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Abstract

Robot swarms are decentralized collective systems of simple embodied agents that act

autonomously and rely on local information only. Such large-scale multi-robot systems

can be beneficial over single robots due to higher potential for robustness and scalability.

However, the development of swarm robot controllers is challenging because when imple-

menting a desired swarm behavior one has to take into account local interactions between

robots and between robots and the environment. An alternative is the automatic design

of swarm robot controllers using methods of evolutionary robotics. Since evolutionary

algorithms maximize fitness potentially by every possible way, undesired side effects may

occur if a goal-directed fitness function was not specified accurately enough. By contrast,

task-independent fitness functions avoid the specific formulation of rewards but do not

guarantee that desired behaviors emerge. Our minimize surprise approach relies on such a

task-independent fitness function to evolve diverse collective behaviors for robot swarms.

Surprise, in its simplest form here, is the difference between observed and predicted sensor

values. We minimize surprise over generations by equipping each swarm member with an

actor-predictor pair of artificial neural networks and putting direct selection pressure on

the predictor. The actor is only indirectly rewarded by being paired with the predictor and

thus swarm behaviors emerge as a desired by-product.

In the first part of this thesis, we study minimize surprise as a method. In a simple

simulated self-assembly scenario, we show the effectiveness of our approach in comparison

to random search, the scalability of the evolved behaviors with swarm density, as well as the

robustness of evolution against sensor noise and of the emergent behaviors against damage

to the self-assembled structure. We also show that the resulting behavioral diversity of our

standard minimize surprise approach is competitive to the behavioral diversity generated

by task-independent novelty search and MAP-Elites variants. In addition, we demonstrate

that self-organization in minimize surprise can be engineered towards desired behaviors

by predefining some or all sensor predictions. In a more realistic simulation, we illustrate

how modifications of the environment (e.g., dynamically changing obstacle positions), the

agents (e.g., enabling battery level sharing), and the fitness function (e.g., adding a reward

for homing) can influence the evolution of behaviors.

In the second part of this thesis, we study the evolution of collective behaviors with

minimize surprise in different application scenarios. We evolve collective decision-making

behaviors for a collective perception task in the realistic BeeGround simulator, and collective

construction behaviors on a simple 2D torus grid. Furthermore, we make the step to real-

world setups and evolve basic swarm behaviors and object manipulation behaviors in the

realistic Webots simulator and on swarms of real Thymio II robots using an online onboard

evolutionary approach to minimize surprise.

Overall, we show that our minimize surprise approach allows the effective evolution of

diverse, robust, and scalable swarm behaviors for a variety of application scenarios in

simple simulations, realistic simulators, and real-world experiments. Moreover, evolution

can be pushed towards desired behaviors through the modification of the environment,

robot model, and predictor outputs. Potentially allowing open-ended adaptation to non-

anticipated situations, minimize surprise can help tackle the challenges of robotics.



Zusammenfassung

Roboterschwärme sind dezentralisierte kollektive Systeme einfacher verkörperter Agenten,

die autonom handeln und sich nur auf lokale Informationen stützen. Solche großen Multi-

Roboter-Systeme können im Vergleich zu einzelnen Robotern aufgrund ihrer potenziell

höheren Robustheit und Skalierbarkeit von Vorteil sein. Die Entwicklung von Steuerungen

für Roboterschwärme ist jedoch eine Herausforderung, da man bei der Implementierung

eines gewünschten Schwarmverhaltens lokale Wechselwirkungen zwischen den Robotern

sowie zwischen Robotern und der Umgebung berücksichtigen muss. Eine Alternative ist

die automatische Entwicklung von Schwarmrobotersteuerungen mit Methoden der evolu-

tionären Robotik. Da evolutionäre Algorithmen Fitness potenziell auf jedem möglichen

Weg maximieren, können unerwünschte Nebeneffekte auftreten, wenn eine aufgaben-

spezifische Fitnessfunktion nicht genau genug spezifiziert wurde. Im Gegensatz dazu

vermeiden aufgabenunabhängige Fitnessfunktionen die spezifische Formulierung von

Belohnungen, aber garantieren nicht, dass sich gewünschte Verhaltensweisen entwickeln.

Unser Minimize Surprise (zu Deutsch etwa Überraschungsminimierung) Ansatz basiert

auf einer solchen aufgabenunabhängigen Fitnessfunktion, um vielfältige kollektive Verhal-

tensweisen für Roboterschwärme zu evolvieren. Überraschung, hier in seiner einfachsten

Form, ist die Differenz zwischen beobachteten und vorhergesagten Sensorwerten. Wir

minimieren Überraschung über Generationen, indem wir jedes Schwarmmitglied mit

einem Aktor-Prädiktor-Paar aus künstlichen neuronalen Netzen ausstatten und direkten

Selektionsdruck auf den Prädiktor ausüben. Der Aktor wird nur indirekt aufgrund der

Kombination mit einem Prädiktor belohnt, sodass Schwarmverhalten als erwünschtes

Nebenprodukt entstehen.

Im ersten Teil dieser Arbeit befassen wir uns mit Minimize Surprise als Methode. In

einem einfachen simulierten Selbstassemblierungsszenario zeigen wir die Effektivität

unseres Ansatzes im Vergleich zu zufälliger Suche, die Skalierbarkeit der entwickelten

Verhaltensweisen mit der Schwarmdichte sowie die Robustheit der Evolution gegenüber

Sensorrauschen und der entstehenden Verhaltensweisen gegenüber Beschädigungen der

selbstassemblierten Struktur. Wir zeigen zudem, dass die resultierende Verhaltensvielfalt

unseres Standardansatzes zurMinimierung von Überraschungenmit der Verhaltensvielfalt

konkurriert, die durch aufgabenunabhängige Varianten der Novelty Search (zu Deutsch

etwa Neuheitensuche) und MAP-Elites Ansätze entstehen. Darüber hinaus zeigen wir,

dass Selbstorganisation in unserem Minimize Surprise Ansatz durch die Vordefinition

einiger oder aller Sensorvorhersagen in Richtung gewünschter Verhalten gelenkt werden

kann. In einer realistischeren Simulation veranschaulichen wir, wie Modifikationen der

Umgebung (z. B. dynamische Änderung der Hindernispositionen), der Agenten (z. B.

Teilen des Akkustandes) und der Fitnessfunktion (z. B. Hinzufügen einer Belohnung für

Homing (zu Deutsch etwa Heimkehr) Verhalten) die Evolution von Verhalten beeinflussen

können.

Im zweiten Teil dieser Arbeit untersuchen wir die Evolution kollektiver Verhaltensweisen

mit Minimize Surprise in verschiedenen Anwendungsszenarien. Wir evolvieren Ver-

halten zur kollektiven Entscheidungsfindung für eine Aufgabe im Bereich kollektiver

Wahrnehmung im realistischen BeeGround-Simulator und kollektives Bauverhalten in

einer einfachen 2D-Torus-Gitterwelt. Darüber hinaus machen wir den Schritt in die reale



Welt und evolvieren grundlegende Schwarmverhalten und Verhalten der Objektmanipu-

lation im realistischen Webots-Simulator und auf Schwärmen echter Thymio II-Roboter.

Dazu verwenden wir einen evolutionären Ansatz für Minimize Surprise bei dem Verhalten

direkt auf den Robotern während ihrer Einsatzzeit in der echten Arena evolviert werden.

Insgesamt zeigen wir, dass unser Minimize Surprise Ansatz die effektive Entwicklung von

vielfältigen, robusten und skalierbaren Schwarmverhalten für eine Vielzahl von Anwen-

dungsszenarien in einfachen Simulationen, realistischen Simulatoren und in Experimenten

in der echten Welt ermöglicht. Darüber hinaus zeigen wir, dass die Evolution durch

Modifikation der Umgebung, des Robotermodells und der Prädiktorausgaben in Richtung

gewünschter Verhalten gelenkt werden kann. Da Minimize Surprise potenziell die perma-

nente Anpassung an unvorhergesehene Situationen ermöglicht, kann es dazu beitragen

die Herausforderungen der Robotik zu lösen.
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Introduction 1
Chapter Contents

In this chapter, we discuss our...

I Sec. 1.1: motivation,

I Sec. 1.2: objectives, and

I Sec. 1.3: contributions and the thesis outline.

1.1 Motivation

Figure 1.1: Jellyfish (Phyllorhiza punctata)

at Aquarium Berlin.

Nature frequently serves as a source of inspiration for roboti-

cists. For example, soft robotics is inspired by the use of soft

materials in animals [1], such as jellyfish (see Fig. 1.1), and

behavior-based robotics takes inspiration from psychologi-

cal, neuroscientific, and ethological concepts of behavior [2].

This work is in the context of swarm robotics (see Sec. 2.1.2),

which is inspired by natural swarms and collective systems,

such as ant colonies [3, 4] and flocks of birds [5]. Robot

swarms are decentralized collective systems consisting of

simple embodied agents that act autonomously and rely

on local information only [6]. While these large-scale multi-

robot systems have the potential for higher robustness and

scalability than single-robot systems, their manual design is

challenging. The collective behavior of the robot swarm on

the macro-level (i.e., the swarm or global level) emerges from

interactions between individual robots and between robots

and the environment on the micro-level (i.e., the individual

or local level) [7]. That means, the desired collective behavior

is specified on the macro-level by the user, but the robot con-

troller has to be implemented by the system designer on the

micro-level while considering hard to anticipate interactions

and feedback processes [8, 9].

The automatic design of swarm robot controllers is a promis-

ing alternative [10]. But despite recent improvements in

machine learning [11, 12], it is still difficult to automatically

generate robot controllers for complex tasks and collective

robot systems (see Sec. 2.3.1) [13]. Researchers frequently rely

on methods of evolutionary robotics as alternative, optimiz-

ing robot controllers using algorithms that are inspired by

natural evolution (see Sec. 2.3.2) [14–16]. These methods have

also proven to be competitive to standard machine learning

methods [17, 18]. In this work, we use methods of evolution-

ary swarm robotics, which is the application of evolutionary

robotics to swarm robotics [8].

In evolutionary swarm robotics, controllers are optimized in

an iterative process that is guided by the optimization of a
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fitness function that also specifies the goal of the search (see

Sec. 2.3). The fitness function, that is usually specified by a

human designer, measures the performance of a controller

candidate when executed in the environment. Higher fitness

increases the probability that a controller will be selected and

mutated to be evaluated in the next iteration. Consequently,

better performing controller candidates survive longer in the

evolutionary process.

Most commonly used are task-specific fitness functions that

reward the achievement of a desired task or behavior. The de-

signer faces several challenges specifying such goal-directed

fitness functions. Evolutionary algorithms maximize fitness

potentially by everypossibleway,which can lead tounwanted

behaviors when the fitness function was not specified ac-

curately enough [19]. For example, a system designer may

define a fitness function that rewards a robot for every time

step it does not hit an obstacle to evolve an obstacle avoid-

ance behavior. In this case, the evolutionary process will

most likely result in a behavior that lets the robot stand

still, since obstacles cannot be hit when the robot does not

move. To avoid such undesired behaviors, fitness functions

have to be defined unambiguously, which often requires

an extensive iterative refinement process. In addition, there

is a tradeoff between rewarding high-level task completion

and rewarding specific behavioral features [20]. Since the

randomly generated initial controller candidates will most

probably not lead to the fulfillment of non-trivial desired

tasks, rewarding high-level task completion can cause boot-

strapping problems. That is, the fitness of the initial controller

candidates is not detectable and thus no selective pressure

to guide optimization is generated. By contrast, rewarding

specific behavioral features of an assumed solution for a

particular task restricts the search to certain solution types

potentially causing that more original solutions will not be

found.

A different option is to use a task-independent fitness func-

tion that puts selection pressure on aspects that are not

directly related to a desired task or behavior. While there

is no guarantee that desired behaviors will be found, the

evolutionary process has the freedom to find original so-

lutions. However, since task-independent approaches fre-

quently lead to the emergence of diverse behaviors within

or across evolutionary runs, users can choose from a set of

behaviors that may include desired ones. Task-independent

fitness functions are studied, for example, in evolutionary

robotics to realize engineering tools for the automatic syn-

thesis of robot controllers [21] and in artificial life [22] to

enable open-ended evolution and long-term autonomy. A

variety of task-independent fitness functions exists, for in-

stance, rewarding behavioral diversity [23], such as in novelty

search [24], relying on information-theoretic quantities, such

as mutual information [25], or including selective pressure
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via the environment, such as in robot ecology [26, 27] where

agents need to survive long enough to be able to reproduce.

In this work, we investigate a task-independent approach to

the evolution of collective behaviors for robot swarms (see

Sec. 3.2) in detail. Our minimize surprise approach [28] is

inspired by the broader idea of the brain as a prediction

machine [29]. Several concepts of artificial intelligence are

based on this idea, for example, the so-called Helmholtz

machines [30], which are an unsupervised learning approach,

and the information-theoretic ‘free-energy principle’ [31] that

states that organisms constantly try to minimize free energy

or surprise, that is, in the simplest case, the difference between

observed and predicted sensor values (i.e., the prediction

error; see Sec. 3.1).

Most studies on the brain as a prediction machine were

conducted in single agent settings [32–34] and only recently

researchers started to also consider simulated collective sys-

tems [35, 36]. In our studies, we evolve collective behaviors in

simulation and on real robots by putting selection pressure

on minimizing surprise, or, put differently, on maximizing

prediction accuracy, in the evolutionary process. For this pur-

pose, each member of a homogeneous swarm is equipped

with an actor-predictor pair of artificial neural networks

(ANNs; see Sec. 2.3.1). During evolution, direct pressure is

only put on the predictor while the actor is only indirectly

rewarded by being paired with the predictor. As we min-

imize surprise over generations, swarm behaviors emerge

as a by-product, potentially allowing for a diverse set of

solutions [28]. In contrast to single robot settings, a robot’s

environment is populated by swarm members that are iden-

tical to it in our swarm scenarios. Consequently, a robot’s

sensor input is based both on its own actions and the actions

of the other swarm members, which may trigger more active

behaviors in a self-referential loop.

First works on minimize surprise [28, 37] showed the po-

tential of the approach to generate diverse collective behav-

iors across several independent evolutionary runs. However,

these first works only evolved basic collective behaviors in

simple 1D and 2D torus environments for swarms of sim-

ple agents. The resulting behaviors were repetitive, which

allows for easy sensor predictions. Furthermore, the analysis

focusedmainly on the overall success of the approach regard-

ing prediction accuracy and behavioral diversity. Although

the results of these studies were promising, they have raised

many questions that were left to future work. In this thesis,

we address these open questions and even go beyond themby

studying minimize surprise in-depth in simple simulations,

engineering self-organization towards desired behaviors, and

conducting experiments on real robots.
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Figure 1.2: Overview of our studies on

our minimize surprise approach. The

thesis is divided into two parts: Part I fo-

cuses on methods and Part II focuses on

different scenarios. We do experiments

in environments ranging from simple

simulations over realistic simulations to

the real world, using approaches to mini-

mize surprise that are task-specific, com-

bine task-specific and task-independent

rewards, and are fully task-independent.

Boxes give the different studies, the color

of the outline indicates whether task-

specific or task-independent fitness func-

tions or combinations thereof (multicol-

ored lines) were used, and the fill color

indicates the used environments.

1.2 Objectives

We address the following six research questions in our stud-

ies:

Q1 How robust, scalable, and diverse are collective behav-

iors evolved with minimize surprise?

Q2 How can we engineer our minimize surprise approach

so that desired behaviors emerge?

Q3 How does minimize surprise compare to other

approaches?

Q4 How can we evolve dynamic behaviors that adapt their

behavior according to varying sensor input using our

minimize surprise approach?

Q5 Can we evolve collective behaviors for scenarios with

different environmental complexities and agent capabil-

ities with minimize surprise?

Q6 Which adaptations are necessary to apply minimize sur-

prise in real-world settings?

We focus on questions Q1 to Q4 in the first part and on

questions Q5 and Q6 in the second part of this thesis.

1.3 Contributions and Thesis Outline

First, we explain the fundamentals of robotics, swarm behav-

iors, and artificial intelligence to introduce the background

for this work in Ch. 2. We then give a detailed introduction
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(a) self-assembly

(b) collective construction

Figure 1.3: Simple simulations

Figure 1.4: Simulation environment for

our study on dynamic behaviors.

(a) collective perception in Bee-

Ground [45]

(b) basic swarm behaviors in

Webots [46]

Figure 1.5: Realistic simulations

to our minimize surprise approach in Ch. 3. As mentioned

before, we divide the rest of this thesis into two parts, see

Fig. 1.2.

In Part I, we put special focus on methods for our minimize

surprise approach and address research questions Q1 to

Q4.

Chapter 4 introduces a self-assembly scenario in a simple

simulation environment [38–43] (see Fig. 1.3a) that

serves as our sample scenario for an in-depth analysis of

minimize surprise. We address research question Q1 by

studying the emergent behavioral diversity over swarm

density and show that minimize surprise outperforms

pure random search.

Chapter 5 addresses research questions Q1 and Q3 with an

in-depth analysis using our self-assembly scenario [39–

43]. We show the robustness of our minimize surprise

approach against sensor noise and of the emergent be-

haviors against damage, the scalability of the behaviors

with swarm density, as well as the resulting behavioral

diversity in comparison to task-independent novelty

search [24] and MAP-Elites variants [44].

Chapter 6 illustrates how self-organization can be engi-

neered towards the evolution of desired behaviors by

predefining some or all sensor predictions and shows

that this approach is competitive to evolutionary al-

gorithms with task-specific fitness functions using our

self-assembly scenario [38–42]. Thus, our minimize sur-

prise approach can be used in variants ranging from

being fully task-independent (i.e., no predictions are

predefined) to being fully task-specific (i.e., all predic-

tions are predefined). We address research questions Q2

and Q3 in this chapter.

Chapter 7 addresses research question Q4. We study the

influence of modifications to the environment, agents,

and fitness function on the resulting behaviors aiming

to push evolution towards more dynamic behaviors.

Here, we also make the first step towards more realistic

simulation environments (see Fig. 1.4).

Part II focuses on the evolution of collective behaviors with

our minimize surprise approach for various scenarios in sim-

ple simulations, realistic simulators and real-world settings,

and thus addresses research questions Q5 and Q6.

Chapter 8 investigates the evolution of collective decision-

makingbehaviorswithminimize surprise for a collective

perception scenario in a realistic simulation environ-

ment (see Fig. 1.5a). Here, we show that pure minimize

surprise may not be sufficient in all scenarios to evolve

behaviors that are useful to the user and that the inclu-

sion of an additional task-specific reward is probably

required in some settings.
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Figure 1.6: Real-world setup for our ob-

ject manipulation scenario.

Chapter 9 presents a collective construction scenario in a

simple simulation environment [47]. To enable construc-

tion, we distribute blocks in the environment that can be

pushed around by the agents (see Fig. 1.3b). This is the

first scenario in which individual swarm members can

not only interact with each other but also with passive

objects in their environment.

Chapters 10 and 11 address research question Q6, that is,

we finally make the step towards realistic simulations

and real-world setups. For this purpose, we present an

online onboard evolutionary architecture for minimize

surprise.We evolve collective behaviors in two scenarios

in realistic simulations (see Fig. 1.5b) and real-world

environments (see Fig. 1.6): we aim for basic swarm

behaviors [42] in Ch. 10 and for object manipulation

behaviors [48] in Ch. 11.

Finally,we summarize our results and discuss ideas for future

work in Ch. 12.



1: Rossum’s Universal Robots

"I can’t define a robot, but I know one

when I see one."

Joseph Engelberger

Fundamentals 2
Chapter Contents

In this chapter, we introduce...

I Sec. 2.1: robotics, mobile robotics, and swarm robotics,

I Sec. 2.2: swarm behaviors in nature and robotics, and

I Sec. 2.3: artificial intelligence includingmachine learn-

ing, evolutionary computation, and intrinsic motiva-

tions.

In our research, we aim for the automatic generation of

controllers for collective robot systems using an innate moti-

vation as a task-independent reward. This chapter provides

an overview over related background to put our research

into context.

2.1 Robotics

In 1920, the Czech writer Karel Čapek used the term robot

for the first time ever to denote a fictional humanoid in his

play R.U.R.
1
The term derives from the Czech word robota

meaning ‘forced labor’ [49]. Although the word robot is only

a century old, the idea of robots and automata goes back to

ancient Greek mythology [50]. But it took until the middle

of the 20th century until the first real robots were built [51].

Since then, robots have found their way into our daily lives,

for example, into manufacturing [52–54], medicine [55–57],

space exploration [58–60], agriculture [61–63], and customer

service [64–66].

Robotics deals with the design, construction, operation, and

application of robots. Although there is no single definition

of what a robot is, it is generally considered a programmable

machine that can automatically perform complex tasks [49,

67, 68]. Robots consist of three main parts: sensors, actuators,

and control system [69]. Exteroceptive sensors observe the

environment directly (e.g., infrared sensors), while proprio-

ceptive sensors perceive the inner state of the robot related

to body position and movement (e.g., rotary encoder), and

interoceptive sensors monitor the robot’s internal state (e.g.,

battery charge level). Actuators enable the manipulation of

objects by and the locomotion of robots in the environment.

Robot control can range from simple reactive behaviors over

sophisticated control theory approaches to control based

on artificial neural networks. Thus, robotics is a broad re-

search field integrating various scientific and engineering

disciplines. We focus on the two most relevant areas for this

work, namely mobile robotics and swarm robotics.
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robot

stationary mobile

aquatic terrestrial airborne

Figure 2.1: Robot classification based

on operation environment. Adapted

from [67].

2.1.1 Mobile Robotics

A common approach to classify robots is based on their

operation environment, which is directly connected to their

locomotion capabilities, see Fig. 2.1 [67, 70]. Stationary robots,

such as industrial robotic manipulators, are anchored in the

ground and perform specific, repetitive tasks. Since these

robots are used in well-defined environments, they can be

controlled using open-loop control. This means that the

robot’s control algorithm uses predefined parameters and

does not rely on feedback. Consequently, error correction is

impossible. In contrast, mobile robots, such as robotic vacuum

cleaners, move and execute tasks in uncertain and unstruc-

tured environments. These environments are not specifically

designed for robots and change over time, for example, due

to unpredictable entities, such as humans and animals. Con-

sequently, mobile robots do not know in advance precisely

all situations they might encounter. To act autonomously and

to be able to react to changes in their uncertain operation

environments, mobile robots usually use closed-loop control.

This means that robots take actions that minimize the error

between desired and actual system states.

Mobile robots can be used in aquatic, terrestrial or aerial envi-

ronments that require different motion strategies. Aquatic

robots include unmanned surface vehicles (i.e., drone ships)

that swim on water [71, 72] and underwater robots [51] that

swim [73, 74] or walk [75, 76]. Terrestrial robots are either

wheeled [77, 78], tracked [79, 80] or legged [81–83] or combine

these as hybrids [84, 85]. Airborne robots are autonomous

aircraft that are either heavier-than-air, such as drones [86],

or lighter-than-air, such as airships [87]. Not all robots can

be strictly classified based on their operation environment,

since they may fulfill criteria of more than one category.

