver}@google.com		

Discovering Multi-Agent Auto-Curricula in Two-Player Zero-Sum Games

Xidong Feng*,1, Oliver Slumbers*,1, Yaodong Yang^{†,1}

Ziyu Wan², Bo Liu³, Stephen McAleer⁴, Ying Wen², Jun Wang

• Learning to learn: discover algorithm components (e.g. "who to beat" and "how to beat them") from data.

• Can we learn the auto-curricula (i.e. the meta-solver) based on the type of game provided to the meta-

• Beneficial because RL Oracles can only approximate a best-response, and using Nash may not be the best

• In single-agent RL, discovered RL methods have been shown to outperform human-designed TD learning.

Algorithm	Algorithm properties		properties	What is meta-learned?	
IDBD, SMD [30, 27]	t		\rightarrow	learning rate	
SGD ² [1]	†††		←	optimiser	
RL ² , Meta-RL [9, 39]	†††		X	recurrent network	
MAML, REPTILE [11, 23]	†††		←	initial params	
Meta-Gradient [43, 46]	t		\rightarrow	γ, λ , reward	
Meta-Gradient [38, 44, 40]	t		←	auxiliary tasks, hyperparams, reward weights	
ML ³ , MetaGenRL [2, 19]	111		\leftarrow	loss function	
Evolved PG [16]	†††		х	loss function	
Oh et al. 2020 [24]	†††		←	target vector	
This paper	t		←	target	

Neural Auto-Curricula Framework

 $\mathfrak{M}(\phi_1,\phi_2)$

 $\mathbf{\Phi}_2 = \{\phi_1, \phi_2\}$

- · Main component of population-based methods The meta-game
- An agent is a mapping $\phi: S \times A \rightarrow [0,1]$
- The payoff for agent *i* vs. agent *j* is defined as $\mathfrak{M}(\phi_i, \phi_i)$
- · Payoff matrix between agents in a population amenable to GT analysis
- \circ The goal of these algorithms is to expand the populations Φ iteratively

2 The Meta-Solver

- . Algorithm component that controls the auto-curricula of who to compete with
- . General examples: Nash equilibrium, Uniform distribution, Last agent
- . Need to parameterise the process so that we can learn it
- * A network with parameters θ maps f_{θ} : $\mathbf{M}_{i} \rightarrow [0,1]^{t}$ so that $\pi_{i} = f_{\theta}(\mathbf{M}_{i})$

3 The Best-Response Oracle

- Algorithm component that controls the iterative expansion of the population
- Given a curriculum $\pi_t \in \Delta_{|\Phi_t|}$ the goal becomes to solve a best-response to this distribution
- . Goal is the following:

$$\phi_t^{\mathsf{BR}} = \operatorname{argmax}_{\phi} \sum_{k=1}^t \pi_t^k \mathfrak{M}(\phi, \phi_k)$$

. Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

4 The Learning Objective

. What is the goal of the iterative update procedure?

* Given a curriculum $\pi_T = f_{\theta}(\mathbf{M}_T)$ and a population Φ_T we want to be as close to a Nash equilibrium as possible.

. Distance to Nash measured as the exploitability:

```
\mathfrak{G}\mathfrak{x}\mathfrak{p} := \max\mathfrak{M}(\phi, \langle \pi_T, \Phi_T \rangle)
```

* i.e. How good is the best-response to the curriculum? If 0, it is a Nash equilibrium

5 Optimisation through meta-gradients

• Recall the learning objective of the player: $\mathfrak{G}\mathfrak{x}\mathfrak{p} := \max\mathfrak{M}(\phi, \langle \pi_T, \Phi_T \rangle)$

• Also recall that $\pi_T = f_0(\mathbf{M}_T)$, which allows us to define the meta-solver optimisation as:

$$\theta^* = \operatorname{argmin}_{\theta} J(\theta), \text{ where } J(\theta) = \mathbb{E}_{G \sim P(G)} \left[\mathfrak{G}_{\mathfrak{F}} \mathfrak{p}(\pi, \Phi \mid \theta, G) \right]$$

. What does the gradient boil down to then?

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{G} \Big[\frac{\partial \mathfrak{M}_{T+1}}{\partial \phi_{T+1}^{\mathsf{BR}}} \frac{\partial \phi_{T+1}^{\mathsf{BR}}}{\partial \theta} + \frac{\partial \mathfrak{M}_{T+1}}{\partial \pi_{T}} \frac{\partial \pi_{T}}{\partial \theta} + \frac{\partial \mathfrak{M}_{T+1}}{\partial \Phi_{T}} \frac{\partial \Phi_{T}}{\partial \theta} \Big]$$

Gradient of most interest decomposes to
$$\frac{\partial \phi_{T+1}^{\mathsf{BR}}}{\partial \theta} = \frac{\partial \phi_{T+1}^{\mathsf{BR}}}{\partial \pi_{T}} \frac{\partial \pi_{T}}{\partial \theta} + \frac{\partial \phi_{T+1}^{\mathsf{BR}}}{\partial \Phi_{T}} \frac{\partial \Phi_{T}}{\partial \theta}$$

The Meta-Game

- Main component of population-based methods The meta-game
 - An agent is a mapping $\phi: S \times A \rightarrow [0,1]$
 - The payoff for agent *i* vs. agent *j* is defined as $\mathfrak{M}(\phi_i, \phi_i)$
 - Payoff matrix between agents in a population amenable to GT analysis
 - The goal of these algorithms is to expand the populations Φ iteratively

 $\mathbf{\Phi}_{t+1} = \{\phi_1, \phi_2, \phi_3\}$

2 The Meta-Solver

• Algorithm component that controls the auto-curricula of who to compete with

- General examples: Nash equilibrium, Uniform distribution, Last agent
- Need to parameterise the process so that we can learn it
 - A network with parameters θ maps $f_{\theta} : \mathbf{M}_t \to [0,1]^t$ so that $\pi_t = f_{\theta}(\mathbf{M}_t)$

3 The Best-Response Oracle

Algorithm component that controls the iterative expansion of the population

• Given a curriculum $\pi_t \in \Delta_{|\Phi_t|}$ the goal becomes to solve a best-response to this distribution

• Goal is the following: $\phi_t^{BR} = \operatorname{argmax}$

• Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

$$\mathbf{x}_{\boldsymbol{\phi}} \sum_{k=1}^{t} \pi_t^k \mathfrak{M}(\boldsymbol{\phi}, \boldsymbol{\phi}_k)$$

4 The Learning Objective

• What is the goal of the iterative update procedure?

