SSSSS éHA

DA R2021

TRAINING A POPULATION OF
REINFORCEMENT LEARNING AGENTS

Dr.Yaodong Yang
www.yangyaodong.com

01/2022

http://www.yangyaodong.com

Intelligence is learning from mistakes!

... 1T a machine I1s expected to be Infallible, it cannot also be Intelligent.
There are several mathematical theorems which say almost exactly that.
But these theorems say nothing about how much intelligence may be
displayed it a machine makes no pretence at infallibility...”

— Alan Turing, 1947/

Multi-Agent Intelligence: learning from mistakes from multiple agents’ interactions

Multi-agent Learning problems:

0.

Normal machine learning problems:

(R e S
=,
' / LTS
OO o

/]
ALY "ci"i‘\’-’c‘-“% Q}’if?% !I II;’;’;;“"Q:}::“‘:’ > 9‘0

| \%}g\i .:L\'a;ik‘}(;’-‘sfé‘ {V a' '.‘ i“;.;-l‘ﬁ '.éﬁﬂa .'9‘! ""/’v{’i'o g@?g»ﬁ%: ﬁ'@z@?ﬁ%& D ﬁ: o f o
) \ | DA "-'1‘:-"?‘:\“\ ,l',

i

A :
K \n.l‘ 1 t\. A fl“ "-':’}‘ -
T IN NI

W ' 15 ,
AL ,; ‘?l'-,v"/‘f /{Vj} N 'l}""‘.\;“)? A
B Vo ‘(J’? 4 \'.-*
yr ' J . % .
J \\,l N

" ‘l !
\ NS
> AN § {

- A "J

~& : e —— (= s = = 4 4

P1
ScIssor

agents learn to reach some

IV, =0 equilibrium

Contents

o Formulation & Challenges of Training A Population of RL Agents

o Training A Population of RL Agents on Fully-Cooperative Games

o Training A Population of RL Agents on Zero-Sum Games

oSome System Level Thinkings

o Conclusions

Contents

e Formulation & Challenges of Training A Population of RL Agents

e Training A Population of RL Agents on Fully-Cooperative Games

e Training A Population of RL Agents on Zero-Sum Games

eSome System Level Thinkings

e Conclusions

A Naive Example of Multi-Agent Learning

Traffic intersection is naturally a multi-agent system. From each driver’s perspective, in order to perform the
optimal action, he must take into account others’ behaviours.

what you see

ngl

State s .
v ? a',a®
|

r

pa

5 =4
ﬂz r'(s,a',a?), r¥(s,a',a?)

Two-player

what the computer sees

State s’

:

s’ ~ pl.ls,a',a%)

l Markov game

Yield Rush

L wo @y [0

scenario normal-form game

 When the drivers are rational, they will reach the outcome of a Nash Equilibrium.
It is the outcome of interaction. Knowing it can predict future.

» Real-world decision making has cooperation & competition. For each agent, how
to infer the belief of the other agents and make the optimal action is critical.

» The concept of using traffic light is in fact a correlated equilibrium in game theory.

» Many-agent system is when agents >> 2. |t is a very challenging problem to
compute equilibrium, thus making decisions.

Multi-Agent Reinforcement Learning

» Modelled by a Stochastic Game (&, o/t @il g Ggp y)

m & denotes the state space,

» o is the joint-action space &1 X ... X A",

n B = R(s,a’',a™") is the reward function for the i-th agent,

B T SX I XS — [0,1] is the transition function based on the joint action,
m 9P, is the distribution of the initial state, y is a discount factor:

m Special case: n =1 — single-agent MDP | &' | = 1 — normal-form game

s Dec-POMDP: assume state is not directly observed, but agents have same reward function.

» Each agent tries to maximise its expected long-term reward:

Vials) = z v'E, 2 {Rl-,t\sO = S,TL’},JZ' = |z, ..., y]
=0

0, (s,a) = R(s,a) + yE,_, |V (]

A population
of agents

4
-

State s Pl
. I,,__, a , ' a 2 //,/

T

.....

ﬂz r'(s,a',a?), r’(s,a',a%)

Two-player
Markov game

= .. s" ~pl.ls,a',3%

Multi-Agent Reinforcement Learning

» Value-based method:

m [he sense of optimality changes, now it depends on other agents !
Qi,t+1 (Sk’ ”t) — Qi,t (St’ ”t) + O‘[Ri,t+1 Ty evali{Q-,t(StH» ')} — Qi,t (St’ ”t)]
7, (s,) = solve;{ Q. (s, -)}

+ Fully-cooperative game: agents share the same reward function

eval;{ Q. (s,)} = max Q; (s, a)

solve;{ Q. (s,, -) } = argmax (max Q, (s, @, a_,))

a; a

fully fully
cooperative competitive

+ Fully-competitive game: sum of agents' reward Is zero

eval,{ Q (s,.1,)} = maxminE_|Q, (s, a;a_)|

T, a_;

solve{ Q. (s, -)} = argmaxminE_|Q; (s, a; a_)]

T a_;

m Assuming agents share the either the same or completely opposite interest is a strong assumption.

Nash Equilibrium

° Let n players,§ = §; X --- X §, is the joint strategy profile, u; : § — R is the utility function, Nash equilibrium is

E E [ui (Sl,...,Sn)] > E [ui (Sl,...,Sn)] Vu, € AS,-

—j ~ Fe

» Mixed strategy Nash equilibrium always exists in finite player finite action games.

» For continuous utility games, the strategy set needs to be compact

» Note that y; € A can be replaced by a € §; because deviation is at most a pure strategy !

° In Markov game, the solution concept is Markov Perfect Equilibrium. }tj;{

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent 1 is S = A(AY), ie, State s . = __’_y T 1

Vs € S, 7" (s) is a probability distribution on A". H} :" 09 2 ¢ < plls,a.a?)
|
EEES :

Definition 5 (Markov Perfect Equilibrium (MPE)). A behavioral strategy profile is called a r'(s,a’,a%), ri(s.a’,a’)

Markov Perfect Equilibrium if

_ o o N o s, gl Two-player
Vs € S,Z (= [n],Vﬂ' = Ai,V (S) -~ V (S) Mal‘kOV game

Nash Equilibrium to MARL

» Value-based method:

7; (s, -) = solve; {Q,J (St’ :) }

Qi,t+1 (Ska ﬂ‘.t) — Qi,t (St’ ”t) T a _Ri,t+1 + 7 - eval; {Qt (St+19 ') } — Qi,t (St’ ”t)_

m Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

|. Solve the Nash Equilibrium for the current stage game
solve; {Q -, (s,-)} = Nash; {Q (s, -)}
2. Improve the estimation of the Q-function by the Nash value function.

eval; {Q. (s, -)} = Vi(s,Nash {Q (5.)})

m Nash-Q algorithm [Junling 2003] computes Nash for the normal-form game at each state

» Nash-Q operator ZN*'Q(s, a) = ES/[R(S, a) + yVYhash (S’)] is a contraction mapping.

Multi-Agent Intelligence Components

Autonomous Driving
Gaming Al

Multi-Agent Intelligence Metaverse
Smart Grid / City

Equilibrium sets
Solution Concept

Algorithmic Game Theory Fundamentals [ESWIRTERIERGEIEE

Mechanism Design

Reinforcement Learning
Deep Learning

Machine Learning Techniques Representation Learning

Complexity of Computing Nash Equilibrium in Normal-Form Games

» Solving Nash Equilibrium is very challenging! * More complexity results of solving Nash [Shoham
2007, sec 4][Conitzer 2002]

m The solution concept of Nash comes from game theory

but it is not their main interest to find solutions. = [wo-player general-sum normal-form game:
o Compute NE — PPAD-Hard
m Complexity of solving two-player Nash is PPAD-Hard . Count number of NE — #P-Hard

(intractable unless P=NP). o Check uniqueness of NE — NP-Hard

= How to scale up multi-agent solution is open-question. » Guaranteed payoff for one player — NP-Hard
o Guaranteed sum of agents payoffs = NP-Hard

= Approximate solution is still under development. o Check action inclusion / exclusion in NE — NP-Hard

R, (al-, a_l-) > R, (al-’, a_l-) — £
e =.75 - .50 - .38 — .37 — .3393 [Tsaknakis 2008]

m Stochastic game:
o (Check pure-strategy NE existence — PSPACE-Hard

=B N , , o Best response for arbitrary strategy — Not Turing-
m Equilibrium selection is problematic, how to coordinate . .
, . computable, even can not be implemented by a Turing PC.
agents to agree on Nash during training is unknown. . , -

It holds for two-player symmetrical game with finite time

m Nash equilibrium assumes perfect rationality, but can be length.
unrealistic in the real world.

A Gentle Touch on PPAD

» Complexity theory 10|l — an intuitive explanation:

m Recall the NP for a decision problem as

Definition 4.2.1 (NP) A decision problem @Q is in NP if there exists a polynomial time algorithm
V(I,X) such that

1. If I is a YES instance of Q then there exists some X such that | X| is polynomial in |I| and
V(I,X)=YES

2. If I is a NO instance of Q then V(I,X) = NO for all X

m But the decision problem of “is there a Nash equilibrium?” is always true proved by Nash himself.

= VWe need a new complexity class of to describe the search problems: not only do
solutions have to be verified in P-time, but also to find a solution!

= because we can check whether Nash is true by checking the best responses.

m However, two-player Nash will not be FNP-hard. To prove that, we need to show it is not

A Gentle Touch on PPAD

Definition 4.2.2 We say that P reduces to Q (denoted as P <, Q) if there exist polynomial-time
algorithms A and B such that

o TWO_PIayer NaSh is nOt FN P_Complete. 1. A maps instances of P to instances of Q,
2. If I is a YES instance of P than A(I) s a YES instance of QQ, and
2 ComPIEteness IS bUIId on the notion Of : 3. If X s a witness for A(I), then B(x) s a witness of I (if I s a YES mnstance) or NO (if I

is a NO instance).

= : to solve instance | of problem P, we can first find a solution of X of
A(l), which is of Q, and then use B to find a solution of B(X) of I.

= | Theorem: Two-player Nash is not FNP-complete

m VWe can proof that if two-player Nash is FNP-hard then NP=coNP (verifying “No” instance in P-time).

+ Proof by showing that if true, we can find a certificate of NO instances for SAT problems.

+ SAT problem: find a and b such that “a AND NOT b” is satisfied. SAT is known to be NP-complete.
+ Since most theorists think that NP # coNP, this is strong evidence that 2-Player Nash is not FNP-

* We need a new class that has complete problems for the search tasks:

o | Theorem: Two-player Nash is PPAD-complete.

Complexity of Computing Nash Equilibrium in Stochastic Games

* Solving Nash Equilibrium in normal-form games is PPAD-hard; we expect solving

Nash in stochastic games can only be harder ! But it is not.

» | Theorem: Computing Markov Perfect Equilibrium in N-Player SGs is PPAD-complete.

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent i is ™ : S — A(AY), i.e,

Vs € S, n(s) is a probability distribution on A". On the Complexity of Computing Markov Perfect
Equilibrium in General-Sum Stochastic Games

Xiaotie Deng”® Yuhao Li*

Definition 5 (Markov Perfect EqUIhbr lum (MPE)). A behavioral str ategy pri Oﬁle 7 is called a Center on Frontiers of Computing Studies Center on Frontiers of Computing Studies
.y o o Peking University Peking University
Markov Perfect Equilibrium if sinotieepii 6db ca yalbinall: capict educn
. ~1 S ot A ¢ 7t ST . David Henry Mguni Jun Wang Yaodong Yang
V'S = S) 1 € [n]) VT‘- € AA"- ’ V (s) Z V (S) X | Huawei R&D UK University College London King's College London

davidmguni®hotmail.com jun.wang@cs.ucl.ac.uk yaodong.yang@outlook.com

° Meaning computing Nash in SGs is unlikely to be NP-hard unless NP£=coNP.
 PPAD problems can always have exp-time algorithms, can we have P-time solutions !

+ Short answer is we don’t know yet. Similar to we don’t know if P=NP. But highly likely NO.

Summary of Complexity Results

Figure 1.5: Landscape of different complexity classes. Relevant examples are: 1) solving
NE in two-player zero-sum game 1s P (Neumann, 1928). 2) solving NE in two-
player general-sum game 18 PPAD-hard (Daskalakis et al., 2009). solving NE
in three-player zero-sum game 1s also PPAD-hard (Daskalakis and Papadim-
itriou, 2005). 3) checking the uniqueness of NE is NP-hard (Conitzer and Sand-
holm, 2002). 4) checking whether pure-strategy NE exists in stochastic game
18 PSPACE-hard (Conitzer and Sandholm, 2008). 5) solving Dec-POMDP is
NEX PTIME-hard (Bemstein et al., 2002).

https://arxiv.org/abs/2011.00583

https://arxiv.org/abs/2011.00583

What your Mum thinks What you think you are doing What you are actually doing

ARTIFICIAL INTELUIGENCE MACMINE CONSCIOUSNESS

An Artificial Intelligence Tries to Kill her Creator

99

Spanish researchers discover a bot trying to kill her creator. This

Artificial Intelligence, designed to fight in First-Person Shooter
video games, was surprised while looking for a way to end the life

of her creator in the real world. : e > - -~ -

- Rtloms

Multi-player general-sum games Two-player discrete-action
with high-dimensional continuous game in a grid world.

state-action space

Something undescribable :)

Training a Population of Reinforcement Learners is Hard !

Contents

° Formulation & Challenges of Training A Population of RL Agents

® Training A Population of RL Agents on Fully-Cooperative Games

Fully-cooperative Games

In the fully-cooperative games, all agents share the same reward R! = R* = ... = R

One way to solve such games are through centralised approach, learning

The beauty of applying MARL methods lies in its decentralisable; as a result,

is used.

For value-based CTDE methods,a common assumption is to assume

¢

1{0]1)% fully
cooperative competitive

via D error.

holds.

ff(ﬂ) — —(s.a,rs)ED

S 30,
0, (s,a) = ZL 0. (sz’az; 91), =

V. (s) = z;": L Vi(s) and 4,,(s,a) =)’ 45, @)A; (5 ;), where (s, @) > O
=1

> (0.Va e A,

(r + vV (s’;H‘) — th(s,a;ﬂ))zl

To implement the above assumption, methods such as VDN, QMIX, Q-DPP, QPLEX are used.

O"0,a) := log det ("CZY={(01,a1), (ON’ aN)}ECg(Ot))

cooperative

IGM Condition Can Fail in Cooperative Games il
competitive

 The simply fail in some cooperative tasks.

+ Consider two agents (1,2) that take actions a',a’ € {-10,-9,.. .,9,10}.They receive the reward

1

r(a',a’) = a' - a*.Every agent i takes its action a' from its policy ', which is an action.

e Suppose that (u!, u?) = (1, — 1).The value function is thus V(s) = E[r(a',a*)] = u'u* = — 1.
+ The advantage of agent | is Al(s,al) = Ql(s,al) — V(s) = E[r(a',a®)|a'l —u'u* = —a' + 1,

+ The advantage of agent 2 is A,(s, a®) = a* + 1,and the joint advantage is
A(s,a) = Q(s,a) — V(s) =r(a',a*)+ 1 =a' - a* + 1.

1
max

= — 10, and for agent 2 it is a2, = 10.

* We can see that the maximising action for agent | is a T

* However, the global maximising action is either a,., = (=10, — 10), or, a,,., = (10,10). Hence, we have

(a! ,a’) #a_. ., meaning that the advantage-based IGM does not hold in this game.

Multi-Agent Policy Gradient Methods

o Apart from IGM condition in value based methods. There are multi-agent PG methods that execute CTDE.