For example, amphibious robots can move on land and in

water [88, 89]. In principle, our approach for the automatic

generation (see Sec. 2.3) of robot behaviors is not limited to

certain operation environments or robot hardware, but we

have solely used wheeled indoor robots in our experiments

so far. The extension to further platforms and operation

environments remains subject of future work.

Although robots that follow a set of pre-programmed mo-

tions may appear autonomous, true autonomous robots are

capable of making decisions based on their environment [69].

In our work, we aim for fully autonomous robots that are

able to perform tasks completely on their own. Neverthe-

less, many mobile robot systems rely on a human operator:

remotely controlled robot systems are fully operated by a hu-

man (e.g., robots for repair and recovery in zones of high-level

radiation [90]), while semi-autonomous robots can perform

subtasks autonomously (e.g., Mars rovers, such as NASA’s

Perseverance [91]) [67]. The control of fully autonomous

robots usually relies on the three primitives sense, plan, and



2 Fundamentals 9

sense plan act

Figure 2.2: Deliberative control: sense,

plan, and act are executed sequentially.

sense act

Figure 2.3: Reactive control: sense and

act are tightly coupled.

sense act

plan

Figure 2.4: Hybrid control: plan, then

sense - act.

act. The control can then be realized in many ways, but there

are essentially three approaches [92]:

Deliberative control. In deliberative control, sense, plan,

and act are executed sequentially (see Fig. 2.2). First,

robots sense their environment and fuse the sensory

data into a world model, that is, a symbolic representa-

tion of the environment. The world model is then used

by a planner to reason about next actions that will finally

be executed by the robot’s actuators. While deliberative

control allows for finding the best course of action, it is

slow and requires an accurate, up-to-date world model.

For example, robot navigation can be realized using

deliberative control by building a map using Simulta-

neous Localization and Mapping (SLAM) [93], localizing

the robot with Markov localization [94], and planning a

path using the A* algorithm [95].

Reactive control. Inspired by the reactive behavior of in-

sects [9], reactive control relies on tight sensor-actuator

coupling. Simple condition-action rules with no state

map sensor inputs directly to actions (see Fig. 2.3).

While this allows for real-time responses, reactive con-

trol is limited to rather simple tasks. Navigation can

be realized by reactive control using an artificial poten-

tial field approach [92]. Related to reactive control are

behavior-based robotics [2] and Brook’s subsumption

architecture [96]. Here, several behaviors run concur-

rently and an action selection mechanism determines

which actuator outputs of the active behaviors will be

executed. Behavior-based robotics frequently relies on

purely reactive behaviors, but it is not limited to those

and thus more complex tasks can be accomplished [97].

Hybrid control. Hybrid control combines the fast response

time of reactive controlwith the efficiency of deliberative

control (see Fig. 2.4). A deliberative layer generates

a plan for task accomplishment and a reactive layer

executes the behaviors. Consequently, a coordination

layer to resolve conflicts between these two layers is

required, which is one of the major challenges of hybrid

systems [51]. An example for a hybrid approach to

navigation is to combine the deliberative A* algorithm

to find the shortest path with the reactive potential field

approach to avoid obstacles [98].

The realization of all three control approaches can range from

fully hand-coded over partially to completely learned using

methods of machine learning (see Sec. 2.3). In our work, we

use reactive and behavior-based control approaches that are

learned using methods of evolutionary computation.
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2: Relatively homogeneous swarms con-

sist of robots that are all identical or be-

long to only few different topologies [99].

2.1.2 Swarm Robotics

Groups of social animals, and especially of social insects, that

consist of relatively simple individuals are able to accomplish

collectively tasks of various complexity, that is, they show

swarm intelligence [9, 99]. Swarm robotics [6, 100], which

was named one of the ten grand challenges of Science Ro-

botics [101], follows this inspiration. It studies how desired

collective behaviors emerge from local interactions among

many simple, inexpensive, relatively homogeneous
2
robots

and between those robots and the environment [102]. The

swarms are asynchronous and decentrally controlled [7, 103],

usually relying on simple control approaches, such as reactive

or behavior-based control [6]. Furthermore, swarm members

have only local sensing and communication capabilities [7,

104]. This lack of central or hierarchical coordination and

central communication differentiates robot swarms from

traditional multi-robot systems [105]. The characteristics of

robot swarms lead to three main advantages over mono-

lithic robot systems [7, 106] that can also be found in social

animals [107]:

Robustness allows the successful execution of the task even

when individual swarm members fail.

Scalability means that the collective system is able to solve

the task independent from group size.

Flexibility allows the collective system to handle different

environments and tasks as well as to adapt to changes.

macro-level

micro-level

Figure 2.5:Micro-level and macro-level

in a robot swarm. Robot controllers are

implemented on the micro-level taking

into account the individual robot’s local

interactions with its neighbors and the

environment. Collective behaviors are

exhibited on the macro-level.

But the manual design of such swarm robot systems is chal-

lenging. The global, collective behavior of the swarm on

the macro-level emerges from the individual behavior on

the micro-level, that is, from local interactions between indi-

vidual robots and between robots and the environment [7].

Thereby, systems rely on self-organization (i.e., the dynamic

and adaptive acquisition and maintenance of structure with-

out external control) and emergence (i.e., the exhibition of

novel behaviors on themacro-levelw.r.t. the individual behav-

iors) [108]. Thus, robot controllers have to be implemented on

the micro-level while considering hard to anticipate interac-

tions and feedback processes to realize the desired collective

behavior on the macro-level [8, 9]. Various approaches exist

to manually design swarm systems and to derive the micro-
macro link [109–111]. Alternatively to the manual design,

swarm robot controllers can be automatically generated us-

ing methods of artificial intelligence. We use such methods

in our work here and thus discuss them in more detail in

Sec. 2.3.

Figure 2.6: Kilobot

Swarm robotics research makes use of simulated and real

robot swarms. Several robot platforms were built specifically

for swarm robot applications including the Kilobot [112] (see

Fig. 2.6), the s-bot [113, 114] and the Colias robot [115]. Addi-

tionally, simple and inexpensive educational robot platforms
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are frequently used, for example, the Thymio II [77] and the

e-puck [78]. Accordingly, there are simulators that were de-

veloped for swarm robotics research, such as BeeGround [45]

and ARGoS [116], as well as other suitable simulators that

are not specifically intended for swarms, such as Webots [46].

In our work, we use own simple simulations, Webots, and

BeeGround as well as real Thymio II robots.

Figure 2.7: Illustration of the Thymio II

robot with all its sensors, actu-

ators, and other relevant parts.

©Thymio® (http://wiki.thymio.
org/en:thymiospecifications)
licensed under CC BY-SA 3.0

(https://creativecommons.org/
licenses/by-sa/3.0/) / modified.

Figure 2.8:Thymio IIwith attachedRasp-

berry Pi and external battery.

The Thymio II [77] (see Fig. 2.7) is a small, inexpensive

mobile robot of 11 cm × 11.2 cm × 5.3 cm. It has a differen-

tial drive (i.e., two separately driven wheels), 39 LEDs, and

one loud-speaker as actuators. The robot is equipped with

several sensors: five capacitive touch buttons, a three-axis

accelerometer, a thermometer, a microphone, an infrared (IR)

receiver, and nine IR proximity sensors. Seven of the latter

sensors are positioned in the front and back of the robot

for obstacle detection, and two are underneath the robot

that can be used, for example, for line following. The robot

makes use of the Aseba framework [117], that is, a modular

architecture for event-based control and can be programmed

using the Aseba programming language, Blockly, Scratch,

and Visual Programming Language (VPL). We use an ex-

tended Thymio II robot in our experiments by connecting

a Raspberry Pi 3B (RPi) via the robot’s USB port that is

powered by an external battery (see Fig. 2.8). The command-

line utility asebamedulla then provides access to the robot’s

Aseba network through D-Bus and thus the robot can be pro-

grammed with third-party languages, such as Python [118].

The external RPi furthermore provides Wi-Fi and allows to

add more sensors to the robot.

http://wiki.thymio.org/en:thymiospecifications
http://wiki.thymio.org/en:thymiospecifications
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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Swarm
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Spatial
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Aggregation
and Dispersion
Pattern Formation
and Self-Assembly
Object Clustering
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Coordinated Motion
Collective Transport
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Collective
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Other

Figure 2.9: Taxonomy of swarm behav-

iors based on Brambilla et al. [7] and

Schranz et al. [119] including a non-

exhaustive list of sample behaviors. Be-

haviors printed in bold are explained in

more detail in Sec. 2.2.

2.2 Swarm Behaviors in Nature and Robotics

The main inspiration for collective robot behaviors are collec-

tive behaviors of groups of social animals including, among

others, ants, bees (see Fig. 2.10), birds, and fish. In this section,

we present an overview of swarm behaviors found in nature

and exemplary swarm robotics approaches to them.

Figure 2.10: Bees (Apis mellifera) on a hon-

eycomb. Printed with permission from

©Richard Kaiser.

Fig. 2.9 visualizes a taxonomy of swarm robotic behaviors

based onBrambilla et al. [7] and Schranz et al. [119]. It includes

four categories of collective behaviors:

Spatial organization behaviors let robots spatially organize

themselves or objects.

Navigation behaviors allow the coordinated movement of

the robot swarm.

Collective decision-making behaviors enable robot swarms

to make choices.

Other behaviors do not fit in the categories above. Examples

are human-swarm interaction and group size regulation.

In this work, we aim for behaviors of the first three categories.

Thus, we explain behaviors of those categories and their

biological inspiration in more detail in the following.

2.2.1 Spatial Organization Behaviors

Spatial organization behaviors let robots move in the envi-

ronment to spatially organize themselves or objects [119]. In

our work on minimize surprise, we observe several of those

behaviors including aggregation and dispersion (see Ch. 10),

pattern formation and self-assembly (see Ch. 4), as well as

object clustering and construction (see Chs. 9 and 11).
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Figure 2.11: Aggregation of bees (Apis

mellifera). Printed with permission from

©Richard Kaiser.

(a) uniform dispersion

(b) random dispersion

(c) clumped dispersion

Figure 2.12:The three types of dispersion
of individuals in ecology.

Aggregation

Aggregation is the simplest of the spatial organization be-

haviors. All swarm members group in a specific region of

their environment, that is, they position themselves spatially

close to each other and thus enable interactions with each

other [7]. This behavior is frequently observed in natural

swarms as it allows, among other things, for easier ther-

moregulation and lower predation risks [120]. Aggregations

are formed, for example, in bacteria [121], bees [122] (see

Fig. 2.11), cockroaches [123], butterflies [124], mussels [125],

and penguins [126].

There exist several approaches to aggregation in swarm ro-

botics [127]. A prominent example is the BEECLUST [128,

129] algorithm that is inspired by the grouping of young

honeybees at a spot with their preferred temperature on the

honeycomb. The behavior can be reproduced with robots

using a simple finite state machine. Robots move straightfor-

ward until they detect an obstacle or a robot. While they turn

away from detected obstacles, they wait for a temperature-

dependent time and afterwards turn by 180
◦
when detecting

other robots. As robots stop longer in warmer areas, the

behavior leads to their aggregation there. Other examples for

aggregation in swarm robotics include the replication of the

aggregation behavior of cockroaches using probabilistic ap-

proaches [130, 131], the combination of four simple behaviors

in a probabilistic finite statemachine to create a generic aggre-

gation behavior [132], the evolution of aggregation behaviors

using artificial neural networks as robot controllers [133, 134],

and approaches based on artificial physics [135].

Dispersion

As the opposite behavior to aggregation [6], dispersion lets

swarm members distribute over the environment while stay-

ing within communication range. While dispersion is used

for area coverage andmonitoring in swarm robotics, it is only

rarely seen in natural swarms [136]. However, dispersion

can be found in population distributions in ecology as ani-

mals disperse due to territoriality, competition or resource

distribution [137]. There are three different dispersion types

(see Fig. 2.12): uniform (i.e., individuals are roughly evenly

spaced), random (i.e., there is no predictable pattern), and

clumped (i.e., individuals group in several areas).

Swarm robotic approaches to dispersion have been studied

in simulation and on real robots. Matarić [138] implements

dispersion on real robots by making robots move away from

their local area of highest robot density. Ugur et al. [139]

use wireless signal intensities to estimate distances between

robots and let robots move away from or towards other

robots depending on a threshold value. Other approaches
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Figure 2.13:Zebra. Image byGeorgeBrits

released under CC0 / cropped.

Figure 2.14: Ant bridge. ©Igor
Chuxlancev (https://commons.
wikimedia.org/wiki/File:
AntBridge_Crossing_10.jpg),
licensed under CC BY 4.0

(https://creativecommons.org/
licenses/by/4.0) / cropped.

are based on potential fields [140] or ’virtual pheromones’

(i.e., infrared messages allowing to infer the distance to

the sender) [141], or evolve artificial neural networks as

controllers for dispersion [142, 143].

Pattern Formation

Pattern formation can be found frequently in nature. Ex-

amples are animal coat markings, such as the stripes on

the coat of zebras (see Fig. 2.13), phyllotaxis, that is, the

formation of leaf patterns, the formation of waves [144], and

the formation of patterns in crystal growth [145]. Further-

more, spatio-temperal patterns [146] can form, such as the

organization of ants or pedestrians into lanes in areas of

bidirectional flow [147]. Most of these pattern formation pro-

cesses can be explained by reaction-diffusion mechanisms

and activator-inhibitor schemes [148].

In swarm robotics, pattern formation behaviors let robots

arrange themselves in desired patterns or shapes [119]. For

example, Spears et al. [149] use virtual repulsive and attrac-

tive forces to let robot swarms form hexagonal and square

lattices. In the approach by Meng et al. [150], robots form

user-predefined target patterns, for example, circles or U-

curves, using gene regulatory networks. Inspired by the

formation of trail networks by foraging ants [151], Nouyan

et al. [152] propose a behavior-based architecture based on

Arkin’s motor schema paradigm [2] and Sperati et al. [153]

evolve artificial neural networks as robot controllers for chain

formation for swarm robot navigation in unknown environ-

ments. Furthermore, Hamann et al. [154] make use of the fact

that ants can determine the direction to the nest and food

source based on the geometry of trail bifurcations [3] and

implement it as a simple reactive swarm robot behavior to

allow for the orientation in trail networks.

Self-Assembly

Self-assembly is a process that lets system components or-

ganize themselves autonomously into patterns or structures

without human intervention [155]. Self-assemblages can be

found on different scales ranging from molecules to colonies.

Swarm robotics is mainly inspired by those of ants, bees,

and wasps, such as ant bridges (see Fig. 2.14) and bee cur-

tains [156]. While Brambilla et al. [7] and Hamann [6] stress

that robots have to be physically connected in self-assembly,

Schranz et al. [119] include as well virtually (i.e., through

communication links) connected robots. Accordingly, the line

between pattern formation and self-assembly approaches in

the swarm robotics literature is blurred.

One of the most prominent works in that domain is by

Rubenstein et al. [157] who implement self-assembly on a

https://commons.wikimedia.org/wiki/File:AntBridge_Crossing_10.jpg
https://commons.wikimedia.org/wiki/File:AntBridge_Crossing_10.jpg
https://commons.wikimedia.org/wiki/File:AntBridge_Crossing_10.jpg
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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Figure 2.15: The space rake in Conway’s

Game of Life. Image by David Eppstein

released to public domain.

swarm of thousand Kilobots using a finite state machine. The

robots form user-defined shapes (e.g., a star) by positioning

themselves next to each other (i.e., emulated self-assembly).

Divband Soorati et al. [158] present a hand-crafted, plant-

inspired algorithm for adaptive emulated self-assembly of

tree structures also using Kilobots. Similar to these two ap-

proaches, we emulate self-assembly in our work as well

(see Ch. 4). By contrast, the s-bot is a robot platform that

can connect to other s-bots using a gripper and was de-

veloped especially for self-assembly [113, 114]. S-bots can

self-assemble to accomplish a variety of tasks including form-

ing chains to pass gaps or steps or to go through narrow

passages [159], to cross rough terrains with hills [160], and

to pull heavy objects [161]. The FireAnt3D robot system

by Swissler and Rubenstein [162] provides a new docking

mechanism that allows for more flexible 3D self-assembly.

The system is used for the self-assembly of four amorphous

and environment-adaptive structures, namely towers, chains,

cantilevers, and bridges [163]. The next level of self-assembly

are reconfigurable, modular robots that self-assemble and

self-disassemble to change their morphology [164, 165].

Excursus: Cellular Automata

Related to pattern formation and self-assembly is the research

on cellular automata. Cellular automata are mathematical

models for dynamical systems that are discrete in time and

space (i.e., grid-based) [166] as are our self-assembly experi-

ments with minimize surprise (see Ch. 4). Grid cell states are

updated using deterministic update rules that are based on

the state of neighboring cells. Those update rules can be man-

ually designed or automatically generated using methods of

artificial intelligence.

The most popular cellular automaton is Conway’s Game

of Life [167, 168]. In this rule-based approach, cells change

their state between dead and live based on their Moore

neighborhood. Patterns, that can be stable or oscillating, then

form depending on the initial configuration (see Fig. 2.15).

Cellular automata are used, among others, in artificial life

studies, for example, studying speciation [169] and open-

ended evolution [170]. Most relevant for our work here are

approaches aiming for the reproduction of target patterns.

Elmenreich and Fehérvári [171] evolve time-discrete, recur-

rent artificial neural networks as update rules for cellular

automata to reproduce target images, for example, flags.

Hoffmann [172] evolves finite state machines as update rules

in a cellular automata agent setup, that is, agents can move

over and change grid cells for the formation of path [172],

line [173], domino [174], and checkerboard patterns [175].

Öztürkeri and Johnson [176] evolve update rules for devel-

opmental cellular models, that is, cellular automata where
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the update rules influence also neighboring cells. They aim

for the self-assembly of target patterns, such as squares, dia-

monds, and flags. In all those approaches, high resemblance

of formed and targeted pattern is rewarded and repetitive

patterns are successfully created. This resembles our work

on engineering self-organization by predefining predictions

in our minimize surprise approach (see Ch. 6).

Object Clustering

In object clustering, robots move objects that are distributed

in the environment to aggregate or sort them. In nature,

for example, the ant species Leptothorax unifasciatus clusters

their brood sorted by brood stages [177] and several ant

species pile the corpses of dead individuals in ’ant cemetery’

clusters [178].

In swarm robotics, there are several approaches to cluster-

ing and sorting of objects in simulation and on real robots.

Resnick [179] presents a termite-inspired approach to cluster

wood chips in simulation. The simulated termites follow two

simple rules when finding a wood chip: if they do not carry

one yet, they will pick it up; if they carry a wood chip already,

theywill put it down. Beckers et al. [180] use a behavior-based

approach replicating the corpse-gathering behavior of ants.

A single cluster is formed by combining moving straight-

forward, obstacle avoidance and puck dropping behaviors.

Scheidler et al. [181] use a probabilistic approach and pick

up and drop objects with certain probabilities. A rule-based

approach by Holland and Melhuish [182] allows for annular

sorting (i.e., objects are sorted in concentric rings) of two

different object types using real robots. Wilson et al. [183]

extend the approach to work with more object types.

Several other approaches to clustering and sorting rely on ar-

tificial neural network controllers that are either evolved [184–

186] or trained using supervised learning [187]. We evolve

object clustering behaviors with our minimize surprise ap-

proach in Ch. 9.

Collective Construction

Animals have proven to be accomplished builders and coop-

eratively built structures abound in nature. For example, the

mounds built by termites of the genusMacrotermes can be up

to seven meters high, that is, 600 times the size of an individ-

ual termite [188]. Further examples include honeycombs [189],

ant nests [4], beaver dams [190], and nests of birds [191]. Col-

lective robotic construction became an active research area as

the need for safe, inexpensive, and sustainable construction

increased [192]. Thereby, not only the coordination of robots

but also used material and mechanisms as well as targeted

structures have to be taken into account.
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Figure 2.17: A flock of birds. Image by

Christoffer A. Rasmussen released to

public domain.

3: Coordinated motion is also known as

flocking [7].

A simple, ant-inspired approach is presented by Parker et al.

[193]. Ants of the species Leptothorax tuberointerruptus build

their nests in flat crevices in rock that provide floor and

roof. Thus, the ants have to construct solely planar perimeter

walls [4]. Exhibiting the so-called ‘blind bulldozing’ behavior,

ants push debris (e.g., stones, sand) outwards from the

future nest’s center until they detect resistance that exceeds

a threshold. Then, they randomly reorientate and continue

pushingmaterial outwards, which leads to the self-organized

clearance of the nest site and the construction of circular

perimeter walls over time. Parker et al. [193] implement this

behavior as a three state finite state machine and execute it

on a swarm of four real robot bulldozers. Fig. 2.16 shows

our reproduction of blind bulldozing with three Thymio II

robots that were extended with bulldozer blades [194].

Figure 2.16:Nest constructed by a swarm

of three Thymio II robots executing

the ant-inspired blind bulldozing algo-

rithm [194].

Werfel et al. [195] present a termite-inspired approach includ-

ing a dedicated robot platform that can carry and climb bricks.

Their system generates low-level rules for the robot swarm

to build a user-defined desired structure. The robots rely

on local sensing only and act reactively in the construction

process.

Other approaches use continuous [196] or amorphous [197]

building material, build structures using drones [198],

evolve [199] or train controllers for swarm construction with

reinforcement learning [200], or encode targeted structures

in scalar fields [201, 202] or distance transforms [203]. An

extensive overview of the field can be found in the review by

Petersen et al. [192]. We present the evolution of construction

behaviors with our minimize surprise approach in Ch. 9.

2.2.2 Navigation Behaviors: Coordinated Motion

Many groups of animals exhibit navigation behaviors, such

as the coordinated motion
3
of flocks of birds [5], schools of

fish [204], swarms of insects [205] or herds of mammals [206].

In 1987, Reynolds [207] presented three simple rules to simu-

late a bird flock:

Cohesion. Agents steer towards the average position of their

neighbors to keep the group together.

Separation. Agents steer away from too close neighbors to

avoid collisions.

Alignment. Agents steer towards the average heading of

their neighbors to match direction of the group.

In his model, neighboring robots are determined metrically

while real birds probably use a topological approach [208].

Reynolds [207] discusses also that his model is probably

closer to a school of fish in murky water or to herds of

land animals because his agents have, in contrast to birds,

only short-range perception of the environment. Reynolds’

approach was implemented on real robots, for example, on
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Figure 2.18: Sample arena of the collec-

tive perception task as defined by Valen-

tini et al. [220].

wheeled ground robots [209] and on small fixed-wing flying

robots [210].

A drawback of Reynolds’ approach is that agents require

knowledge of their heading and communication to realize

the alignment rule. Moeslinger et al. [211, 212] present a

minimalist approach to flocking for ground robots with local

sensing only. Here, alignment emerges by discretizing the

robots’ sensor fields into four sectors that lead to either

attraction or repulsion. Since flocking is widely studied,

there are many other approaches that, for example, rely

on potential functions [213, 214] or evolve artificial neural

network controllers for coordinated motion [215, 216].