- possible.
- Distance to Nash measured as the exploitability:
 - i.e. How good is the best-response to the curriculum? If 0, it is a Nash equilibrium

• Given a curriculum $\pi_T = f_{\theta}(M_T)$ and a population Φ_T we want to be as close to a Nash equilibrium as

 $\mathfrak{Gep} := \max_{\phi} \mathfrak{M}(\phi, \langle \pi_T, \Phi_T \rangle)$

5 Optimisation through meta-gradients

• Recall the learning objective of the player: EX

• Also recall that $\pi_T = f_{\theta}(\mathbf{M}_T)$, which allows us to define the meta-solver optimisation as:

 $\theta^* = \operatorname{argmin}_{\theta} J(\theta), \text{ where}$

• What does the gradient boil down to then?

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{G} \begin{bmatrix} \partial \mathfrak{M}_{T+1} \\ \frac{\partial \phi}{\partial f} BR \\ \partial \phi T+1 \end{bmatrix} \begin{bmatrix} \partial \phi \\ \partial \phi \end{bmatrix}$$

Gradient of most interest decomposes to

$$\mathfrak{p} := \max_{\phi} \mathfrak{M}(\phi, \langle \pi_T, \Phi_T \rangle)$$

$$e J(\theta) = \mathbb{E}_{G \sim P(G)} | \mathfrak{Exp}(\pi, \Phi | \theta, G)$$

Neural Auto-Curricula Recap

• The objective is given by:

strategy and population, $\langle \pi_T, \Phi_T \rangle$, that helps minimise the exploitability, written as:

 $\min_{\boldsymbol{\theta}} \mathfrak{Erp}(\pi_T(\boldsymbol{\theta}), \Phi_T(\boldsymbol{\theta}))$

 $\pi_T = f_{\theta}(\mathbf{M}_T), \Phi_T = \mathbf{M}_T$

Based on the *Player's* learning objectives in Eq. (3), we can optimise the meta-solver as follows:

 $\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}), \text{ when }$

- When optimising the meta-solver θ , the type of best-response oracle matters due to back-propagation!
 - one-step gradient descent oracle

 ϕ

- N-step gradient descent oracle (via implicit gr
- policy-gradient based oracle (via DICE)
- general type of oracle (via ES)

The goal of LMAC is to find an auto-curricula that after T best-response iterations returns a meta-

), where
$$\mathfrak{Erp} := \max \mathfrak{M}(\phi, \langle \pi_T, \Phi_T \rangle)$$
, (3)

$$\left[\phi_T^{BR}(\theta), \phi_{T-1}^{BR}(\theta), ..., \phi_1^{BR}(\theta)\right].$$
(4)

here
$$J(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{G} \sim P(\boldsymbol{G})} [\mathfrak{E}_{\mathfrak{P}}(\boldsymbol{\pi}, \boldsymbol{\Phi} | \boldsymbol{\theta}, \boldsymbol{G})].$$
 (5)

$$\begin{aligned} \mathbf{B}_{+1}^{\mathsf{R}} &= \phi_0 + \alpha \frac{\partial \mathfrak{M}(\phi_0, \langle \pi_t, \Phi_t \rangle)}{\partial \phi_0}, \ \frac{\partial \phi_{t+1}^{\mathsf{BR}}}{\partial \pi_t} = \alpha \frac{\partial^2 \mathfrak{M}(\phi_0, \langle \pi_t, \Phi_t \rangle)}{\partial \phi_0 \partial \pi_t}, \ \frac{\partial \phi_{t+1}^{\mathsf{BR}}}{\partial \Phi_t} = \alpha \frac{\partial^2 \mathfrak{M}(\phi_0, \langle \pi_t, \Phi_t \rangle)}{\partial \phi_0 \partial \Phi_t} \end{aligned}$$
radient)
$$\begin{aligned} \frac{\partial \phi_{t+1}^{\mathsf{BR}}}{\partial \Phi_t} &= -\left[\frac{\partial^2 \mathfrak{M}(\phi_{t+1}^{\mathsf{BR}}, \langle \pi_t, \Phi_t \rangle)}{\partial \phi_{t+1}^{\mathsf{BR}} \partial \phi_{t+1}^{\mathsf{BR}}}\right]^{-1} \frac{\partial^2 \mathfrak{M}(\phi_{t+1}^{\mathsf{BR}}, \langle \pi_t, \Phi_t \rangle)}{\partial \phi_{t+1}^{\mathsf{BR}} \partial \Phi_{t+1}^{\mathsf{BR}}} \end{aligned}$$

$$\phi_1 = \phi_0 + \alpha \frac{\partial \mathcal{J}^{\mathsf{DICE}}}{\partial \phi_0}, \text{ where } \mathcal{J}^{\mathsf{DICE}} = \sum_{k=0}^{H-1} \left(\prod_{k'=0}^k \frac{\pi_{\phi_1}(a_{k'}^{\mathsf{I}} | s_{k'}^{\mathsf{I}}) \pi_{\phi_2}(a_{k'}^{\mathsf{2}} | s_{k'}^{\mathsf{2}})}{\bot (\pi_{\phi_1}(a_{k'}^{\mathsf{I}} | s_{k'}^{\mathsf{I}}) \pi_{\phi_2}(a_{k'}^{\mathsf{2}} | s_{k'}^{\mathsf{2}})} \right) \\ \nabla_{\theta} \hat{J}_{\sigma}(\theta) = \mathbb{E}_{G \sim P(G), \epsilon \sim \mathcal{N}(0, I)} \left[\frac{1}{\sigma} \left(\mathfrak{S}_{\mathfrak{F}} \mathfrak{p}_T(\pi_T, \Phi_T) \middle| \theta + \epsilon, \theta \right)\right] \\ \theta_1 = \theta_0 + \varepsilon_0 + \varepsilon_$$

Neural Auto-Curricula Results

- Is our method any good on the environments where it is trained?