- o yal) .. _execution ,
+ Fully Decentralised PG: Z % Q S, a) Vilog 71'9 (a’ | s) X N R
fpy - Ay, |
t Sl Nl
+ CTDE PG: ZVQ S, a;)Vgllogﬂg(a | s) 5 .. R
o |oint critic will have credit assisnment issue: not sure where the reward increase come from
g
o Multi-agent CTDE methods can have huge variance.
Theorem 1. The CTDE and DT estimators of MAPG satisfy

(!

V. t 2 (eBl)z
ars():oc"‘dg:m,-aﬂ:ac ~Te [gC] o Varsl):oowdg:x'yaﬂ:oo"’"o [gD] 1 S 2 z < (n o 1)
J#1

where B; = sup, , || Vi log g (a']s)||, € = sup, o« o |A6(s,a7",a")|, and e = max;e; .

at

 The more agents (n), the more explorations (¢) from others, the larger the gradient of CTDE policy gradients.

M U Iti = Age nt PO I i Cy G rad i e nt M eth '®) d S Settling the Variance of Multi-Agent Policy Gradients

Jakub Grudzien Kuba®-'?, Muning Wen"**, Yaodong Yang'*, Linghui Meng”,

Shangding Gu®, Haifeng Zhang®, David Henry Mguni?, Jun Wang®

 One can apply the baseline trick to reduce the variance for MAPG estimation

+ MAPG baselien trick: gl (b) = 2 y! [Q (spa; " al)=b (s, at‘i)] Volog) (a/ | s,)
=0

' —1 i —I : : Th 2. The COMA and DT esti MAPG sati
o« COMAisbh (s, a l) = Q' (S, a ’), but still large variance | erem* The COMAand DT estimators of MAPG satisy

1 1
Varso:oo"“dg:oo’ao:oo"’"e [gCOMA] o VarSO:oo"‘dg:ooaaO:ooNﬂ'O [gD] S

+ The variance of MAPG can be decomposed into

Vot oy [86.(0) = Var, gy (B [8.0)]] + 5, s [Voras g 60, ©
= varst«.dto .Ea¢~wa g(‘,(b) +E’t“'dtg -val'a‘—:'«_*é-u _E'§~"3 gCt(b)] + E"t—""*o-i [Vﬁr,;.,,,b [g(«,(b)]]]
- - ¢ 17 ’] - g 1 :
= varsl ~d‘o .£°t~'o _g('.t(b)‘ ! +Es‘ ~dt6 bvarn;"—\.wo_' _E";~Ré .gc.f(b)]d] +E$¢~d‘9.n'—‘~wo-i [vara:-»ﬂb [g('((b)]] '
—_— . s o - . _y
Variance from state Variance from other agents’ actions Variance from agent 's action

+ The optimal baseline that gives the minimal variance is

A

| | Fyiory [0 (5,07) || Vylogmh(a')s) | 2
min Var,, (Q (S,a_i,ai) —b (s,a‘i)> Vylog 7, (ai | s) » poptimal (s,a‘i) — : : '

b(s,a™
(na”) .

I~ 7l
a'~7y

H Vgilog) (ai | S) H i

+ Apply the baseline by Q (S, a”’, ai) — poptimal (S, a_i), and then follow PG.

Optimal Baseline has Excellent Performance

Settling the Variance of Multi-Agent Policy Gradients

Jakub Grudzien Kuba® "%, Muning Wen**, Yaodong Yang'*, Linghui Meng”®,

Shangding Gu®, Haifeng Zhang®, David Henry Mguni?, Jun Wang®

» OB is a plug-and-play trick that can be used in any existing MAPG methods such as MAPPO, COMA

a' | vpla') wmpla') . (a') Qla',a') A'la '.a") X'(a'.a') | Method Variance
"
| log 8 (.8 0.14 2 -9.7 -41.71 MAPG 1321
2 0 0.1 0.43 l ~10.7 -42.71 COMA 1015
3 0 0.1 .43 100 883 26.29 OB 673
Figure 2: Toy Example
, _3m{tasy) 1001 Bm (Easy) : Half-Cheetah [6x1) e 6h vs. 8z (Super Hard)
80 a o
- 4 - 'E 1500
Eeo / i;. o - 0.8
: " 2 o < 1000
£aof | £ : 506
% // §4o g 500 o S / c |
e s " - =041
& 201/ COMA w/ OB ¢ 20 S 1
< COMA wio OB < | s 0
of ' 5 0.2
000 025 050 0.75 100 125 1.50 oBfo 0.5 1.0 1.5 = =500} | g
Episode (k) # Episode (k) ‘ : ! 0.0 Lowe S = i S i LSS
0.5 1.0 15 00 02 04 06 08 10
. : Environment Steps (1e6) Timesteps -
(@) 3 marines (b) 8 marines
(a) MAMuJoCo: IV with OB (b) StarCraftll: MAPPO with OB
Figure 3: StarCraftll: COMA with OB vs COMA vs MAPPO. COMIX MADDPG vs MAPPO, QMIX

Quick Summary for MARL in Cooperative Games

> What we have discussed so far:

+ Fully-centralised approach: learning Q'(s, a', a’

,...,a") is not scalable for population of agents.

+ Value-based methods: require IGM condition, which may not hold in some cooperative games.

+ Policy-based methods: incur large policy gradient estimation variance & credit assignment issue.

« Parameter sharing approach: 7' = 7/ = 7, can lead to exponentially worse outcomes, e.g.,

Proposition 1. Let’s consider a fully-cooperative game with an even number of agents n, one state,
and the joint action space {0, 1}", where the reward is given by r(0™/2,1"/2) = r(17/2,0"?) = 1,
and r(a'™) = 0 for all other joint actions. Let J* be the optimal joint reward, and T jare D€ the
optimal joint reward under the shared policy constraint. Then
Tihare _ 2
g

[Jakub et. al. NeurlPS 202 1]

Figure 1: Example of differen-
tiable game with r(a',a?) = a'a?.
We initialise agents’ 1-D Gaussian
policies with u! = —0.25, u? =
0.25.

» Can we have a MARL method that avoid all four above limitations ? Yes !

Multi-Agent TRPO Method

I”

o All starts from this “powerful” Lemma.

TRUST REGION POLICY OPTIMISATION IN
MULTI-AGENT REINFORCEMENT LEARNING

Jakub Grudzien Kuba'*, Ruiqing Chen*, Munning Wen*, Ying Wen*,
Fanglei Sun’, Jun Wang’, Yaodong Yang®'

!University of Oxford, “Huawei R&D UK, *ShanghaiTech University,
4Shanghai Jiao Tong University > University College London

®King’s College London

fyaodong.yang@kcl.ac.uk

+ First, we define some new notations

Multi-agent state-action value function

Qi,”c (s.a"*) = IEal_.HMT ~1. [Q,r (s.a“*.a""*)]

Multi-agent advantage function

Ai;:k (S‘a).l:m.ail.k) — Q?“l’:mjl.k (S. ajlzm.ail;k) — Q’;:m (S,ajl:"')

+ Advantage decomposition lemma: " — ™
" 4
3t L. — Y (Lo l)
AL (S,a m) = ZAﬂ S, a’i-l a’i RETI
j: 1 =Al(s,#) + Als, %, %)
+ Note: this , it holds naturally in any cooperative games!

+ This can offer some new insights for cooperative MARL algorithm design.We can walk away from IGM.

TRUST REGION POLICY OPTIMISATION IN
MULTI-AGENT REINFORCEMENT LEARNING

M U Iti 'Age n t T R P O M et h O d Jakub Grudzien Kuba'-**, Ruiqing Chen™*, Munning Wen*, Ying Wen*,

Fanglei Sun®, Jun Wang’, Yaodong Yang®'

'University of Oxford, 2ZHuawei R&D UK, *ShanghaiTech University,
4Shanghai Jiao Tong University *University College London

®King’s College London

fyaodong.yang@kcl.ac.uk

° Ve can desigh a monotonic-improvement procedure based on the Lemma

¢ Assuming agent order I;.,, based on the Lemma, we can make the following update:

. —_T 3 = — ®o®
o First, select @' so that A" (S, a’l) > () o (X'/
) . . i . Al,z S, -,"'
+ Then, for the rest agent m = 2,...,n,agent i, selects a'» so that A' (S,allrm—l, a’m) > () =A1(S,§)+Zrz<s,§ly)

¢ We can know that if every term is positive, then A ! (S,ailm) is improving monotonically in time

» This leads to Multi-Agent TRPO update that has monodically improving property

Definition 2. Let 7 be a joint policy, '~ be some other joint policy of agents i1.;m—1, and &' be

MARL surrogate loss some other policy of agent im. Then

il:m -il:m—l "im FAY . g) y im il:m-l im
L1r (ﬂ. » T) - Es~p.".,a'l:m-l ~7ttlim~1 ,alm~7’i-‘m [A‘n‘ (S’a ’ a)] .

Lemma 2. Let 7 be a joint policy. Then, for any joint policy 7, we have

MA Trust Region - : : : 5 o
: TJ®) > J(m)+ Y [Livm (7ot 7m) - CDpx (m, 7m)] .
m=1

TRUST REGION POLICY OPTIMISATION IN
MULTI-AGENT REINFORCEMENT LEARNING

M U Iti 'Age n t T R P O M et h O d Jakub Grudzien Kuba'-**, Ruiqing Chen™*, Munning Wen*, Ying Wen*,

Fanglei Sun®, Jun Wang’, Yaodong Yang®'

!University of Oxford, 2ZHuawei R&D UK, *ShanghaiTech University,
4Shanghai Jiao Tong University *University College London

®King’s College London

fyaodong.yang@kcl.ac.uk

Algorithm 1 Multi-Agent Policy Iteration with Monotonic Improvement Guarantee

1: Initialise the joint policy o = (7}, ..., 7p).
2: fork=0,1,... do
3: Compute the advantage function Ay, (5, @) for all state-(joint)action pairs (s, a).

Compute € = max, , |Ay, (5,a)| and C = ﬁi%*
Draw a permutaion -, of agents at random.

fi

Make an update xif'h = arg max ., [L';}:‘ (wi""; '.n‘"') CDEH (n Jaim) |,

4
5
6:
7:
8
9

end for

NI ke g Lheorem 2. A sequence (mi),_, of joint policies updated by Algorithm I has the monotonic im-
provement property, i.e., J (mwrs+1) = J () for all k € IN.

property for MARL

I1:m-1 i
: : k+1 S~ al'l:m- 1~1rlm I ,aim~ g im [A‘n'e (S’a 4 ’am)] ’
MA-TRPO in practice: Qim Preg, > Ok+1 k

using natural gradient subject to]Es~p«9k [DKL (”Z (-|s), n-iom(.ls))] < 0.

MA-PPO in practice: B 30 [min (Q,m (a']s) Mitm (s,a), Clip(Q.m (a'[s) B 6) Mitm (s, a)) _
using clip objective = T i (@115) o (ails)
k k

Multi-Agent TRPO is the New SOTA in MARL

TRUST REGION POLICY OPTIMISATION IN
MULTI-AGENT REINFORCEMENT LEARNING

Jakub Grudzien Kuba' %", Ruiging Chen*, Munning Wen*, Ying Wen*,
Fanglei Sun®, Jun Wang’, Yaodong Yang®'

!University of Oxford, >Huawei R&D UK, *ShanghaiTech University,
4Shanghai Jiao Tong University 3University College London

®King’s College London

fyaodong.yang@kcl.ac.uk

Multi-Agent Mujoco

Benchmark for Continuous Multi-Agent Robotic Control, based on OpenAl's Mujoco Gym environments.,

Art 2nd

}

Average [piwde Rewmard
|

Envvonimert steps e

(a) 2x4-Agent Ant
it S

Average [plwode Rewmarc
. i |

‘"' . ..u"‘“-. .
(d) 2x3-Agent HalfCheetah

Walker 2x3

() 17x1-Agent Humanoid

Are 402

Avecage [piode Reward
o !

.." . '.;‘"“”'.. .
(b) dx2-Agent Ant

HaOneetan 302

Ervevonment stepn "
(¢) 3x2-Agent HalfCheetah

Wather 3¢

!
l

m:qeulmoemw
};
L %
|

> !nw‘m. : .\ufn " o
(h) 3x2-Agent Walker
\ W},’“

e

—— ———— —— S——— P

Inveonmert stepn o

(k) 17x1-Agent HumanoadStandup

At 8x)
‘- RO -y
j- -
-y
g‘.' AT
. = P
- AR i
Y = e .'.w«” . Y
(c) 8x1-Agent Ant
HaFCheetan 6x)
uuo WATRND : !
wot — vo
!_f ve o)
& 3000 4 / g 5 3
| Apc——
ol &S
.'."m".’. - .’." "“'.'." e
(f) 6x1-Agent HalfCheetah
' Waker Gix]
Rt
i"' 0
- 7
; ’—Eé_(_-
T .',“ . '.’.“mf. 0
(1) 6x1-Agent Walker
s g Y AQRSWimSr 1003
P -
5 -
g A '_,',.—-—-’1}“_‘ —
.U F =
|
(1) 10x2-Agent Swimmer

Multi-Agent TRPO with Safe Constraints

» Taking safe constraints into account in the MARL process

« consider additional cost functions: J/(7) =

MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

Shangding Gu', Jakub Grudzien Kuba®*, Munning Wen’, Ruiging Chen®,

Ziyvan Wang®, Zheng Tian**, Jun Wang’, Alois Knoll', Yaodong Yang®

'"Technical University of Munich *University of Oxford *Shanghai Jiao Tong University
4ShanghaiTech University University College London

®King's College London

'yaodong.yang@kcl.ac.uk

+ We can derive the expected cost changes by

0
— l'
=0

i
., m

Jj'(‘l-l') < J;(ﬂ) + L;-m.(ﬁ’i) + Vj- Z D'zzx(ﬂ’h,ﬁ'h), where v;. =

n . 4dymax; ,i |A

Lemma 2. Let w and 7 be joint policies. Leti € N be an agent, and j € {1,...,m'} be an index
of one of its costs. The following inequality holds

 x(5,@)]

h=1 (1 —7)2

+ This result suggests that when the changes in policies of all agents are sufficiently small, each agent i

can learn a better policy by only considering its own surrogate return and surrogate costs.

suarantee both monotonic

improvement and satisfy
safety constraint

Algorithm 1: Safe Multi-Agent Policy Iteration with Monotonic Improvement Property

I: Initialise a safe joint policy mg = (x],.... 7).
2: fork=0,1,... do
3: Compute the advantage functions Ay, (s, @) and A% (8,0, for all state-(joint)action pairs
(s, a), agents i, and constraints j € {1,..., m'}.
4 LY Aw. ') 1 4’"‘“:-1 lA‘ ~ (“a')l .
4: Conlpute v= e (ll*')'_—'zk(’ - '. and V‘) = - : (‘|"_-;,,—]:.r£ Vi € N.] — l ”l‘
5: Draw a permutaion i;.,, of agents at random.
6: forh=1:ndo '
7: Compute the radius of the KL-constraint 6" // sce Appendix B for the setup of &
- . D el e O [Glihel oin) — wpymax | oth i)
8: Make an update =" | = arg max i, l!,,,‘. (n,m ¥ h) vDPM (=)0, 2)I

where T is a subset of safe policies of agent iy, given by

"= {;r"' e ' |1):f‘f_"(;ri".x"‘) < 6™, and

h~1
J;"(vrk) + L' (x'"™)+ v;" D'.'(‘f"‘(n'k".n"‘) < c}" - Z v}‘l)ﬂ‘(xt.x").Vj =1 m“'}.
I=]

J. T

9: end for
10: end for

Multi-Agent TRPO with Safe Constraints

Average Episode Cosx

¢ Epsode Reward

Yerag

&

2 Epssade Cost

by

Rewarg

Average Episode

Ant -
Er reren L)
Ant <

I nvorment LSeon

Average Episode Cost

Envirgnment steps

ANt 4x2

wde Leward

Aver Mo p

frmvirgoment sleps

Average tpisode Cont

e Seward

wrage Eps

Av

At Ixdd

MAFTO
AN
AN
AN

O

Ervvonment steps

At Jxdd

AT
AN
MACM .