2.2.3 Collective Decision-Making Behaviors: Collective
Perception

Collective decision-making is extensively studied in swarm

robotics, since it makes the swarm autonomous on themacro-

level (i.e., the global or swarm level) by enabling the swarm to

get a global view and to make informed collective decisions

by combining locally sensed information [6, 119]. Decision-

making behaviors include, for example, synchronization,

task allocation, and group size regulation [119]. Inspiration

for such behaviors can be found in social insects. For example,

ants use pheromone trails to collectively find shortest paths to

food sources [217, 218] and bees asses the need for comb con-

struction by evaluating search times for empty combs [219].

In this thesis, we evolve decision-making mechanisms for

collective perception using our task-independent minimize

surprise approach (see Ch. 8).

Valentini et al. [220] present a collective perception scenario

where robots have to collectively decidewhich of two features

is more frequent, that is, if there are more black or white cells

on the arena ground (see Fig. 2.18). Consequently, collective

perception is a best-of-2 problem [221]. The authors show

that the Direct Modulation of Majority-Based Decisions [222]

and the Direct Modulation of Voter-Based Decisions [223]

strategies performwell in this scenario. Both decision-making

strategies are implemented by a state machine that switches

between exploration and dissemination. During exploration,

robots sample the environment locally and estimate the qual-

ity of their current opinion (i.e., more black or more white).

They broadcast their opinion locally in the dissemination

state first, collect the opinions of their neighbors afterwards,

and finally apply a decision-making mechanism, that is, the

majority rule or the voter model, respectively. Concurrently

to the decision-making strategy, robots execute random walk

and obstacle avoidance. Several new approaches and exten-

sions to the scenario were proposed, including the study of

the scenario with multiple features [224, 225], the use as a

benchmark task in a blockchain-based approach to handle
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agent environment

perceptions

actions

Figure 2.19: Agent-environment interac-

tion.

"I think, therefore I am."

René Descartes

Byzantine robots in swarms [226], speeding up the collective

decision-making process through isomorphic changes in

the environment [227], making decisions in a sparse swarm

using a Bayesian algorithm [228], and to realize an Ising-

based approach that takes learned preferences of agents into

account [229]. Furthermore, Bartashevich and Mostaghim

[230] propose nine different visual patterns for benchmarking

collective decision-making behaviors in the collective per-

ception scenario, since problem difficulty not only depends

on the proportion of features but also on their distribution

in the environment. Almansoori et al. [231] evolve collec-

tive decision-making behaviors for the collective perception

scenario using a task-specific fitness function. The robot

swarm constantly executes random walk and obstacle avoid-

ance, as in the approach by Valentini et al. [220], but the

decision-making behavior is realized by a neural network

that is evolved by rewarding high mean amounts of swarm

members with the correct opinion. By contrast, we use the

decision-making state machine by Valentini et al. [220] and

evolve only the applied decision-making mechanism with

our minimize surprise approach in our experiments in Ch. 8.

Furthermore, Morlino et al. [232] use a similar scenario to

evolve controllers to estimate the density of black spots on

gray floor.

Other approaches to collective perception aim, for example,

for the recruitment of the adequate number of robots based

on the size of the target sites [233] or the classification of

objects [234, 235].

2.3 Artificial Intelligence

Turing [236] posed the question ‘Can machines think?’ al-

ready in 1950, but it is the 1956 Dartmouth Summer Research

Project on Artificial Intelligence that is generally considered

as the founding event of artificial intelligence as a research

field. Russell and Norvig [95] define artificial intelligence as

the study of intelligent agents, that is, agents that perceive

and act upon their environment (see Fig. 2.19). According

to Pfeifer and Bongard [237], artificial intelligence research

has three main goals: (i) understanding intelligence in biolog-

ical systems, (ii) abstracting general principles of intelligent

behavior, and (iii) creating useful artifacts by applying those

principles. Initially, researchers focused on the software side

to create intelligent artifacts and considered the hardware

side rather irrelevant. But due to a paradigm shift in the 1980s,

embodiment (i.e., the use of physical agents that act in the

real world) is nowadays an essential part of AI research [96,

237]. Overall, artificial intelligence is an interdisciplinary field

that draws upon computer science, mathematics, psychology,

cognitive science, and many more. It studies problems such
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as natural language processing [238], knowledge representa-

tion [239], and computer vision [240]. Of particular relevance

to our research are the application of machine learning and

evolutionary computation to (swarm) robotics, which we

will discuss in more detail in the following.

2.3.1 Machine Learning

Machine learning studies algorithms that improve their per-

formance in a task automatically through experience and by

learning from data [241]. This allows to develop solutions for

a wide variety of tasks that are otherwise difficult or impos-

sible to solve by conventionally developed algorithms [242].

There are three main machine learning categories [243]:

Supervised learning learns rules to map input values to

outputs using labeled data, that is, given inputs and cor-

responding desired outputs. It is used for classification

and regression problems.

Unsupervised learning learns to determine structure in un-

labeled data including clustering (i.e., finding groups

of data), density estimation (i.e., finding the data distri-

bution in the input space), and dimensionality reduc-

tion [244].

Reinforcement learning learns a policy that maps agent

states to actions by trial and error, that is, by receiving

rewards based on an agent’s actions in the environ-

ment [245].

The lines between supervised and unsupervised learning

are blurred and hybrid approaches lie between the two [242].

For example, semi-supervised learning uses few labeled

data points and a large number of unlabeled data [246] and

self-supervised learning solves an unsupervised learning

problem in a supervised way by automatically labeling the

input data [247].

Artificial neural networks (ANN) are frequently usedmodels

in machine learning. They are inspired by human brains and

are essentially weighted directed graphs consisting of layers

of artificial neurons (i.e., nodes). Over time, a huge variety of

artificial neural network architectures were developed [248].

In our work, we rely on feedforward neural networks where

inputs are propagated straight through and recurrent neural

networks that take time and sequence into account by using

information from the previous pass as additional input. Deep

learning, a subfield of machine learning, uses artificial neural

networks with many layers [242].

Robot learning usesmachine learningmethods to accomplish,

among other things, perception, control, and navigation [249].

Learning, and in particular reinforcement learning, is also

applied to themulti-robot and swarm robotics domain. There
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are three different settings for multi-agent learning: coopera-

tive, competitive, and mixed cooperative-competitive [250,

251]. In cooperative settings, all agents pursue a collective goal

(e.g., avoiding collisions in autonomous driving). By contrast,

agents compete with each other to accomplish a goal in com-

petitive settings (e.g., chess). Mixed cooperative-competitive

settings combine the two, that is, teams of cooperating agents

compete with each other (e.g., team sports, such as basket-

ball). In all three settings, agents can be homogeneous or

heterogeneous in their features and behaviors [251, 252]. The

training ofmulti-agent systems can be centralized (i.e., agents

learn based onmutual information) or distributed (i.e., agents

learn independently of other agents) and execution central-

ized (i.e., agents share a joint controller) or decentralized (i.e.,

each agent has its own controller). Compared to single-robot

learning, multi-agent learning has to deal with several addi-

tional challenges [250–252]. The main problem to address in

multi-agent learning is that the environment is non-stationary

by default, since other agents are present, and agents have to

co-adapt in this constantly changing environment [250]. In

addition, the search space grows with the number of agents

and thus algorithms for multi-agent learning need to be scal-

able regarding speed of convergence and solution quality. A

high number of agents also causes partial observability, that

is, agents have only limited information about the state of

their environment, which may lead to suboptimal solutions.

Moreover, credit assignment in cooperative settings is compli-

cated, since performance is evaluated at the multi-agent level

and the contribution of an individual agent to the overall

goal is difficult to assess. Despite these challenges, machine

learning, and in particular reinforcement learning [253], has

been applied successfully to several multi-agent and swarm

scenarios. For example, reinforcement learning and deep

reinforcement learning approaches were used for collabo-

rative exploration in deep-space [254], traveling between

landmarks [255], and rendezvous (i.e., meeting at the same

location) and pursuit evasion (i.e., capturing one or more

evaders collectively) [256].

In our minimize surprise approach, we rely on evolutionary

computation, that we discuss in the next section in more

detail. Nevertheless, we present amachine learning approach

to minimize surprise in App. A.

2.3.2 Evolutionary Computation

Evolutionary computation [16] is the umbrella term for al-

gorithms that are inspired by Darwinian evolution [257]

and genetics, such as evolutionary programming [258], ge-

netic algorithms [259], evolution strategies [260, 261], and

genetic programming [262]. Most evolutionary algorithms

are gradient-free, that is, optimization is done in a stochastic
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Figure 2.20: Flowchart of the general

scheme of an evolutionary algorithm.

4: Fitness proportionate selection is also

known as roulette wheel selection.

trial-and-error style. Both evolutionary computation and re-

inforcement learning are reward-based, that is, they aim to

maximize the fitness or reward of agents in unknown envi-

ronments, and thus address the same class of problems [252,

263, 264]. Although training agents through supervised

learning is theoretically possible in these scenarios, it may

be difficult or even impossible to generate labeled training

data for environments or tasks where rewards are sparse.

Reinforcement learning and evolutionary computation are

more suitable in such scenarios as they usually rely on trial

and error and do not require knowledge about correct and

incorrect decisions [265]. Evolutionary methods have proven

to be competitive to reinforcement learning onmodern agent-

environment benchmarks while offering advantages in code

complexity, scaling to large-scale distributed settings, and

handling of sparse rewards [17, 266]. Due to these advan-

tages, we use methods of evolutionary computation in our

minimize surprise approach.

Figure 2.20 illustrates the general scheme of an evolutionary

algorithm [16]. First, an initial population P(0) of � indi-

viduals is randomly initialized and evaluated. Each mem-

ber or individual i of the population is represented by a

genome gi, i ∈ [0..�− 1], that is, a candidate solution in the

genotype space C�, on which evolutionary operators for vari-

ation (i.e., recombination and mutation) act. Each genome

(also chromosome or genotype) encodes a phenotype, that

is, a candidate solution in the original problem context, on

which evolutionary operators for selection act. For evaluation,

individuals are mapped from the genotype space C� to the

phenotype space C% using a mapping function � : C� → C% .
For example, binary strings can be used to encode integers

(e.g., 0101 maps to 5) or, as used in our scenario, strings of

real values can be used to encode the weights of an artificial

neural network. The phenotypes are then evaluated using a

fitness function � : C% → ℝ. An iterative process runs until

a termination criterion evaluates to true, for example, after

a fixed number of generations 6max or when an individual

with a minimum fitness �min is found. In the iterative pro-

cess, first individuals of the population P(6) of the current
generation 6 (i.e., iteration) are selected as parents to create

offspring. Parent selection methods include, for example,

fitness proportionate selection
4
and tournament selection.

In fitness proportionate selection, the selection probability

of each individual i is ?i
FPS

= �i/
∑�−1

9=0
�9 , that is, higher

fitness leads to higher selection probability. By contrast, k in-

dividuals are picked randomly, compared, and the best one

is selected in tournament selection. Then, a set of � ∈ ℕ
new individuals (i.e., offspring) is created by applying varia-

tion operators, that is, recombination and mutation, to the

genomes. Recombination combines with a probability ?rec
two or more parents to create new offspring. For example,

one-point crossover recombines two parent individuals by
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1 · · · < < + 1 · · · =

1 · · · < < + 1 · · · =

parents

1 · · · < < + 1 · · · =

1 · · · < < + 1 · · · =
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Figure 2.21: One-point crossover. The

parent genomes are split after gene <
and the back parts of the genomes

switched to create offspring.

5: Survivor selection is also called re-

placement.

splitting both parents at the same point and creating two

children by exchanging the back parts of the genomes (see

Fig. 2.21).Mutation alters each gene (i.e., value v) of a genome

with a probability ?mut, for example, by flipping the value in

a binary encoded genotype or by adding a random number

to a value in a genotype consisting of floating point values,

that is,

vmut =

{
v + Y, if X< ?mut

v, otherwise

, (2.1)

with random number X ∈ [0, 1] and random number Y in a

predefined interval. Afterwards, the offspring is evaluated.

In survivor selection,
5
the next population P(6 + 1) of � in-

dividuals is chosen from the � individuals in the current

population (i.e., parents) and the � offspring based on age or

fitness. Age-based survivor selection keeps every individual

for a fixed number of generations in the population before

replacing it. We follow this strategy in the simple evolu-

tionary algorithm used in Chs. 4-9 and replace all but the

best performing parent with offspring after each generation.

Consequently, each individual, except the best, exists for only

one generation in the evolutionary process. Keeping the cur-

rent best individual in the population (i.e., elitism) ensures

that high performing individuals are not lost. Fitness-based

survivor selection replaces the least fit individuals after each

generation. For example, in (� + �)-selection, the � parents

and the � offspring are ranked according to fitness and the

� best individuals form the next population P(6 + 1). We

use this approach with � = � = 1 in Chs. 10 and 11. In

the iterative process, fitness will improve over generations.

Nevertheless, the stochasticity of the evolutionary process

can lead to genetic drift, that is, variety in the population is

lost due to random chance.

In the general scheme of an evolutionary algorithm intro-

duced above, one population of individuals is evolved. In

coevolution, this scheme is extended to evolve several popu-

lations in turns [16]. The fitness of an individual depends on

interactions with other individuals in this case. These interac-

tions can be cooperative (e.g., a ground robot and an airborne

robot cooperate to collect items in the environment [267]) or

competitive (e.g., predator-prey or pursuit-evasion scenar-

ios [268]) as in multi-agent learning (see Sec. 2.3.1).

Neuroevolution evolves artificial neural networks [269]. The

simplest case, that we also use in our work, is to evolve

individuals that directly encode the weights of a fixed neural

network topology. More sophisticated methods evolve both

network topology and weights, for example, NeuroEvolution

of Augmenting Topologies (NEAT) [270] or Analog Genetic

Encoding [271].
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Evolution and learning are not mutually exclusive. For ex-

ample, Nolfi et al. [272, 273] combine learning during the

lifetime of an individual with evolution across generations.

In their sample setting, an individual simulated agent has

to find food in a 2D grid world (evolutionary task) while

predicting the sensor values of the next time step, that is,

the next position of food (learning task). Although learned

weight changes are not inherited (i.e., no Lamarckian inher-

itance), evolution and learning influence each other, since

individuals with high fitness and individuals that reach high

fitness because they learn to predict are found by evolution.

Evolutionary computation is model-free by default, but en-

vironment or agent models can be evolved or used during

evolution. Ha and Schmidhuber [274] train single agents that

are equipped with a variational autoencoder (VAE), a world

model, and a controller in OpenAI Gym simulations [275].

The authors train VAE, world model, and controller sepa-

rately, whereby self-supervised learning is used for the VAE

and the world model and evolution strategies with a task-

specific reward for the controller. Thus, different controllers

can be trained using the same world model in their single

agent scenario. In collective systems as used in our work,

the world model depends not only on the (dynamic) envi-

ronment but also on the behavior of the surrounding agents

and thus controller and world model cannot be trained indi-

vidually in that case. But Risi and Stanley [18] showed that

all three agent components can be trained end-to-end using

a genetic algorithm while being competitive to the more

complex training regime by Ha and Schmidhuber [274].

Evolutionary (Swarm) Robotics

Evolutionary robotics [13–15] and evolutionary swarm robot-

ics are the application of evolutionary algorithms to robotics

and swarm robotics [8], respectively. They are common ap-

proaches to automatically generate controllers for monolithic

robot systems and for robot swarms [10]. In our work, we

use evolutionary swarm robotics, which has proven to be

successful in the generation of controllers in simulation and

on real robots for a variety of swarm robotics tasks includ-

ing phototaxis [276], foraging [277, 278], aggregation and

coordinated motion [279], cooperative transport [280], and

self-assembly [281].

Although in principle various control architectures (e.g.,

behavior trees [277] or finite state machines [282]) can be

evolved, artificial neural networks are typically used in evo-

lutionary robotics. They constrain evolution minimally, that

is, ANNs permit the evolution of controllers of unbounded

complexity. Additionally, they allow for the use of raw sen-

sor inputs and the generation of low-level commands for

actuators [13]. Most of the time, including our approach,
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the weights of a fixed neural network topology are evolved

as robot controllers. But it is also possible to evolve both

network weights and topology [283], or even the robot mor-

phology [284–287].

In most cases, the evolutionary search process is guided by

a task-specific fitness function that rewards performing a

given task or behavior. As evolutionary algorithms maxi-

mize fitness potentially by every possible way, unexpected,

unwanted behaviors may emerge when the fitness function

was not specified accurately enough. Thus, the specification

of goal-directed fitness functions is difficult [19]. In addition,

there is a tradeoff between rewarding high-level task comple-

tion (i.e., aggregate fitness functions) and rewarding specific

behavioral features (i.e., behavioral fitness functions) [20].

Since the randomly generated solutions in the initial pop-

ulation will most probably not lead to the fulfillment of

non-trivial tasks, rewarding high-level task completion can

cause bootstrapping problems. That is, the fitness of the

initial population is not detectable and thus no selective

pressure to guide optimization is generated. By contrast, re-

warding specific behavioral features of an assumed solution

for a particular task restricts the search to certain solution

types, potentially causing that more original solutions will

not be found. In our work, we rely on a task-independent

fitness function to drive the search process to allow for the

emergence of diverse swarm behaviors. Task-independent

fitness functions put selection pressure on aspects that are

not directly related to a desired task or behavior (e.g., nov-

elty [24]). While there is no guarantee that desired behaviors

will be found, the evolutionary process has the freedom to

find original solutions here. However, since task-independent

approaches frequently lead to the emergence of diverse be-

haviors within or across evolutionary runs, users can choose

from a set of behaviors that may include desired ones. We

will discuss divergent search algorithms, quality-diversity

algorithms, and intrinsic motivations as approaches for the

generation of diverse behaviors in the next sections in more

detail.

Evolutionary robotics allows for offline and online optimiza-

tion of controllers [288]. Offline evolution separates design

and operational phase, that is, controllers are first optimized

and transferred to the real robot for task-execution afterwards.

Thereby, optimization can be done completely in simulation,

which allows minimizing costs by speeding up the search

process and robot hardware will not wear out. But the reality

gap [289] is a challenge. Since simulation and real world

differ, evolution may exploit simulation-specific features and

performance on the real robot may be (significantly) worse

than in simulation. A potential solution is to conduct some

or all evaluations on the real robot, but at the cost of loosing

the advantages of optimization in simulation. Online evo-

lution, in contrary, avoids the reality gap by evolving robot
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6: Distributed online evolution is also

termed embodied evolution, and social

learning is its generalization to all learn-

ing methods [290].

controllers on the real robots in the environment during

the operational phase (i.e., task execution). This also allows

robots to adapt to environmental or task-related changes

during evolution. Online evolution can be realized in a cen-

tralized or distributed manner [16]. There are two ways to

implement centralized online evolution: A master computer

runs the evolutionary process for the full swarm (i.e., it col-

lects the fitness from the individual robots, applies selection

and variation operators, and distributes new controllers for

evaluation to the robots), or each robot runs the evolutionary

process encapsulated, that is, independent from other robots.

In the first variant, all robots execute the same controller

(i.e., homogeneous swarm regarding control) while in the

second variant all robots have different controllers (i.e., het-

erogeneous swarm regarding control). There are also two

ways to implement distributed online evolution
6
[237, 291,

292]: Either each robot has one genome and selection and

reproduction is based on interaction between robots, or each

robot runs an encapsulated evolutionary process but robots

also exchange genomes. In distributed online evolution, the

swarm is always heterogeneous regarding the executed con-

trollers. In our work, we use a centralized online evolutionary

approach that runs onboard the robots (see Ch. 10.1).

A variety of behaviors were successfully evolved using meth-

ods of evolutionary robotics with task-specific rewards both

in simulation and on real robots. For example, Christensen

and Dorigo [276] evolve phototaxis and hole avoidance in a

group of connected robots by rewarding reaching the light

source quickly and minimal traction between robots, and

penalizing falling into holes. The behaviors are evolved in

simulation and transferred to real robots afterwards. Heiner-

man et al. [293] evolve obstacle avoidance on real Thymio II

robots by rewarding high translational speed, low rotational

speed, and low proximity sensor values.

By contrast, Turing learning [294, 295] is a novel approach to

infer the behavior of natural or artificial systems without re-

quiringpredefinedmetrics. Twopopulations are concurrently

optimized using competitive coevolution: (i) a population of

models of the behavior of the system under investigation and

(ii) a population of classifiers. The classifiers are rewarded

for discriminating model and real system correctly while

models aim for tricking the classifier to categorize them as

genuine. The approachwas applied to swarm robotics to infer

aggregation and clustering in swarms of mobile agents.

Divergent Search Algorithms and Quality-Diversity Algorithms

Divergent search algorithms push towards behavioral diver-

sity instead of a task-specific objective in the evolutionary

process [296]. They are inspired by the open-endedness in



2 Fundamentals 27

natural evolution, that is, constant morphological and be-

havioral innovation [13], which is one of the grand open

challenges of artificial life [297]. Novelty search [24, 298],

for example, aims for behavioral (i.e., phenotypic) diversity

by driving the search process using the novelty of individ-

uals with respect to current and past individuals. Thereby,

each individual’s behavior is characterized by a vector of

domain-dependent behavioral features that are supposed to

capture relevant aspects of an assumed task. An individual’s

novelty in behavior space is then calculated as the mean be-

havioral distance (e.g., the Euclidean distance) to itsK nearest

neighbors. Out of the vast literature on novelty search, the

most relevant work here is that by Gomes et al. [134] who

successfully evolve swarm robot controllers for aggregation

and resource sharing with novelty search. We compare our

minimize surprise approach and novelty search with respect

to behavioral diversity in Sec. 5.3. Another example for diver-

gent search algorithms is surprise search [299] that rewards

the deviation from expected behaviors.

Purely divergent search generates behavioral diversity but

does not guarantee solution quality. Quality-diversity (QD)

algorithms [296] are an extension to pure divergent search

algorithms and guide search towards collections of behav-

iors that are both maximally diverse and as high performing

as possible. For example, the multidimensional archive of phe-

notypic elites (MAP-Elites) [44] approach searches for the

highest performing solution with respect to a user-defined

performancemeasure, that is usually related to a desired task,

for each cell in a discretized n-dimensional behavior space

that covers variations of interest to the user. Cazenille et al.

[300], for example, use MAP-Elites to evolve self-assembly

behaviors in a swarm of robots. In the standard MAP-Elites

approach, the behavior space is discretized per dimension.

Thus, it does not scale well to high-dimensional behavior

spaces. This problem is addressed by CVT-MAP-Elites [301],

which partitions the behavioral space into a desired number

of regions using centroidal Voronoi tessellation (CVT). Recent

extensions of MAP-Elites combine the standard approach

with CMA-ES [302] or CVT-MAP-Elites with differential

evolution [303] to find more diverse behaviors with better

quality.Moreover, an extension ofMAP-Elites allows to solves

multiple tasks of the same family simultaneously using task-

dependent fitness functions and a distance measure between

those tasks [304]. MAP-Elites is also combined with task-

independent measures. For example, Gravina et al. [305] use

a task-dependent performance measure to fill the behavior-

performance map but task-independent measures, such as

novelty or surprise, for selection. In Sec. 5.3, we combine

standard MAP-Elites with our minimize surprise approach.