- Performance at least as good as baseline measures
- Outperforms PSRO in multiple settings

Neural Auto-Curricula Results

• What is the learned auto-curricula?

• Compare agents found and their respective densities in the meta-distribution

Neural Auto-Curricula Results

• Can the learned solver generalise over different games?

games, e.g., train on Kukn Poker and test on Leduc Poker

• the most promising and striking aspect of NAC - Train on small games and generalise to large

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

• NAC

• α -PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

Applies to K-Player General-Sum Games

Edge direction corresponds to flow of population from one action to the other

Amount of time a population spends as each action

Agent	Rank	Score
R	1	0.33
Р	1	0.33
S	1	0.33

α -PSRO [Muller et al. 2020] - Example

α -PSRO [Muller et al. 2020] - Results

 >2 Player Poker games
 Similar / more competitive convergence performance

- Randomly generated K-Player General-Sum games with increasing $|S^k|$
- Largest game considered has 24 million strategy profiles
- PBR outperforms in terms of α-Rank support found

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

• NAC

• a-PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

Joint PSRO [Marris et al. 2021]

- Developed for n-player general-sum extensive-form games
- Maximum Gini Correlated Equilibrium as meta-solver

Maximised for a perfectly uniform mixedstrategy

Correlated equilibrium is a joint mixed strategy where no player gains from a unilateral deviation

Joint PSRO [Marris et al. 2021] - Results

(a) CCE Gap on three-player Kuhn Poker. Several MS converge to within numerical accuracy (data is clipped) of a CCE.

(c) Value sum on Sheriff. The optimal maximum welfare of other solution concepts are included to highlight the appeal of using NFCCE.

(b) Value sum on three-item Trade Comm. The approximate CCE MS was not sufficient to converge in this game, however all valid CCE MSs were able to converge to the optimal value sum.

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

• NAC

• a-PSRO

• Joint PSRO

• Pipeline PSRO

Mixed Oracles / Opponents

Pipeline PSRO [McAleer 2020] - Algorithm

Fixed policies do not train anymore and remain within the fixed population.

Lowest active policy trains against the meta-distribution defined by the fixed population

Active policies train against the metadistribution defined by the population of agents below them in the pipeline

Pipeline PSRO [McAleer 2020] - Results

Figure 2: Exploitability of Algorithms on Leduc poker and Random Symmetric Normal Form Games

- Barrage Stratego is a Two-Player Zero-Sum imperfect informa game
- Game-tree complexity of 10^{50}
- Comparison vs. All existing bots for the game

- Pipeline PSRO reaches an approximate Nash equilibrium far quicker than other algorithms in Random Symmetric NFGs
- In Leduc Poker reaches low exploitability almost twice as quick than Naive PSRO - other algorithms do not reach low exploitability

	Name	P2SRO Win Rate vs. Bot
on	Asmodeus	81%
	Celsius	70%
	Vixen	69%
	Celsius1.1	65%
	All Bots Average	71%

Rectified Nash

• Diverse-PSRO

•Unified Behavioural + Response Diversity

• NAC

• a-PSRO

• Joint PSRO

• Pipeline PSRO

• Mixed Oracles / Opponents

Q-Mixing [Smith et al. 2020]

 π_{-i}

Current brief about opponents' policy

- Learn best-responses to different policies π_{-i}^{t}
- Transfer knowledge against opponent mixture by weighting Q-values according to current belief of opponent's policy

 $Q_{i}(o_{i}, a_{i} | \sigma_{-i}) = \sum \psi_{i}(\pi_{-i} | o_{i}, \sigma_{-i})Q_{\pi_{i}}(o_{i}, a_{i} | \pi_{-i})$

Mixed Oracles [Smith et al. 2021]

- During PSRO how can we transfer experience across iterations?
- Now maintain two populations
 - $\Pi_{t} = \{\pi_1, \pi_2, \ldots,$
- Where λ_t is a learned best-response to π_t at every iteration, rather than against the meta-distribution
- We now have best-response experience against all policies in the population
- Use Q-mixing to find the new population policy

$$Q_i(o_i, a_i | \sigma_{-i}) = \sum_{\pi}$$

Probability of playing opponent π_{-i}

$$\pi_t\} \qquad \Lambda_t = \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

 $\psi_i(\pi_{-i} \mid o_i, \sigma_{-i}) Q_i(o_i, a_i \mid \pi_{-i})$ π_{-i}

Mixed Oracles [Smith et al. 2021] - Results

- Leduc Poker
- Mixed-oracles reaches similar performance in half the number of PSRO epochs.
- Drastically fewer number of time steps for a comparable solution

- General-Sum Tragedy of the Commons style game where individual interest is in conflict with the group interest
- Mixed-oracles converges in half the number of PSRO epochs.
- Utilises quarter the number of simulations

Mixed Opponents [Smith et al. 2021]

Mixed Opponents [Smith et al. 2021] - Results

- Leduc Poker
- Mixed-oracles reaches similar performance in similar number of PSRO epochs to PSRO.
- Drastically fewer number of time steps for a comparable solution

- General-Sum Tragedy of the Commons style game where individual interest is in conflict with the group interest
- Mixed-oracles appears to converge in a similar number of PSRO epochs.
- Whilst PSRO converges, mixed-opponents continually improves and nearly solves the game

PART III: Recent Advances & System Level Thinking

YaodongYang

Summary of Part II: PSRO Incorporate Many Variants

Elo rating Correlated equilibrium Nash equilibrium Replicator dynamics α -Rank/ α^{α} -Rank

naive self-play fictitious play double oracle/PSRO PSRO-Nash α-PSRO JPSRO

Two Mainstreams of Multi-Agent Learning algorithms

Population-based methods:

- Fictitious play, double oracle, PSRO series, ...
- Regard the opponents fixed and seek for best responses.
- Easily and nicely integrated with RL methods (e.g., NFSP, PSRO)
- Work effectively in potential and zero-sum games, but limited in genera-sum games.
- Average policy have convergence guarantee but generally no last-iteration convergence

No-regret methods

- MWU, Follow the Regularised/Perturbed leader, CFR and all kinds of CFR variants, MCTS, ...
- Work in a self-play settings, no best-response step but a no-regret step.
- Often requires to know the model (the game tree, utility function/strategies of opponents, etc)
- A portal to the arsenal of online learning tools
- Have nice convergence guarantee to Nash zerosum games, and CE/CCE in general-sum games.