AN

L ewvonment stie

(b) Safe Ant: 2x4-Agent (left), 4x2-Agent (middle), 2x4d-Agent (right)

MHalCheetah 2x)

:"..'. FONYENt SLe0%

Mar'Cheetah 2x)

Enveormaent stegs

MHarCreetah In?

Cost

Average Epsode

Envirenmaent steps

MalC reetah)

we Rewarg

Average Episc

Ermnwronmaent steps

2 Lo

Average Epoed

sSwmhrgd
.

> N

AV a0® EDO

HallCheetan 6x)

AT
WAV
AL D

A Y

£

MaltCheetah 6]

MAFP)
A
D‘.l »’
A
Ly
Ervonment i

(c) Safe HalfCheetah: 2x3-Agent (left), 3x2-Agent (middle), 6x1-Agent (right)

s

WA ONMENE SteDs

MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

Shangding Gu', Jakub Grudzien Kuba®*, Munning Wen’, Ruiging Chen®,

Ziyvan Wang”, Zheng Tian**, Jun Wang’, Alois Knoll', Yaodong Yang®

'"Technical University of Munich 2University of Oxford *Shanghai Jiao Tong University
4ShanghaiTech University >University College London

®King's College London

'yaodong.yang@kcl.ac.uk

ManyAgent Ant-2x3

HalfCheetah-2x3 task

Contents

o Formulation & Challenges of Training A Population of RL Agents

o Training A Population of RL Agents on Fully-Cooperative Games

e Training A Population of RL Agents on Zero-Sum Games

Multi-Agent Reinforcement Learning in Zero-Sum Games

Great advantages have been made in 2019!

Jan 2016 Dec 2017 July 2018 Jan 2019 Apr 2019 July 2019 Sep 2019

e ——————————————————-
AlphaGO Series

AlphaStar (DeepMind) Pluribus Poker (FAIR)

O e

70+ AlphaGo

technigue of single-agent F:_;E; — - b ™

decision-making I1s mature
Capture-the-flag (DeepMind)

techniques of multi-agent decision-making is getting mature !

A General Solver to Two-Player Zero-Sum Games

Output: the reward (Rl,RM

L)

Black-box multi-agent

game engine Our algorithm:

Low-exploitability
strategy

Br'(z~i) = argmaXE i g im [R"(a' a‘i)]

>
Exploitability (= ZR’ (Br'(z™%),x~") — Ri(n)
i=1

Nash Equilibrium in Two-Player Zero-Sum Games

» von Neumann theorem: Two-player Nash can be computed in P-time through linear programmes (LP).
Dual problem Minimax theorem

row player maximises the worst situation column player’s view zero-duality gap for convex problems

il B max minp ' Aq
st p'A>v-1 / st.q'A" <v-1 H ’ =qmin max p'Aq
p>0andp'l=1 q>0andq'l=1 q p

» The v* is the Nash value

+ proofiv < v* due to definition of v*, v > v* due to being the LP solution.

+ corollary: all Nash value are the same (saddle point Is unique In bimatrix game).

o The (p, q) is the Nash equilibrium:

¢ Droof: suppose the player plays x, y instead ofp q

e x'Ag = Z x(Aq); < max(Aq), = v, = v¥, pl Ay = Z (pTA) y; 2 min (pTA), = v, = V¥, thus no incentives to deviate.

i€[N] J je[M] J
=1 j=1

» Sion’s minimax theorem generalises to quasi-convex/concave functions ml)? sup f(x, y) = sup mel)f(lf(xa y)
yeY yeYy 4

When and Why we need Population-based Methods

Output: the reward (Rl,RY

Black-box multi-agent
game engine

Input:

HAND DG.ALT
TO TRAVERSER

OPPONENT
CHECKS

VERSER ADJUST PROBABILITIES TO
EXPLORES CHECK MORE IN THIS

SITUATION IN THE FUTURE

OPPONENT OPPONENT WOULD
BETS % HAVE RAISED

. PLURIDUS EXPLORES
< 26 CALLING
75%
$600 ADJUST PROBABILITIES

$300 TO FOLD MORE IN THIS

m m SITUATION IN THE FUTURE

OPPONENT W’NS

Population based methods: StarCraft type

When planning is feasible (game tree is easily
accessible), existing techniques can solve the
games really well.

Perfect-information games:
MCTS, alpha-beta search, AlphaGO series
(AlphaZero, MuZero, etc)

Imperfect-information:
CFR series (DeepCFR, Libratus/Pluribus,
Deepstack), XFP/NFSP series

When planning is not feasible. StarCraft has 10%°
choices per time step vs. the whole tree of chess
10°° (Texas holdem 10%°, GO 10'"Y).
Enumerating all policies’ actions at each state
and then playing a best response is infeasible.

Solution: training a population of RL agents,
treat each RL agent as one “pure strategy’’ and
solve the game at a meta level where an agent is
a RL model of a player; and we need a population
of those agents (due to non-transitivity).

Life up the problem to the meta level (i.e., the policy level)

» A player in zero-sum games usually have multiple strategies (Rock, Paper, Scissor).

* One strategy / policy corresponds to one “agent” @ A player . is represented
by a population of agents.

° VWe now need to study the meta-game:

* We need to build that population of agents such that the player is unexploitable.

&
@ meta-game g@ g
- analysis @@ ﬁs@

—

Player = Agent A Player has a a population of Agents

Formulation of Population Based Learning in Zero-Sum Games

o Let’s formulate the self-play process.

= Suppose two agents, agent | adopts policy parameterised by v € R¢ and agent 2 adopts policy w € R
Ihey can be considered as two neural networks.

Q. VXW |

RL model RL model '

m () represents the game rule, it is anti-symmetrical.

m ¢ > 0 means agent | wins over agent 2, the higher (v, w) the better for agent |.
m with ¢, (*) := @(*,W), we can have the best response defined by:

' = Br(w) = Oracle(v, ¢, (-)) st. @ (V) > ¢, (V) + €

m Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example
PPO + PBT as we have mentioned early, or other optimiser such as evolutionary algorithm.

Naive Self-play Will Not Work

Question: Can we use it as a general framework to solve any games!

Algorithm 2 Self-play self-plays

input: agent v,
forit=1,....7 do

Vi1 oracle (v, ¢y, (o))
end for
output: vy

(71'1,71'2> — (71'1,72'2’* = Br(nl)) — (nl’* = Br(ﬂ'z’*),ﬂ'z’*)
. |

It depends. In most of the games, it does not work.

Naive Self-play Will Not Work

/"\

Scissors

o It is because of Non-Transitivity

J O(v,w)-dw =0, Vve W
W

» Rock-Paper-Scissor game: . -
0 1 =T 5, o5
_1 0 1 & -
L1 ~1 0.

0.0
0.0 0.2 04 0.6 0.8 1.0

* Disc game:

0, —1
¢(V,W)=VT- (1 0)-wzvlwz—vzwl

Game Decomposition

» Every FFG can be decomposed into two parts [Balduzzi 201 9]

FFG = Transitive game @ Non-transitive game

° Let v,w € W be a compact set and ¢(v, w) prescribe the flow from v to w, then this is
a natural result after applying combinatorial hodge theory [Jiang 201 |].

* We can write any games ¢ as summation of two orthogonal components
grad(f)(v, w) := f(v) — f(w) div(g)(v) := | (v, W) - dw curl(¢)(w, v, w) := ¢(u, v) + ¢(v, W) — ¢(u, w)

¢ = grad o div(¢p) + (¢ — grad o div(¢))
T eud()=0 div()=0 J

‘Transitive game‘ ‘Non-transitive game‘

 Example on Rock-Paper-Scissor

R P S R P S R P S R P S
R| 0,0 | —3z3z |3y, -3y | IRl —2)@y-2) | (y—2)(x-2) | (y—2),(2—y) R 0,0 —(z+y+2),(z+y+2) | (z+y+2),—(z+y+2) R|(z—y).@z-y) | (z-2),(z—y) | (y—2),(z—y)
P |3z,-3z| 0,0 | —3z32 - P|(z—2),(y—2) | (z—2),(x—2) | (x—2),(2—y) + P|(z+y+2),—(z+y+2) 0,0 —(z+y+2),(z+y+2) + Pl(z—y),(z—-2) [(z-2),(z—2) | (y—2),(z—2)
S| —3y,3y | 32,-32 | 0,0 S| (z—y)(y—2) | (z—y)(z—2) | (z—y),(2—y) S| —(z+y+2),(z+y+2) | (t+y+2),—(z+y+2) 0,0 S[(E-—y.y—2) | (z—2),(y—2) | (y—2),(y—2)
(a) Generalized RPS Game (c) Potential Component (d) Harmonic Component {h) Sonstuatagtc: Camponent

Transitive game Non-transitive game

What is Transitivity !

o Every FFG can be decomposed into two parts

FFG = Transitive game @ Non-transitivegame

 Transitive Game: the rules of winning are transitive across different players.

v, beatsv,_,, v, beatsy, — v,_, beatsy,_,

s Example: Elo rating (EX{i) offers rating scores f(-) that assume transitivity.

P(v, w) = softmax(f(v) — fiw))

m |arger score means you are likely to win over players with lower scores.

m Elo score is widely used in GO and Chess.

m This explains why you don’t want to play with rookies, when f(v,) > f(w),
Vo (v, W) = 0

What is Non-Transitivity !

» Every FFG can be decomposed into two parts

FFG = Transitive game @ Non-transitivegame

» Non-transitive Game: the rules of winning are not-transitive across players.

v, beatsv,_,, v, ,beatsv, » v _, beatsy,_,

m Mutual dominance across different types of modules in a game. This is commonly
observed in modern MOBA games.

m For this types of game, self-play is not helpful at all because transitivity assumption
does not hold. Self-play will lead to cyclic loops forever.

Visualisation of Transitive and Non-Transitive Games

° Let us define the evaluation matrix for a population of N agents to be

Aip — {¢(Wi,Wj) : (Wi, Wj) e’ X‘.B} —=: qb(‘.[} ®i[3)

Almost Transfive Mixed Almost Cyclic Random
R ' e e b o ™
Rt s A e
- Ny - B e 24 WY i et A0 O
Eri B SRR |
VT oh A i ; . .
W-—(Vi) Wj) e b W "4 -
i il ”‘-l..j'l'.b' g ol :
o.. '. o’ - L .
‘!. * .
’ .
» - : -
) “ ™ -
L L ,e a -y,
Figure 1. Low-dim gamescapes of various basic game structures. Top row: Evaluation matnces of populations of 40 agents each;
colors vary from red to green as ¢ ranges over [~ 1, 1], Bottom row: 2-dim embedding obtained by using first 2 dimensions of Schur
decomposition of the payofl matrix; Color corresponds 1o average payofl of an agent against entire population; EGS of the transitive game
i1$ & line; EGS of the cyclc game is two-dim near-circular polytope given by convex hull of points. For extended version see Figure 6 in
the Appendix,

[Balduzzi 2019]

The Spinning Top Hypothesis

®Real-world games are mixtures of both transitive and Game geometry Game profile
in-transitive components, e.g., Go, DOTA, StarCraft Il. » v
Nash of the game [g Zg
o i3
® Though winning is often harder than losing a game, 5 §§
finding a strategy that always loses is also challenging. Non-transitivity 3 2%
daf;:;::: : ;
(Section2) |, -
® Players who regularly practice start to beat less skilled | °
players, this corresponds to the transitive dynamics.
Extremely
non-transitive
® At certain level (the red part), players will start to find ey
many different strategy styles. Despite not providing a Agents trying [
universal advantage against all opponents, players will ot Non-transitive dimension
. . o o eg length of the longest cycle
counter each other within the same transitive group. Mo transitive o Nash chaster size
cychc dimensions

This provide direct information of improvement.

: : Figure 1: High-level visualisation of the geometry of Games of Skill. It shows a strong transitive
® As players get stronger to the highest level, seeing many | 4 ncion. that is accompanied by the highly cyclic dimensions, which gradually diminishes as skill

strategy styles, the outcome relies mostly on skill and grows towards the Nash Equilibrium (upward), and diminishes as skill evolves towards the worst
| e | J/X 4\,,‘,\ 3 F VAREN possible strategies (downward). The simplest example of non-transitive behaviour is a cycle of length
€ss on one particular game styles (RN /]). 3 that one finds ¢.g. in the Rock Paper Scissors game.

R R R R R R R R R R R RO RBRRRREERRIRWIIEE
[Czarnecki 2020]

Measuring the Non-Transitivity

o A of the size of non-transitivity [Czarnecki 2020]
¢ n-bit communicative game

Definition 1. Consider the extensive form view of the win-draw-loss version of any underlying game;
the underlying game is called n-bit communicative if each player can transmit n € R bits of

information to the other player before reaching the node whereafter at least one of the outcomes ‘win’
or ‘loss’ is not attainable.

bit: how many action one can take before the outcome of the game is predetermined

Theorem 1. For every game that is at least n-bit communicative, and every antisymmetric win-loss
payoff matrix P € {—1,0,1}2"1X12"] there exists a set of | 2" | pure strategies {1, ..., mon |} CII
such that P;; = f1(m;, m;), and | x| = maxgzena < .

n-bit game = there exists at least a non-transitive circle of size 2"

¢ Results on GO and MOBA games:

Proposition 1. The game of Go is at least 1000-bit communicative and contains a cycle of length at
least 200,

Proposition 2. Modern games, such as StarCraft, DOTA or Quake, when limited to 10 minutes play,
are at least 36000-bit communicative.

Measuring the Non- Transitivity

° A of measurement through meta-game analysis

+ Computing n-bit communicative game needs full tree traversing, thus intractable
+ Deciding a graph has a path of length higher than k is NP-hard | = Asemestoss: it s ad oyt

Andreas Bjorklund®, Thore Husfeldt', and Sanjeev Khanna®*

‘ O n n d S t a r ot m a t ' Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.
e needs to approximate.

* Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104.
sanjeev@cis,upenn.edu

bs We investigate the hardness of approximating the longest path and the

tract. n
ngest cvele in directed graphs on n vertices. We show that neither of these two prob-
ms can be polynomial time approximated within n' ™ for any ¢ > 0 unless P = NP,

A
lo
le
Ir

¢ Method |, count the

i 1
1 particular, the result holds for digraphs of constant bounded outdegree that contain
a Hamiltonian cycle.

s when k=3, we can compute by constructing A;; =1 < ¢;; > 0, then

+ Method ll, at each transitivity level, we can measure the

Definition 3. Nash clustering C of the finite zero-sum symmetric game strategy 11 set by setting for .
eacht > 1: N;i1 = supp(Nash(P|II\ {J,; N;)) for No =0 and C = (N; : j € NA N; # 0). * =
I

N, = supp(Nash()

/.
I
I
strategies that at the -
higher level of transitivity Y

'/'—

Measuring the Non-Transitivity in Chess

» Real-world data set from human players on Chess
+ We study one billion human player records from Lichess platform

+ Human Chess players presents the spinning-top pattern, which verifies the hypothesis

RPS cycles

TTH it

e o) Ay o T
‘ ~

.A'OV %i Tt M a

(L)) (<)

https://arxiv.org/pdf/2 1 10.11/737.pdf

Non-Transitivity Harms Training !