Other examples for quality-diversity algorithms are novelty

search with local competition [306], surprise-search with

local competition [307], and sparse reward exploration via

novelty and emitters (SERENE) [308].
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Conceptually related to approaches that are inspired by

open-ended evolution are intrinsic motivations in machine

learning, developmental robotics [309], and evolutionary

robotics and artificial life [298, 310]. We discuss those in more

detail in the next section.

2.3.3 Intrinsic Motivations

In contrast to task-specific rewards, task-independent fit-

ness functions do not reward a specific goal or behavior.

Approaches of intrinsically motivated learning combine ma-

chine learning approaches with computational approaches

of intrinsic motivation, that are task-independent, to aim for

open-ended learning [311, 312]. Inspiration is drawn from

the psychological concept of intrinsic motivation, that is,

activities are done for the joy or challenge of performing

them and not for a reward or due to external pressures [313].

A clear definition of the underlying psychological concepts

of intrinsic motivation is still missing and consequently, there

is also no unique definition for computational approaches

to it [310]. But while extrinsic motivations are generally con-

sidered to lead to the acquisition of material resources or

the accomplishment of the user’s goals in the case of robots,

intrinsic motivations lead to the acquisition of knowledge

and skills [314]. Measures for intrinsic motivation should

thus be

I task-independent,

I free of semantics (i.e., meaning of sensor values), and

I applicable to any agent embodiment including its sen-

sory-motoric configuration.

They can be calculated from the agent’s perspective and either

relate to its knowledge or competence [310, 311, 315]. While

the aim of intrinsic motivations is to push agents towards

exploration in general, Oudeyer and Kaplan [310] argue that

simple variants of computational intrinsicmotivations that do

not do so should still be conceptualized as such. Frequently,

intrinsic motivations are used in single-agent reinforcement

learning scenarios as a reward that is not directly related to

the agent’s task [311].

For example, Schmidhuber [316] proposes curious model-

building controllers that are trained using reinforcement

learning. Thereby, agents have a controller and an adaptive

world model that predicts future perceptions based on its

current perceptions and planned actions. Additionally to an

extrinsic reward for the given task, the prediction error is used

as an intrinsic reward that positively reinforces situations in

which the agents fail to predict their environment. Thus, it

drives the agent towards improving its own world model by

exploring unknown situations and thus resembles curiosity.
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Homeokinesis [317] is an intrinsically motivated approach

for self-exploration and the emergence of complex motion

patterns in simulated and real robots. Each agent has a

controller and a forward model that predicts the next sensor

values. Both are implemented by neural networks that are

trained by gradient descent. While the forward model is

trained using the prediction error, the learning signal for the

controller is the so-called time-loop error. It is the difference

between real and reconstructed sensor values of time step C.
The reconstructed sensor values are determined by projecting

the real sensor values of time step C+1 backward through the

forward model and the controller. Minimizing the time-loop

error destabilizes the system and is thus a driver for activity.

This contrasts to Homeostasiswhere controller and forward

model are trained using the prediction error and thus the

system stabilizes.

Further examples for intrinsic motivations are empower-

ment [315, 318], learning progress [319, 320], novelty [321,

322], predictive information [323, 324], expected free en-

ergy [325], and surprise that can be based on the predic-

tion error [326, 327] or on how unexpected states are [328].

Surprise-based intrinsic motivations usually encourage open-

ended learning by maximizing surprise, but Berseth et al.

[328] show that also the minimization of surprise (i.e., re-

warding familiar states here) leads to increasingly complex

behaviors in highly dynamic environments.

Intrinsic motivations in swarm and multi-agent settings are

only rarely studied despite its potential to allow for the emer-

gence of new functionality (e.g., communication) and for the

development of newmodels of motivation (e.g., sharingmoti-

vationswith other agents) [329]. Similarly, only fewworks use

intrinsic motivations, or the information-theoretic measures

they are based on, as drivers for evolutionary search. But, for

example, Capdepuy et al. [330] generate coordinated collec-

tive behaviors by maximizing empowerment and Klyubin

et al. [331] evolve a single agent’s sensor layout and actuators

to maximize empowerment. Prokopenko et al. [332] evolve

spatiotemporal coordination in a modular robotic system us-

ing an entropy-based fitnessmeasure and Friedman et al. [35]

generate ant colony foraging behaviors by minimizing free

energy in simulation. Sperati et al. [25] evolve coordinated

group behaviors in simulation by maximizing the mean mu-

tual information and transfer the best evolved individuals to a

group of real robots. The application of intrinsic motivations

in multi-agent and swarm settings frequently relies on global

information (e.g., agent positions [330]) or on information

about other agents (e.g., to calculatemutual information [25]),

or aremostly applied in discrete state-action spaces [330, 333]

because they are computationally expensive when applied in

continuous settings. Our minimize surprise approach uses

a fitness function that is based on a mathematical simple

formulation of surprise as the prediction error (i.e., difference
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between actual and predicted sensor values) to evolve swarm

robotic behaviors. Since fitness can be calculated for each

swarm member based on local data, minimize surprise is

suitable for centralized and distributed evolutionary setups

(see Sec. 2.3.2). The simplicity of our fitness function makes

it computationally inexpensive in discrete and continuous

settings, and extends the idea of simplicity in swarm robot-

ics from swarm members and control (see Sec. 2.1.2) to the

process of the automatic generation of collective behaviors.



The Minimize Surprise Approach 3
Chapter Contents

In this chapter, we introduce...

I Sec. 3.1: the inspiration for and

I Sec. 3.2: the fundamentals of our minimize surprise

approach, and

I Sec. 3.3: our previous work.

Here, we introduce our minimize surprise approach that is

used in the following chapters as an innate motivation to

evolve collective behaviors of varying complexity.

3.1 Inspiration

Biology, neuroscience and other scientific disciplines often

serve as an inspiration for artificial intelligence.Ourminimize

surprise approach is loosely inspired by the information-

theoretic ‘free-energy principle’ that was proposed by neuro-

scientist Karl J. Friston as a potential general theory for brain

and behavior [327, 334, 335]. It is a mathematical formulation

of the idea of the ‘Bayesian brain’, which states that living

organisms try to infer the causes of their sensations based on

a model of their world [336]. This idea is already discussed

since ancient times, for example, by Plato in his Allegory of

the Cave [337]. Helmholtz [338] formalized it as a theory of

‘unconscious inference’, that is, perceptions are formed by a

probabilistic inference process of the causes of sensations.

The idea formulated by Helmholtz [338] influenced com-

puter science, psychology, and neuroscience. Dayan et al.

[30] propose the so-called Helmholtz machines, that is, an

approach of unsupervised machine learning to train a gener-

ative model of a data set. Furthermore, Friston formulated

his free-energy principle based on Helmholtz’s ideas about

perception [334, 335]. Free energy is defined, in the simplest

case, as the difference between observed and predicted sen-

sor values (i.e., prediction error) and is an upper bound to

surprise [339]. Organisms constantly try to minimize free

energy, and thus surprise, either by optimizing the inter-

nal world model or by adjusting their actions so that they

lead to sensor values matching the predictions [31]. Both

variants bring advantages: improving the predictor makes

an organism more knowledgeable about the world, while

the complexity of the predictor can be reduced by choosing

actions to actively seek for specific sensory stimulation [29].

This minimization of surprise, or maximization of expecta-

tion, brings an evolutionary advantage as organisms will
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maintain homeostasis by staying in predictable and safe envi-

ronments by only selectively navigating and sampling their

environment. Thus, they survive longer [335]. But the ‘Dark-

Room Problem’ is frequently used as a critique of approaches

that rely on surprise minimization [340]. This problem states

that while the easiest way to minimize surprise is to search

for and stay in a dark, unchanging room, organisms do not

behave like this. Friston et al. [340] argue that organisms will

be surprised by a dark room though if their worldmodel does

not expect it based on its prior beliefs and thus surprise is

minimized for an agent’s own econiche. Schwartenbeck et al.

[341] further point out that minimizing surprise can even

lead to exploration and novelty, since an agent can improve

its world model by seeking out new states, which in turn can

help to minimize surprise in future.

Friston’s mathematically complex free-energy principle was

applied to single robot systems [32–34] and recently also

to simulated collective systems [35, 36]. Here, we use a

simpler approach to the minimization of surprise that is only

loosely inspired by Friston’s work. We directly minimize

the prediction error, that is, the absolute difference between

predicted and real sensor values, to evolve swarm robot

behaviors in simulation and on real robots. Thereby, we focus

both on interactions between agents and environment as well

as on agent-agent interactions. The latter introduces a self-

referential loop, because the sensor inputs of agents are not

only based on their own actions and a potentially dynamic

environment but also on the actions of other identical, close-

by agents. Thus, agents have to predict also the behavior of

their neighbors. Besides that, our approach follows the idea

of ‘swarm cognition’ by drawing a connection between a

neuroscientific concept and swarm intelligence [342].

3.2 Approach

Following this inspiration by the free-energy principle, our

‘minimize surprise’ approach uses a task-independent fitness

function that is based on the prediction error to drive evo-

lution [28]. For this purpose, we equip each member of a

swarm (i.e., robot or agent) with an actor-predictor pair of

artificial neural networks (ANN) that are evolved together.

The actor ANN serves as a controller. It is implemented

as a feedforward network as visualized in Fig. 3.1a. Those

networks have already proven to be suitable as controllers

for a variety of swarm robotics tasks, such as foraging [278]

or aggregation and coordinated motion [279]. The actor

receives the sensor values B0(C), . . . , B'−1(C) of the current

time step C and all or a subset of the last chosen actions

(i.e., outputs 00(C − 1), . . . , 0,−1(C − 1) of the action network

of the previous time step C − 1) of the respective swarm

member as input. Thereby, we introduce limited memory by
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...

...

...
...

B0(C)

B'−1(C)

00(C − 1)

0,−1(C − 1)

00(C)

0,−1(C)

(a) actor

...

...

...
...

B0(C)

B'−1(C)

00(C)

0,−1(C)

B̃0(C + 1)

B̃'−1(C + 1)

(b) predictor

Figure 3.1: Actor-predictor ANN pair of

each swarm member in minimize sur-

prise. The actor (a) outputs , action

values 00(C), . . . , 0,−1
(C) and the predic-

tor (b) outputs ' sensor value predic-

tions B̃0(C + 1), . . . , B̃'−1
(C + 1) for time

step C + 1. Inputs are ' sensor values

B0(C), . . . , B'−1
(C) at time step C and the

action values 00(C − 1), . . . , 0,−1
(C − 1)

of time step C − 1 or 00(C), . . . , 0,−1
(C) of

time step C [343].

1: These sensor values can be raw sensor

readings (e.g., used in Chs. 4 and 10)

or aggregated sensor data (e.g., used in

Ch. 8).

2: That is, the outputs of the action net-

work of the current time step C.

making the network recurrent although it is implemented as

a feedforward network. The actor outputs, action values

that encode the swarm member’s next action. A variety of

encodings are possible, for example, discrete actions, such as

straight motion and turning, or continuous motor speeds.

The predictor ANN forecasts the sensor values
1
of the next

time step. It resembles world models as used in intelligent

agents [95], but here we use it to drive the emergence of

collective behaviors rather than to make intelligent decisions.

We implement the predictor ANN as a recurrent network

as visualized in Fig. 3.1b. Recurrent neural networks are

especially suitable for sequential data, such as the time-series

of sensor values here, since they have feedback connections.

That is, nodes can receive outputs of the previous time step

of some hidden nodes additionally to the current data as

input and thus the network output is influenced both by

the previous and the current time steps [344]. Recurrent net-

works have thus potential for memory. The predictor receives

the swarm member’s ' sensor values B0(C), . . . , B'−1(C) of
the current time step C and all or a subset of the next ac-

tions 00(C), . . . , 0,−1(C)2 of the respective swarm member

as input. The action values are fed into the predictor as

the agent’s actions influence its future sensor readings. The

predictor can be both seen as a world model, as mentioned

above, or as self-referential depending on the used sensors.

The prediction of exteroceptive sensors equals predicting

the future state of the environment. That way the predictor

operates as a model of the external world. The prediction of

interoceptive and proprioceptive sensors is predicting the

future state of the robot itself and thus can lead to a sense of

agency and a sense of self [345]. In the work presented here,

we only predict exteroceptive sensors.

We reward high prediction accuracy, that is,minimal surprise,

by defining the fitness function � as

� =
1

)#'

)−1∑
C=0

#−1∑
==0

'−1∑
A=0

(1 − | B̃=A (C) − B=A (C)|) , (3.1)

with evaluation length ) in time steps, swarm size # , num-
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3: In most experiments, we predict all

' sensor values of a swarm member.

However, predicting only a subset of a

swarm member’s sensors is also possi-

ble (e.g., done in Ch. 7). In such cases,

we differentiate number of sensors 'sen

and number of predicted sensors '
pred

.

Fitness is then calculated considering

all predicted sensors and normalized

by '
pred

.

...

...

...
...

B0(C)

B'−1(C)

00(C − 1)

0,−1(C − 1)

00(C)

0,−1(C)

...

...

...
...

B0(C)

B'−1(C)

00(C)

0,−1(C)

B̃0(C + 1)

B̃'−1(C + 1)

v1 · · · v< v<+1 · · · v=

actor predictor

phenotype

genotype

Figure 3.2: Genotype-phenotype map-

ping. Values v of the genome are used

as the synaptic weights of the ANNs.

ber of sensors
3
per swarm member ', prediction B̃=A (C) for

sensor A of swarm member =, and value B=A (C) of sensor A of
swarm member = at time step C. Fitness is normalized to a

theoretical maximum of 1. The fitness function is not only

task-independent but also free of semantics and applicable

to any agent embodiment. Furthermore, individual agents

can calculate it from their own perspective. Thus, it can

be classified as a simple variant of computational intrinsic

motivation (see Sec. 2.3.3).

Self-supervised learning [274, 346] could be used to train

the predictor because the real sensor values BA(C) of time

step C are the targeted predictor outputs of the previous time

step, that is, the sensor predictions B̃A(C) for time step C. Since
our approach is task-independent, we cannot determine a

deviation between a current and a targeted swarm behavior.

Consequently, we cannot manually or automatically generate

labeled data to train the actor using (self-)supervised learning.

By contrast, approaches of evolutionary computation rely

on stochastic trial and error and thus do not require labeled

data for optimization. This allows us to optimize pairs of

actor and predictor networks concurrently while relying

on a fitness function that measures only the quality of the

predictor (Eq. 3.1). The stochastic processes of evolution (i.e.,

selection and variation) act then on the actor-predictor pairs.

In App. A, however, we present a potential approach to

combine machine learning methods with minimize surprise

showing potentials and drawbacks. In all other presented

experiments, we rely on neuroevolution of the synaptic

weights while keeping fixed topologies for both networks.

Genomes directly encode the weights of the actor-predictor

ANN pairs (see Fig. 3.2) [347]. All swarm members of an

evaluation share the same genome (i.e., application of the

same synaptic weights), that is, we use a homogeneous

swarm. Thus, we have two different population concepts:

I a population of swarm members that forms the ho-

mogeneous swarm in an evaluation of a genome and

applies the actor-predictor ANN pair, and

I a population of genomes encoding the weights of pairs

of networks in the evolutionary process.

We use simple evolutionary algorithms here [16] while the

study of more sophisticated methods of evolutionary com-

putation will be subject of future work (see Sec. 12.2). The

details about the used evolutionary algorithms are explained

in more detail in the respective chapters.

By evolving the actor-predictor pairs using our task-indepen-

dent fitness function (Eq. 3.1), we put selective pressure on

the predictor. The actor, by contrary, does not receive direct

selective pressure but is still subject to genetic drift. Collective

behaviors emerge as a by-product in the evolutionary process

as actors and predictors are evolved in pairs. High prediction

accuracy (i.e., fitness) is reached when behaviors resulting
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Figure 3.3: Illustration of the 1D torus

environment used in the initial study of

minimize surprise by Hamann [28].

from the selected actions of the actor lead to sensor values

as predicted by the predictor. In turn, higher fitness values

result in a higher likelihood to survive in the evolutionary

process. It is left to the evolutionary dynamics and generally

difficult to analyze whether actors adapt agent behaviors to

predictions or predictors adapt their predictions to behaviors

in our setup (see Sec. 3.1).

3.3 Previous Work

The first work on minimize surprise was published by

Hamann [28] in 2014. The author aims for the evolution

of collective behaviors on a simulated 1D torus (see Fig. 3.3)

using a simple evolutionary algorithm and the minimize

surprise fitness function, that is, rewarding high prediction

accuracy (Eq. 3.1). The swarm in these experiments consists

of simple agents with four binary sensors that cover their

neighborhood. The actor ANN chooses between two actions:

staying with the agent’s current direction or switching the di-

rection. Thus, the setup allows for the emergence of collective

behaviors of low complexity that rely solely on agent-agent

interactions. The behaviors can be differentiated based on

I motion, that is, agents are either moving or stopped,

and

I relative position, that is, the distance between agents.

moving flocking random

stopped aggregation dispersion

minimal maximal

distance

Figure 3.4: Differentiation of behaviors

based on motion and relative position

(i.e., distance) as used in the initial study

of minimize surprise [28].

Fig. 3.4 summarizes the four behaviors that are possible

with this differentiation. All four behaviors emerged in these

experiments. Furthermore, the author finds that swarm den-

sity influences the emergence of behaviors, that is, higher

densities lead to more aggregation behaviors (i.e., agents are

positioned closer to each other) and low densities to more

dispersion behaviors (i.e., agents are spaced further apart). In-

termediate densities lead to the emergence of more complex

behaviors, that is, flocking here. In this case, sensor inputs

are changing over time and thus prediction gets harder.

Zahadat et al. [348, 349] extend the basic minimize surprise

approachwith an explicit driver for exploration and curiosity.

Their so-called diverse-predictionmethod rewards both high

prediction accuracy and visiting many different sensory

states, that is, combinations of sensor values. As before,
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Figure 3.5: Visualization of a 2D torus.

experiments are run on a 1D continuous torus with simple

agents. The authors show that their approach leads to the

emergence of more diverse behaviors independent of swarm

density. A drawback of the approach is that it cannot be

extended easily to continuous sensors as this would lead to

infinitely many sensory states.

Borkowski and Hamann [37] extend the results of the stan-

dard minimize surprise approach to a 2D simulated torus

environment. Agents are equipped with two or four discrete

sensors that cover the neighborhood in front and around the

agent, respectively. The actor outputs an action value that

switches between straight motion and rotation as well as a

linear and an angular speed. The authors find several basic

collective behaviors: flocking, two variants of aggregation,

and dispersion. In aggregation, agents are either stopped

or a rotating cluster of circling agents is formed. Borkowski

and Hamann [37] exemplify that evolution can be biased

by the agent’s sensor model on the basis of the dispersion

behavior. The simpler sensor model with two sensors to the

front leads to dispersion with circling agents. By contrast,

the sensor model with four sensors around the agent leads

to less motion, that is, to stopped agents.

All previous works were conducted in rather simple simula-

tion environments aiming for basic collective behaviors and

only provide short studies of the emergent behaviors and

diversity. We extend these works considerably by studying

more complex behaviors that we analyze more thoroughly

with respect to their robustness, scalability, and diversity.

Furthermore, we extend the approach to also work in realistic

simulations and on real robots.
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1: For all coordinates in 2D environ-

ments with periodic boundary condi-

tions (G mod !G , H mod !H) holds with

side lengths !G and !H in x- and y-

direction, respectively.

Evolution of Self-Assembly
Behaviors by Minimizing

Surprise 4
Chapter Contents

In this chapter, we study the evolution of self-assembly

behaviors with minimize surprise in a simple grid-based

environment. We...

I Sec. 4.1: introduce the experimental setup, and

I Sec. 4.2: the evaluation metrics and methods,

I Sec. 4.3: justify the choice of our sensor model,

I Sec. 4.4: study the emergent behaviors over grid size,

I Sec. 4.5: show the effectiveness of our minimize sur-

prise approach, and

I Sec. 4.6: draw a conclusion.

Parts of this chapter are based on [38, 39, 42].

The first works on our minimize surprise approach (see

Sec. 3.3) focused on the evolution of basic collective behav-

iors of rather low complexity in simple simulation environ-

ments [28, 37]. In this chapter, we aim for the emergence

of more complex self-assembly behaviors (see Sec. 2.2.1) in

simulated 2D torus grid worlds [38, 39, 42]. Thereby we

not only evolve more complex behaviors than before, but

also have a scenario that allows for an in-depth study of

the resulting behaviors as computational resources are kept

within reasonable limits. In this chapter, we focus on the

emergent behaviors over grid sizes to study the resulting

behavioral diversity (research question Q1, Sec. 1.2) and on

the effectiveness of our approach. In Ch. 5, we then study the

robustness, scalability, and diversity of the emergent behav-

iors in comparison to state-of-the-art approaches in detail to

address the remaining aspects of research question Q1.

4.1 Experimental Setup

Aiming for the emergence of self-assembly behaviors in-

creases the potential complexity compared to our previous

scenarios considerably. We govern complexity in two ways:

(i) by following the approach of emulated self-assembly,

and (ii) by restricting ourselves to a simple 2D torus grid

world. Emulated self-assembly requires individual agents

only to position themselves next to each other without con-

necting physically or virtually and is frequently used in

self-assembly studies [157, 158]. Consequently, we do not

have to consider connection mechanisms in our setup. Fur-

thermore, restricting ourselves to a simple 2D grid world

with periodic boundary conditions
1
(i.e., a torus) leads to
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simplified sensing and enforces equidistant positioning of

agents.

On our 2D torus grid lives a simulated swarm of # =
100 simple agents. Each grid cell can only be occupied by

one agent at a time. Each agent = has a position %=(C) =
(G=(C), H=(C)) on a grid cell and a discrete heading �=(C) =
(ℎG=(C), ℎ

H
=(C)), that is either North � = (0, 1), East � = (1, 0),

South � = (0,−1), or West � = (−1, 0), at time step C. In
each time step, agents execute one of two possible actions:

moving one grid cell forward, that is,

%=(C + 1) = ((G=(C) + ℎG=(C))mod !G ,

(H=(C) + ℎH=(C))mod !H) ,
�=(C + 1) = �=(C) ,

(4.1)

or rotating ± 90
◦
on the spot, that is,

%=(C + 1) = %=(C) ,
�=(C + 1) = (−ℎH=(C), ℎG=(C)) or
�=(C + 1) = (ℎH=(C),−ℎG=(C)) .

(4.2)

A move forward is only possible if the grid cell in front is not

yet occupied by another agent. If an agent attempts to move

on a grid cell that is already occupied by another agent, the

move forward is prevented and the agent stays on its current

grid cell. This is similar to a hardware protection layer in real

robots that prevents collisions with other robots or obstacles.

We equip each agent with ' = 14 binary sensors covering its

neighboring grid cells as visualized in Fig. 4.1. A sensor value

of ‘0’ indicates that the respective grid cell is empty while a

‘1’ means that it is occupied by another agent. The choice of

the sensor model is studied in more detail in Sec. 4.3. This

overall simple experimental setup allows for a structured

and detailed study of the emergent behaviors.