Two Mainstreams of Multi-Agent Learning algorithms

Actor-Critic Policy Optimization in Partially Observable Multiagent Environments

Sriram Srinivasan*.1 srsrinivasan@

> Karl Tuyls¹ karltuyls@

> > ...@google.com

They are somehow equivalent: Regret \approx Value ! Abstract

Optimization of parameter tant and challenging pro approaches are algorithm discounted return. In thi actor-critic algorithms in several candidate policy mization and multiagent apply our method to mo sequential decision prob style function approxim domains, showing perfo

to approximate Nash equilibria in self-play with rates similar to or better than a baseline model-free algorithm for zero-sum games, without any domain-specific state space reductions.

Under review as a conference paper at ICLR 2021

Advantage Regret-Matching THE ACTOR-CRITIC

> ing, equilibrium In this paper, learning based Regret-Matching

Actor-Critic (ARMAC). Rather than saving past state-action data, AR-MAC saves a buffer of past policies, replaying through them to reconstruct

Can we design methods that ake the merits from both side

value estimates ned with regret earns from samat requiring the te Carlo counterr from excessive ARMAC shows s intact. In the sh equilibria on de exploitability tracted no-limit

Texas Hold'em.

Online Learning and No-Regret

- The settings of online learning:
 - The algorithm picks a strategy $p^t \in \Delta_{|A|}$ at time step t
 - The adversary/nature picks cost vector $c^t : A \rightarrow [0,1]$
 - An action a^t is drawn from p^t , and the algorithm incurs cost of $c^t(a^t)$

 - Full-information settings: observe the entire cost vector c^{t} . Bandit settings: only observe selected $c^{t}(a^{t})$ • Oblivious adversary: c^t only depends on t. Adaptive adversary: c^t depends on $\{t, (p^1, \ldots, p^t), (a^1, \ldots, a^{t-1})\}$ • Goal: we try to learn how should we adapt our algorithms, learn from mistakes [remember Alan Turing] !
- The (external) regret of a sequence of actions w.r.t action $a \in A$: $R_T(a) = \frac{1}{T} \Big(\sum_{t=1}^T c^t(a^t) - \sum_{t=1}^T c^t(a) \Big)$ • A no-regret algorithm \mathcal{A} is said to be no-regret (also Hannan consistent) if: $\mathop{\mathbf{E}}_{a^t \sim p^t} \left[c^t \left(a^t \right) \right] - \sum_{t=1}^T c^t(a) \right) = 0, \forall a \in A$

$$\lim_{T \to \infty} \mathbf{E} \left[R_T^{\mathscr{A}}(a) \right] = \frac{1}{T} \left(\sum_{i=1}^T a^i \right)$$

- \bigcirc
- Here we can show that no-regret players will reach the Nash in zero-sum games.

 - Assuming both players adopt no-regret algorithm regardless of what the opponent does, such that

$$\limsup_{T \to \infty} \left(\frac{1}{T} \sum_{t=1}^{n} \mathscr{C}(I_{t}, J_{t}) - \min_{i=1, \dots, N} \frac{1}{T} \sum_{t=1}^{n} \mathscr{C}(i, J_{t}) \right) \leq 0$$

value of a two-player zero-sum game is
$$\max_{\mathbf{q}} \min_{\mathbf{p}} \sum_{i=1}^{N} \sum_{j=1}^{M} p_{i}q_{j}\mathscr{C}(i, j)$$

Recall that the Nash

• We have the main theorem that

methods, then $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \ell(I_t, J_t) = V = \max_{q} \min_{p} \sum_{i=1}^{T} \sum_{j=1}^{T} p_i q_j \ell(i, j)$ almost surely. q t = 1

If all players play no-regret methods, they can reach a CCE in general-sum games. • For better clarity. Let's assume row player chooses an action $I_t \in \{1,...,N\}$, mixed strategy $\mathbf{p}_t = (p_{1,t}, \dots, p_{N,t})$ • Column player instead of deciding c^t , let's assume they choose an action $J_t \in \{1, ..., M\}$ and $\mathbf{q}_t = (q_{1,t}, ..., q_{M,t})$

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret p *i*=1 *j*=1

methods, then $\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^{I} \ell'(I_t, J_t) = V = \max_{\mathbf{q}} \min_{\mathbf{p}} \sum_{i=1}^{N} \sum_{j=1}^{M} p_i q_j \ell'(i, j)$ almost surely.

Proof: I) we first should that regardless of what column player plays, if the row plays play no-regret method, his loss will be no more than maximin value (i.e., worst case scenario to row player) lim $\sup_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} \ell(I_t, J_t) \leq V$. Since the row player adopts no-regret method, we only need to show:

$$\min_{i=1,...,N} \frac{1}{T} \sum_{t=1}^{T} \ell'(i, J_t) = \min_{\mathbf{p}} \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{N} p_i \ell(i, j) \right)$$
$$= \min_{\mathbf{p}} \frac{1}{T} \sum_{t=1}^{T} \bar{\ell}'(\mathbf{p}, J_t)$$
$$= \min_{\mathbf{p}} \sum_{j=1}^{M} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{\{J_i=j\}} \bar{\ell}(\mathbf{p}, j) \right)$$
$$= \min_{\mathbf{p}} \bar{\ell}'(\mathbf{p}, \mathbf{\hat{q}}_T)$$
$$\leq \max_{\mathbf{q}} \min_{\mathbf{p}} \bar{\ell}'(\mathbf{p}, \mathbf{q}) = V$$

Ч

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret

pure strategy is a special mixed strategy

change of notation

empirical mean on column player's action

expectation over the empirical mean of column player

methods, then $\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} \ell'(I_t, J_t) = V = \max_{\mathbf{q}} \min_{\mathbf{p}} \sum_{i=1}^{N} \sum_{j=1}^{M} p_i q_j \ell'(i, j)$ almost surely. **Proof:** 2) we proved that $\min_{i=1,...,N} \frac{1}{T} \sum_{t=1}^{I} \ell(i, J_t) \leq V$, and since row player plays no-regret $\limsup_{T \to \infty} \left(\frac{1}{T} \sum_{t=1}^{n} \mathscr{C} \left(I_t, J_t \right) \right)$ we can know that $\limsup_{T \to \infty} \frac{1}{T}$ for row player, we can do the same for the column playe $\liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \ell(I_t, J)$