Example on training AlphaStar:

€ Multi-agent leaming d Multi-agent learning

pFSP + SP pFSP + SP
pFSP

699

FSP 1.143 FSP
0 600 1,200 1,800 2,400 0 25 S0 75 100
Test Elo [Vinyals 2019, Table 3] Min win rate vs past (%)
Example on training Soccer Al: Example on training AlphaGO:

Table 2: Average goal difference + one standard deviation
across 5 repetitions of the experiment.

A vs built-in Al 4.25+1.72
Bvs A 11.93 £+ 2.19
B vs built-in AI —0.27 £+ 0.33

Figure 5: Intransitive behaviour for a., ap, and
Zen.

[Karol 2020, table 2] [Silver 2016, table 9]

http://www.drive-ml.com

Dealing With Non-Transitivity Helps Save Training Time

Table 2: Size of the Nash Support of Games

Game Total Strategies Size of Nash support

Progression of Nash 3-Move Parity Game 2 160 1

] i of AlphaStar League S 4Blotio 56 6

AlphaStar 888 3

Training Days Connect Four 1470 23

Disc Game 1000 27

Elo game + noise=0.1 1000 6

Most strategies we get from Hlo game 1000 1

training are in fact redundant ! - 18 Go (boardsize=3,komi=6.5) 1933 13

8 109 200 360 469 580 660 Misere (game=tic tac toe) 926 1

2 Normal Bernoulli game 1000 3

THE NASH DISTRIBUTION OVER COMPETITORS AS THE ALPHASTAR LEAGUE Quoridor (boardsize=3) 1404 1

PROGRESSED AND NEW COMPETITORS WERE CREATED. THE NASH .

DISTRIBUTION, WHICH IS THE LEAST EXPLOITABLE SET OF COMPLEMENTARY Random game of skill 1000 5
COMPETITORS, WEIGHTS THE NEWEST COMPETITORS MOST HIGHLY, T T T 880

DEMONSTRATING CONTINUAL PROGRESS AGAINST ALL PREVIOUS IC 1ac 10¢ I

EIMEEAITENS. Transitive game 1000 1

Triangular game 1000 1

[AlphaStar Blog]

[Le Ceong Dinh 2021]

http://www.drive-ml.com

Understanding Non-Transitivity Helps Develop Algorithms !

» Topological structure at the policy space affects the efficiency of training algorithm.

+ for example, there is a reason why we need diversity in the policy space.

Theorem 3. If at any point in time, the training population " includes any full Nash cluster
.C 3 C P, then. training against 7" by ﬁnd.ing m such that V. ¢ f(m,m;) > 0 guarantees transitive
improvement in terms of the Nash clustering d;..;, m € (.

+ on chess, large population size (thus more diversity) will have a phase change in the strength !

Chess 1000

—1
—— 25
0754 — 50
— 75
—— 100
—— 150
0.504 —— 200
—— 250
300

Large population
size helps strengthen
the performance !

0.00 A

Mean Win Rate

—0.25 4
—0.50 A

—0.75 A

WWW&MMWW

0 250 500 750 1000 1250 1500 1750 2000
Iterations

Understanding Non-Transitivity Helps Develop Efficient Algorithms !

Optimizer + Connected Rollout Workers (x256)
- Rollowt Workers
=500 CPUs
Optimizer

Lo »ocen

« DOR, SpoMt oume 19100 GPU

0% 23842 Miwdane of Pt v p— Compete Gradients . m

Dete - .~ * Pontn

Dandomired gome sellingy Sompans m"““ v Optamizanca
Punh dats every &0 of gameplay o Bt oF AT haer nanens

* Decount semands scroes the 60 sary S BT gvew 15 elereaton

A
Eval Workers
2500 CPUs
Flay 0 rarout 88w ranmests — Model
454 eeabuntion Parameters
o vy P h eden)
Marine (Agent)
(a) Multiagent policy networks (b) Multiagent Q networks

BiCNet, deep MARL methods
1=2 GPUs, | -2 days

Population-based + Rapid training system

128,000 CPUs, 100 GPUs, 180 years of plays per day

b | Apsaturtenms = LeagueMgr
—_— L i
= - —— HyperMgr M copies
L
am GameMgr ModelPool
= ane
L
=] Saver
- = NN param NN param
] Outcome Task
e / \ Mg copies
; .
N param Task M, copies
M, copies
Progression of Nash Actor Learner
- of AlphaStar League Env Trajectories ReplayMem
\-\»i.._ ,
~ Agt DataServer
f St e
£ V) W
A\ ,‘A i \;‘*\ 9
=) AJ 3w Act Obs
= / . A
"AUIL] ~ M; copies
al S~
= ~ NN param
- - ‘ InfServer) 2
300 93 £ 609
Agent

Populating-based Training
Training for single agent costs 14 days, 16 TPUs/Agent,
200 years of real-time play.

Populating-based Competitive Self-play + Policy distillation
35,000 CPUs, 320 GPUs, begin to converge after 336 hours

Understanding Non-Transitivity Helps Develop Efficient Algorithms !

State of the art Al
in Real World Games

Any Smat game
5o

sshind 0 G0, Chess, Shagi
OpenAlFive 8 DOTA

Quake B CTH
AlphaStar StarCroft i
Phurus © Poker
Algorithm Game

MnnMax
Sewch
Reward shaping ©
Strong proes

Imitation mt

Agent stack

Irwtial transitive
strongth n & top

[Czarnecki 2020]

i
No-learning [I I self-play
ol Fictitious play
Co-play PSRO

fictitious PMay ()

o

Pogedation Play

Multi agent stack Geometry
Robuesteness to Coming from the
non-transitivity agont stack

Solutions: Fictitious Play [Brown 1951]

* Maintain a belief over the historical actions that the opponent has played, and the
learning agent then takes the best response to this empirical average distribution.

. 1 —1
al.t’ - BRi(pii = 7§f{afi =a,a € A})

1 |
pl?“ — (1 - 7)pl.t+ 761;’ , forall 1

° It guarantees to converge, in terms of the Nash value, in two-player zero-sum games,

potential games and 2 X 2 games , and, the average policy converge to the Nash strategy.

» Examples: e (gt s lat|at
0| (3/4,1/4) | (1/4,3/4) | B | a

Al @D | ©0) 1 | (3/4,5/4) | (5/4,3/4) | A | b

2 | (7/4,5/4) | (5/4,7/4) | B | a

Player 1 3| (7/4,9/4) | (9/4,7/4) | A | b

B | (00) | (1,1) | . | .

o (1/2,1/2) (1/2,1/2)

Generalised Weakened Fictitious Play [Leslie 2006]

°lt releases the FP by allowing approximate best response and perturbed average
strategy updates, while maintaining the same convergence guarantee if met.

Bl’f(]?_i) — {pl : Rl-(pi,p_,-) > Ri(Bri(p—i)’p—i> ol 6}

pi’“ — (1 — a”l)pl? + at+1(Brf(p_i)+MiZ+1), for all 7

k—1 k—1
t - oo,a, > 0, = 0,) a'=c0 M} meets lim sup { || Zai+1Mi+1|| st.) a't! < T} =0
5 . :
1=1 1=1

=1 Tk
* Recovers normal Fictitious Play when a' = 1/t,¢, = 0,M, = 0.

* Why important: it allows us to use a broad class of best responses such as RL
algorithms, and also, the policy exploration in e.g. soft-Q learning. Also, GWFP makes FP

no-regret by introducing the perturbation term M.

Solutions: Double Oracle [McMahan 2003}

* Double Oracle best responds to the opponent’s Nash equilibrium at each iteration.

* To solve the game before seeing all pure strategies (not all of them are in Nash), much
faster than LP, but In the worst-case scenario, it recovers to solve the original game.

Algorithm 1 Double Oracle (McMahan et al., 2003)

I: Input: A set |1, C strategy set of players
2: llg.Cly: initial set of strategies

Hiteration O: restricted game R vs R
Hjteration 1:
® solve Nash of restricted game

3: fort = 1ltoocdo (1,0,0), (1, 0, 0)

4 I 1l # 1y or Gy # Ci—y then ° unrestricted Br!, Br’ =P, P

5: Solve the NE of the subgame G miteration 2: ’ |

(7. C;) = arg Milxca,, ArgmaXeeA ., m! Ac » solve Nash of restricted games

Gt = e e 3 {4"‘" ° unrestricted Br', Br’=S, S
Ci+1 = Arg MaXeec ™, Ac | miteration 3:

s Update [l;14 = ILUl@r41}, Cosr = ClU{ G111} > solve Nash of restricted game

b ("Se lflll = 113_1 und ('f — ('3_1 (hen (1/3 1/3 1/3) (1/3 1/3 1/3)

O Terminate | , | | ,

N s duirrmm o Biteration 4: no new response, END

. ° output (1/3, 1/3, 1/3)

Double Oracle [McMahan 2003}

° It guarantees to converge to Nash equilibrium in two-player zero-sum games, and
coarse correlated equilibrium in multi-player general-sum games.

» Convergence proof:
+ DO finally recovers to solve the whole game
e Correctness proof:
+ DO stops at the j-th sub-game, we can prove no new best responses are added

> Vp’ V(p, q]) Z V= Vpa max V(p9 Q) Z 14

k = Vp,max V(p;, q) < max,(p,q)
Vq,V(p,q) <v=max V(p;,q) <v 1
q p; must be the minimax optimal,

q; Vice versa

Policy Space Response Oracle = Double Oracle with RL Agent

» A generalisation of double oracle methods on meta-games,

with the best responser is implemented through deep RL
algorithmes.

» A meta-game is (11, U,n) where I1 = (11;,...,11,) is the
set of policies for each agent and U : Il - R" is the

reward values for each agent given a joint strategy profile.

o 0_; is distribution over (HO, e HlT), a.k.a meta-solver

» PSRO generalises all previous methods by varying o_..
® independent learning: o_; = (0,...,0,0,1)

;= (0,...,0,1,0)

m fictitious play:o_, = (1/T,1/7,...,1/T,0)

= PSRO: 6_; = Nash(I1"~', U) or RD(IT""!, U)

m self-play: 6_

Algorithm 1: Policy-Space Response Oracles
input :initial policy sets for all players 11
Compute exp. utilities U™ for each joint 7 € II
Initialize meta-strategies o; = UNIFORM(II;)
while epoch e in {1,2,---} do

for player i € [[n]| do

for many episodes do

select opponent policies Sa[nple 1|’_i ~J a—i
T Train oracle 7(': over p ~ (7;-;, i)
augment strategy pool I-Iz- — Hi U {ﬂ':}

expand the

So-iail Compute missing entries in U from I1

Compute a meta-strategy o from U"
Output current solution strategy o; for player i

PART Il: PSRO Methods and Its Variations

Oliver Slumbers

Contents

o Rectified Nash
o Diverse-PSRO

o Unified Behavioural + Response Diversity

oNAC
°a=-PSRO
o Joint PSRO

o Pipeline PSRO

o Mixed Oracles / Opponents

Contents

o Rectified Nash

Meta-Game Structure [Czarnecki et al. 2020]

Interesting games display a particular spinning-top structure

Diversity disappears and skill
becomes the dominant factor, l.e.
the game becomes fully transitive

Diverse game-styles are prevalent
and perform similarly to each-other,
i.e. we are in the non-transitive layer

Non-transitivity
gradually
disappears
(Section 2)

)

Agents trying
to lose

Non-transitive
cyclic dimensions

Game geometry

UOISUDLLID OAIJISUER) |

The big question is how
does one move efficiently
between the layers?

Why is Diversity Important!?

Theorem 3. If at any point in time, the training population 7" includes any full Nash cluster
(z C P, then. training against ' by ﬁndjng_w such that V. ¢, f(m,m;) > 0 guarantees transitive
improvement in terms of the Nash clustering d;.; m € (.

Chess 1000

Diverse Auto-Curriculum is Critical for Successful
Real-World Multiagent Learning Systems’
Blue Sky Ideas Track

Yaodong Yang' Jun Luo Ying Wen
University College London Huawei Canada Shanghai Jiao Tong University
Huawei R&D UK.

Oliver Slumbers Daniel Graves Haitham Bou Ammar

University College London Huawei Canada Huawei R&D UK.

Jun Wang Matthew E. Taylor

University College London University of Alberta

Pl % Huawei R&D UK. Alberta Machine Intelligence Institute

Iterations

 Diversity matters because the more diverse the population pool, the less exploitable. Promoting diversity
can help you break out of in-transitive regions faster.

° In real-world applications, you want policies to cover different skill-sets. This is a realistic need from
autonomous driving and gaming Al applications.

Gamescapes

» A crucial component in characterising a population is that of the
empirical gamescape

o Measure all ways agents can and are observed to interact with each-
other

Almost Transitive Mixed
o TR e b o
B "
» ey ¥ T
o Schur Decomposition of o’ b ot o
certain payoff matrices paints : o
an intuitive picture R .
P - 3 T k"‘lﬁ'l'b : e
» Games show an obvious e e
gamescape structure e S°Y 20

Obvious linear/transitive structure

Given population *B of n agents with evaluation matrix Ay,
the corresponding empirical gamescape (EGS) is

Gy := {convex mixtures of rows of Ay }.

Almost Cyclic Random
i Fo Lt
N - .
- 4 .‘ ’ -.
4 <l 2’}
" .0 - . ; -
- » :0
s t . .. z
" ' 3
o‘) .
9" .
2 .

Obvious cyclic/non-transitive structure

PSRO-rN [Balduzzi et al. 2019] - Algorithm

key changes: only selecting opponents that you
already beat (i.e. rectifying the Nash)

Definition 4. Denote the rectifier by |z|, =z ifz > 0
and x|, := 0 otherwise. Given population ‘B, let p be

a Nash equilibrium on Asy. The effective diversity of the Z 1
population is: Vier < oracle(v, > pilil- [dy ()],

n Wies'Bt
i,j=1 Proposition 6. If p is a Nash equilibrium on Ay and
Y. Didw, (V) > 0, then adding v to B strictly enlarges
Effective diversity quantifies how the best agents in a the empirical gamescape: Gp G Gpu{v)-
population exploit each other - Dominant Agent = 0 Diversity
A B v C: o Algorithm 4 Response to rectified Nash (PSRO,y)
P ain agains . .
e oo s input: population 3,
Gradients .
agaénst / fort = 1, .lon ,T do
Rock B I_‘ > ‘é;dients Pt < Nash on A‘Br
against P . . e .
i i . for agent v, with positive mass in P do
against P against R Vil — Oracle (vt’ EWiemt P: [z] " L¢w. (.)J +)
Figure 3. A: Rock-paper-scissors. B: Gradient updates obtained end for
from PSRO,y, amplifying strengths, grow gamescape (gray to ‘Bt 41 & ‘Bt U {Vt. 458 updated above}
blue). C: Gradients obtained by optimizing agents to reduces their df
losses shrink gamescape (gray to red). cna ior
S ——————————————————— output: ‘BT +1

Intuition: improving ones strengths allows
for exploration of the strategy space

PSRO-rN [Balduzzi et al. 201 9] - Results

Area

0.006 -

0.005 +

0.004 4

0.003 -

0.002 -

0.001 +

0.000 4

Relative Population Performance of PSRO,y

0.4 -

0.3 - \

0.2 -

0.1 - -

0.0 |ermrm——————— V.