Figure 4.1: Sensor model in the self-

assembly scenario with labels for each

sensor. Each agent has 14 binary sensors

covering its neighborhood. The blue cir-

cle represents the agent and the black

line indicates its heading.

Following our minimize surprise approach (see Ch. 3), we

equip each agent with an actor-predictor ANN pair as visu-

alized in Fig. 4.2. Actor and predictor are both three-layer

ANNswith an input, one hidden and an output layer. We use

the hyperbolic tangent tanh as the transfer function and map

the network outputs to our discrete action values and sensor

value predictions. The actor network (see Fig. 4.2a) has 15 in-

put neurons, eight hidden neurons and two output neurons.

It determines the agent’s next action by outputting two action

values: 00(C) decides whether to move or turn and 01(C) deter-
mines the turning direction (i.e., ±90

◦
). The actor receives the

agent’s 14 current sensor values B0(C), . . . , B13(C) and its last

action 00(C−1) as inputs.We use only 00 as input to theANNs
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!G

!H

Figure 4.3: Fundamental polygon of the

2D torus grid environment with side

lengths !G in x-direction and !H in y-

direction. A torus (see Fig. 3.5) is formed

by connecting the opposite sides of the

polygon (marked in the same color).

as in previous works [37]. While the actor always outputs

a turning direction 01(C), it is solely informative when 00(C)
selects to turn and may even be deceptive when 00(C) selects
to move. A study of the influence on the emergent behaviors

when 01(C) is used as an additional ANN input remains sub-

ject of future work. The predictor network (see Fig. 4.2b) has

15 input neurons, 14 hidden recurrent neurons and 14 output

neurons. It outputs predictions B̃0(C+1), . . . , B̃13(C+1) for the
' = 14 sensor values of the next time step C+1. That is, agents

predict whether they may see other agents. The predictor

receives the agent’s 14 current sensor values B0(C), . . . , B13(C)
and its next action 00(C) as inputs.

... ...

B0(C)

B13(C)

00(C − 1)

00(C)

01(C)

(a) actor

... ...
...

B0(C)

B13(C)

00(C)

B̃0(C + 1)

B̃13(C + 1)

(b) predictor

Figure 4.2: Actor-predictor ANN pair in

the self-assembly scenario. 00(C − 1) is
the agent’s last action value and 00(C)
is its next action determining whether

to move or turn. 01(C) determines the

turning direction. B0(C), . . . , B13(C) are
the agent’s 14 sensor values at time step C,
B̃0(C + 1), . . . , B̃13(C + 1) are its sensor pre-
dictions for time step C + 1.

We evolve the actor-predictor ANN pairs using a simple

evolutionary algorithm (see Sec. 2.3.2) and reward high

prediction accuracy as defined by our minimize surprise

fitness function (Eq. 3.1). We run the evolutionary algorithm

for 6max = 100 generations (i.e., termination criterion) and

evaluate each genome in ten independent simulation runs

for ) = 500 time steps each. The fitness of a genome is the

minimum fitness observed in ten independent evaluations.

Thus, ANN pairs that perform poorly in some runs are elimi-

nated and pressure put on the evolutionary algorithm to find

generally well performing solutions. Genomes encode the

synaptic weights of both neural networks (see Sec. 3.2) and

we randomly generate the initial populationP(0) by drawing

the weights from a uniform distribution in [−0.5, 0.5]. Our

swarm is homogeneous both related to agent model and

controller, that is, each swarmmember has an instance of the

same genome in a given evaluation. We place agents with a

uniformly random heading uniformly random on the grid

at the beginning of each evaluation. For the evolutionary

algorithm, we use a population size � of 50, proportionate

parent selection, age-based survivor selection, and elitism

of one. We generate � = � − 1 offspring for the population

of the next generation. We apply mutation only, that is, we

do not use recombination. Each value v of a genome is mu-

tated with a probability ?mut of 0.1 by adding a uniformly

random number from [−0.4, 0.4]. For each setting, we do

50 independent evolutionary runs if not indicated other-

wise. We post-evaluate the best evolved individuals (i.e., the

ANN pairs with the highest fitness in the last generation of

the evolutionary runs) for our in-depth study of the emer-

gent behaviors. Tab. 4.1 summarizes all parameters of our

experimental setup.

In our self-assembly experiments, we study the effect of

swarm density on the emergent swarm behaviors. Swarm

density �# ∈ [0, 1] is the fraction of the arena occupied by

agents and defined as

�# =
#

!G × !H
, (4.3)
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parameter value

grid side length ! [11 .. 30]
swarm size # 100

# of sensors and predictor outputs ' 14

sensor values BA {0, 1}
action value 00 {straight, turn}
action value 01 ±90

◦

population size � 50

number of generations 6max 100

evaluation length ) (time steps) 500

# of simulation runs per fitness evaluation 10

elitism 1

mutation rate ?mut 0.1

Table 4.1: Parameters for the self-

assembly scenario.

2: !G and !H specify the number of grid

cells in this scenario.

where # is the swarm size and !G × !H is the grid size.
2

We vary swarm density using different sizes !G × !H of the
fundamental polygon (see Fig. 4.3) of our 2D torus grid

environment while keeping a fixed swarm size # of 100. In

the majority of experiments, we use square grid worlds (i.e.,

!G = !H = !) with side lengths ! ∈ [11 .. 30]. This leads to
swarm densities between 0.11 (

100

30×30
) and 0.83 (

100

11×11
), see

Fig. 4.4. A grid size of 10 × 10 has a swarm density of 1.0,
that is, each grid cell is occupied by one agent, and obviously

only allows for aggregation. In that case, the actor’s outputs

are negligible, since agents will be constantly on their initial

grid cells and evolution would lead to a predictor constantly

outputting ‘1’ for all sensor predictions. Wemainly restrict us

to square tori, since we do not expect much influence of the

torus geometry on the resulting behaviors. But in Sec. 6.2.2,

we study the influence of torus geometry on one resulting

behavior.

Figure 4.4: Swarm densities �# for all

studied square grid sizes ! × ! in the

self-assembly scenario.

4.2 Evaluation Metrics and Methods

In this section, we introduce metrics and methods for the

quantitative evaluation of the emergent behaviors.

4.2.1 Metrics

Additionally to fitness (i.e., prediction accuracy, Eq. 3.1), we

define three other evaluation metrics: (i) temperature Θ of

the system, (ii) agent movement"# , and (iii) intended agent

movement �# .

We define the temperature Θ of the system as the forward

motion of the agents in time step C, that is, the mean covered

distance of the agents in that time step. The agents’ rotations

and prevented forward movements are not considered. Our

temperature measurementΘ is inspired by thermodynamics
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Table 4.2: Time period of � =
!G×!H

2
time

steps per grid size ! × !.

! � ! �

11 60 21 220

12 72 22 242

13 84 23 264

14 98 24 288

15 112 25 312

16 128 26 338

17 144 27 364

18 162 28 392

19 180 29 420

20 200 30 450

where temperature is proportional to the average kinetic

energy of the molecules’ center-of-mass motions [350]. The

temperature decreases with increasing number of agents that

stay on their grid cells. Consequently, these agents turn or

are blocked in their forward movement as their targeted grid

cells are already occupied. A hot system is in a disordered

state with many moving agents and a cool system relates to a

more ordered system, which has assembled into a structure.

We define temperature Θ as

Θ(C) = 1

#

#−1∑
==0

3"(%=(C), %=(C + 1)) , (4.4)

where # is the swarm size and 3"(·, ·) is the Manhattan dis-

tance between positions %=(C) and %=(C+1) of agent = in time

steps C and C + 1, respectively. We normalize temperature Θ
by the number of agents # , which results in Θ ∈ [0, 1], since
each agent can move maximally one grid cell forward per

time step. The Manhattan distance 3"(%8 , %9) between two

positions %8 = (G8 , H8) and %9 = (G 9 , H9) on a torus with a

fundamental polygon of size !G × !H (see Fig. 4.3) is given
by

3"(%8 , %9) = 3G(G8 , G 9) + 3H(H8 , H9) (4.5)

with

3G(G8 , G 9) = min(|G8 − G 9 |, !G − |G8 − G 9 |) (4.6)

and

3H(H8 , H9) = min(|H8 − H 9 |, !H − |H8 − H 9 |) . (4.7)

We measure the motion of agents using the Manhattan

distance, since agents cannot move diagonally in our experi-

mental setup.

As a second metric, we introduce agent movement "# .

It is the mean covered distance of agents as an integral of

displacement at each time step over a timeperiod of � =
!G×!H

2

time steps as in previouswork byHamann [28]. Timeperiod �
allows agents to cover the same relative distance, that is, 50 %

of the grid cells. Tab. 4.2 gives the number � of time steps

per studied square grid size ! ∈ [11 .. 30]. Agent movement

equals the mean temperature over time period �. We define

agent movement"# as
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"# =
1

�

)−1∑
C=)−�

Θ(C)

=
1

�#

)−1∑
C=)−�

#−1∑
==0

3"(%=(C), %=(C + 1)) ,
(4.8)

where Θ(C) is the temperature at time step C (Eq. 4.4) and
3"(·, ·) is the Manhattan distance (Eq. 4.5). We normalize

agent movement "# by swarm size # and time period �
(i.e.,"# ∈ [0, 1]).
Furthermore, we define intended agent movement �# , that
is, how often the actor outputs to move one grid cell forward.

As agents are prevented to move forward when a targeted

grid cell is occupied, the intended agent movement �# and

the real agent movement "# can deviate. Consequently, a

large deviation between intended and real agent movement

serves as an indicator that agents stand still by exploiting

the prevention of forward movements. We define intended

agent movement �# as

�# =
1

�#

)−1∑
C=)−�

#−1∑
==0

0=
0
(C) , (4.9)

where # is the swarm size, � is a time period of

!G×!H
2

time

steps, and 0=
0
(C) is the action value of agent = at time step C,

which determines whether to move straight or to turn. The

action value is 1 for moving one grid cell forward and 0 for

rotation.

4.2.2 Classification of Emergent Structures

We classify structures formed by the agents in our self-

assembly scenario based onmetrics for nine different patterns.

These metrics are defined based on our experience that we

gathered during an initial qualitative analysis of the results.

This is an empirical approach to classify the emergent self-

assembly behaviors (i.e., phenotypes) quantitatively. While

we cannot guarantee that our set of patterns is complete, we

are still confident that all distinguishable, relevant patterns

are covered by our metrics. We differentiate between

I lines (LN) and pairs (PR),
I four grouping patterns: aggregation (AG),
clustering (CL), loose grouping (LG), and swirls (SW),
and

I three dispersion patterns: random dispersion (RD),
squares (SQ), and triangular lattices (TL).
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3: For conciseness, we denote by %=
the position %=()) and by �= the head-

ing �=()) of agent = in set of all

agents S# in the last time step ) of the

post-evaluation run, that is, we omit the

time step in our notation in the follow-

ing. In addition, %9 = %8 + �8 always

denotes %9 = ((G8 + ℎG8 ) mod !G , (H8 +
ℎ
H

8
)mod !H).

4: https://gitlab.iti.uni-luebeck.

de/minimize-surprise/

self-assembly

All nine patterns are either rotation symmetric (e.g., squares

or triangular lattices) or exploit that the forward movement

of agents is prevented when the grid cell in front is already

occupied in order to form repetitive patterns (e.g., lines, pairs,

swirls). In the case of rotation symmetric patterns, agents

stay on their current grid cell by turning constantly. Thus,

a ‘boring’, structured environment is created by the swarm

that allows for simple sensor predictions and high prediction

accuracy, since all agents in the pattern have the same or

similar sensor readings.

Structures formed by the agents in the last time step (i.e.,

C = ))3 of the post-evaluation runs of the best evolved

individuals are automatically classified based on their high-

est resemblance to one of the nine patterns using Python

scripts [39].
4
The highest resemblance to a pattern is de-

termined by measuring the solution quality @/ for each of

the nine possible patterns. We define solution quality @/ of

pattern / ∈ {LN, PR,AG,CL, LG, SW,RD, SQ, TL} as

@/ =
1

#

#−1∑
==0

2=/ , (4.10)

with swarmsize# and criterion 2=
/
of pattern/ that evaluates

to one (2=
/
= 1) if agent = fulfills the pattern criterion and to

zero (2=
/
= 0) otherwise.

The self-assembled structure is classified according to the

highest solution quality &, that is, we define the solution

quality & of the best evolved individual as

& = max({@LN, . . . , @TL}) . (4.11)

Thus, solution quality measures the quantity of agents that

are assembled into the dominant pattern in the last time step

of the post-evaluation run.
5

5: In case that wemeasure solution qual-

ity at a different time step, we specify the

time step explicitly. For example, &(0)
gives the solution quality at the begin-

ning of a run.

(a) lines (b) pairs

Figure 4.5: Example illustrations of lines (LN) and pairs (PR). Agents are represented by circles, their color and the lines indicate their

headings.

Lines (LN; Fig. 4.5a) and pairs (PR; Fig. 4.5b) are formed by

agents that are horizontally or vertically placed next to each

https://gitlab.iti.uni-luebeck.de/minimize-surprise/self-assembly
https://gitlab.iti.uni-luebeck.de/minimize-surprise/self-assembly
https://gitlab.iti.uni-luebeck.de/minimize-surprise/self-assembly
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6: All neighboring agents < above a

horizontal line or pair structure (i.e.,

� ∈ {(1, 0), (−1, 0)}) or, respectively, to
the right of a vertical line or pair struc-

ture (i.e., � ∈ {(0, 1), (0,−1)}) are given
by set S:

NB,1
= {< : (%< = (G= +

|ℎH= |) mod !G , (H= + |ℎG= |) mod !H), < ∈
S# , = ∈ S:

PL
}. Similarly, all neighbor-

ing agents < below a horizontal line

or pair structure or, respectively, to the

left of a vertical line or pair structure are

given by set S:
NB,2

= {< : %< = ((G= −
|ℎH= |) mod !G , (H= − |ℎG= |) mod !H), < ∈
S# , = ∈ S:

PL
}.

other. The criteria for pairs and lines differ only in the length

of the structure: pairs consist of exactly two agents, while

lines are formed by at least three agents. An individual pair

or line is formed out of a set S:
PL

of adjacent agents = in set

of all agents S# where

∀= ∈ S:
PL
∃< ∈ S:

PL
: %< = %= + �= , (4.12)

∀=, < ∈ S:
PL
∃& < |S:

PL
| : %< = ((G= ± &ℎG=)mod !G ,

(H= ± &ℎH=)mod !H) ,
∧ 3"(%= , %<) = & ,

(4.13)

and

∀=, < ∈ S:
PL

: �< = ±�= , (4.14)

with positions %= = (G= , H=), %< = (G< , H<) and headings

�= = (ℎG= , ℎ
H
=),�< = (ℎG< , ℎ

H
<)of agents = and<, respectively,

and Manhattan distance 3"(·, ·) (Eq. 4.5), hold. This means

that each agent has a neighbor on the next grid cell in its

heading direction (Eq. 4.12), which allows agents to form

stable structures by exploiting that all intended forward

movement is blocked (see Sec. 4.1). Furthermore, all agents

are positioned on horizontally or vertically adjacent grid

cells with no empty grid cells in between (Eq. 4.13) and

all agents have parallel headings (Eq. 4.14), that is, � ∈
{(1, 0), (−1, 0)} for horizontal and � ∈ {(0, 1), (0,−1)} for
vertical lines and pairs. Lines and pairs can have up to half of

their length of neighboring agents
6
on each side next to them

(i.e., |S:
NB,1
| ≤ |S

:
PL
|

2
, |S:

NB,2
| ≤ |S

:
PL
|

2
with sets of neighboring

agents per side of the structure S:
NB,1

and S:
NB,2

). No two

adjacent grid cells parallel to the structure are allowed to be

occupied by neighboring agents. Therefore, all neighboring

agents must have a Manhattan distance (Eq. 4.5) of at least

two from each other. A swarm of agents can self-assemble

into several pairs or lines S:
PL
. The set SPR of all assembled

pairs is given by

SPR = {S:
PL

: |S:
PL
| = 2, |S:

NB,1 | ≤
|S:

PL
|

2

, |S:
NB,2 | ≤

|S:
PL
|

2

,

∀8 , 9 ∈ (S:
NB,1 ∪ S:

NB,2), 8 ≠ 9 : 3"(%8 , %9) ≥ 2,

0 ≤ : <  } ,
(4.15)
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where  is the number of sets of adjacent agents S:
PL
. Hence,

we define the criterion 2=
PR

for agent = being classified as

pairs (PR) as

2=
PR
=

{
1, if ∃SPL ∈ SPR : = ∈ SPL
0, otherwise

. (4.16)

Accordingly, the set SLN of all assembled lines is given by

SLN = {S:
PL

: |S:
PL
| > 2, |S:

NB,1 | ≤
|S:

PL
|

2

, |S:
NB,2 | ≤

|S:
PL
|

2

,

∀8 , 9 ∈ (S:
NB,1 ∪ S:

NB,2), 8 ≠ 9 : 3"(%8 , %9) ≥ 2,

0 ≤ : <  } .
(4.17)

As already stated above, lines differ only by the length of the

structure from pairs (i.e., |S:
PL
| = 2 for pairs and |S:

PL
| > 2 for

lines). We define the criterion 2=
LN

for agent = being classified

as lines (LN) as

2=
LN
=

{
1, if ∃SPL ∈ SLN : = ∈ SPL
0, otherwise

. (4.18)

(a) squares (b) triangular lattice (c) random dispersion

Figure 4.6: Example illustrations of the three dispersion patterns: squares (SQ), triangular lattices (TL), and random dispersion (RD).
Agents are represented by circles, their color and the lines indicate their headings.

We define three dispersion patterns: squares (Fig. 4.6a), tri-

angular lattices (Fig. 4.6b), and random dispersion (Fig. 4.6c).

These patterns are rotation symmetric, rendering the agent

headings irrelevant here.

Squares (SQ) are formed by agents that are one grid cell apart

in each direction, that is, agents are positioned on every other

grid cell. An individual square is formed on a 5 × 5 segment

of the torus grid with grid cell � = (G� , H�) being the center
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Figure 4.7: Illustration of a 5× 5 segment

of the grid forming an individual square

with grid cell � = (G� , H�) being the

center of the segment. The inner 3×3 grid

cells are indicated by the red line and

agents by blue circles. The visualized

agents form the set S�
SQ

(Eq. 4.20).

of this segment, see Fig. 4.7. All agents = in this 5×5 segment

are given by

S�
5×5

= {= : 3G(G= , G�) ≤ 2, 3H(H= , H�) ≤ 2, = ∈ S# } ,
(4.19)

with Manhattan distances 3G(·, ·) and 3H(·, ·) along the x-axis

and the y-axis as defined in Eqs. 4.6 and 4.7.

For the squares pattern, the corners of the inner 3 × 3 grid

cells have to be occupied by agents (see Fig. 4.7). The set of

agents on the respective grid cells is given by

S�
SQ
= {= : 3G(G= , G�) = 1, 3H(H= , H�) = 1, = ∈ S# } . (4.20)

All other grid cells in the 5 × 5 segment have to be empty.

Hence, we define the criterion 2=
SQ

for agent = to be classified

as squares (SQ) as

2=
SQ
=

{
1, if ∃� : = ∈ S�

SQ
∧ |S�

SQ
| = 4 ∧ |S�

5×5
| = 4

0, otherwise

.

(4.21)

An agent can be part of more than one formed square as

individual squares can overlap.

Triangular lattices (TL) are formed by agents that are po-

sitioned in a 2D diagonal square lattice. The structure is

rotation symmetric for the center agent 8. A triangular lattice

segment consists of 21 grid cells on which nine agents are po-

sitioned, see Fig. 4.8. Triangular lattice segments can overlap,

which means that an agent can be part of several triangular

lattice segments.

Figure 4.8: Illustration of a triangular

lattice segment S8
TLS

with agent 8 on po-

sition %8 = (G8 , H8) being the center of

the segment. The formed structure is

rotation symmetric for agent 8, that is,
the agent has constant sensor inputs in-

dependent from its heading. The seg-

ment is indicated by red lines, the sensor

view of agent 8 in horizontal and vertical

orientation by dashed and dotted red

lines, respectively, and agents by blue

circles. The visualized agents form the

set S8
TL

(Eq. 4.22).

A triangular lattice is formed by agent 8 in the center and its

neighbors with a Manhattan distance of two. The set S8
TL

of

agents on the respective grid cells is given by

S8
TL
= {= : 3"(%8 , %=) = &, & ∈ {0, 2}, =, 8 ∈ S# } , (4.22)

with Manhattan distance 3"(·, ·) (Eq. 4.5) and position %8 =
(G8 , H8) of agent 8 in the center of the triangular lattice segment.

The other 12 grid cells in the triangular lattice segment have

to be empty. The set S8
TLS

of all agents on the 21 grid cells of

a triangular lattice segment is given by
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(a) von Neumann neighborhood

(b)Moore neighborhood

Figure 4.9: Von Neumann and Moore

neighborhoods of an agent. The agent is

represented by the beige circle, neighbor-

ing grid cells are colored blue.

S8
TLS

= {= : 3"(%8 , %=) ≤ 2∨
(3G(G8 , G=) = 2, 3H(H8 , H=) = 1) ∨
(3G(G8 , G=) = 1, 3H(H8 , H=) = 2), =, 8 ∈ S# } ,

(4.23)

with distances 3G(·, ·) (Eq. 4.6) and 3H(·, ·) (Eq. 4.7) along the

x-axis and the y-axis, respectively. Thus, we define criterion

2=
TL

for agent = to be classified as triangular lattices (TL) as

2=
TL
=

{
1, if ∃8 ∈ S# : = ∈ S8

TL
∧ |S8

TL
| = 9 ∧ |S8

TLS
| = 9

0, otherwise

.

(4.24)

The random dispersion (RD) pattern is formed by agents that

have either noneighbors in their vonNeumannneighborhood

or maximally one neighbor in their Moore neighborhood.

Additionally, randomly dispersed agents are not allowed to

be part of any other pattern. Based on the pattern criteria,

randomly dispersed agents cannot, inherently, be part of

one of the four grouping behaviors. Thus, we only explicitly

check for triangular lattices, squares, lines, and pairs.

The set S=
VN

of agents in the von Neumann neighborhood

(Fig. 4.9a) of an agent = is given by

S=
VN

= {< : 3"(%< , %=) = 1, <, = ∈ S# } , (4.25)

that is, all neighboring agents < with a Manhattan dis-

tance 3"(·, ·) (Eq. 4.5) of one. The set S=
M

of agents in the

Moore neighborhood (Fig. 4.9b) of an agent = is given by

S=
M
= {< : 3G(G< , G=) ≤ 1, 3H(H< , H=) ≤ 1,

<, = ∈ S# , < ≠ =} ,
(4.26)

that is, all neighboring agents < with a maximum dis-

tance 3G(·, ·) (Eq. 4.6) of one in x-direction and a maximum

distance 3H(·, ·) (Eq. 4.7) of one in y-direction.

We define the criterion 2=
RD

for agent = to be classified as

randomly dispersed (RD) as

2=
RD
=


1,

if (|S=
M
| ≤ 1 ∨ |S=

VN
| = 0) ∧

(2=
TL
= 0 ∧ 2=

SQ
= 0 ∧ 2=

LN
= 0 ∧ 2=

PR
= 0)

0, otherwise

.