By von Neumann's minimax theorem, we prove that $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{I} \mathscr{C}(I_t, J_t) = V$

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret

$$\sum_{i=1,\ldots,N}^{n} \frac{1}{T} \sum_{t=1}^{n} \ell\left(i, J_{t}\right) \le 0$$

$$\sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right) \le V$$

$$\sum_{t=1}^{T} \ell\left(I_{t}, J_{t}\right) \le V$$

$$x = 1$$

$$x = 1$$

$$J_t \ge \min_{\mathbf{p}} \max_{\mathbf{q}} \overline{\ell}(\mathbf{p}, \mathbf{q}) = V$$

This mean no-regret players self-play will reach to Nash equilibrium in two-player zero-sum games.

- We have showed that no-regret players will reach Nash equilibrium value.
- Furthermore, we can show that they reach to the Nash strategy.

 $\hat{p}_{i,T} = \frac{1}{T} \sum_{I_i = i}^T \mathbf{1}_{\{I_i = i\}}, \quad \hat{q}_{j,T} = \frac{1}{T} \sum_{I_i = j}^T \mathbf{1}_{\{J_i = j\}} \text{ almost surely converge to the set of Nash equilibrium.}$

Proof: in the previous proof, we have shown that $\min \bar{\mathscr{E}} \left(\mathbf{p}, \, \widehat{\mathbf{q}}_T \right) \leq$

> and due to the uniqueness of V value in zero-sum games $\min \bar{\ell} (\mathbf{p}, \mathbf{\hat{q}}_{7})$

$$\bar{\ell}\left(\widehat{\mathbf{p}}_{T}, \widehat{\mathbf{q}}_{T}\right) \geq \min_{\mathbf{p}} \bar{\ell}\left(\mathbf{p}, \widehat{\mathbf{q}}_{T}\right), \ \max_{\mathbf{q}} \bar{\ell}\left(\widehat{\mathbf{p}}_{T}, \mathbf{q}\right) \geq \bar{\ell}\left(\widehat{\mathbf{p}}_{T}, \widehat{\mathbf{q}}_{T}\right)$$

finally, we prove that

- Theorem: In a two-player zero-sum game, if both players play no-regret methods, then

$$\leq V, \max_{\mathbf{q}} \bar{\ell} \left(\hat{\mathbf{p}}_T, \mathbf{q} \right) \geq V$$

$$T_T = \max_{\mathbf{q}} \bar{\mathscr{E}} \left(\hat{\mathbf{p}}_T, \mathbf{q} \right) = V$$

 $\bar{\ell}\left(\widehat{\mathbf{p}}_{T},\widehat{\mathbf{q}}_{T}\right)=V$ This means that the empirical mean of $\hat{\mathbf{p}}_T, \hat{\mathbf{q}}_T$ is the Nash

Fictitious Play is Not No-Regret

- No-regret can lead to NE in two-player zero-sum.

$$\limsup_{T \to \infty} \left(\frac{1}{T} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right) - \min_{i=1, \dots, N} \frac{1}{T} \sum_{t=1}^{n} \ell\left(i, J_{t}\right) \right) \le 0$$

• Surprisingly, Fictitious play is not no-regret !

- cumulative loss.

- There are many variants that make FP no-regret, for example Follow-the-Perturbed-Leader:

$$I_{t} = \underset{i=1,...,N}{\operatorname{argmin}} \left(\frac{1}{t-1} \sum_{t=1}^{t-1} \ell(i, J_{t}) + Z_{i,t} \right), \mathbf{Z}_{t} \text{ any i.i.d random vectors of size } N$$

But, what exactly is a no-regret algorithm? How can we behave to achieve no-regret?

• Recall that fictitious play, also known as Follow-the-Leader, is to take the best response to the average $I_{t} = \underset{i=1,\dots,N}{\operatorname{argmin}} \left(\frac{1}{t-1} \sum_{t=1}^{t-1} \mathscr{C}(i, J_{t}) \right)$

• Consider N = 2 actions, let J_t be chosen such that $\ell(1,J_t) = (1/2,0,1,0,1,...)$ and $\ell(2,J_t) = (1/2,1,0,1,0,...)$

• Then the accumulative loss for both actions is T/2, and the FP will suffer a loss of T, thus has constant regret.

Adversarial Bandit — MWU

- Fictitious play is not no-regret !
- - MWU has many names: Hedge, Exponential Weights Algorithms, Randomised Weighted Majority

exp

$$p_{i,t} = \frac{1}{\sum_{k=1}^{|A|} \exp(-\eta \sum_{s=1}^{t-1} \ell(k, J_s))}$$

• Equivalently, one can think of the following iterative process: $p_t = \frac{w^t}{\sum_{a \in A} w^t(a)}, \quad w^{t+1}(a) = w^t(a)$

- Large η means more exploitation, small η means more exploration. • Equivalently, one can get MWU by the following maximum entropy framework (a common trick in RL).

$$\underset{p \in \Delta_{|A|}}{\operatorname{arg min}} \overline{\ell}(p, J_s) + 1/\eta \cdot \sum_{i} p_i \log p_i$$

• Let's introduce a true no-regret algorithm: Multiplicative Weight Update [Freund 1999].

$$\left(-\eta\sum_{s=1}^{t-1}\ell(i,J_s)\right)$$

$$(a) \cdot \exp\left(-\eta \ell(a, J_t)\right), w^1(a) = \mathbf{1} \ \forall a \in A$$

similar to soft Q-learning !