50 150 200 100 200 300
MPO steps x 1000 Gradient steps
e PSROy vs. Self-play === PSRO,y vs. PSRO |, PSRO,y vs. PSROy

w— PSRO,y

PSROy

Area of Convex Hull in
2D embedding of EGS

- PSRO,
- Self-play

|

L} '] 1 1

) | 1 1
11 13 1S 17 19 21 23 25 27 29
lteration

Self-Play PSRO PSRO,
10 4 .
qi
- .
s’
OS = / '."‘J
:" ’...‘
4 <
000 4 y I
>
205 « >
L 4 T | 4 T L 4 | 4 T T L 4 s 4 L 4
:‘\s. QL c.\‘n 5 Q{; Q() bc ‘x a\. 0\"'\ :.‘\ D‘.;n QD G{;‘, af' ;:,.. g'\‘v c\ ;\‘."" CC. oc;‘. C.{. Q,.. c.\‘v Q\ D‘_}G. CQ ‘;_Jv.

Diversity helps in exploring the strategy space more
efficiently and effectively

Contents

sRectified_Nasl

e Diverse-PSRO

Diverse-PSRO

Modelling Behavioural Diversity for Learning in Open-Ended Games

Nicolas Perez Nieves " '* Yaodong Yang " '* Oliver Slumbers "’ David Henry Mguni' Ying Wen® Jun Wang'*

| .Go back to first principles: diversity should be defined in terms of orthogonality.

+ Determinantal Point Process [Alex Kulesza 2013] : a point process parameterised by a distance kernel.

Point process samples
.... o . o . ‘ ® ° ..] ° 7 . .. & j
4 . 3 o..O I . * o o. . ¢ ¥
.. 9 . > ‘ a . 5) a : : .' K2 e
< .’. n =3 o . r < ... k]
Independent DPP

Discrete point processes

Image search: “jaguar”

Relevance e N items (e.g., images or sentences):
only:
W= 2 s N}
o2 possible subsets
Relevance

+ diversity: e Probability measure P over subsets Y C)

P(Y) < det(Ly)

= squared volume spanned by
w(i),i €Y |

P Z.,j) X ' 2.2 t.]
c({ } ['j.i Cj,j

= Liill;i—Li; Liis

| Y) det(Zy) = VoI ((wi}iey)

Diverse-PSRO

| .Go back to first principles: diversity should be defined in terms of orthogonality.

« Policy diversity can be measured by orthogonality of pay-off vectors,i.e., < = MM .

+ The expected cardinality of the DPP is the diversity metric.

Diversity (S) = Ey p [| Y []=Tr (I B (‘SZS i I)_l)

Figure 1: Game-DPP. The squared volume of the grey
cube equals to det(L (st s s‘:}). Since §).S; share similar

l.s 2.&-

payoff vectors, this leads to a smaller yellow area, and
thus the probability of these two strategies co-occuring is

low. The diversity (expected cardinality) of the population
{STHAS. S, 1,451, 55,55} are 0, 1, 1.21 respectively.

Diverse-PSRO

| .Go back to first principles: diversity should be defined in terms of orthogonality.
« Policy diversity can be measured by orthogonality of pay-off vectors,i.e., < = MM .

+ The expected cardinality of the DPP is the diversity metric.

Diversity (S) = Ey p [| Y []=Tr (I B (568 i I)_l)

0.0 0.8 0.1

M=109 00 07| - Ey_p [|V]]=1.18

09 0.2 071109 0.2 0.7 0.0 0.8 0.1

M=l09 00 07| - Ey.p, [|Y]|] =125

0.9 0.7

Diverse-PSRO

+ Based on the diversity metric, we can design diversity-aware PSRO

Diversity (S) =Ey.p [Y]] =Tr (I B (gg " I)_l)

¢+ Diverse PSRO

0! (722) = arg max Z ° (Sz) - P (Sg, S2) + 7 - Diversity (Sl U {Sg})
PER? (2.2

¢ Diverse a-PSRO (a-Rank as meta-solver)
2\ _— -1
O (71') = argmax It (I — (ZLsivim +1))

+ Importantly, we prove that

Gamescape (S) € Gamescape (S U {Se})

Diverse-PSRO

Games of Skill (10°x10°) PSRO PSRO-rN e e e
5.0 2 noi : :‘:::
;k\\ =44 (I :'.‘:t\, =Y. AN on »
2 0 g o =) = go.«
g 1.0 .— \;.;3\ .’) \i‘.\\ "00! i 2
2 0.5 74 \\. . 5-;:// <) or) .
& | s P -:_"_'._3.!
0.2 : (:oxmc:“. 3
0.1 Figure 3. Non-transitive mixture model. Exploration trajectonies during training and Performance vs, Diversity comparnisons,
—— Seif-play p : Colonel Biotto Game | Norm Formn Ganves (300 « 1000 Moy Form Garves (200 x JO0
20) ows— . PmO- (| o . T g
& |— " Ours - PSRO-N : - : _
25| — go. ; bl
g % 4 k’o 1 J/"-
B10 .go o0 =
§ 0 06 Norme Forme Coarnas (1000 = 10000
= $0.2s . e i3
°' , d : d : : ! : ! £ - 8 < i ___.l'
. | P Yoo "
0 25 50 75 100 125 150 175 200 ‘m
St 590! = # -
0 25 SO 1 75 100 125 150 TWR W W R W N W W
. . | Reratons Mesat o
the most efficient population-based zero-sum w:,m &)
ame solver so far! . . :
& Figure 4. a) Performance of our diverse PSRO vs. PSRO, diverse PSRO vs. PSRO, v on the Blotto Game, b) PCS-Score comparison of
our daverse r-PSRO vy o-PSRQO on NFGs with vanahle sizes.

Contents

~Rectified Nash
~Diverse-PSRO

e Unified Behavioural + Response Diversity

Behavioural Diversity + Response Diversity Unifying Behavioral and Response Diversity for

Open-ended Learning in Zero-sum Games

Xiangyu Liu', Hangtian Jia®, Ying Wen'; Yaodong Yang’, Yujing Hu?,
Yingfeng Chen®, Changjie Fan’ and Zhipeng Hu*
! Shanghai Jiao Tong University, “Netease Fuxi Al Lab, *University College London

» Rectified PSRO & Diverse PSRO introduced the notion of response diversity (diversity of rewards)
 We want both the outcomes and the policies that lead to those outcomes to be diverse

» Diversity should include both response diversity, and behavioural diversity (diversity of the policies)

Method Tool for Diversity BD RD Game Type

DvD Determinant v X Single-agent

PSROy None X X n-player general-sum game
PSRO. Ly 1 norm X v 2-player zero-sum game
DPP-PSRO Determinantal point process X v 2-player general-sum game
Our Methods Occupancy measure & convex hull v v n-player general-sum game

Behavioural Diversity + Response Diversity

» Behavioural Diversity: Assume that we use the Nash distribution as our meta-solver, 7 = (7, 7y), we want a

M+1 that has a different occupancy measure p_(s) = (1 — y) 2 y'P (S; =5 | 7’) from 7g:

=0

new policy 7

» One can train a neural network fj to fit (s,a) ~ p, , and then assign an intrinsic reward by encouraging the

new policy to visit state-action pairs with a large prediction error (not covered by the existing occupancy
measure).

max R™(s, a) = |fé(5’ a) — fy(s,) ” 2

Behavioural Diversity + Response Diversity

M

» Response Diversity: we want the new policy 7! to expand the convex hull of the existing meta-game A, by

- - il M+1 _j N1
introducing a new payoff vector a,, , := [¢i(”i : ﬂ_i)]jzlthat

» the above equation has no closed form, but we can optimise a lower bound

2
Gr%lin(A)<1 -1' (AT)T an+1> -
Divye,, (1) > F(zM*!) = — - (1-AT(AT)),

» However, how can we know the payoff a,,. ; before actually training the policy?

,...,

OF (7)) <6q§i (z(0), =) 9¢ (n;(e),n%)> oF

00 00 00 oa,,.

M

the answer: we can train against 7~ based on the weights suggested by dF/oa,,, ; !

Behavioural Diversity + Response Diversity

» Performance when considering both Diversity terms is very impressive

/
argmaxkg, ,, [r(s,a)]+4;Div (7 () + 4, Div,, (ﬂ'l)
ﬂl., T[l’f[E
P"‘.-'»RO PSRO "N P PSRO DPP PSRO P-PSRO w. P PSRO w. BD P PSRO w BD&RD
AphaStar SRS T
—— PSRO : -
¢ P-PSRO .
10 —— PSRO-N N
—— Sell-play =
— P.PSROw RD Figure 2: Exploration trajectories during training process on Non-Transitive Mixture Games.
g‘ P.PSRO w. 8D
& ~—— P-PSRO w. BDARD
g y - bos - S’ - 8Os - 0w - 8 te
w 1c' 180
S .‘- .-t - — — — e e - E I
" NN s o S » g DTS
1. 0%
0 20 40 &0 80 100 120 140 i -
Traning llerations Sol phay PR PR N PERD w B PAR0 w RO PSAD » BOARD
() Figure 3: The average goal difference between all the methods and the built-in bots with various
a difficulty levels 8 (6 € [0, 1| and larger # means harder bot) on Geogle Research Football.

Contents

Neural Auto-Curricula

Discovering Multi-Agent Auto-Curricula in
Two-Player Zero-Sum Games

Xidong Feng*'', Oliver Slumbers*', Yaodong Yang'',

Ziyu Wan”, Bo Liu®, Stephen McAleer’, Ying Wen?, Jun Wang'

 Learning to learn: discover algorithm components (e.g.‘who to beat” and “how to beat them”) from data.

o |s Game-Theoretic knowledge (e.g. transitivity/non-transitivity/Nash) needed? Learn purely from data?

» Can we learn the auto-curricula (i.e. the meta-solver) based on the type of game provided to the meta-

learning algorithm?

» Beneficial because RL Oracles can only approximate a best-response, and using Nash may not be the best

option as a meta-solver dependent on game structure & approximate best-responses.

* In single-agent RL, discovered RL methods have been shown to outperform human-designed TD learning.

Discovering Reinforcement Learning Algorithms

Junhyuk Oh Matteo Hessel Wojciech M. Czarnecki Zhongwen Xu

Hado van Hasselt Satinder Singh David Silver

DeepMind

Meta-Gradient Reinforcement Learning with an
Objective Discovered Online

Zhongwen Xu, Hado van Hasselt, Matteo Hessel
Junhyuk Oh, Satinder Singh, David Silver
DeepMind
{zhongwen,hado,mtthss, junhyuk,baveja,davidsilver}@google.com

Algorithm Algorithm properties What is meta-learned?
IDBD, SMD [30, 27] t g - learning rate

SGD? [1] tHt B « optimiser

RLZ%, Meta-RL [9, 39] tHHt W X recurrent network
MAML, REPTILE [11,23] #+ 0O « initial params
Meta-Gradient [43, 46) 1 O - v, A, reward
Mecta-Gradient [38, 44, 40] ¢ 0 « auxiliary tasks, hyperparams, reward weights
ML? MetaGenRL [2,19] 1t B« loss function

Evolved PG [16] t#t ® X loss function

Oh et al. 2020 [24] H B target vector

This paper t o« target

CJ white box, B black box, T single lifetime, +1+ multi-lifetime
+ backward mode, — forward mode, X no meta-gradient

EJ The Best-Response Oracle

N e u ra I A u to = C u r ri C u I a F ra m ewo r I(+ Algorithm component that controls the iterative expansion of the population

» Given a curriculum x, € A4, the goal becomes to solve a best-response to this distribution

f
» Goal is the following: ,BR = argmax,, z = M(p, Py
A=

» Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

Game Environment G ~ P(G) — Forward Pass — Back-prop Gradients

EEERY

!Juoafﬁ n M,| — ¢°“=m;x2:‘,x.‘m(¢.¢.) —

H MT -» Cxp (Jt,. D.(0) T~ ‘

.

L S N — K3 The Learning Objective

* What is the goal of the iterative update procedure?

‘ !! | B * Given a curriculum =, = f{M,) and a population @, we want to be as close to a Nash equilibrium as
Neural) Meta-Solver fy(M,) 5 BestResponse Oracle 48R | possibl.

M # : # | q » Distance to Nash measured as the exploitability: Crp = m;sx M, (77, Py))
P b || e | - S o e e < 7 =max) SM($.4)
e

-— - » i.e. How good is the best-response to the curriculum? If 0, it is a Nash equilibrium

—r.
- a-

—> P YAmes) = Grp=MER (2. 0))

5 | Optimisation through meta-gradients

Bl The Meta-Game P31 The Meta-Solver
_ . » Recall the learning objective of the player: Czxp = max M(¢, (x, P;))
* Main component of population-based methods - The meta-game » Algorithm component that controls the auto-curricula of who to compete with P
: _ » Also recall that z; = f{M;), which allows us to define the meta-solver optimisation as:
* An agent is a mapping ¢ : S X A — [0,1] » General examples: Nash equilibrium, Uniform distribution, Last agent
m(¢l9¢2)
» The payoff for agent i vs. agent j is defined as M(¢h;, ¢,) é‘—_ » Need to parameterise the process so that we can learn it g* = argmin, J(0), where J(0) = Eg_pq, | €xp(x, @ |0, G)l
Payoff matrix betw s i lati ble to GT analysi |
» Payoff matrix between agents in a population amenable to GT analysis N - with P M [0 TH 2040 = (M.
@, = (b} B Ot PECATIRECE G i - 1), 5% (U L SO 2t 25 av () * What does the gradient boil down to then?
* The goal of these algorithms is to expand the populations @ iteratively
— Ure . oMy, 0ny My, 0D,
| | sk =] ' ‘ VIO = Eg|— DT T T e T |
e MT é Mr ‘ | oy HZ Mt (S Sesieiie] Glebelnte _;~” Wl e Ml ap?h oxy 00 0Py of
| Tt — l
@, = (.) T f = g"":' I ¥ = Gradient of most interest decomposes to . rkb,ep} M,BB‘ ony ,B,R, oD,
- KJ. = °I= (¢|-¢."~---¢r| (x} = (}xr (X) + (m, (X)

BB The Meta-Game

» Main component of population-based methods - The meta-game

m(¢1, ¢2)
» An agent is a mapping ¢ : S X A — [0,1]

» The payoff for agent i vs. agent j is defined as M(¢h;, P;)

D, = {¢1, P2}
 Payoff matrix between agents in a population amenable to GT analysis

* The goal of these algorithms is to expand the populations @ iteratively

UM > 2>
(I)t - {¢19¢2} = P O] D, = {P), Py, ..., P7}

 Algorithm component that controls the auto-curricula of who to compete with

» General examples: Nash equilibrium, Uniform distribution, Last agent

The Meta-Solver

* Need to parameterise the process so that we can learn it

* A network with parameters @ maps f, : M, — [0,1]" so that 7, = f,(M)

D, = (P, ha}

NXN

Column
MLP R Mean-Pooling i

Nx64

Row
MLP Mean-Pooling

>

>

-

o

Global Info
64

\

/L MLP
1Y

J

-
U
Row-wise

Concatenation
Nx128

NXx1

~ [
Ilﬂt

The Best-Response Oracle

» Algorithm component that controls the iterative expansion of the population

» Given a curriculum 7, € A | the goal becomes to solve a best-response to this distribution

[
» Goal is the following: F’R = argmax Z i M(p, Py
k=1

» Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

—> o) AnGs) —>
k=1

¥ The Learning Objective

» What is the goal of the iterative update procedure!

° Given a curriculum 7 = f,(M;) and a population @, we want to be as close to a Nash equilibrium as

possible.

» Distance to Nash measured as the exploitability: Cep = m;lX NP, {7y, D))

° i.e. How good is the best-response to the curriculum? If O, it is a Nash equilibrium

WET —> FomnYdmes) —» Grp= MR (z.0))

I._”T

Optimisation through meta-gradients

» Recall the learning objective of the player: Cxp := max M (¢, (n, D))
¢

° Also recall that 7z = f,(M7), which allows us to define the meta-solver optimisation as:

0* = argmin, J(0), where J(0) = Eg.pc) | Sp(, @0,G)|

» What does the gradient boil down to then!