(4.27)
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(a) aggregation (b) clustering (c) loose grouping (d) swirls

Figure 4.10: Example illustrations of the four grouping patterns: aggregation (AG), clustering (CL), loose grouping (LG), and swirls (SW).
Agents are represented by circles, their color and the lines indicate their headings.

We differentiate four grouping patterns: aggregation

(Fig. 4.10a), clustering (Fig. 4.10b), loose grouping (Fig. 4.10c),

and swirls (Fig. 4.10d).

Aggregation (AG), clustering (CL), and loose grouping (LG)
are patterns that are based on agent clusters. Individual

clusters are formed by agents with at least three neighbors in

their von Neumann neighborhoodS=
VN

(Eq. 4.25) and at least

six neighbors in theirMoore neighborhoodS=
M
(Eq. 4.26). The

agents’ neighbors are also part of the cluster, irrespective of

whether they fulfill those neighborhood criteria themselves.

Hence, we define measure 2<
CLN

indicating if agent = fulfills

these neighborhood conditions as

2=
CLN

=

{
1, if |S=

M
| ≥ 6 ∧ |S=

VN
| ≥ 3

0, otherwise

. (4.28)

We define the set S:
GR

of agents grouped into an individ-

ual cluster recursively. Agent < fulfills the neighborhood

criterion 2=
CLN

and initializes cluster S:
GR

, that is,

< ∈ S:
GR
, 2<

CLN
= 1 . (4.29)

If an agent = is part of cluster S:
GR

and fulfills the neigh-

borhood criterion 2=
CLN

, then all neighbors 9 in its Moore

neighborhood are also part of cluster S:
GR

independent of

whether they fulfill the neighborhood criterion themselves

as given by

= ∈ S:
GR
∧ 2=

CLN
= 1 ∧ 9 ∈ S=

M
→ 9 ∈ S:

GR
. (4.30)

We define SCL = {S:
GR

: 0 ≤ : <  } as the set of all  clus-

ters S:
GR

formed by the swarm. We differentiate between

aggregation, clustering, and loose grouping based on the

number  of formed clusters and whether clusters are con-

nected. Aggregation is the formation of a single cluster, that
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Figure 4.11: Two directly connected clus-

ters. Cluster S
9

GR
is formed by the agents

represented by beige circles and clus-

ter S8
GR

by the agents represented by

blue circles. The agent represented by

the red circle is part of both clusters. It

does not fulfill the neighborhood crite-

rion 2=
CLN

(Eq. 4.28) itself and thus two

individual clusters are formed that are

connected via this agent.

is, the criterion 2=
AG

for agent = being classified as aggrega-

tion (AG) is

2=
AG
=

{
1, if |SCL | = 1 ∧ ∃SGR ∈ SCL : = ∈ SGR

0, otherwise

. (4.31)

Clustering and loose grouping consist of several clusters

(|SCL | > 1) and are differentiated based on the connection

of clusters. Two clusters S8
GR

and S
9

GR
are directly connected

if there is at least one agent that is part of both clusters but

does not fulfill the neighborhood criterion itself as visualized

in Fig. 4.11. The set Eof direct connections between clusters

is given by

E= {[8 , 9] : S8
GR
∩ S

9

GR
≠ ∅,S8

GR
∈ SCL,S9

GR
∈ SCL,

8 ≠ 9 , 0 ≤ 8 <  , 0 ≤ 9 <  } .
(4.32)

Clusters can be either directly connected or connected via

other clusters. We can determine whether all clusters are

connected (i.e., there is a path from every cluster to ev-

ery other cluster) by representing the set of clusters and

the direct connections between clusters as an undirected

graph G= (V, E). The set V= {: : 0 ≤ : <  } of vertices
represents the  clusters in SCL and E (Eq. 4.32) gives the

direct connections between two clusters as edges. We test if

the graph is connected using a traversal algorithm, such as

Depth First Search, which sets connection criterion 2connect
to 1 if the graph is connected and to 0 if the graph is not

connected.

Loose grouping is the formation of several clusters that are

all connected. Thus, we define criterion 2=
LG

of agent = being

classified as loose grouping (LG) as

2=
LG
=


1,

if |SCL | > 1 ∧ 2connect = 1

∧ ∃SGR ∈ SCL : = ∈ SGR

0, otherwise

. (4.33)

In contrast, clustering is the formation of several clusters

that are not connected, that is, there are at least two separate

clusters. We define criterion 2=
CL

of agent = to be classified as

clustering (CL) as

2=
CL
=


1,

if |SCL | > 1 ∧ 2connect = 0

∧ ∃SGR ∈ SCL : = ∈ SGR

0, otherwise

. (4.34)
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Figure 4.12: Two swirls on a 4 × 4 grid

segment each. Agents are represented by

circles, their color and the lines indicate

their headings. 8 , 9 , :, < give the indices

of the agents as used in Eq. 4.35.

Swirls (SW) are formed by four agentsS8
SW

that are positioned

in a squarewith no free cells in between. Each agent’s heading

points to one of the other three agentswhereby this neighbor’s

heading differs by ±90
◦
, see Fig. 4.12. Thus, a stable structure

is formed as intended forward movement of the four agents

will be prevented. We define the set S8
SW

of agents assembled

into a swirl based on an agent 8 ∈ S# with position %8 =

(G8 , H8) and heading�8 = (1, 0), that is, %8 ∈ S8
SW

. Three more

agents are required for the formation of one swirl:

9 ∈ S# , %9 = %8 + �8 , �9 = (0,±1) → 9 ∈ S8
SW
,

: ∈ S# , %: = %9 + �9 , �: = −�8 = (−1, 0) → : ∈ S8
SW
,

< ∈ S# , %< = %: + �: , �< = −�9 → < ∈ S8
SW
.

(4.35)

These four agents are positioned in the center of a 4 × 4

segment of the grid. We allow maximally one more agent

next to the four agents forming the swirl to be positioned in

this segment. S8
4×4

gives all agents in the 4 × 4 grid segment

as defined by

S8
4×4

= {= : − 1 ≤ min(Gmin − G= , ! − (Gmin − G=)) ≤ 2,

− 1 ≤ min(Hmin − H= , ! − (Hmin − H=)) ≤ 2,

= ∈ S# } ,
(4.36)

with leftmost agent position in the swirl Gmin = G8 and lower

agent position in the swirl

Hmin =

{
H 9 , if �9 = (0, 1)
H< , otherwise

. (4.37)

Wedefine criterion 2=
SW

of agent = to be classified as swirls (SW)
as

2=
SW

=

{
1, if ∃8 ∈ S# : = ∈ S8

SW
∧ |S8

SW
| = 4 ∧ |S8

4×4
| ≤ 5

0, otherwise

.

(4.38)
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7: Dependent variables measure the ef-

fect caused by a change of the indepen-

dent variable.

8: The Kruskal-Wallis test is the non-

parametric equivalent of a one-way

ANOVA (analysis of variance).

4.2.3 Statistical Tests

We test for statistically significant differences in fitness

(Eq. 3.1), behavior distributions, and solution quality (Eq. 4.11)

(i.e., dependent variables) in the different scenarios (i.e., in-

dependent variable).
7
Here, different scenarios are different

test environments (e.g., varying swarm densities) or different

approaches (e.g., novelty search, minimize surprise) that may

affect the resulting fitness, solution quality, and behaviors.

We use non-parametric tests (i.e., no normality assumption)

as recommended for evolutionary robotics [351, 352]. Our

data is unpaired, sincewe randomly initialize all evolutionary

runs independently.

Fitness and solution quality are continuous values in the

range of [0, 1]. We want to test for differences in the distribu-

tions of groups of this data (e.g., fromdifferent scenarios). The

Mann-Whitney U test (hereafter abbreviated MW-U) [353]

is a non-parametric test for unpaired data with the null hy-

pothesis that two groups of at least ordinally scaled data are

equal. The alternative hypothesis is that the two groups of

data differ without specifying the direction (i.e., two-sided

test). Alternatively, it can be performed as a one-sided test

to detect if one group is statistically significantly greater or

less than the other. The Kruskal-Wallis test
8
(hereafter abbre-

viated KW) [354] is the extension of the Mann-Whitney U

test for several groups. As it only indicates if there is at least

one group statistically significantly different to the others,

post-hoc tests are needed to determine which pairs of groups

are different. Here, we use the Mann-Whitney U test with

Bonferroni correction [355] (hereafter abbreviated BC) that is

commonly used [280] to govern the increasing likelihood of

type I errors (i.e., the rejection of a true null hypothesis) when

comparing multiple times. All of those tests are commonly

used in evolutionary swarm robotics [280, 356–359].

The emergent behavior distributions (i.e., how often did

we observe clustering, dispersion, etc.) can be represented

as frequency or percentage distributions. For visualization

purposes, we use percentage distributions to allow for easier

visual comparison of scenarios. To study if behavior distribu-

tions differ between scenarios, we use Fisher’s Exact test [360]

that in contrast to Pearson’s Chi-squared test can also be used

when there are expected cell counts lower than five. Fisher’s

Exact test (hereafter abbreviated FE) is a non-parametric test

for frequency distributions to determine if there is an asso-

ciation between two categorical variables. Here, we study

if there is a difference in the behavior distributions for dif-

ferent scenarios or, in other words, if there is an association

between scenario and resulting behaviors. The test can be

used to compare pairwise and to compare several groups. In

the latter case, we user Fisher’s Exact test with Bonferroni

correction as a post-hoc test.
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(a)Moore neighborhood (b) six sensors (c) 14 sensors

Figure 4.13: The three different sensor

models for the self-assembly scenario

that we evaluate in preliminary inves-

tigations. Blue circles represent agents,

black lines indicate their headings.

4.3 Choice of Sensor Model

In this first study, we justify the choice of our sensor model

that we have presented in Sec. 4.1 by comparing three differ-

ent sensormodels. All three sensormodels use binary sensors

that indicate whether the respective grid cell is occupied

by an agent. We compare sensor model (a) that covers the

agent’s Moore neighborhood (Fig. 4.13a), sensor model (b)

that covers six grid cells in front of the agent (Fig. 4.13b),

and sensor model (c) that covers an agent’s 14 surround-

ing grid cells (Fig. 4.13c). On the 15 × 15 and 20 × 20 torus

grids (i.e., ! ∈ {15, 20}), we evaluate each sensor model in

20 independent evolutionary runs and classify the resulting

structures based on the metrics presented in Sec. 4.2.2. We

compare best fitness � in the last generation of the evolution-

ary run (Eq. 3.1; Fig. 4.14a), solution quality & of the formed

structures (Eq. 4.11; Fig. 4.14b), and behavior distributions

(Fig. 4.14c) of the three sensor models per grid size.

Fitness (Fig. 4.14a) is statistically significantly different for all

three sensormodels on both grid sizes (KW, ? < 0.05). Sensor

model (b) reaches significantly greater and sensor model (c)

significantly less fitness than the respective other two sensor

models (MW-Uwith BC, ? < 0.05). We expected this ranking

(i.e., (b) > (a) > (c)) of the sensor models in fitness, since

each additional sensor value increases the overall difficulty

of the prediction task. This increase in difficulty is likely to

be non-linear, since each additional sensor value reduces

the weight of each prediction in the overall fitness, also

reducing the impact of each incorrectly predicted sensor

value. In total, we find high fitness for all sensor models with

a median fitness of at least 0.7 on the 15 × 15 grid and 0.8
on the 20 × 20 grid. Furthermore, there are no statistically

significant differences in solution quality (Fig. 4.14b) of the

best evolved individuals between the three sensor models

on both grid sizes (KW, ? < 0.05). We conclude that all three

sensor models are suitable candidates regarding fitness and

solution quality.

As we aim for the emergence of diverse collective behaviors

using our minimize approach, we also compare the resulting

behavior distributions, see Fig. 4.14c. On the 15 × 15 grid,

we do not find statistically significant differences (FE, ? <
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(a) best fitness � in the last generation (b) solution quality &

(c) behavior distributions

Figure 4.14: Fitness � (Eq. 3.1), solution quality & (Eq. 4.11), and behavior distribution of the best evolved individuals of 20 independent

evolutionary runs per grid size ! ∈ {15, 20} and sensor model in our study of sensor models for the self-assembly scenario. The behavior

distributions give the percentage of resulting structures with clustering (CL), aggregation (AG), loose grouping (LG), lines (LN), pairs (PR),
triangular lattices (TL), squares (SQ), and random dispersion (RD). Medians are indicated by the red bars in the box plots.

0.05). All three sensor models lead to the emergence of a

variety of behaviors here. We find six different behaviors

for sensor model (a) and five different behaviors for sensor

models (b) and (c). Sensor model (b) did not lead to the

emergence of triangular lattices, while we do not find pairs

using sensor model (c). The emergent behavior distributions

on the 20 × 20 grid are significantly different between the

sensormodels (FE, ? < 0.001), see Fig. 4.14c. Sensormodel (b)

results solely in the formation of lines and pairs and has the

lowest number of different behaviors. Both sensor models (a)

and (c) lead to the emergence of four different structures.

Sensor model (a) leads to the emergence of several behaviors

that result in the formation of clusters, pairs, and squares,

but the majority of behaviors leads to random dispersion.

In contrast, sensor model (c) results in a more uniform

distribution of clustering, lines, pairs, and randomdispersion.

We use sensor model (c) in all following experiments, since

it enables us to evolve a variety of behaviors independent

from swarm density.

4.4 Emergent Behaviors

In this section, we investigate the emergent behaviors over

grid size when applying our minimize surprise approach to

our self-assembly scenario (see Sec. 4.1). As we vary swarm

density by changing grid size ! × !, it allows us to study the

effects of swarm density on the emergence of structures (see
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(a) best fitness � over generations 6 on the 12 × 12 grid (b) best fitness � over grid size !

Figure 4.15: Best fitness � (Eq. 3.1) of 50 independent minimize surprise runs over generations on the 12 × 12 grid (! = 12) and for the

last generation per grid size ! × ! for the self-assembly scenario. Medians are indicated by the red bars [42, 343].

Figure 4.16: Behavior distributions, that
is, percentage of resulting structures,

in our self-assembly scenario for grid

sizes ! × ! with ! ∈ [11 .. 30] with clus-

tering (CL), aggregation (AG), loose group-
ing (LG), lines (LN), pairs (PR), triangular
lattices (TL), squares (SQ), swirls (SW), and
random dispersion (RD) [41, 42].

9: https://youtu.be/KWJIgPZd060

Fig. 4.4) [39, 42]. We do 50 independent evolutionary runs

for each grid size ! ∈ [11 .. 30] and classify the structures

formed by the best individuals in their evaluation’s last time

step ) using the metrics presented in Sec. 4.2.2. We compare

fitness � (Eq. 3.1), behavior distributions, solution quality &
(Eq. 4.11), temperature Θ (Eq. 4.4), agent movement "#

(Eq. 4.8), and intended agent movement �# (Eq. 4.9) of the

best evolved individuals. A video of emergent behaviors is

online.
9

Fitness Fitness � (Eq. 3.1), that is, prediction accuracy, is

a measure of success for our minimize surprise approach.

Fig. 4.15a visualizes the increase of best fitness of 50 inde-

pendent evolutionary runs over generations on the 12 × 12

grid and is representative for all observed fitness curves.

Fig. 4.15b shows best fitness in the last generation over grid

size ! ∈ [11 .. 30]. The median best fitness in the last genera-

tion is between 0.71 (! = 15) and 0.93 (! = 29). That means

at least 71 % of the sensor values were predicted correctly

by the evolved predictor networks. We find statistically sig-

nificant differences in the best fitness of the various grid

sizes (KW, ? < 0.001). The prediction task is easiest for dense

(! ∈ {11, 12}) and sparse (! ∈ [18 .. 30]) swarm densities,

that is, we find high fitness values. For intermediate densities

(! ∈ [13 .. 17]), we find statistically significantly lower fitness

values (MW-U with BC, ? < 0.05) and thus the prediction

task is harder here.

https://youtu.be/KWJIgPZd060
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Figure 4.17: Solution quality & (Eq. 4.11)

of the best evolved individuals of 50 evo-

lutionary runs per grid size ! in our

self-assembly scenario. Medians are in-

dicated by the red bars [42, 343].

Behavior Distributions Fig. 4.16 shows the resulting behavior

distributions, that is, the percentage of formed structures,

over grid size. The behavior distributions for thedifferent grid

sizes are statistically significantly different and thus swarm

density affects the emergence of behaviors (FE, ? < 0.01).

We find that this significant difference occurs between two

behavior distributions with increasing difference in swarm

density (FE with BC, ? < 0.05), that is, neighboring distribu-

tions usually do not vary to a statistically significant degree.

Grouping behaviors (i.e., aggregation, loose grouping, and

clustering) prevail on small grid sizes as these structures

form easily in high swarm densities. On the smallest grid

sizes ! ∈ {11, 12}, movement is barely possible and thus

only aggregation and loose grouping can emerge. We note a

shift in the distributions towards pairs, lines, and dispersion

with increasing grid size. The decrease in swarm density

allows for the formation of patterns that require agents to be

distributed in space. For example, a swarm density of 0.5 or

less is required for the formation of perfect line structures

(i.e., the grid has to have twice the swarm size of grid cells).

Triangular lattices, squares and swirls emerge rarely over all

grid sizes, probably because they require exact positioning

of four to nine agents. For instance, we find that 12 % of the

runs on the 20× 20 grid show a visible tendency towards the

formation of triangular lattices or squares but are classified

as random dispersion. We find the most diverse behavior dis-

tributions with seven and six out of nine possible structures

on the 16 × 16 grid and 15 × 15 grid, respectively.

SolutionQuality We compare the solution quality& (Eq. 4.11),

that is, the percentage of agents forming the dominant struc-

ture, over grid size next (see Fig. 4.17). The median solution

quality ranges from 0.62 (! = 19) to 1.0 (! = 11). That means

at least 62 agents assemble into the dominant structure. We

find statistically significant differences for thedifferent swarm

densities (KW, ? < 0.001). As expected, solution quality is

highest on the 11 × 11 grid as the great majority of agents

will be aggregated by default due to the high swarm density.

In general, sparse and dense settings lead to higher solution

quality than intermediate densities.
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Figure 4.18: Agent movement "#

(Eq. 4.8) of the best individuals of 50 evo-

lutionary runs per grid size ! × ! in our

self-assembly scenario. Medians are in-

dicated by the red bars.

10: This allowsus to classify the resulting

behaviors based on the agent positions

in the last time step ) of the run.

Agent Movement Agent movement"# (Eq. 4.8) is an indica-

tor whether the swarm self-assembles into a stable structure.

We find low agent movement " for all grid sizes with me-

dian values ranging from zero (! ∈ {11, 12, 13, 15}) to 0.05

(! = 23), see Fig. 4.18. Thus, agents stay on their current grid

cells either by rotation or by prevented attempts to move

forward because their targeted grid cells were already occu-

pied by other agents (see Sec. 4.1). Consequently, we find that

stable structures form.
10

Temperature The temperatureΘ (Eq. 4.4) measured over run-

time illustrates how the systems cool down over time, that is,

how quickly the agents form stable structures, see Fig. 4.19.

After around 150 time steps almost all agents are staying

stopped at the latest and thus agents quickly assembly into a

structure. We measure median temperature values between

zero (! = {11, 12, 13, 14, 15, 16, 30}) and 0.04 (! = {22, 23})
in the last time step. This means that up to 4 % of the agents

moved one grid cell forward in that time step. We find that

variability and outliers increase with increasing grid size,

see Fig. 4.19. To elaborate, we find low temperature values

(i.e., low variability) and outliers with still rather low values

for small grids (Fig. 4.19a). With increasing grid size, we

find more variability in the temperature values and outliers

with higher values (Figs. 4.19b and 4.19c). Most of these

outliers, and especially those with high temperature values,

are caused by random dispersion behaviors, which can be

seen when measuring temperature separately for random

dispersion behaviors and all other behaviors. As a represen-

tative example for grid sizes ! ≥ 16, we show the measured

temperature separately for random dispersion behaviors and

all other behaviors for the 20 × 20 grid, see Fig. 4.20. The

temperature converges to low values quickly and there are

only few outliers for all behaviors except for random disper-

sion, see Fig. 4.20a. For the random dispersion behaviors,

the temperature decreases slightly in the beginning, but we

still find high variability in temperature until the end of the

run (see Fig. 4.20b). A reason may be that behaviors leading

to random dispersion can reach high solution quality with

different approaches. Agents can either stay on a grid cell as

soon as they have no (or few) neighbors by rotating on the

spot or they can constantlymove around and avoid neighbors
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(a) 15 × 15 grid

(b) 20 × 20 grid

(c) 25 × 25 grid

Figure 4.19:TemperatureΘ (Eq. 4.4)mea-

sured over runtime of 50 independent

runs for grid sizes ! ∈ {15, 20, 25} in our

self-assembly scenario as representative

examples. Medians are indicated by red

bars. Only data of every fourth time step

is plotted for a clearer visualization.

(a) all behaviors except for random dispersion (b) random dispersion behaviors

Figure 4.20: Temperature Θ (Eq. 4.4) over runtime of 50 independent runs on the 20 × 20 grid in our self-assembly scenario measured

separately for random dispersion behaviors and all other behaviors. Medians are indicated by red bars. Only data of every fourth time

step is plotted for a clearer visualization.

that are detected by the front outer sensors (i.e., B3, B4, B5;

see Fig. 4.1). All other structures require exact positioning

of several agents and thus staying on the current grid cell is

essential to keep the structure intact. On grid sizes ! < 16,

no random dispersion behaviors emerge and we find less

outliers in the temperature curves.
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(a) per grid size ! (b) per pattern

Figure 4.21: Agent movement "# (Eq. 4.8; black boxes, left) and intended agent movement �# (Eq. 4.9; blue boxes, right) of the best

individuals of 50 evolutionary runs per grid size ! × ! and per pattern with clustering (CL), aggregation (AG), loose grouping (LG), lines
(LN), pairs (PR), triangular lattices (TL), squares (SQ), swirls (SW), and random dispersion (RD) in our self-assembly scenario. Medians are

indicated by the red bars.

Intended Agent Movement Based on the intended agent move-

ment �# (Eq. 4.9), we can determine whether rotation or

prevented forward movement allows agents to remain on

their current grid cells. The mean intended agent move-

ment �# ranges from 0.03 (! = 30) to 0.97 (! = 11), see

Fig. 4.21a. On the smaller grids, intended agent movement �#
is high, which means that prevented forward movement al-

lows agents to stay on their grid cells. We find a drop to lower

intended agent movement �# between grid sizes ! = 20 and

! = 21, that is, agents mainly rotate on large grids.

The study of agent movement"# and intended agent move-

ment �# per pattern (Fig. 4.21b) enables us to identify differ-

ences in the behavioral characteristics of our ninepatterns and

shows the correlation between the behavior distributions and

(intended) agent movement. Aggregation, clustering, swirls,

and loose grouping lead to lowagentmovement"# andhigh

intended agent movement �# , that is, agents self-assemble

into stable grouping structures by exploiting that forward

movement is prevented when the targeted grid cell is already

occupied. These grouping behaviors can also form stable

structures by constantly rotating, which seems to happen in

rare cases (e.g., see the outliers for aggregation). As expected,

lines and pairs lead also to low agent movement "# and

high intended agent movement �# . Consequently, agents in
line and pair structures keep their positions and headings by

intending tomove straight as the grid cell in front is occupied.