Adversarial Bandit — MWU

Let's now prove MWU is indeed a no-regret method
• Let opt =
$$\min_{a \in A} \sum_{i=1}^{n} \ell(a, J_i)$$
 and $\mathbf{v}^i = \sum_{a \in |A|} p_i(a) \cdot \ell(a, J_i)$, thus the regret-bound is $\lim_{T \to \infty} \frac{1}{T} \left(\sum_{i=1}^{T} v^i - \mathsf{opt} \right)$
• We first bound the denumerator $\sum_{a \in A} w^i(a) \ge w^i(a^*) = \exp(-\eta \cdot \mathsf{opt})$ multiplication due of explanation
 $\sum_{a \in A} w^{i+1}(a) = \sum_{a \in A} w^i(a) \cdot \exp(-\eta \ell(a, J_i)) := \sum_{a \in A} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}$
 $\leq \sum_{a} w^{i+1}(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}) := \sum_{a} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}$
 $\leq \sum_{a} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}) = \sum_{a}^{a} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}$
 $\leq \sum_{a} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}) = \sum_{a}^{a} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}$
 $\leq \sum_{a \in A} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)}) = \sum_{a \in A} w^i(a) \leq \sum_{a} w^i(a) \prod_{i=1}^{T} (1 - \epsilon)^{e^i(a, J_i)} + \ell(a, J_i)$
 $\leq \sum_{a \in A} w^i(a) \cdot (1 - \epsilon)^{e^i(a, J_i)} = \sum_{a \in A} w^i(a) \leq \sum_{a \in A} w^i(a) \prod_{i=1}^{T} (1 - \epsilon)^{e^i(a, J_i)} + \ell(a, J_i)$
 $\leq \sum_{a \in A} w^i(a) + (-\xi - \xi^2) \leq \ln|A| + \sum_{i=1}^{T} (-\xi)^{e^i(a, J_i)} = 1 + \frac{1}{1} \ln|A| \leq 2\sqrt{\frac{\ln|A|}{T}} \rightarrow 0$
Note: the log great formation of the proof $\frac{1}{T} \left(\sum_{i=1}^{T} v^i - \mathsf{opt} \right) \leq \frac{1}{T} \left(\epsilon T + \frac{1}{c} \ln|A| \right) \leq 2\sqrt{\frac{\ln|A|}{T}} \rightarrow 0$
Note: the log great formation of the proof $\frac{1}{T} \left(\sum_{i=1}^{T} v^i - \mathsf{opt} \right) \leq \frac{1}{T} \left(e^i T + \frac{1}{c} \ln|A| \right) \leq 2\sqrt{\frac{\ln|A|}{T}} \rightarrow 0$

Online Double Oracle: Merits from both worlds

I. Nash is unexploitbale, but when a player always plays Rock, you should play Paper rather than (1/3, 1/3, 1/3).

- 3. Online learning provides a framework about how to exploit opponents through minimising regret.

Le Cong Dinh*,1,2, Yaodong Yang*,1,4, Nicolas Perez-Nieves3, Oliver Slumbers4,

Zheng Tian⁴, David Henry Mguni¹, Haitham Bou Ammar¹, Jun Wang^{1,4}

2. Double Oracle/PSRO assumes both players play the worst-case scenario, can be too pessimistic during training.

if opponents play $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_T$, we want the player to have $\pi_1, \pi_2, \ldots, \pi_T$ s.t. $\lim_{T\to\infty}\frac{R_T}{T} = 0, \quad R_T = \max_{\boldsymbol{\pi}\in\Delta_{\Pi}}\sum_{t=1}^{T} \left(\boldsymbol{\pi}_t^{\mathsf{T}}\boldsymbol{A}\boldsymbol{c}_t - \boldsymbol{\pi}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{c}_t\right)$

hedge algorithm/multiplicative weight update can achieve no-regret property

$$\mathbf{r}_{t+1}(i) = \mathbf{\pi}_{t}(i) \frac{\exp\left(-\mu_{t} \mathbf{a}^{i^{\mathsf{T}}} \mathbf{A} \mathbf{c}_{t}\right)}{\sum_{i=1}^{n} \mathbf{\pi}_{t}(i) \exp\left(-\mu_{t} \mathbf{a}^{i^{\mathsf{T}}} \mathbf{A} \mathbf{c}_{t}\right)}, \forall i \in [n]$$

the regret of MWU is $\mathcal{O}(\sqrt{\log(n)/T})$

Online Double Oracle: Merits from both worlds

Algorithm 1 Double Oracle (McMahan et al., 2003) 1: Input: A set Π, C strategy set of players 2: Π_0, C_0 : initial set of strategies 3: for t = 1 to ∞ do if $\Pi_t \neq \Pi_{t-1}$ or $C_t \neq C_{t-1}$ then 4: 5: Solve the NE of the subgame G_t : $(\pi_t^*, c_t^*) = \arg \min_{\pi \in \Delta_{\Pi_t}} \arg \max_{c \in \Delta_{C_t}} \pi^\top Ac$ Find the best response a_{t+1} and c_{t+1} to (π_t^*, c_t^*) : 6: $a_{t+1} = \arg \min_{a \in \Pi} a^{\top} A c_t^*$ $c_{t+1} = \arg \max_{c \in C} \pi_t^* Ac$ Update $\Pi_{t+1} = \Pi_t \cup \{a_{t+1}\}, C_{t+1} = C_t \cup \{c_{t+1}\}$ 7: else if $\Pi_t = \Pi_{t-1}$ and $C_t = C_{t-1}$ then 8: Terminate 9: end if 10: 11: end for

Algorithm 2: Online Single Oracle Algorithm 1: Input: Player's pure strategy set Π 2: Init. effective strategies set: $\Pi_0 = \Pi_1 = \{a^j\}, a^j \in \Pi$ 3: for t = 1 to T do if $\Pi_t = \Pi_{t-1}$ then 4: Compute π_t by the MWU in Equation (5) 5: else if $\Pi_t \neq \Pi_{t-1}$ then 6: 7: Start a new time window T_{i+1} and Reset $\pi_t = [1/|\Pi_t|, ..., 1/|\Pi_t|], \ \bar{l} = 0$ end if 8: Observe l_t and update the average loss in T_i : 9: $\bar{l} = \sum_{t \in T_i} l_t / |T_i|$ Calculate the best response: $a_t = \arg \min_{\pi \in \Pi} \langle \pi, l \rangle$ 10: Update the set of strategies: $\Pi_{t+1} = \Pi_t \cup \{a_t\}$ 11: 12: end for 13: Output: π_T , Π_T

Intuition: maintain a time window T_i to track opponent's strategy, if no new best response can be found, then keep exploiting, otherwise refresh the time window to catch up with the latest change

Online Double Oracle

I.OSO is a no-regret algorithm.