_ BR _
V,J(0) = E,; OM 7 0P | 0Ny, Oy : My 0Dy

apBR| 96 omy 00 0D; 00 -

T+1
T aBR R ar apBR s,

Gradient of most interest decomposes to s

00 or, 00 oD, 00

Game Environment G ~ P(G) — Forward Pass —— Back-prop Gra

d
Wig,.o = U

~£U =z

Neural Auto-Curricula Recap g 3t e

1

ents

3]
(Neural) Meta-Solver fo(M,) x BestResponse Oracle 48R

—> = o=
SR ¢ ¢3R - m.‘u 2 ~M($.¢,) <+
b0 ™

R e
-

» The objective is given by:

The goal of LMAC is to find an auto-curricula that after 7" best-response iterations returns a meta-
strategy and population, (7w, ®+). that helps minimise the exploitability, written as:

moju Erp(mr(0), Pr(60)), where Exp 1= max M (P, (7, 1)), (3)
wr = fo(Mr), &1 = {d1(8), p11(8), ..., 07 (8)} . (4)

Based on the Player’s learning objectives in Eq. (3), we can optimise the meta-solver as follows:

6" = argmin J (6), where J(0) = Eg.pc) |€rp (7, |6, G) |. (35)
0

* When optimising the meta-solver 6, the type of best-response oracle matters due to back-propagation!

. am ’ ’ a t azm ¢ ’<7Tt’ (I)t a t azwz ¢ ’ T[t’ (I)Z

° one-step gradient descent oracle $BR = ¢ + (qbgqj”’ il ";; = <a q: -) ?(; = g{/}o(;@).
0 5 0“7 ! 0 5
-]

. o . ob, PM@ER, (7, @) | PMPER, (7, D))

» N-step gradient descent oracle (via implicit gradient) a(; ol e ERod,

t i i+1 Y¥111 | t+1

)
» policy-gradient based oracle (via DICE) b= ot alZ s here soice 5 ﬁ (o 3 (V50|

o i |90 L (g, (al 1) 7, (21 7))

» general type of oracle (via ES)

A 1 _
Volo(0) = B ~ pG).e ~ w00 —(@WT(”T» ©r) |0 +e, G)€

| O

Neural Auto-Curricula Results

° |s our method any good on the environments where it is trained!?

» Due to long-trajectory issues, we also focus on the approximate best-response setting

Randem Game of Skills{GD) Differentiabie Lotto-Log plot{GD) 2D-RPS{GD) 2D-RPS-Impicit(GD)

b

» Performance at least as good as
baseline measures

Exploitabiny

° Outperforms PSRO in multiple lterated Matcheng Pennies|AL) Kuhn-Poker{Appr tabular V1) Kuhn-Poker(PPO)

settings

Explotabiinty

" Rerations : ' " lteraticas : | Recations
-~ PSROUniform - PSRO e PSROrN — Ours

Neural Auto-Curricula Results
» What is the learned auto-curricula?

» Compare agents found and their respective densities in the meta-distribution

FSRO
. . . * .
» » » -
0
* . - . »
iteraton 1 iteraton 4 iteration 7 Reration 10 iteration 13 iteraton 16
QOurs
* . . * . » . -
o » »
- -
: - ™ - * . *
* » .
* - "

iteration 1 iteraton 4 teration 7 Reration 10 teration 13 iteration 16

Neural Auto-Curricula Results

» Can the learned solver generalise over different games!?

» the most promising and striking aspect of NAC - Train on small games and generalise to large

games, e.g., train on Kukn Poker and test on Leduc Poker

s PSRO PSRO-Uniform
Leduc - Exact BR Leduc - Approximate BR AlphaStar Meta-Game GoS - Vaned Dimensions

Final Explostabilty

N
WA A

-

- s .
:
. . -
: .
.
\“e

iterations iterations terations Dimension

Contents

*a-PSRO

a-Rank
Applies to K-Player General-Sum Games

Edge direction corresponds to flow of
population from one action to the other

“"m h Amount of time a population spends as each action

10833

\ .
- I(J-/)".

-
—
=

-~

g'\\(\p...

o o

w w

o w
—E=-

Agent Rank Score

o
N
W

— R I 033
0.15 P 1 033

Strategy mass in stationary distribution =

- S] 0.33

10 107 107 10! 10° 10° 10°
Ranking intensity a

a-PSRO [Muller et al. 2020] - Example

Player 1

a-PSRO [Muller et al. 2020] - Example

Player 2

Player 1

s OQ
méL
m_'_‘&

a-PSRO [Muller et al. 2020] - Example

Player 2
' C D X
A] o { —£
B -0% | 1 —E
Player1 (C 0 - } —€
D @ 0 | —¢
X £ £ I 0

a-PSRO [Muller et al. 2020] - Example

Player 2

Player 1

“~OQ

a-PSRO [Muller et al. 2020] - Example

Al 0 | -0 | ¢ @ —€
Bl ¢ | 0 |- 1 | —¢
Playerl C | -1 | ¢ 0 [—-¢ | —¢
DIi-¢|=1] & | 0 | —¢
X K== e e | O

b/

a-PSRO [Muller et al. 2020] - Results

- % BR - O PBR s PCS-Score - 0.95 PCS:Score « (0.05,095) s PCSScore < 0.05
L0~
2 0 T s=lF Randomly generated K-Player General-Sum
S 0 8 e —ee 04 ol :
318 eo—— 2 games with increasing | S*|

e R P R M e ST e T 7 " e Largest game considered has 24 million
strategy profiles

20~

0.8 4un S 08~
gogj________—__:. 30,6- .
Yo: 8 $ 03 * PBR outperforms in terms of a-Rank
| ' ' | ' o0 \
10 15 20 2 % 10 1% 20 I » SUPPOI"t found

\.

(a) a-CONV (b) PCS-SCORE for O = BR (c) PCS-Scons.for O = PBR

2.0~ 14 -

15~ 10 - a-RAnk
1.0 - - PRD

0.5 _\ ;' - Uniform
LR LN R ARl OO" A R R 0". Nl P harn

¢ 10° 10° 10° 10° 10° 10°
iteration Iteration iteration Iteration

(a) 3-player Kuhn. (b) 4-player Kuhn. (c) S-player Kuhn. (d) 3-player Leduc.

P)
P
N
'

o >2 Player Poker games
o Similar / more competitive
convergence performance

NashConv

ONGHGODDOND
J /

o o0

|

el P

o J 1)

Pt
o
o

Contents

ejJoint PSRO

Joint PSRO [Marris et al. 2021]

» Developed for n-player general-sum extensive-form games

» Maximum Gini Correlated Equilibrium as meta-solver

Maximised for a perfectly uniform mixed-
strategy

it ROa 23 1
Gini objective: max — §0T0
o

(C)CE constraints: Ao <e Vp

o>0 elo=1

Correlated equilibrium is a joint mixed
strategy where no player gains from a

Probability constraints: unilateral deviation

Joint PSRO [Marris et al. 2021] - Results

10!
10° i mt-MGCCE —=— Uniform
‘ MGCCE -+~ PRD
gg 107 ~ mineMGCCE - a-Rank
AY ne2 X_\ RVCCE +~ Random Dirichlet
o.% 10 1 RMWCCE *— Random Jjoint
(3 -3 o /~N . \
g 10 1 \ o= \
wo H /
- l
Ua 10-4 1 l| l'l / | \
10°* | \ f \ \ \ '. \
‘ \-, 0‘ \ A A - \ - *—
lo- LJ LJ L) . L L) \J
0 5 10 15 20 25 30 35 40

JPSRO Iterations

(a) CCE Gap on three-player Kuhn Poker. Several MS converge to

within numerical accuracy (data is clipped) of a CCE.

¢
o

/ -
Ll

-

SR mmen - s o e o oo Be e Lm cm o o Lo o e - -

Value Sum
{(under MWCCE)
- Vo
o wn

©

ot
W

B -
|
«
‘ko A _ge 1A g0 o A g0 o A o0 2 A g0 s A e

0 10 20 30 40 50 60 70 80
]PSRO Iterations

» A 00 ¢ A go :t A g0 : A g8 ¢ A

O
=

(b) Value sum on three-item Trade Comm. The approximate CCE
MS was not sufficient to converge in this game, however all valid
CCE MSs were able to converge to the optimal value sum.

A Y ———

Optimal NFCCE T‘__‘,_. R B e o e R
12 4 /] e
o 10 Optlmal EFCCE' [/—. j. e - ot et
O Ve L ofen e smcabed VoA :::::° :::;::::::::::::::::::::::::::]
§§ 8 - Optimal E J r‘-‘\.l"—_‘
g [‘ fﬁ‘ OF/ .',
a8 & . | e
> < r-‘/-‘ 7 4 w w
S 41 [¥ .'f—'—f vr“ v v v v ,‘ v v v v
\ L2
2 - i NECE = W. —et— oo ey eyl ot - o———of
- e S e i i e e e T e I
0 - L Al L4 A L
0 20 40 60 80 100 120
JPSRO Iterations

(c) Value sum on Sheriff. The optimal maximum welfare of other
solution concepts are included to highlight the appeal of using
NFCCE.

Contents

e Pipeline PSRO

Pipeline PSRO [McAleer 2020] - Algorithm

Policy Level Fixed policies do not train anymore
~ and remain within the fixed

0 1 2 3 4 5 6 7 8 population.
| (]) (] ress
2 n’ HIJ . [w | n‘]] ::m Lowest active policy trains against the
» = (s + meta-distribution defined by the fixed
= = : I I population
Q{ 1
2| 4 |[x] [nt]][] M (€] [m®
s || n®| [m) |||] |t . [_n:_ n’
: e Active policies train against the meta-
6 | (| | || [] | n® . n ‘ n® I IU " | distribution defined by the population
‘ — of agents below them in the pipeline

Pipeline PSRO [McAleer 2020] - Results

Leduc Poker
Ix 10" -

Dimension: 60, Leamung Rate: 0.1, Workers: 4
Fcious May

N— lo: ': e v mmo
{ v PISRO (Oury)
{ = Rectified PSRO

— Sel Py
Sequenhal PSAD
.

TI A

| gl

!
!
!
|
!
!

Eaplotabiny

Lxplotabeity

. | == PISRO (Ours)
Rectified PSRO
| = Naive PSRO
4x)ot | = OCH

A 10" |

0 l ;' 3 ‘ S (, ,' 8 t"” — P - - - - S—

0 p e 108 150 00 50 0 »o &0
Teration

S2eps (Meldn)

(a) Leduc poker (b) Random Symmetric Normal Form Games

Figure 2: Exploitability of Algorithms on Leduc poker and Random Symmetric Normal Form Games

» Pipeline PSRO reaches an approximate Nash
equilibrium far quicker than other algorithms in
Random Symmetric NFGs

* In Leduc Poker reaches low exploitability almost
twice as quick than Naive PSRO - other
algorithms do not reach low exploitability

o Barrage Stratego is a Two-Player Zero-Sum imperfect information
game

» Game-tree complexity of 10°"

o Comparison vs. All existing bots for the game

Name P2SRO Win Rate vs. Bot

Asmodeus 81%
Celsius 70%
Vixen 69%
Celsiusl.1 65%

All Bots Average 71%

Contents

e Mixed Oracles / Opponents

Q-Mixing [Smith et al. 2020]

BR(xS) — £|A -

= » Learn best-responses to different
. e ‘ policies 7’
BR(rt! E \" y X E » Transfer knowledge against opponent
(7[-1') =i = O, a2 . h ghting O-val
8 . ™o mixture by weighting Q-values
| 3 according to current belief of
2 _ 3 > opponent’s policy

00pa;10_) = Y win_;|0,0_)Q, (0 a;| 7))

Current brief about opponents’ policy

Mixed Oracles [Smith et al. 2021]

» During PSRO how can we transfer experience across iterations!?
* Now maintain two populations
I, ={n,m,...,7} N, =1, 4,..., 4]
* Where 4, is a learned best-response to 7, at every iteration, rather than against the meta-distribution

» We now have best-response experience against all policies in the population

» Use Q-mixing to find the new population policy

00 a;10_) = Y win ;0,0)00 ;| 7_)

Probability of playing opponent 7_

l

Mixed Oracles [Smith

et al. 2021] - Results

200 — 200
= — PSRO ; w— PSRO

1751 Mixed-Oracles 175 Mixed-Oracles

150 150

-
o
-~

-
eJ
o

-~
o

SumRegret
o
-
-3
(,:o

SumRegret
g

N
M
B W
¢ -

o General-Sum Tragedy of the Commons style
game where individual interest is in conflict with
the group interest

o Mixed-oracles converges in half the number of

PSRO epoches.
o Utilises quarter the number of simulations

% 5 10 15 20 25 30 35 40 % 1 2 3 4 5 6 7 8
PSRO Epochs Timesteps x107
lO ! ‘0’ |
= PSRO = PSRO
B Mixed-Oracles 8 Mixed-Oracles
o Leduc Poker o 5 |
. . . = 61 61
» Mixed-oracles reaches similar performance in g V\\ g
half the number of PSRO epochs. E 4 ‘/v\f\ E 4
» Drastically fewer number of time steps for a | o8 o
comparable solution |
°% 10 20 30 40 50 60 70 80 % 1 2 3 & 5 & 7 8

PSRO Epochs

Timesteps

Mixed Opponents [Smith et al. 2021]

PSRO
&

@Y @O @ @ 4

\ / | @ 2
Mixed-Opponents (fg

Q-Mixing

T,
Q““| 5B I S— l I «BR includes new strategy

@@g @@g Rock
&

« BR includes old strategy
Paper

Opponent Opponent BR to

Policy Q-Values Strategy Opponent
Strategy

Mixed Opponents [Smith et al. 2021] - Results

w— PSRO
Mixed-Opponents

SumRegret
=

w— PSRO

—- MixedOpponents | © (General-Sum Tragedy of the Commons style

game where individual interest is in conflict with
the group interest

» Mixed-oracles appears to converge in a similar
number of PSRO epoches.

25 W s » Whilst PSRO converges, mixed-opponents
N W L . e e el i i
T 0 T S T continually improves and nearly solves the game
PSRO Epochs Timesteps x10°
10 10+ 1
—— PSRO — PSRO
Mixed-Opponents - Mixed-Opponents

o Leduc Poker

» Mixed-oracles reaches similar performance in

similar number of PSRO epochs to PSRO.

o Drastically fewer number of time steps for a

comparable solution

=g

SumRegret
-

0 10 20 30 40 S50 60 70 80
PSRO Epochs

SumRegret

-—

3 4 5 6 7 B8

Timesteps x10*

PART Illl: Recent Advances & System Level
Thinking

Yaodong Yang

Summary of Part |l: PSRO Incorporate Many Variants

Game Environment G ~ P(G) —P Forward Pass
N9y, o)

”_yzhf;_»‘ m

D, = {P, Py, P5} :'

D, = {qbl,qb2, "'9¢T}

naive self-play
fictitious play
double oracle/PSRO
PSRO-Nash

a-PSRO
JPSRO

Two Mainstreams of Multi-Agent Learning algorithms

Population-based methods:

- Fictitious play, double oracle, PSRO series,

- Regard the opponents fixed and seek for best
responses. o

- Easily and nicely integrated with RL methods (e.g,
NINIHESING) :

- Work effectively in potential and zero-sum games,
but limited in genera-sum games. °

- Average policy have convergence guarantee but .
oenerally no last-iteration convergence

Two Mainstreams of Multi-Agent Learning algorithms

Under review as a conference paper at ICLR 2021

Actor-Critic Policy Optimization in Partially

Observable Multiagent Environments THE ADVANTAGE REGRET-MATCHING
CRITIC

Sriram Srinivasan”’
srsrinivasan®

Karl Tuyls’
karltuyls®

[hey are somehow equivalent:

Optimization of paramet
tant and challenging pro
approaches are algorithn
discounted return. In thi
actor-critic algorithms i
several candidate policy
mization and multiagent
apply our method to mo
sequential decision pre

domains, sh(minb perf
to approximate Nash equilibria in self-play with rates sitmiular to or better than a
baseline model-free algorithm for zero-sum games, without any domain-specific
state space reductions.

