CONTENTS

イメージング時代の

構造生命科学

細胞の動態、膜のないオルガネラ、 分子の構造変化をトランススケールに観る

はじめに一構造生物学から構造生命科学, そして構造イメージング時代の トランススケール計測へ 田中啓二, 若槻壮市

第1章 近年の技術革新と解かれた構造

概論 近年の技術革新と解かれた構造		12 (678)
1. クライオ電顕によってとらえられた P4-ATPase フリッパ 輸送サイクル 平泉料		19 (685)
2. クライオ電子顕微鏡によるクロマチンダイナミクス研究 	效,胡桃坂仁志	26 (692)
3. ミトコンドリアタンパク質搬入ゲート TOM 複合体 一クライオ電子顕微鏡による立体構造の解明荒磯裕平	区,遠藤斗志也	31 (697)
4. クライオ電子線トモグラフィーの現状と将来	福田善之	35 (701)
5. 高速 AFM の技術革新と注目の成果	安藤敏夫	41 (707)
6. X線結晶構造解析 一技術革新	悠介,千田俊哉	48 (714)
7. X線結晶構造解析 一自然免疫受容体 TLR7 ファミリー活性化機構の新局面	清水敏之	52 (718)

8.	X線結晶構造解析 一生物のエネルギー代謝酵素の分子進化			樋□	芳棲	∯ 56	5 (722)
9.	1分子チップ 一膜タンパク質のデジタルバイオ分析			·· 渡遙	是力也	4 60	(726)
10.	LC-MS を基盤とする RNA の構造解析システム 一転写後修飾の総合的理解に向けて田岡万悟、手塚真由、	延	優子,	礒辺	2俊明] 66	5 (732)
第2	章 構造生命科学からトランススケール よる細胞動態学へ	, •	イン	۷ —	・ジ	ング	<u>"[</u> [
概語	🗎 in cell構造生命科学による細胞動態解明へ			蔡	慧珰	ì 76	6 (742)
Ι.	・ トランススケールな解析が待たれる生命科	学	の未	解	决訓	果題	
1.	柔らかい構造の可視化 — LLPS と膜動態を例に	·能代	大輔,	野田	展生	<u> </u>	(750)
2.	タンパク質のマルチバレント相互作用が駆動する液-	-液	目分离	推			
	安田さや香,	田中	啓二,	佐伯	录	€ 90	(756)
3.	RNA を含む非膜構造体の内部微細構造観察と天然変物					- 96	5 (762)
4.	CRISPR-Cas9 による DNA 切断の分子機構			西增	弘志	ž 103	(769)
5.	初期分泌経路における新たなタンパク質品質管理機構 一亜鉛イオンとERp44の協奏 天貝佑太,	-	聡,	稲葉	きまし きょうしゅう こうしゅう こうしゅう こうしゅ しゅうし ままれる ままれる はいし はい はい しゅう	ζ 109	(775)
6.	抗体フラグメントを用いた GPCR 構造生命研究	·岩田	想,	浅田	秀基	ţ 117	(783)
7.	さまざまな役割をもつヒトV-ATPaseの理解に向けて		h			_	
		·村田	武士,	鈴木	、花 里	∲ 124	(790)
8.	細胞骨格が制御する細胞内の営みをトランススケール		亮,	今幅	新聞	ij 131	(797)

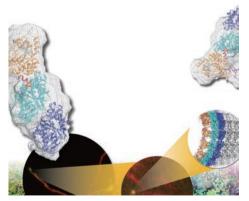
CONTENTS

9. クライオ電子顕微鏡による細胞生物学に必要なもの 吉川雅	英 139 (805)
10. 細胞間コミュニケーションのトランススケールな理解 一シナプス形成を例に 深井周	也 144 (810)
Ⅱ. トランススケールな解析を実現するための技術的課題	
11. "原子分解能" (オングストローム) をめざした光学イメージング	志 151 (817)
12. NMR と計算科学の融合による in-cell 構造生物学	治 158 (824)
13. 分子・細胞・組織・器官をつなぐ多細胞ネットワークの研究戦略 	行 164 (830)
第3章 構造生命科学の世界動向	
概論構造生命科学を支える大型研究施設の世界動向を表現して、若槻壮	市 169 (835)
1. 日本における構造生命科学の動向 神田大	輔 174 (840)
2. 米国の構造生命科学 古川浩	康 181 (847)
3. 中国の構造生物学の躍進と基盤施設の現状	之 187 (853)
4. 欧州大型研究施設における統合生物学研究Leonard M.G. Chav	as 192 (858)
5. 欧州における放射光施設と構造生物学データベースの動向 ·······中根崇	智 197 (863)
6. 世界における構造生物学のソフトウェア開発の動向 ************************************	亮 200 (866)
第4章 活用可能なデータベースとプラットフォーム	

実験医学増刊

放射光・XFELでのタンパク質結晶構造解析のすすめ							
	山本雅貴,	平田邦生	212 (878)				
3. 高速 AFM を使いたいと思ったら		古寺哲幸	218 (884)				
4. 生体高分子の構造データ検索と解析ならPDBj		栗栖源嗣	224 (890)				
5. 対象タンパク質を理解するための有用なデータベー	ース						
	…長尾知生子,	水口賢司	231 (897)				
おわりに一構造生命科学の発展と将来展望		田中啓二	236 (902)				

表紙イメージ解説 -


◆SpCas9の高速AFM解析

詳細は第2章-4参照.

◆マイコプラズマの細胞質の大規模 分子動力学シミュレーション

詳細は第2章-12参照.

◆トランススケールな構造解析例

CRMP2の微小管ダイナミクス制御による軸索伸長の分子機構に迫る.詳細は第2章-8参照.