Theorem 4 (Regret Boy adversary, and $\langle \cdot, \cdot \rangle$ be

Apprint 2 online Single Oracle A
Appriltum 2: Online Single Oracle A
Description: The set of set of the set of stategies: If

$$\frac{1}{T}\left(\sum_{t=1}^{T} \langle \pi_t, l_t \rangle - \min_{\pi \in \Pi} \sum_{t=1}^{T} \langle \pi, l_t \rangle \right) \leq \frac{\sqrt{k \log(k)}}{\sqrt{2T}},$$

Size of effective strategy set in the final time window.

where $k = |\Pi_T|$ is the s

2.Putting OSO into self-play settings, we get Online Double Oracle which can solve Nash.

- We just prove that.

Algorithm 3: Online Double Oracle Algorithm 1: Input: Full pure strategy set Π , C 2: Init. effective strategies set: $\Pi_0 = \Pi_1, C_0 = C_1$ 3: for t = 1 to T do Each player follows the OSO in Algorithm 2 with 4: their respective effective strategy sets Π_t, C_t 5: end for 6: Output: $\boldsymbol{\pi}_T, \boldsymbol{\Pi}_T, \boldsymbol{c}_T, \boldsymbol{C}_T$

• Recall that in two-player zero-sum game, if two no-regret methods self play, the outcome will leads to a Nash equilibrium!

Theorem 5. Suppose both players apply OSO. Let k_1 , k_2 denote the size of effective strategy set for each player. Then, the average strategies of both players converge to the NE with the rate:

$$\epsilon_T = \sqrt{\frac{k_1 \log(k_1)}{2T}} + \sqrt{\frac{k_2 \log(k_2)}{2T}}.$$

In situation where both players follow OSO with Less-Frequent Best Response in Equation (6) and $\alpha_{t-|\bar{T}_i|}^i = \sqrt{t-|\bar{T}_i|}$, the convergence rate to NE will be

$$\epsilon_T = \sqrt{\frac{k_1 \log(k_1)}{2T}} + \sqrt{\frac{k_2 \log(k_2)}{2T}} + \frac{\sqrt{k_1} + \sqrt{k_2}}{\sqrt{T}}.$$

Online Double Oracle: Merits from both worlds

Exploitability on the Spinning Top games

Exploitability on Poker

XODO: ODO can be extended to solve Extensive-form Games

Figure 1: Example of three iterations of XDO in Zero-sum Extensive-Form Game. The square does not know what circle chose. The values at the leafs are circle's payoff, since it is zero-sum game, the square's payoffs are the opposite; At the beginning in graph (a), both circle and square have empty population and uniform random strategy. In graph(b), circle's BR to opponent is action L. Square's BR is action x. They are added into the population(thick line). Since both players only have one action, so the NE in the restricted game is choosing them. Then in graph(c), action R of circle is BR to square's action x, so it will be added into the population. We then compute the meta-NE of the restricted game constructed by the thick lines and repeat the above steps. Since all the best responses to the meta-NE are already in the population, the restricted game won't change in graph (d).

XODO(ours)
XDO
LCFR+
LCFR
XFP
PSRO
12000 14000

Summary of Online Double Oracle Results

• The best achievable regret in bandit setting is $\mathcal{O}(\sqrt{T|A|})$, see [Audibert, Bubeck 2010, JMLR]

Table 1: Properties of existing solvers on two-player zero-sum games $A_{n \times m}$. *:DO and XDO in the worst case has to solve all sub-games till reaching the full game, so the time complexity is one order magnitude larger than LP (van den Brand, 2020) and CFR (Zinkevich et al., 2007). [†]: Since PSRO uses approximate best-response, the total time complexity is unknown. [‡] Note that the regret bound of ODO can not be directly compared with the time complexity of DO, which are two different notions.

Method	Rational (No- regret)	Allow ←Best Response	Convergence Rate (\hat{O})	Regret Bound (O)	Large Games
Linear Programming			$\tilde{O}(n \exp(-T/n^{2.38}))$)	
(Generalised) Fictitious Play		~	$\tilde{O}(T^{-1/(n+m-2)})$		
Multiplicative Weight Up- date				$\mathcal{O}(\sqrt{\log(n)/T})$	
Double Oracle			$\tilde{O}(n \exp(-T/n^{3.38}))$)*	~
Counterfactual Regret Mini- mization				$\mathcal{O}(\Delta I \sqrt{T A })$	~
Extensive-Form Double Oracle		~	$\vec{O}(\Delta I \sqrt{ A ^2/T})^*$		~
Policy Space Response Oracle		1			*
Online Double Oracle	× .	× .		$O(\sqrt{k \log(k)/T})^{\ddagger}$	~
Extensive-Form On- line Double Oracle	× .	~		$\mathcal{O}\big(\Delta S_i^* \sqrt{k A_i^* /T}\big)$	-

•Formulation & Challenges of Training A Population of RL Agents

Training A Population of RL Agents on Fully-Cooperative Games

Training A Population of RL Agents on Zero-Sum Games

• Some System Level Thinkings

Conclusions

Training Population of RL Agents Require Powerful AI Systems

StarCraft micro-management BiCNet, deep MARL methods I-2 GPUs, I-2 days

2019.1

2017.1

StarCraft full game (AlphaStar) Populating-based Training Training for single agent costs 4 days, 6 TPUs/Agent, **200** years of real-time play.

Dota 2 full game (OpenAl Five) Population-based + Rapid training system **128,000** CPUs, **100** GPUs, **180** years of plays per day

2019.4

2020.11

王者荣耀 (绝悟)

Populating-based Competitive Self-play + Policy distillation 35,000 CPUs, 320 GPUs, begin to converge after 336 hours

Training Population of RL Agents Require Powerful Al Systems

- Distributed RL systems has made substantial progress nowadays. \bigcirc

https://cloud.tencent.com/developer/article/1119569

- SEED RL implements a highly scalable IMPALA that uses batched inference and
 - Both training and inference are on the GPU
 - Actors only run the environments
 - Split env step (actor) and inference step (model)
 - Employ RPCs between actor and learner

A rule-of-thumb is that: decoupling learning and rollout enables great speedups.

optimisation on a single accelerators to maximise compute efficiency and throughput.