Texas Hold em.

ACTOR-

ing, equilibrium

...@google.. com Reg re-t f% \/al U e ! ¢ u-#:.ﬂ.}; hasil

tegret-Matching
- \(tm-(riti((: \R\l \(') R«llll(l than saving past state-action data,

A 18 cies. replaving through them to reconstruct
value estimates
ned with regret

Can we design m cthods that FE

In this pape

AR-

¢ Carlo counter-
r {rom excessive

ARMAC shows
: .. 20 ? < intact. In the
== take the merits from both side? g%
; le exploitability
racted no-limit

Online Learning and No-Regret

» The settings of online learning:

+ The algorithm picks a strategy p’ € Ay at time step ¢

+ The adversary/nature picks cost vector ¢’ : A — [0,1]

+ An action a'’ is drawn from p’, and the algorithm incurs cost of ¢'(a’)

+ Full-information settings: observe the entire cost vector ¢’. Bandit settings: only observe selected c¢'(a’)

+ Oblivious adversary: ¢! only depends on t. Adaptive adversary: ¢’ depends on {t, (p!,...,p), (@', ...,a"™ "))

¢ Goal: we try to learn how should we adapt our algorithms, learn from mistakes [remember Alan Turing] !

° The (external) regret of a sequence of actions w.r.t action a € A:
T T

Rp(a) = %(2 c'(a’) — 2 Ct(d))

=1 =1

° A no-regret algorithm &/ is said to be no-regret (also Hannan consistent) if:
1

T _ _ T
iMm7_ o E [R;fi(a)] == <Z tE t ¢’ (at) — Z ct(a)> =0,Vae A
i=1 “7F ' =1

No-Regret Learning in Zero-Sum Games

o |f all players play no-regret methods, they can reach a CCE in general-sum games.

° Here we can show that no-regret players will reach the Nash in zero-sum games.

+ For better clarity. Let's assume row player chooses an action I, € { 1,...,N}, mixed strategy p, = (pl,t, ...,pNJ)

+ Column player instead of deciding ¢’, let's assume they choose an action Je{l,...,.M}and q, = (ql,t, . qM,t)

+ Assuming both players adopt no-regret algorithm regardless of what the opponent does, such that

lim sup;._, . <%Z?=1 £ (1,J,) — minizl,m,N%Z?zl £ (i, Jt)> <0
N M

+ Recall that the Nash value of a two-player zero-sum game Is max min Z Zpiqu(i,j)

b P g =1

» Ve have the main theorem that

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret
T N M

.1 . .
methods, then lim —) 7 (It, Jt) = V = max min Z Z pqi¢ (i, j) almost surely.

T—oo 1 q P

No-Regret Learning in Zero-Sum Games

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret
T N M

1 . .
methods, then Iim —) 7 (It, Jt) = V = max min Z Z piq;¢ (i, j) almost surely.

T—oo I q p

Proof: |) we first should that regardless of what column player plays, if the row plays play no-regret method, his
loss will be no more than maximin value (i.e., worst case scenario to row player) limsup;_ =Y _, ¢ (I.J;) <V .

Since the row player adopts no-regret method, we only need to show:

1 T 1 T N
| min -— £ (la J;) = Iin — (2 pif(la])) pure strategy Is a special mixed strategy
i=1,..N T p I .
=1 =1 =1
T
15
=min—) 7 (p,/;)
p 1
=1
M 1 T
= min Z (— Z 1{]=]}f(p,])) empirical mean on column player’s action
p = I t
j=1 =1
— min I/Z <p, aT) expectation over the empirical mean of column player
p
< max, min, Z(p,q) =V

No-Regret Learning in Zero-Sum Games

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret
T N M

1 . .
methods, then Iim —) 7 (It, Jt) = V = max min Z Z pqi¢ (i, j) almost surely.

T—oo I q p

i=1,...,

R .
Proof. 2) we proved that mlnN;Z} ¢(i,J;) <V and since row player plays no-regret

1 +« L
lim sup (—Z 7 (It, Jt) — min —) ¢ (i, Jt)) <0
r-e 145 i=1,...N I 4=
we can know that |
lim sup — Z 7 (It, Jt) <V
T— o0 T =1
for row player, we can do the same for the column player
S IR . .
Iimint—) 7 (It, Jt) > minmaxZ(p,q) =V
T-co I 1 p q
By von Neumann's minimax theorem, we prove that
T
lim l 4 (I]) —V This mean no-regret players self-play will reach to
T—oo I o=l Nash equilibrium in two-player zero-sum games.

=1

No-Regret Learning in Zero-Sum Games

° We have showed that no-regret players will reach Nash equilibrium value.

° Furthermore, we can show that they

Theorem: In a two-player zero-sum game, if both players play no-regret methods, then

/\

1 T A 1 T ome® ®
Pir= ? Z} 1 (I=i}> 41 = ? Z} 1 (=) almost surely converge to the set of Nash equilibrium.

Proof: in the previous proof, we have shown that

min # (p, iiT) <V, max? (ﬁT,q) >V
p q

and due to the uniqueness of V value In zero-sum games

minZ (p, ;) = max? (pr.q) =V
p q
and because of

Lﬂ(ﬁTa GT) > minf(p, GT), maxf(ﬁT,q) > LZ(ﬁTs il\T)

finally, we prove that

Fictitious Play is Not No-Regret

 No-regret can lead to NE in two-player zero-sum.

» But, what exactly is a no-regret algorithm? How can we behave to achieve no-regret!
1 n
hmsu fI,J - mln — £ (1,J <0
P(Z | NS | >)

o Surprisingly, Fictitious play is not no-regret !

+ Recall that fictitious play, also known as Follow-the-Leader, is to take the best response to the average

cumulative loss. 1
I = ?rgmlg(t_l 2 f(z J))

¢ Consider N = 2 actions, let J, be chosen such that 7(1,J,) = (1/2,0,1,0,1,...) and £(2,J,) = (1/2,1,0,1,0,...)
¢ Then the accumulative loss for both actions is T/2,and the FP will suffer a loss of T, thus has constant regret.

¢ There are many variants that make FP no-regret, for example

- . .
I, = argmin <t 1 Z £ (i,J,) + Zi,t>, Z. any ii.d random vectors of size N
i=1,..N \ I~

Adversarial Bandit — MWU

 Fictitious play is not no-regret !

» Let’s introduce a true no-regret algorithm: Multiplicative Weight Update [Freund 1999].
+ MWU has many names:

exp< nzt_ £(i, J))
pl,t Z|A| exp(Zt— Lﬂ()>

+ Equivalently, one can think of the following iterative process:

Wt

P = w'l(a) = w'(a) - eXp(—nt(a, Jt)),wl(a) =1VaeA

ZczeA Wt(a) |

m | arge 7 means more exploitation, small # means more exploration.

+ Equivalently, one can get MWU by the following maximum entropy framework (a common trick in RL).

arg min Z(p,J) + 1/n-) p;logp,

pEAlAl

Adversarial Bandit — MWU

o Let’s now prove MWU is indeed a no-regret method

1 [
o Let opt = mmz ¢ (a,J,) and v' = Z pla) - £(a,J), thus the regret-bound is lim e (Z vl — 0pt>

A T— 00
1S ac|A| =1

+ We first bound the denumerator Z wi(a) > w'(a*) = exp(—7 - opt)

< > (1 —)"
Z wt(a) = Z w(a) - exp(— n£(a,J))) : Z wi(a) - (1 — e)?@

< Z wia) - (1 — e(a,J)) = Z wia)-(1—ev) (CUCEEEPIE e R

acl|A|

w'(a)

¢ Merge the upper and lower bound (1 — €)°P* < Z wia) < Z wl(a)H(l —ev) = |A] H(l — V)

acA

Opt o (—k‘\—&z) S In ‘A ‘ -4 Z <_va) Taylor expansion In(1 — x) = —x — x%/2

e great for many real-

t=1 world problems!

1 [~ L/ 1 . -
s Set € = \/ln |A |/T we conclude the proof - (Zv’—opt) <= (€T+—ln|A| <2 g "ote: the log term is

Online Double Oracle: Merits from both worlds

Online Double Oracle

Le Cong Dinh**“, Yaodong Yang*'*, Nicolas Perez-Nieves', Oliver Slumbers’,

Zheng Tian*, David Henry Mguni', Haitham Bou Ammar’, Jun Wang'*

|. Nash is unexploitbale, but when a player always plays Rock, you should play Paper rather than (1/3, 1/3, 1/3).

2. Double Oracle/PSRO assumes both players play the worst-case scenario, can be too pessimistic during training.

3. Online learning provides a framework about how to exploit opponents through minimising regret.

Algorithm 1 Double Oracle (McMahan et al., 2003)

I: Input: A set I, (" strategy set of players
2: g, Cy: initial set of strategies

3 fort = 1toocdo

4: if Il # 1l or Cy # C¢_; then

5: Solve the NE of the subgame G:

(73, ¢]) = Arg Millyea,, AT MaXeeac, 7 Ac

6: Find the best response a;.y and ¢,y 10 (7], €7)
Qi) = ATg Milgenp @' Ac)
Ci4+1 = Arg MaXeeo T, "Ac

f - Update “H-l - Il{U{Qf...l}.('f..[= (-'¢U{C¢+1}

8: elseifll, = 1Il,_y and C';, = (,_, then

9: Terminate

10: end il

11: end for

What we want:
it opponents play €y, €5, . . ., €5, we want the player to have @y, &,, . .., Ty st

R; L
lim — =0, R; = max E x'Ac,— ' Ac
T—soo 1 g nEA —1 (t t t)

What we know:

hedge algorithm/multiplicative weight update can achieve no-regret property
it one follows the below update

exp (— ,utaiTAct>
(1) = mli)—7— —, Vi € [n]
N T Y mdexp (—palAc,)

the regret of MWU is @(\/ log(n)/T)

Online Double Oracle: Merits from both worlds

I: Input: A set |1, C strategy set of players

2: llg. Cly: initial set of strategies

3: fort = 1toocdo

4: if Ilf ?é ”(-1 or (' # ('f_l then

5: Solve the NE of the subgame G:
(7].c]) = arg migca,, ArgmaXceac, 7' Ac

i) = ATE MiNgenn @' Ac;
: o
Ci+1 = Arg MaXeeo m, Ac

1 Update H.H - H,U{ahl } Ciy1 = (}U{CH.]}
8: elseifll, = 1l,_4y and C'; = (',_ then

9: Terminate

10: endifl

11: end for

.-\lgorllhm 1 Double Oracle (McMahan et al., 2003)

6: Find the best response a;.q and ¢4 10 (7], ¢}):

Algorithm 2: Online Single Oracle Algorithm

I: Input: Player’s pure strategy set 11 | |
2: Init. effective strategies set: Il = I1;, = {a’ }.a’ € Il
3: fort = 1toTdo

4: if II; = 1I,_, then

5: Compute 7r; by the MWU in Equation (5)

6: elseif II, # II,_, then

7: Start a new time window 7;., and

Reset wy = [1/|IT[,...,1/|IT¢|], I=0
8: endif
9: Observe [; and update the average loss in 7;:
l = Zte’l; L /|Ti| .

10: Calculate the best response: a; = arg minyey{m,1)
11: Update the set of strategies: IT;., = IT, U {a; }

12: end for

13: Output: 7, 14

Intuition: maintain a time window T to track opponent's strategy, if

no new best response can be found, then keep exploiting, otherwise
refresh the time window to catch up with the latest change

Online Double Oracle: Merits from both worlds

|.OSO is a no-regret algorithm.

Theorem 4 (Regret Bound of OSO). Let 1y, 1. ..., Ly be a sequence of loss vectors played by an
adversary, and (-, -) be the dot product, OSO in Algorithm 2 is a no-regret algorithm with

1 /& /K Tog(k)
(3 (ret) g3 m) < VIR

t=1

where k = |llp| is the size of effective strategy set in the final time window.

Algorithm 2: Online Single Oracle Algorithm

1: Input: Player’s pure strategy set I]
2: Init. effective strategies set: [l = II; = {a’},a’ € II
3: fort = 1to T do
4: if Il; = II;,_, then
5: Compute 7r; by the MWU in Equation (5)
6. elseif Il, # II,_, then
7 Start a new time window 7., and
Reset ™ = [1/|H¢| 1/|II¢|] l 0

8: endif
9: Observe I; and update the average loss in 7;:

L= Zre’l; L/|Ti -
10: Calculate the best response: a; = arg mingyep{m,1)
11: Update the set of strategies: IT;., = IT, U {a,}
12: end for
13: Output: 7, I

2.Putting OSO into self-play settings, we get Online Double Oracle which can solve Nash.

¢ Recall that in two-player zero-sum game, if two no-regret methods self play, the outcome will leads to a Nash equilibrium!

¢ We just prove that.

Algorithm 3: Online Double Oracle Algorithm

1: Imput: Full pure strategy set 11,

2: Init. effective strategies set: IIy = II,,Cy = C)

3: fort =1toTdo

4: Each player follows the OSO in Algorithm 2 with
their respective effective strategy sets 11,, C|

5: end for

6: Output: o, llp, er,Cr

Theorem 5. Suppose both plavers apply OSO. Let &y, ko denote the size of effective strategy set for
each player. Then, the average strategies of both playvers converge to the NE with the rate:

— /& 1 log(ky) /7?2 log(kz2)
EONT gps Yy AP
ln situation where both players follow OSO with Less-Frequent Best Response in Equation (6) and
Oy | \/ t — |T:|, the convergence rate to NE will be

2z = \/A log (k1) \/A log(ka) | Vi + Ve

e 2T VT

Online Double Oracle: Merits from both worlds

-xploitability on the Spinning Top games

ot Fim O Govve
’ J \— Qrdne Dowtie Ot w— Cwrde Dontie Cnw e
— N Py

» —uponmm

P e ;
- -
'L =
> -~
1..“ 6
:..v‘ E
U.‘. MJ

ANorrrad o Carve

— Cwdvww Dwndiw Crm'w
— Fcomoan Pay

abmrdm L homiet b)

—M-M().h
—— Foronm May

Partee Crve

w— Crvre Dowtée Onpcwe
— L wn Py

Figure 1: Performance comparisons under self-plays

-—
o
/

-xplortability on Poker

Kuhn Poker

PSRO Lo
PIFSRO —— 000 (Ows)

Leduc Poker

SO DO xfp
P2PSRO —— ODO (Ours) —— CFR

10° e

- CFR

21011

= e

3 L s (LN SR RS pr
10°

- e

X ,

10|

200

100 150
Number of BR computed

(b) Exploitability on Kuhn Poker

50

250
Number of BR computed

(a) Explontability on Leduc Poker
Figure 3: Performance comparisons in exploitability on Poker games.