Here, the correct positioning of the agents ensures a stable

structure and constant sensor values. Triangular lattices and

squares lead to low agent movement "# and low intended

agentmovement �# , that is, agents rotate when forming these

structures. Both patterns are rotation symmetric and thus

agents can keep their sensor values constant by turning. Ran-

dom dispersion also leads to low agent movement"# and

low intended agent movement �# , but we find a higher vari-

ability. As mentioned before, agents can randomly disperse

either by rotating on the spot or by moving and avoiding

other agents. The latter can lead to high agent movement"# .

High intended agent movement �# can occur if some agents
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on the grid are grouped or assembled into lines and pairs,

but the swarm members are mostly randomly dispersed.

With the shift in the behavior distributions from grouping

behaviors on the smaller grids (! ∈ [11 .. 13]) over diverse
behavior distributions on intermediate grids (! ∈ [14 .. 18])
to mainly dispersion behaviors on large grids (! ∈ [19 .. 30]),
we also find the shift from high intended agent movement to

low intended agent movement.

Predictions To reach both high solution quality and fitness

(i.e., prediction accuracy), a high percentage of agents needs

to be assembled in a pattern and the predictions have to

match this formed structure closely. Therefore, we assess the

average sensor predictions during the evolutionary run of the

best individuals, which correspond to the agent’s anticipated

environment, and compare them to the formed structures.

Fig. 4.22 visualizes the mean predictions for all nine pat-

terns. As expected, in aggregation (Fig. 4.22a), clustering

(Fig. 4.22e), and loose grouping (Fig. 4.22c), agents predict

that the majority of their adjacent grid cells are occupied.

Predictions of swirls (Fig. 4.22d) contain three neighbors,

whereby one neighbor is directly in front of the agent and

two more to their right (or left). Agents in pair structures

(Fig. 4.22e) only expect to sense a neighbor on the grid cell

directly in front of them, while agents in line structures

(Fig. 4.22f) predict all four grid cells directly in front and

behind them to be occupied. The sensor predictions in tri-

angular lattices follow this intuitive scheme, too, and match

almost completely the visually observed agent structure as

shown in Fig. 4.22i. In squares, we expect agents to predict

neighbors two grid cells directly in front and behind them,

as shown in Fig. 4.22h. However, we find that most formed

square structures lead to the prediction of no neighbors at

all, as for random dispersion, see Figs. 4.22g and 4.22j. This

is probably because we have a total of 14 sensors. Small

deviations between mean predictions and the sensor values

induced by the formed structures have little impact on predic-

tion accuracy. While predicting two empty grid cells directly

in front or behind the agent does not match the formed

square pattern, prediction accuracy is only reduced by
2

14
th.

Thus, high fitness is still reached. The values close to 1.0 in

the sensor prediction plots indicate that agents have rather

constant sensor predictions over the full runtime, which, in

combination with the found high solution quality & (see

Fig. 4.17), results in the observed high fitness (see Fig. 4.15).

Overall, as expected, we find that the formed patterns and

the mean sensor predictions coincide closely.

In summary, our minimize surprise approach leads to di-

verse and non-trivial collective behaviors that form stable

structures despite the task-independent selective pressure

to minimize the prediction error. We find high fitness (i.e.,

prediction accuracy) and solution quality for all behaviors
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(a) aggregation (! = 14) (b) clustering (! = 16)

(c) loose grouping (! = 14) (d) swirls (! = 19)

(e) pairs (! = 26) (f) lines (! = 17)

(g) squares (! = 21) (h) squares (! = 26)

(i) triangular lattice (! = 18) (j) random dispersion (! = 30)

Figure 4.22: Resulting structures (left) and mean sensor predictions (right; 1: always predict occupied, 0: always predict non-occupied) of

the agents for all nine patterns in our self-assembly scenario. The structures in (a)-(f) are static, that is, agents stay on their grid cell by

exploiting the prevention of forward movement when a targeted grid cell is occupied. By contrast, the structures in (g)-(j) are dynamic,

that is, agents either rotate on the spot because the structures are rotation symmetric (i.e., structures in (g) - (i)) or move and avoid other

agents (i.e., structure in (j)). Agents are represented by circles, their color and the lines give their headings.
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and, accordingly, sensor predictions that closely match the

formed patterns. Intermediate swarm densities complicate

the prediction task and we find lower fitness and solution

quality but higher behavioral diversity on these grid sizes

than for high and low swarm densities. In total, swarm

density influences the emergence of behaviors.

4.5 Effectiveness of the Approach

In the previous section, we have shown that our minimize

surprise approach leads to a variety of behaviors across sev-

eral independent evolutionary runs. Since minimize surprise

is not working towards solutions for a given task but rather

implements an exploratory search,wewant to test its effective-

ness in finding relevant and interesting behaviors at all [42].

For this purpose, we compare the best evolved individuals of

the evolutionary runs with minimize surprise to randomly

generated actor-predictor pairs. We generate two sets of

50 random ANN pairs per grid side length ! ∈ [11 .. 30]:
(i) by creating 50 random individuals, and (ii) by creating

50 times a population of 5,000 random individuals and

selecting the best individual based on prediction success

(Eq. 3.1; hereafter referred to as random individuals with

selection). In the latter case, the number of evaluated ran-

dom individuals equals the number of evaluations in mini-

mize surprise (i.e., 50 independent evolutionary runs with

50 individuals × 100 generations = 5,000 evaluations each).

We compare best fitness � (Eq. 3.1; see Fig. 4.23a), solution

quality& (Eq. 4.11; see Fig. 4.23b), and behavior distributions

(see Fig. 4.24) of the best evolved individuals of our minimize

surprise approach, the random individuals, and the random

individuals with selection per grid size ! × !.
First, we compare fitness � (Eq. 3.1) of the best evolved

individuals and the randomly generated ANN pairs, see

Fig. 4.23a. For all grid sizes, the random individuals have

statistically significantly less fitness than the random indi-

viduals with selection and the best evolved individuals of

our evolutionary runs with minimize surprise. As expected,

the random individuals with selection reach statistically

significantly less fitness than the best evolved individuals

(MW-U with BC, ? < 0.01). Consequently, we find that our

minimize surprise approach successfully improves fitness

or, put differently, prediction accuracy, over generations and

outperforms pure random search.

Next, we compare solution quality& (Eq. 4.11), see Fig. 4.23b.

We find that the random individuals reach statistically sig-

nificantly lower solution quality than the random indi-

viduals with selection on all grid sizes except for ! ∈
{11, 17, 18, 19, 20, 21, 22, 28} and than the best evolved in-

dividuals of our minimize surprise approach on all grid sizes

except for ! = 11 (MW-U with BC, ? < 0.05). Compared
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(a) fitness � (b) solution quality &

Figure 4.23: Fitness � (Eq. 3.1) and solution quality & (Eq. 4.11) of 50 random individuals (blue boxes, left), 50 random individuals with

selection (black boxes, middle) and 50 best evolved individuals of our minimize surprise approach (gray boxes, right) in our self-assembly

scenario per grid size ! × ! , ! ∈ [11 .. 30]. Medians are indicated by the red bars [42, 343].

to the random individuals with selection, the best evolved

individuals of minimize surprise reach significantly better

solution quality on grid sizes of 19 × 19 or larger, while we

do not find significant differences on smaller grid sizes. Thus,

the ANN pairs evolved with minimize surprise outperform

pure random search on the majority of grid sizes also regard-

ing solution quality, that is, the best evolved individuals lead

to a higher percentage of swarm members assembling into

the dominant structure.

Furthermore, we compare the behavior distributions, see

Fig. 4.24. The behavior distributions of the random indi-

viduals and the random individuals with selection differ

significantly for all grid sizes except for ! ∈ {11, 12, 14} (FE
with BC, ? < 0.05).Wefind statistically significant differences

for the behavior distributions of the best evolved individ-

uals of our minimize surprise approach and the random

individuals for all grid sizes except for ! = 11. In contrast,

only two out of the 20 tested grid sizes (i.e., ! ∈ {12, 20})
lead to significant differences in the behavior distributions of

the random individuals with selection and the best evolved

individuals.

Due to the found differences in the behavior distributions, we

want to investigate if some of the behaviors are found more

or less likely in the evolutionary runs using our minimize

surprise approach than in the case of generating the ANN

pairs randomly by either of the two presented approaches.

This allows us to study if evolution’s selection and improve-

ment over generations influences the resulting behaviors

in general. We compare the frequency of each pattern over

all grid sizes ! ∈ [11 .. 30] for the best evolved individuals,

the random individuals, and the random individuals with

selection as visualized in Fig. 4.25 (FE with BC, ? < 0.05).

Clustering is most likely for the random individuals and

similar likely for the random individuals with selection and

the best evolved individuals of minimize surprise. Aggrega-

tion is more likely for the random individuals with selection

and the best evolved individuals than for the random in-

dividuals. By contrast, loose grouping is equally likely in
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(a) random individuals

(b) random individuals with selection

(c) best evolved individuals of minimize surprise (reprint of Fig. 4.16 for easier comparison)

Figure 4.24: Behavior distributions, that
is, percentage of structures formed by

50 random individuals, 50 random indi-

viduals with selection, and the 50 best

evolved individuals of our minimize

surprise approach in our self-assembly

scenario with clustering (CL), aggrega-
tion (AG), loose grouping (LG), swirls (SW),
lines (LN), pairs (PR), triangular lat-

tices (TL), squares (SQ), and random dis-

persion (RD) per grid size ! × !, ! ∈
[11 .. 30] [42, 343].

all three cases. Lines and pairs are most likely for the best

evolved individuals of minimize surprise. These behaviors

require correct positioning to reach high fitness and solu-

tion quality (see Sec. 4.2). Thus, lines and pairs seem to rely

on the selection and improvement over generations of the

evolutionary process. Triangular lattices, squares, and swirls

are generally rarely found. Nevertheless, triangular lattices

are more likely for the random individuals with selection

and the best evolved individuals of minimize surprise than

for the random individuals. Squares are most likely for the

best evolved individuals while swirls are equally likely for

all three cases. Last but not least, random dispersion is most

likely for the random individuals with selection and least

likely for the random individuals.

Overall, this indicates that evolution successfully enables the

adaptation of actors and predictors. Actor outputs lead to

behaviors that are correctly predicted by the predictors and

predictors are adapted to behaviors to optimize prediction

accuracy. Complex behaviors (e.g., pairs), that are rarely

generated in the random runs, are selected and improved

over generations to reach high fitness and solution quality.

While randomly generating individuals leads to similar or
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Figure 4.25: Percentage of clustering (CL),
aggregation (AG), loose grouping (LG),
lines (LN), pairs (PR), triangular lat-

tices (TL), squares (SQ), swirls (SQ), and
random dispersion (RD) formed by 50

random individuals (left), 50 random in-

dividuals with selection (middle), and

the 50 best evolved individuals of our

minimize surprise approach (right) in

our self-assembly scenario over all grid

sizes ! × !, ! ∈ [11 .. 30].

higher behavioral diversity than evolution for low swarm

densities, such as on grid size ! = 30, solution quality is

significantly lower for randomly generated ANN pairs, that

is, less agents are assembled into the structure. Thus, we

conclude that minimize surprise is an effective approach that

outperforms random search.

4.6 Discussion and Conclusion

In this chapter, we have shown that we can successfully

evolve diverse swarm behaviors using our minimize surprise

approach despite the task-independent fitness function re-

warding prediction accuracy (Eq. 3.1). To be able to analyze

the results in depth,we restricted us to a simple grid-based ex-

perimental setup aiming for the emergence of self-assembly

behaviors. We studied the influence of the sensor model

on the emergence of behaviors and showed that it affects

the behavioral diversity. Thus, a careful configuration of

the agents and the environment allows to bias evolution.

Furthermore, we found that the emergent behaviors depend

on swarm density. High swarm densities lead mainly to

grouping behaviors (aggregation, clustering, loose grouping)

while low densities lead mostly to random dispersion. The

prediction task is hardest for intermediate densities, which

potentially causes the wide range of behaviors there (lines,

pairs, clustering, triangular lattices, etc.). As expected, the

agents’ predictions match the formed structures closely and

can serve as an indicator for the assembled pattern. Last

but not least, we have proven that our minimize surprise

is effective by comparing it to random search. In the next

chapter, we study the robustness against sensor noise and

damage, the scalability in swarm density, and the diversity

of the best evolved individuals in more detail.
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Chapter Contents

In this chapter, we present an in-depth study of minimize

surprise using our self-assembly scenario. We study...

I Sec. 5.1: robustness against sensors noise and damage,

I Sec. 5.2: scalability with swarm density,

I Sec. 5.3: behavioral diversity in comparison to novelty

search and MAP-Elites,

I Sec. 5.4: the influence of hyperparameters, and

I Sec. 5.5: draw a conclusion.

Parts of this chapter are based on [39–43].

In the previous chapter, we have shown that minimize sur-

prise results in the emergence of diverse behaviors and

outperforms pure random search. In this chapter, we analyze

the evolution of swarm behaviors with minimize surprise

in our self-assembly scenario in more detail. Our in-depth

study has four parts: First, we study the robustness of the

evolutionary process against sensor noise and the robust-

ness of the emergent behaviors against damage to the self-

assembled structures. Second, we investigate the scalability

of the evolved self-assembly behaviors with swarm density.

Third, we compare our standardminimize surprise approach

with novelty search [24] as an example for divergent search

algorithms and MAP-Elites [44] as an example for quality-

diversity algorithms (research question Q3, Sec. 1.2). For

this purpose, we introduce task-independent novelty search

and MAP-Elites variants. Last but not least, we study the

influence of the hyperparameters on the performance of the

evolutionary algorithm. Together, these four studies pro-

vide a detailed view on the strengths and weaknesses of

our minimize surprise approach and show the robustness,

scalability, and diversity of the emergent behaviors (research

question Q1, Sec. 1.2).

5.1 Robustness

Our initial setup for the self-assembly scenario is fully de-

terministic resulting in a variety of behaviors, see Ch. 4. But

noise may impact the emergent behavioral diversity, or emer-

gent self-assembly behaviors could be vulnerable to external

disturbances. Thus, we study the robustness of our minimize

surprise approach against sensor noise and the resilience

of the emergent behaviors against damage to the initially

formed structure here [39, 42].
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(a) best fitness � in the last generation (b) solution quality &

(c) behavior distributions

Figure 5.1: Fitness � (Eq. 3.1), solution quality & (Eq. 4.11), and behavior distributions of the best evolved individuals of 20 independent

evolutionary runs with minimize surprise per sensor noise level in {0 %, 5 %, 10 %, 15 %} and grid size ! × !, ! ∈ {15, 20} in our

self-assembly scenario. Behavior distributions give the percentage of resulting structures with clustering (CL), aggregation (AG), loose
grouping (LG), lines (LN), pairs (PR), triangular lattices (TL), and random dispersion (RD). Medians are indicated by the red bars in the box

plots.

5.1.1 Sensor Noise

As a first step towards more realistic environments as experi-

enced by physical robots, we introduce sensor noise into our

otherwise fully deterministic simulation environment (see

Sec. 4.1). We flip each binary sensor value with a probability

of 5 %, 10 % or 15 %. As examples for denser and sparser

swarm density settings, we restrict ourselves to grid sizes

15× 15 and 20× 20. We do 20 independent evolutionary runs

per sensor noise level and arena size, and compare the results

with the results of our deterministic setup (i.e., 0 % sensor

noise).

Fig. 5.1a shows the median best fitness � (Eq. 3.1) in the last

generation per sensor noise level and grid size. We find a

median best fitness of at least 0.65 on the 15 × 15 grid and of

at least 0.7 on the 20×20 grid. On both grid sizes, best fitness

is statistically significantly different for the four sensor noise

levels (KW, ? < 0.01).On the 15×15 grid,wefind significantly

lower fitness for 15 % sensor noise (MW-Uwith BC, ? < 0.05).

On the 20 × 20 grid, fitness decreases significantly with

increasing sensor noise. This is likely because task complexity

increases with non-determinism, since noise is inherently

unpredictable.

We find median solution qualities & (Eq. 4.11) of at least 0.84

on the 15 × 15 grid and of at least 0.63 on the 20 × 20 grid,

see Fig. 5.1b. Only the formed structures on the 15 × 15 grid

lead to statistically significant differences in solution quality
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(a) aggregation (! = 15)

(b) random disperison (! = 20)

Figure 5.2: Examples of robust structures

forming in our self-assembly scenario

with 15 % sensor noise. Agents are rep-

resented by circles, their color and the

lines give their headings.

in the different sensor noise levels (KW, ? < 0.01). Solution

quality is significantly better for 15 % sensor noise than for

0 % sensor noise (MW-U with BC, ? < 0.01), which may be

because the greatest amount of grouping behaviors emerges

in this setup. The greater amount of grouping behaviors

probably also causes that solution quality is generally higher

for the 15 × 15 grid than for the 20 × 20 grid. The behaviors

found on the 20 × 20 grid often require the exact positioning

of several agents (e.g., lines and pairs) or have strict criteria

regarding the maximally allowed number of neighbors (e.g.,

random dispersion; see Sec. 4.2), potentially complicating

the achievement of high solution quality compared to the

rather weak criteria for grouping.

The behavior distributions for the four sensor noise levels are

only statistically significantly different on the 20×20 grid (FE,

? < 0.001), see Fig. 5.1c. Behavioral diversity decreases with

increasing sensor noise as more robust structures tend to

dominate in non-deterministic environments. Robust struc-

tures do not rely on the exact positioning and heading of

agents and cannot be destroyed by the behavior of an individ-

ual agent. Such robust structures are aggregation (Fig. 5.2a),

clustering, loose grouping, and randomdispersion (Fig. 5.2b).

In aggregation, clustering, and loose grouping, most agents

are surrounded by other agents and cannot leave the struc-

ture quickly in any event, including false sensor readings. The

more agents are in a cluster, the harder it is to dissolve it. Such

grouping behaviors are already favored on the 15 × 15 grid

for 0 % sensor noise due to the high swarm density. Conse-

quently, behavior distributions do not change significantly

with increasing sensor noise on the 15 × 15 grid. Random

dispersion is also robust, since agents rarely sense neighbors

and a few false sensor readings have onlyminor effects on the

overall fitness. In most cases, a move forward or turn caused

by a false sensor reading will not lead to the formation of a

different structure or a big change in the sensor values. We

find that random dispersion is favored on the 20 × 20 grid

with increasing sensor noise, which is caused by the lower

swarm density compared to the 15 × 15 grid.

Triangular lattices seem to emerge rather independently of

sensor noise, which may be due to variation in the experi-

ments. The formed structure is rotation symmetric as in all

dispersion behaviors (i.e., triangular lattices, random disper-

sion, and squares) and agents turn constantly to stay on their

grid cell. Here, sensor values might already change slightly

with the change of heading when turning, since perfectly as-

sembled triangular lattices are quite sophisticated requiring

the correct positioning of nine agents on 21 grid cells (see

Sec. 4.2.2). Thus, the behaviors are maybe always evolved to

withstand small variations in sensor readings, such as those

additionally caused by sensor noise in this scenario.

Less robust to disturbances are lines and pairs, since they rely

on the correct positioning and heading of at least three agents.
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Algorithm 1: Remove agents from rectangular area

Input: set S# of all agents with positions %= = (G= , H=),
rectangular area defined by (Gmin , Hmin) and (Gmax , Hmax)

Output: set S# reduced by agents in specified rectangular area

1 for = ∈ S# do
2 if Gmin ≤ G= ≤ Gmax and Hmin ≤ H= ≤ Hmax then
3 S# ← S#\{=}

Algorithm 2: Reposition agents outside of rectangular area

Input: set S# of all agents with positions %= = (G= , H=) and
headings �= = (ℎG= , ℎ

H
=),

rectangular area defined by (Gmin , Hmin) and (Gmax , Hmax)
Output: set S# with all agents being positioned outside specified

rectangular area

1 for = ∈ S# do
2 while Gmin ≤ G= ≤ Gmax and Hmin ≤ H= ≤ Hmax do
3 generate new random agent position %new on an unoccupied

grid cell

4 generate new random heading �new

5 %= ← %new
6 �= ← �new

(a) lines (! = 15)

(b) triangular lattices (! = 15)

Figure 5.3: Initially formed lines and tri-

angular lattices by the self-assembly be-

haviors used to study the robustness of

the emergent behaviors against damage

to the formed structure [38, 39].

Agents may turn based on false negative sensor readings and

immediately destroy the structure formation.

In summary, our minimize surprise approach is robust to

sensor noise and even adapts by selecting for swarm behav-

iors that are robust to sensor errors. Thus, the approach still

reaches high fitness even with high sensor noise levels. Still,

we find a dependence of the emergent behavior distributions

on swarm density.

5.1.2 Damage and Repair

In our self-assembly scenario no external disturbances exist

while emergent behaviors let agents assemble into structures.

Thus, we test in the next step if the best evolved individu-

als are robust against damage to the formed structure. As

representative examples, we use two individuals leading to

the formation of lines, see Fig. 5.3a, and triangular lattices,

see Fig. 5.3b. First, we show that the structures form inde-

pendent of the initial agent poses by rerunning the ANN

pairs with new random starting poses in 20 independent

runs of 500 time steps each (hereafter referred to as reruns).

Afterwards, we damage the initially formed structures (see

Fig. 5.3) in two ways: In the first variant, we remove agents

from a rectangular area of the initially assembled structure

completely, which leads to a decrease in swarm density,

see Alg. 1. In the second variant, we uniformly randomly

reposition all agents from a rectangular area of the initially
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1: https://youtu.be/KWJIgPZd060

assembled structure outside this area, see Alg. 2. We remove

or reposition agents from three different areas in both initial

structures. The respective actor-predictor pair is evaluated

for another 500 time steps after damage (hereafter referred

to as repair runs). We do one run when removing agents for

variant one, since our completely deterministic simulation en-

vironment will lead to the same result in each repetition, and

20 independent runs when repositioning agents for variant

two. A video illustrating our experiments is online.
1

Metrics

We measure fitness � (Eq. 3.1) over the full evaluation length

and solution quality & (Eq. 4.11) at the start (i.e., C = 0) and

the end (i.e., C = )) of an evaluation. As an additional metric,

we introduce similarity ( to the initial structure measuring

the amount of agents with equal poses in the last time step )
of the initial and the repair run. We define similarity ( to the

initial structure as

((Srepair,Sinitial) =
1

#

∑
U8∈Srepair

match(U8) , (5.1)

with lists of final agent poses Srepair for the repair run and

Sinitial for the initial run, initial swarm size # , and matching

between agent poses before (H9 ∈ Sinitial) and after (U8 ∈
Srepair) the damage

match(U8) =
{

1, if ∃H9 ∈ Sinitial : U8 = H9

0, otherwise

. (5.2)

For line structures, agent positions % and headings � are

important as the parallel orientation of agents guarantees

the formation of a stable structure. For triangular lattices, we

consider only positions% of the agents as they constantly turn

to stay on the grid cell (see Sec. 4.2.2). Consequently, agent

headings � change in every time step and are irrelevant for

structure formation here.