Training Population of RL Agents Require Powerful Al Systems

- Distributed RL systems has made substantial progress nowadays.
 - RAY is an ecosystem that help build distribution applications. \blacklozenge

The implementation of RLlib uses RAY for RL applications. \blacklozenge

PB-MARL Poses New Requirements for Al Systems

- PB-MARL requires more thinkings on the efficient implementations
 - \blacklozenge

Framework	Single-Agent	Multi-Agent	Population Management
RLlib	\checkmark	\checkmark	×
SeedRL	\checkmark	×	\times
Sample-Factory	\checkmark	\checkmark	×
MALib	\checkmark	\checkmark	\checkmark

PB-MARL Poses New Requirements for AI Systems

• PB-MARL requires more thinkings on the efficient implementations

- computational demands for RL
 - Policy optimization
 - Policy inference
 - Environment simulation & rollout

These 3 subtasks can be easily implemented, e.g., Actor-Learner Architecture

Extra demands for MARL

- Rollout with joint policies
- Exponentially increased rollouts for training and evaluation
- Complicated management of policy pool and population
- More complex task- & data-flow
- Meta-game -> extra policy interactions

There is not a good solution to these requirements.

For Population-based MARL

Large-scale rollout & training framework

- Support heterogenous tasks
- High throughput distributed frameworks
- Maximize utilization of different hardware

Support population-based training

- self-play / league mechanism
- meta-game analysis that based on game/graph theory and representation learning.
- Others: imitation learning/transfer learning/model based/heuristic

MALib: Designed for PB-MARL

• MALib: <u>https://malib.io</u>

MALib: Centralized Task Dispatching Model (CTD)

- · Modular design, easy to implement and reuse.
- · Centralized control: generate tasks and allocate compute resource dynamically.
- · Semi-passively executing submodule

In MALib, we focus on training par and then build algorithms upon th improve the reusing rate.

- Independent Learning: DQN,PPO
- Centralized Learning: MADDPG, 0
- Async Learning IMPALA
- · Sync Learning: …

Table 4: Implemented algorithms in MALib.AlgorithmTraining InterfaceExecution ModePB-MARL SuppDQN [42]IndependentAsync/SyncPSRO/FSP/SPGorilla [25]IndependentAsyncPSRO/FSP/SPA2C [45]IndependentSyncPSRO/FSP/SPA3C [26]IndependentAsync/SyncPSRO/FSP/SPSAC [49]IndependentAsync/SyncPSRO/FSP/SPDDPG [50]IndependentAsync/SyncPSRO/FSP/SPPPO [43]IndependentSyncPSRO/FSP/SP							
AlgorithmTraining InterfaceExecution ModePB-MARL SuppDQN [42]IndependentAsync/SyncPSRO/FSP/SPGorilla [25]IndependentAsyncPSRO/FSP/SPA2C [45]IndependentSyncPSRO/FSP/SPA3C [26]IndependentAsyncPSRO/FSP/SPSAC [49]IndependentAsync/SyncPSRO/FSP/SPDDPG [50]IndependentAsync/SyncPSRO/FSP/SPPPO [43]IndependentSyncPSRO/FSP/SP	Table 4: Implemented algorithms in MALib.						
DQN [42]IndependentAsync/SyncPSRO/FSP/SPGorilla [25]IndependentAsyncPSRO/FSP/SPA2C [45]IndependentSyncPSRO/FSP/SPA3C [26]IndependentAsyncPSRO/FSP/SPSAC [49]IndependentAsync/SyncPSRO/FSP/SPDDPG [50]IndependentAsync/SyncPSRO/FSP/SPPPO [43]IndependentSyncPSRO/FSP/SP	port						
A2C [45]IndependentAsyncPSRO/FSP/SPA3C [26]IndependentAsyncPSRO/FSP/SPSAC [49]IndependentAsync/SyncPSRO/FSP/SPDDPG [50]IndependentAsync/SyncPSRO/FSP/SPPPO [43]IndependentSyncPSRO/FSP/SP	P P						
A3C [26]IndependentAsyncPSRO/FSP/SPSAC [49]IndependentAsync/SyncPSRO/FSP/SPDDPG [50]IndependentAsync/SyncPSRO/FSP/SPPPO [43]IndependentSyncPSRO/FSP/SP	P						
pendentDDPG [50]IndependentAsync/SyncPSRO/FSP/SPPPO [43]IndependentSyncPSRO/FSP/SP	P P						
pulation - Julia Sylic TORO/TOT/OT	P P						
APPO Independent Async PSRO/FSP/SP	P						
MADDPG [16] Centralized Async/Sync PBT							
MAAC [46]CentralizedAsync/SyncPBTMAAC [46]CentralizedAsync/SyncPBT							

MALib has high throughput

- Single machine: 32 CPUs, 2× RTX 3090 ;
- Multiple machines: 2× 128CPUs、 256 GB
- Environments: MA-Atari, StarCraft II (SMAC);
- Compared Frameworks: RLlib, SEED RL, Sample Factory

MALib is approximately 5x faster than RLlib

- · Environments: six scenarios in MPE;
- Compared framework: RLlib;
- · Algorithm : MADDPG;
- Settings: different #rollout workers;
- Metrics: convergence, execution time.

MALib

RLlib

MALib is approximately 3x faster than OpenSpiel

- Environment: Leduc Poker ;
- Compared framework: OpenSpiel ;
- Algorithm: PSRO ;
- Metrics: Exploitability, execution time.

Conclusions

• Formulation & Challenges of Training A Population of RL Agents

Compute Nash is PPAD •

Training A Population of RL Agents on Fully-Cooperative Games

- IGM can fail in cooperative problems •
- MAPG has large variance, one can think of using min-variance optimal baseline \blacklozenge
- Advantage decomposition lemma, MA-TRPO, MA-CPO methods are the big hopes •

Training A Population of RL Agents on Zero-Sum Games

- Meta-game level thinkings are important due to the non-transitivity issue •
- PSRO methods and its variations can deal with non-transitivity \blacklozenge
- Online Double Oracle take the merits from both population-based methods and no-regret methods \blacklozenge

• Some System Level Thinkings

- Training population of MARL agents poses new challenges for existing AI system
- Try MALib!