S0 100 150 200

Play with an imperfect opponent

Leduc Poker with restrcted oppongnt

S

-

o

=1

o 9

%

w2 . PSRO

e Ondine Single Oracie (Ouwrs)

780 1000 1250 1500 1750 2000
iterations

(a) Leduc Poker

0 250 %00

XODO: ODO can be extended to solve Extensive-form Games

@

—
1 233 4

(d) Iteration 3

(¢) Iteration 2

(a) Iteration 0 (b) Iteration 1

Figure 1: Example of three iterations of XDO in Zero-sum Extensive-Form Game. The
square does not know what circle chose. The values at the leafs are circle’s pavoff, since
it is zero-sum game, the square’s payofls are the opposite; At the beginning in graph (a),
both circle and square have empty population and uniform random strategy. In graph(b),
circle’s BR to opponent is action L. Square’s BR is action x. They are added into the
population(thick hine). Since both players only have one action, so the NE in the restricted
game 15 choosing them. Then in graph(c), action R of circle 1s BR to square’s action r, so it
will be added into the population. We then compute the meta-NE of the restricted game
constructed by the thick lines and repeat the above steps. Since all the best responses to the
meta-NE are already in the population, the restricted game won't change in graph (d).

Exploitability

Kuhn Pokes
-l pp— XOOO(OU'!]
10 s XDO
o T — — ICFRe >
— TR =
10°* — XFP -‘3
' g
‘ 2
1074\ b P e e - «
v\’\/\m-{w v’y '_'MO‘Z'WMM (f"f‘.‘. t: "
TNV AAN e,
0.0 0.2 04 06 08 1.0
Expanded infostates le?
(a)

10°}

(i

Kuhn Poker

750 1000 1250 1500 1750 2000
Tumels)

(b)

250 800

Lecuc Poker Dummy

Leduc Poker Dummy

— . e XODOIOUTS) - XODMoury)
o T XDO e g XDO
310"': | ——— e —— = (CIR4 > 1071 '} N e L CIR 4
— \ — LCIR ~= \3 T e LR
S B - xre g ‘i }'\-.._ . e XFP
5 107? O e S 5107 '\i T e
Q “v{' i -.“‘——— —_— — Q . ‘ A .—_--.._—-v -
z WA — | a WA w —
—‘, "'\‘ - .y
lo .-ﬁ.'_w_'_ - lo ’ ‘\\“'\-, .
00 0.2 04 D6 08 10 0 5000 10000 15000 20000
Expanded Infostates 1e9 Timels)
(a) (b)
Oshi Zumo . Oshi Zumo
o i
i —— XODOlours) 10°)

Exolo:gml.ly
(=]
— ———
ol
Cr |
e‘
¢
%
}
4
)
)
| |
35
=

10 ’ V\E W W ’\-\A'-J
N \'v"""ﬂ-——'--\rx —
PN - e e
lo s MWW.M AV
0 1 2 3 B S 6
Expanded infostates le8

(a)

Explotability
L - L
o (=3 (=]

- - o=

g
=]
-

0 2000 4000 6000 8000 10000 12000 14000

Timeds)

(b)

Summary of Online Double Oracle Results

» The best achievable regret in bandit setting is @(\/T|A |), see [Audibert, Bubeck 2010, JMLR]

Table 1: Properties of existing solvers on two-plaver zero-sum games A, “:DO and XDO in
the worst case has to solve all sub-games till reaching the full game, so the time complexity is one
order magnitude larger than LP (van den Brand, 2020) and CFR (Zinkevich et al., 2007). ': Since
PSRO uses approximate best-response, the total time complexity is unknown. * Note that the regret
bound of ODO can not be directly compared with the time complexity of DO, which are two different
notions,

Rational Allow

Conv .
Method (No- - Best e orase Regret Bound () Large Games

Rate (O)

regret) Response
Linear Programming O(mexpl =T /n**%))
{Generalised) Fictitious Play v O(T - imtm-21)
Multiplicative Weight Up. y O \l‘.";;";;m\’
date .
Double Oracle O(nexp(=T /n**))" v
Coumterfactual Regret Ming- y oA TIA)) /
zaton
Extensive-Formm Double : Wy |
J 0 A I o" ." 2 { ’ v

Oracle (317114l)
Policy Space Resporse Oracle v "y
Online Double Oracle v v Ok log(k)/T)" v
Extensive-Form On- y / O(AIS!]\ AT 7

line Double Oracle

Contents

o Formulation & Challenges of Training A Population of RL Agents

o Training A Population of RL Agents on Fully-Cooperative Games

o Training A Population of RL Agents on Zero-Sum Games

eSome System Level Thinkings

Training Population of RL Agents Require Powerful Al Systems

Marine (Agent)

(a) Multiagent policy networks (b) Multiagent Q networks

BiCNet, deep MARL methods

Optimizer + Connected Rollout Workers (x2566)

Rollowt Workers
~500 CPU4

MOG‘OOO;Q Optimizer
o DO Bganat Cument bot 19100 GPY

o~y Compete Cradents
Al <+ Prowmal Pobcy Optemirancs

Population-based + Rapid training system

| -2 GPUs, 1-2 days 128,000 CPUs, 100 GPUs, 180 years of plays per day

 INOEEREEE |
REREEREEREERE

Progression of Nash
of AlphaStar League

Populating-based Training
Training for single agent costs 14 days, 16 TPUs/Agent,
200 years of real-time play.

LeagueMgr
HyperMgr
GameMgr

Saver

Outcome Task

M; copies

ModelPool

NN param

Mg copies

M, copies

Actor

Env

Agt

/ﬂN param %k M, copies

Trajectories

Learner

ReplayMem

DataServer

Act Obs
M, copies

NN param

InfServer)

Populating-based Competitive Self-play + Policy distillation

35,000 CPUs, 320 GPUs, begin to converge after 336 hours

Training Population of RL Agents Require Powerful Al Systems

» Distributed RL systems has made substantial progress nowadays.

¢ A rule-of-thumb is that:

Pm m Pum w

A3C

XX XX @@"‘@@

m\ Pav arveters

IMPALA - Single Learner IMPALA - Multiple Learners

Actor 0
Actor 1

Actor 3

https://cloud.tencent.com/developer/article/ | | 19569

Actor2 |

Batched A2C

i
[Hil
&l

EEEE

Environment step || Forward pass [JJJ] Backward pass

IMPALA

Actor0 |
Actor 1
Actor 2
Actor 3
Actor 4
Actor 5
Actor 6
Actor 7

==
anE EEE R
BEEEE

EEH
B

12 & &

15

H B BN

 SEED RL implements a highly scalable IMPALA that uses batched inference and

optimisation on a single accelerators to maximise compute efficiency and throughput.

+ Both training and inference are on the GPU

+ Actors only run the environments

+Split env step (actor) and inference step (model)
+ Employ RPCs between actor and learner

(b) SEED architecture, see detailed replay architecture in Figure

Actor

Environment

Actor

Environment

Actor

Environment

Actor

Environment

Batching layer

>
Learner

Model

Queue

Store

Training Population of RL Agents Require Powerful Al Systems

» Distributed RL systems has made substantial progress nowadays.

+ RAY is an ecosystem that help build distribution applications.

rl)tu‘min-spt:t:lﬂc llbnrml\‘
[for each subsystem

Featurization Streaming

distributed Python (and

Framework for
other languages...)

=

\ oS lib l
tune O f -
raysgd
/A Wl
"m“"' Training Simulation m

I

0op RAY

J |

+ The implementation of RLIib uses RAY for RL applications.

* Developer '(@

in TF / PyTorch / efc.

Neural network Python function Tensor ops in

class rllib.PolicyGraph

’
TF / Pytorch

Multi-Agent /
Hierarchical

Policy
Serving

Offline
Data

policy

dllib.PolicyOptimizer | —

RLIlib abstractions

exchange / replay
samples, gradients,

r"lb.pO"CYGraph weights to optimize :

Ray actor

rllib.PolicyEvaluator

|replica|
v . 4

~» | replica |

J \

J \

— (1) Application Support

— (2) Abstractions for RL

- (3) Distributed Execution

PB-MARL Poses New Requirements for Al Systems

 PB-MARL requires more thinkings on the efficient implementations

¢ Support for distributed PB-MARL is limited.

Framework Single-Agent Multi-Agent Population Management
RLIib v v X
SeedRL v X X
Sample-Factory v v X
MALI1b v v v

m Agent

e s - - T e Action a;
Training © pgji Serving
! Policy =2 poicy || State 5
1 Improvement | 1 Evaluation (Obs.)
Reward T¢4+1 l
Trajectory s, (2,7*1), (8¢,7¢) v

tm Agent Environment
, Training ! Policy | Serving : L
" Policy | : Policy . tate 8¢
1 Improvement | 1 Evaluation " (Obs.) :

) I Reward ¢4
Trajectory sg,(s1,71),- - , (8¢, 7¢)
]

tm Agent
: -------l d l----‘----ll Action @
I Tralnlng 1 Policy .1 Serv.|ng I Stat
: Policy i : Policy . e
1 Improvement 1 Evaluation (Obs.)

Reward 7¢.41

Trajectory so, (s1,71),-

. ,(stﬂ't)

Remaining Challenges

1. Game evaluation needs additianal
many computatianal power

1. We don't know how many
computing resources needed In

Mivance. Population can grow games
Evaluate model performance l Spawn/Terminate Actor/Learners
Actors produce
trajectories for Tnjeao"cs “.m“
Learners
Observations Read model I l Write model

Inference Servers
produce actions Read model | Population Storage

based on observation

3. Mircoservices + gRPC are not

PR, drversty happens here opoumal desipn. Need to think on
the data-flow level

4, Efectivenass on cooperative

Learners train the
model based on

trajectories

Population Model

Store stores the
parameters of
opponent neural
networks

PB-MARL Poses New Requirements for Al Systems

 PB-MARL requires more thinkings on the efficient implementations

* computational demands for RL For Population-based MARL
* Policy optimization
* Policy inference
* Environment simulation & rollout * Large-scale rollout & training framework
These 3 subtasks can be easily implemented, * Support heterogenous tasks

e.g., Actor-Learner Architecture * High throughput distributed frameworks
* Maximize utilization of different hardware

* Extra demands for MARL
* Rollout with joint policies

* Exponentially increased rollouts for training * Support population-based training

. égcrjne\lliacl:taetcliogana ement of pol ool and * self-play /league mechanism
P J POIEY P * meta-game analysis that based on

population .
» More complex task- & data-flow game/graph theory and representation

* Meta-game -> extra policy interactions learning.
. .. * Others: imitation learning/transfer
There is not a good solution to these learning/model based/heuristic

requirements.

MALIib: Designed for PB-MARL

~ For Multi-Agent Reinforcement Learning

Actor-Evaluator-Learner Architecture: Decouple the Task-/Data-flow
parameter/graients

parameters/gradients

Parameter @
Server

Task
Request

OfflineDataset

Server @

T T T
Task
Request

Dispatching

data

MALib: Centralized Task Dispatching Model 'ann'c\illtpr\%g'&?ﬁoﬁgsoﬂ?hﬁﬁ'gg np?k:g?r:,gwl's\ich Table 4: Implemented algorithms in MALIb.
(CTD) Improve the reusing rate. Algorithm Training Interface Execution Mode PB-MARL Support
* Modular design, easy to implement and reuse. * Independent Learning: DQN,PPO DON [42] Independent Async/Sync PSRO/ESP/SP
* Centralized control: generate tasks and allocate * Centralized Learning: MADDPG, QMIX Gorilla [25] Independent Async PSRO/FSP/SP
COMIPUI T8sOLICR YA CARY. * Async Learning IMPALA A2C [45] Independent Sync PSRO/ESP/SP
* Semi-passively executing submodule * Sync Learning: - A3C [26] Independent Async PSRO/FSP/SP
(MARLL SAC [49] Independent Async/Sync PSRO/FSP/SP
R i o S an oy DDPG [50] Independent Async/Sync PSRO/FSP/SP
L 8 — g e PPO [43] Independent Sync PSRO/FSP/SP
A ’ll B share information own information APPO Independent ASyIlC PSRO/FSP/SP
ool Learner =) MADDPG [16] Centralized Async/Sync PBT
% | — e Actor i — (R QMIX [17] Centralized Async/Sync PBT
. _______ Fask Dependency [Rollout Worker]J] .-+ [Rollout Worker }}J MAAC [46] Centralized Async/Sync PBT

https://malib.io/

MALIib has high throughput

* Single machine: 32 CPUs, 2X RTX 3090 ,

* Multiple machines: 2x 128CPUs. 256 GB

* Environments: MA-Atari, StarCraft Il (SMAC) ;

* Compared Frameworks: RLIib, SEED RL, Sample Factory

...
-~
-

/ single machine
0: """" ‘-‘\
1. Outperforms all compared frameworks. e Multiple machines
b Throughput continues to
Sguayery MA Mt oy TN (w1} Sevasbop . . dptayen MA Mari i T ‘w1 b bemaiep : : . 1
e ~suy P T . | increase. Scalability v/
. Samoee T acsory APIOS o Sampie ! actnry G AN ’ .oy
WKL e D) S8 00~ VD M OPUTMPALL) E : A A
e MALBAMOY v MALS GRAPTOK : i T e O
.00 | P : E -
» 0w ¥tk . E é o>
oo : -
10 o ¢ . ‘ ' - s | 300 ") s E : o
= ' . : aa Rt) = .
I 2 & 8 W WM e B T T T TR B R T 5
® Workecs ® Worven ! '
(1)CPU-only (2)GPU accelerated T

qqqqq
- -
nnn

MALIb is approximately 5x faster than RLIib MALib RLib
* Environments: six scenarios in MPE; ' '
* Compared framework: RLIib;

* Algorithm : MADDPG;

* Settings: different #rollout workers,;

* Metncs: convergence, execution time.

MALIb

ey
agert.
...............
,
\
‘/ 20 "
10
| -
1 0 1
- i
10 1
{3 .
g > !
! i
{© - |
1
- '
1
- :
1
1 @ i
\‘ 0 o'
N # Epsode "
»” : o ~
’ 10 . " : \.
Lo ' At most over 5 times Spe ,
e , —_— |
| 1
| -20 | 0 !
' 1
1 -40 . -8 !
P ' % :
1 1
! & -0 '
“ 0 P8 100 150 200 250 700 o

-

b ———

LA}) .
W) wmple quwakar bodener SO MALD VAN AN @ dmple wpwalar baener Q6 KLLL WNAN.

~--“-----“-----“-----“-----“-----“-----“-----“

MALIb is approximately 3x faster than OpenSpiel

Environment: Leduc Poker ,

Compared framework: OpenSpiel ,
Algorithm: PSRO ;
Metrics: Exploitability, execution time.

] |

! — MALb !

0 : — OpenSpie!

i |

z* i i

S 3 | >3X -

2 @ |

0 2 | '

) |

. |

1 : ;

e e b — e

|

| i

0.0K 100K 20.0K 30.0K 40.0K 50.0K 60.0K
Time(sec)

Time(sec)

— MALIib
—— OpenSpiel

40

Step

60

30

100

Conclusions

o Formulation & Challenges of Training A Population of RL Agents
+ Compute Nash is PPAD

o Training A Population of RL Agents on Fully-Cooperative Games

¢+ |IGM can fail in cooperative problems
+ MAPG has large variance, one can think of using min-variance optimal baseline

+ Advantage decomposition lemma, MA-TRPO, MA-CPO methods are the big hopes
o Training A Population of RL Agents on Zero-Sum Games

+ Meta-game level thinkings are important due to the non-transitivity issue
+ PSRO methods and its variations can deal with non-transitivity

+ Online Double Oracle take the merits from both population-based methods and no-regret methods

oSome System Level Thinkings

+ Training population of MARL agents poses new challenges for existing Al system

+ Try MALib!