Line Formation Behavior

We first analyze the resilience of the line formation behavior

shown in Fig. 5.3a. The formed line structure is not completely

stable at the end of the initial run as some agents still move.

However, 82 % of agents assemble into lines.

First, we rerun the ANN pair using new random agent

starting poses in 20 independent runs. As before, almost all

swarm members assemble into line structures leading to a

mean solution quality of 0.86, see Tab. 5.1. We measure an

https://youtu.be/KWJIgPZd060
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(a) initial poses removing area (a) (b) initial poses removing area (b) (c) initial poses removing area (c)

(d) final poses removing area (a) (e) final poses removing area (b) (f) final poses removing area (c)

Figure 5.4: Initial and final agent poses when removing agents from areas (a), (b), or (c) of the initially formed line structure in our

self-assembly scenario. (a) - (c) give the initial agent poses of the repair run after removing agents from the area marked by the blue

rectangle. (d) - (f) give the agent poses at the end of the repair run. Agents are represented by circles, their color and the lines give their

headings [39].

increase in fitness � (Eq. 3.1) compared to the initial run. The

fitness of the reruns is higher because we include the fitness

measured in all 20 independent runs, while the fitness of the

initial run is the minimum fitness out of ten evaluations, see

Sec. 4.1.

Next, we completely remove agents from three different

areas of the structure, see Fig. 5.4. We remove 12 (Fig. 5.4a),

17 (Fig. 5.4b) and eight (Fig. 5.4c) agents leading to swarm

sizes# of 88, 83, and 92 agents, respectively. In all three cases,

solutionquality decreases by at least 13percentagepoints (pp)

due to the removal of agents.We observe that solution quality

increases again as lines reform in the damaged area over the

repair run, resulting in higher solution qualities&()) than in

the initial structure in two out of three cases. Line structures

form again in the removed area, see Figs. 5.4d - 5.4f, and we

find high similarity to the initial structure in two out of three

runs (( > 0.7).

Last, we randomly reposition agents from three different

areas outside of the respective area instead of removing them

completely. Consequently, swarm density stays the same

in this scenario. Repositioning agents leads not only to the

destruction of line formations on the now empty part of the

grid, but randomly repositioned agents may also corrupt
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Table 5.1: Mean fitness � (Eq. 3.1), mean solution qualities &(0) and &()) (Eq. 4.11) at the start and the end of the run, respectively,

and mean similarity ( to the initial structure (Eq. 5.1) studying robustness against damage in our self-assembly scenario using a line

formation behavior and a triangular lattice formation behavior. Median values are in parentheses [39].

lines triangular lattices

� &(0) &()) ( � &(0) &()) (

initial run 0.81 0 82.0 1.0 0.76 0 63.0 1.0

rerun 0.86 1.3 83.3 0.10 0.78 0.0 77.0 0.47

(0.85) (0.0) (86.0) (0.02) (0.781) (0.0) (78.0) (0.46)

remove area (a) 0.96 69.3 79.5 0.76 0.76 60.9 58.6 0.39

remove area (b) 0.94 49.4 90.4 0.57 0.76 67.1 65.9 0.52

remove area (c) 0.94 65.2 89.1 0.72 0.79 66.3 76.1 0.67

reposition area (a) 0.92 47.9 83.5 0.59 0.79 21.8 75.2 0.564

(0.92) (54.0) (86.5) (0.6) (0.79) (22.5) (80.5) (0.62)

reposition area (b) 0.91 32.2 83.9 0.39 0.79 16.4 78.2 0.55

(0.91) (36.5) (86.0) (0.42) (0.79) (18.0) (80.0) (0.61)

reposition area (c) 0.90 56.2 86.2 0.59 0.80 38.4 79.3 0.571

(0.93) (60.0) (87.0) (0.59) (0.90) (39.5) (80.5) (0.61)

lines in other parts of the grid. Hence, we find a decrease of

solution quality by at least 25 pp, see Tab. 5.1. But at the end of

the repair runs, solution quality&()) is at least 1.5 pp higher

than at the end of the initial run. However, similarity ( to the

initial structure is always lower than when removing agents

completely. We therefore assume that the self-assembled

structure is more intensively disturbed by the randomly

placed agents than by the completely removed agents.

We reach higher fitness � for the repair runs than for the

initial run. In the repair runs, agents have the advantage

of already being mostly positioned in the structure at the

beginning of the runs compared to the random starting poses

in the initial runs. Thus, sensor predictions of the predictor

ANNs match more closely from the start of the repair runs

and higher fitness can be reached.

Triangular Lattice Formation Behavior

As a second example, we show the resilience of the triangular

lattice formation behavior illustrated in Fig. 5.3b. We observe

an increase in fitness � rerunning the ANN pairs with new

initial random starting poses as for the line structures, see

Tab. 5.1. Furthermore, we find higher solution quality &())
at the end of the reruns than after the initial run.

Again, we remove agents from the three different areas of

the structure. Thus, 13, 15 and eight agents are removed

from the triangular lattice structure leading to an immediate

increase in solution quality for two of the three cases, see

Tab. 5.1. Swarm size # is reduced by removing agents from

the structure, and hence the percentage of agents being

assembled into the structure (i.e., solutionquality) can change.

An increase in solution quality indicates that we removed
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(a) initial poses repositioning area (a) (b) initial poses repositioning area (b) (c) initial poses repositioning area (c)

(d) final poses repositioning area (a) (e) final poses repositioning area (b) (f) final poses repositioning area (c)

Figure 5.5: Initial and final agent poses of one run each repositioning agents from areas (a), (b), or (c) of the initially formed triangular

lattice structure in our self-assembly scenario. (a) - (c) give the initial agent poses of the repair run after repositioning all agents from

within the area marked by the blue rectangle. Randomly repositioned agents are visualized in red. (d) - (f) give the final agent poses of

the repaired structure. Agents are represented by circles, their color and the lines give their headings.

agents that were not part of the triangular lattice structure. At

the end of the repair run, solution quality&()) increased for

one casewhile the other two cases have lower solution quality

than at the start of the repair run. This is probably caused

by the reduced swarm size. On the 15 × 15 grid, 112 agents

are required to form a repetitive triangular lattice pattern

over the whole grid. Our original swarm size of # = 100 is

lower, but still close to the ideal number of agents. Reducing

swarm size slightly makes the formation of triangular lattices

harder, but it is still possible. Removing a larger amount of

agents, as in our examples removing 13 or 15 agents, leads

to a too low swarm density that may prevent the formation

of a repetitive triangular lattice pattern. In consequence, we

find lower solution quality &()) at the end of the repair run

and low similarities ( to the initial structure when removing

agents from areas (a) and (b) (( ≤ 0.52).

Next, we reposition the agents positioned in the three differ-

ent areas outside of the respective area, see Fig. 5.5, which

leads to a major decrease in solution quality. But at the end

of the repair runs, we observe an increase in solution qual-

ity &()) by at least 12 pp compared to the initial structure

and intermediate similarity ( to the initial structure, see

Tab. 5.1. Thus, agents reassemble to form the same pattern
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type (see Sec. 4.2.2) as in the initial run but only partly

position themselves on the same grid cells.

In total, we find that the emergent self-assembly behaviors

are resilient to damage. We have shown, using a line forma-

tion behavior and a triangular lattice formation behavior as

examples, that removing or repositioning agents triggers the

reassembly of the initial pattern.

5.2 Scalability with Swarm Density

In Sec. 4.4, we found that swarm density influences the

emergence of behaviors. High swarm densities lead to more

grouping behaviors (i.e., aggregation, clustering, loose group-

ing) while low densities lead mainly to dispersion. In this

section, we analyze the scalability of the emergent behav-

iors with swarm density [42]. As before, we keep a fixed

swarm size # of 100 while altering the side length ! of our

square torus grid to change swarm density �# (Eq. 4.3). We

rerun individuals (i.e., actor-predictor ANN pairs) that were

specialized for a specific swarm density and grid size !B on
different not-trained grid sizes ! ≠ !B (hereafter referred
to as reruns). First, we compare fitness � (Eq. 3.1), solution

quality & (Eq. 4.11), and behavior distributions of the reruns

with the original (specialized) evolutionary runs on !B to
determine if the performance of the best evolved individuals

is independent of swarm density. Afterwards, we compare

the reruns with the ANN pairs that are specialized for ! to

evaluate the added value of evolving ANN pairs specialized

for given swarm densities. Since we have found the greatest

behavioral diversity on !B = 16, we exemplarily rerun each

of the 50 best evolved individuals of the 16 × 16 grid for

500 time steps on each grid size ! ∈ [11 .. 30] and analyze

their scalability.

5.2.1 Comparison of Specialized Individuals with their
Reruns in Different Swarm Densities

First, we compare the specialized best evolved individuals of

the 16 × 16 grid (i.e., !B = 16) with their reruns on grid sizes

! ∈ [11 .. 30]. We find statistically significantly lower fitness

for the reruns on grid sizes ! ∈ [11 .. 13] (black boxes) than

for the original runs on the 16 × 16 grid (gray box framed

by blue rectangle for ! = 16; MW-U with BC, ? < 0.001),

see Fig. 5.6a. For all other grid sizes, there are no significant

differences in fitness between the reruns and the specialized

run on !B = 16.

Furthermore, the reruns on grid sizes ! ∈ {11, 12} have
statistically significantly better solution quality than the

original runs on the 16 × 16 grid, while we do not find
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(a) fitness � (b) solution quality &

Figure 5.6: Fitness � (Eq. 3.1) and solution quality & (Eq. 4.11) of the reruns of the best evolved individuals of the 16 × 16 grid (framed in

blue) on grid sizes ! × !, ! ∈ [11 .. 30] (black boxes) and of the best evolved individuals of each grid size (gray boxes, cf. Figs. 4.15b, 4.17)

per grid size in the self-assembly scenario. Medians are given by the red bars. [42]

Figure 5.7: Percentage of resulting structures of the reruns of the best evolved individuals specialized for grid size !B × !B , !B = 16

(framed in blue) on grid sizes ! × !, ! ∈ [11 .. 30] (left, darker colored bars) and of the best evolved individuals of each grid size (right,

lighter colored bars) with clustering (CL), aggregation (AG), loose grouping (LG), lines (LN), pairs (PR), triangular lattices (TL) and random

dispersion (RD).

significant differences for the reruns on other grid sizes

(MW-U with BC, ? < 0.05). The high swarm densities on

the small grid sizes ! ∈ [11 .. 13] allow only for grouping

behaviors (i.e., clustering, aggregation, loose grouping). Due

to the limited amount of free grid cells, most agents are

forced to be part of the forming grouping structure and thus

high solution quality is reached. Behaviors that require free

grid cells between some or all agents, such as pairs, lines, and

triangular lattices, cannot form during the reruns in such

high swarm densities. For those behaviors, the predictor

outputs do not match to the formed structures anymore and

we thus find lower fitness.

Next, we study the influence on the behavior distributions

when running ANN pairs in swarm densities that they are

not evolved for, see Fig. 5.7. We do not find statistically signif-

icantly different behavior distributions for the reruns on grid

sizes ! ∈ [13 .. 24] compared to the behavior distribution on

the 16 × 16 grid (FE with BC, ? < 0.05). The reruns on even

smaller (i.e., ! < 13) and even larger grids (i.e., ! > 24), that

is, in higher and lower swarm densities, lead to significantly

different behavior distributions. As described before, high

swarm densities only allow for grouping behaviors and thus

the original variety of patterns cannot form. Low densities,

on the other hand, lead to agents likely being randomly dis-

persed and far apart from each other by the initial uniformly
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random positioning. Here, a combination of the initial agent

positions, the evaluation length and the behavior determined

by the best evolved actor may influence whether the struc-

ture formed on the 16 × 16 grid reforms in the rerun. An

indicator for different structure formation approaches of the

actors gives the individual analysis of the scalability of each

best evolved individual of the 16 × 16 grid. Half of the best

evolved individuals lead to the formation of the same pattern

or a pattern of the same group (e.g., to aggregation in the

rerun when clustering on the 16 × 16 grid) in the reruns on

grid sizes ! ∈ [13 .. 30]. The other half of the best evolved

individuals only forms the initial pattern in some of the other

swarm densities. In these cases, the reruns in higher swarm

densities mostly lead to grouping behaviors while the reruns

in lower densities frequently result in random dispersion. In

both groups, we find the same variety of formed structures

on the 16 × 16 grid. Thus, the best evolved individuals seem

to vary in their approach to structure formation by more

or less adaptation to and exploitation of the swarm density

during evolution. In summary, many ANN pairs keep their

clustering, aggregation, and line formation behaviors even

in low swarm densities they are not specialized for. Hence,

this scaling ability can, for example, be exploited to provoke

desired behaviors (see also Ch. 6) in low-density situations,

which would otherwise not lead to the emergence of those

behaviors.

Overall, we find similar fitness, solution quality, and behavior

distributions for the reruns on grid sizes ! ∈ [14 .. 24] and
the original runs of the best evolved individuals on the

16 × 16 grid. Thus, the best evolved individuals scale well

with swarm density, but the initial performance cannot be

maintained for all behaviors for high and low densities.

In general, this allows for the reuse of the best evolved

individuals in other swarm densities.

5.2.2 Comparison of Reruns with the Specialized
Individuals of the Respective Swarm Density

Previously, we compared the best evolved individuals of the

16×16 grid with their reruns on other grid sizes ! ∈ [11 .. 30].
Next, we compare the reruns of the best evolved individuals

specialized for the 16×16 grid on grid sizes ! ∈ [11 .. 30]with

the best evolved individuals specialized for the respective

grid size. We compare fitness �, see Fig. 5.6a, and solution

quality &, see Fig. 5.6b, of the reruns (black boxes) to the

specialized runs of the respective grid size (gray boxes).

We find statistically significantly greater fitness for the indi-

viduals specialized for a grid size than for the reruns on that

grid size except for ! ∈ [14 .. 17] (MW-U with BC, ? < 0.05),

see Fig. 5.6a. There are no statistically significant differences

in solution quality for the specialized individuals and the



5 In-Depth Analysis Using the Self-Assembly Scenario 77

reruns on grid sizes ! ∈ [11 .. 15] and ! ∈ [20 .. 24] (MW-U

with BC, ? < 0.05), see Fig. 5.6b. For grid sizes ! ∈ [17 .. 19],
we find significantly better solution quality in the reruns than

for the specialized individuals of the respective grid size and

for grid sizes ! ∈ [25 .. 30], solution quality is significantly

lower for the reruns. Furthermore, there is no significant

difference in the behavior distributions of the reruns and

the best evolved individuals specialized for the respective

grid size for ! ∈ {11, 14, 15, 17} (FE with BC, ? < 0.001),

see Fig. 5.7. All other behavior distributions are statistically

significantly different.

Overall, we find that for grid sizes ! ∈ [14 .. 17] the reruns
and the best evolved specialized individuals for these grid

sizes are competitive in fitness, solution quality, and behavior

distributions. Thiswas expected, sincewe have also not found

any significant differences between the evolutionary runs for

those swarm densities (see Sec. 4.4). Thus, the best evolved

individuals of one swarm density can easily be reused in

similar swarm densities. For grid sizes ! ∈ [17 .. 19], the
reruns lead to higher solution quality and similar or lower

fitness than the best evolved individuals specialized for the

respective grid sizes. The evolutionary runs on these grid

sizes reached the lowest solution quality of all scenarios

(see Sec. 4.4). Thus, the evolution of behaviors leading to

the formation of the defined patterns (see Sec. 4.2) seems

especially challenging for these swarm densities. Here, the

rerun of the best evolved individuals of the lower swarm

density (i.e., in this scenario of the 16 × 16 grid) is benefi-

cial when high solution quality is required and prediction

accuracy (i.e., fitness) is unimportant. Prediction accuracy is

irrelevant whenwe use theminimize surprise approach in an

offline manner to generate swarm controllers [13], that is, we

separate the optimization phase from the operational phase.

In the optimization phase, prediction accuracy is used as the

means to guide evolution towards interesting swarm behav-

iors. In the operational phase, the actor-predictor pairs are no

longer optimized. As the actor of an ANN pair determines

the agent’s next action independently from the predictor, the

latter is not required for the pure execution of an evolved

swarm behavior. For significantly higher or lower swarm

densities, the best evolved actor-predictor ANN pairs of the

respective grid size are better adapted to each other and to

the environment and thus reach higher fitness and solution

quality. Nevertheless, the rerun of the best individuals of

another swarm density can be beneficial for structures that

may not or only rarely emerge by evolution in the respective

density, such as lines on the 30 × 30 grid.



5 In-Depth Analysis Using the Self-Assembly Scenario 78

2: An extensive comparison of standard

minimize surprise, minimize surprise

with predefined predictions (see Ch. 6),

novelty search with a task-specific behav-

ioral characteristic, novelty search with

a task-independent characteristic, and a

standard genetic algorithm as baseline

can be found in Kaiser and Hamann [41].

A comparison of our task-independent

Minimize SurpriseMAP-Elites approach

and MAP-Elites with a task-dependent

performance measure is future work.

5.3 Behavioral Diversity

As we have seen in our previous analysis (see Sec. 4.4),

minimize surprise leads to diverse high-quality behaviors

across independent evolutionary runs by rewarding pre-

diction accuracy. By contrast, divergent search algorithms

and quality-diversity algorithms (see Sec. 2.3.2) explicitly

aim for behavioral diversity within one evolutionary run.

While divergent search algorithms cannot guarantee solu-

tion quality because they do not use performance-related

rewards, the more sophisticated quality-diversity algorithms

output several maximally diverse and well-performing so-

lutions [296]. Novelty search [24] and MAP-Elites [44] are

competitive and easy-to-implement representatives of di-

vergent search algorithms and quality-diversity algorithms,

respectively, that have already been successfully applied

to swarm scenarios [134, 300]. In this section, we compare

our standard minimize surprise approach (see Ch. 3) with

novelty search and MAP-Elites to evaluate whether it is com-

petitive in terms of the evolved behavioral diversity [40, 41,

43]. For a fair comparison between the approaches, we intro-

duce task-independent variants for both novelty search and

MAP-Elites that are conceptually related to our minimize

surprise approach. As before, we do our experiments in the

self-assembly scenario presented in Sec. 4.1.

5.3.1 Evolutionary Approaches

We introduce our task-independent novelty search and Mini-

mize SurpriseMAP-Elites approaches, that we compare with

standard minimize surprise, first.
2
In addition, we introduce

evaluation metrics. All three evolutionary approaches do not

optimize for a predefined task, but behaviors are classified

during post-evaluation to measure the emergent behavioral

diversity. As we use our self-assembly scenario, we again

categorize our behaviors using the nine patterns defined in

Sec. 4.2.2. To keep this study reasonably short, we restrict

ourselves to grid sizes 15×15 and 20×20 as sample scenarios

for denser and sparser swarm density settings.

Novelty Search

Novelty search promotes behavioral (i.e., phenotypic) di-

versity by scoring individuals on how different, or novel,

their behavior is compared to other individuals instead of

driving the evolutionary process to a fixed goal [24]. The

novelty � of an individual is calculated by a novelty metric

that determines the sparseness at a point in behavior space

taking into account the current population and an archive

of past individuals. These samples of individuals represent
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previously visited regions of search space and the current

list of solution candidates. Novelty � is defined as

�(i) = 1

 

 −1∑
:=0

b_dist(i,  :) , (5.3)

where  : is individual i’s :th-nearest neighbor with respect

to the behavioral distance metric b_dist(·, ·) and considering

 nearest neighbors. Here, we calculate the Euclidean dis-

tance between the behavioral feature vector of individual 8
and its ten nearest neighbors (i.e.,  = 10) as our behavioral

distance b_dist(·, ·).
The behavioral feature vector characterizes the behavior of

an individual and is supposed to capture relevant aspects

of an assumed task. Key is to carefully select these features,

such that useful and diverse behaviors are found and dis-

tinguished. Here, we define a potentially task-independent

behavioral feature vector (i.e., behavioral characteristic) as

a '-dimensional vector

b_char(i) = 1

#

[
#−1∑
==0

B=
0
()), . . . ,

#−1∑
==0

B='−1
())

]
(5.4)

of ' sensor values in the last time step of the evaluation

averaged over swarm size # . Similarly to our concept in

minimize surprise, sensor values can serve as local templates

of forming patterns. Novelty search tries to popularize all

variants of these vectors, which should enable the evolution

of a variety of behaviors leading to the assembly of differ-

ent patterns by agents. We average the behavioral vectors

obtained in ten repetitions per individual.

To limit the algorithm’s computational complexity, only a

subset of explored individuals is added to the archive of past

individuals. Several strategies of when to add individuals to

the archive exist [361], for example, adding all individuals

with a novelty value � above a minimum threshold �min (i.e.,

� > �min) or adding each individual with low probability.

Always adding individuals of high novelty may limit the

local search in newly explored regions of search space. Thus,

we use the second approach, as also promoted by Lehman

and Stanley [362], and add individuals with a probability

of 2 % to the archive of past individuals.

Otherwise our novelty search implementation (see Alg. 3)

is based on the evolutionary algorithm used in our mini-

mize surprise self-assembly scenario (see Sec. 4.1), but we do

not apply elitism here. Since we reward novelty instead of

prediction accuracy, the predictor ANN is superfluous and

not used in novelty search. Thus, we evolve only the actor

ANN (see Fig. 4.2a). We do 50 independent runs per grid
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Algorithm 3: Novelty search

1 generate random initial population P(0)
2 6 ← 0 // current generation
3 A← ∅ // archive of past individuals
/* until maximum number of generations is reached */

4 while 6 < 6max do
/* evaluate each individual in current population */

5 for i ∈ P(6) do
6 b_char(i) ← evaluate individual i // behavioral

characteristic

7 for i ∈ P(6) do
8 calculate novelty �(i)w.r.t. P(6) and A

9 generate uniformly random value X ∈ [0, 1]
10 if X< 0.02 then
11 add individual i to A

12 generate population P(6 + 1) by selection and mutation

13 6 ← 6 + 1

Figure 5.8: Visualization of the di-

mensions of the behavior-performance

mapMofMinimize SurpriseMAP-Elites

in our self-assembly scenario. Each di-

mension is based on mean sensor values

of two to four sensors (i.e., colored grid

cells). Grid cells in the same color and

with the same index 8 formdimension-8 .
The circle represents an agent and the

line gives its heading.

size ! × !, ! ∈ {15, 20} and consider two sets of potential so-

lutions: (i) all 250,000 evaluated individuals (50 individuals,

100 generations, 50 experiments; N-SVA), and (ii) the 50 indi-

viduals with the best solution quality out of all 250,000 indi-

viduals evaluated in the 50 independent evolutionary runs

(N-SVQ). The latter equals the resulting number of best indi-

viduals out of 250,000 evaluated individuals in 50 indepen-

dent evolutionary runs with our standard minimize surprise

approach in the self-assembly scenario. So we create so-

lution set N-SVQ especially to compare the evolutionary

approaches.

Minimize Surprise MAP-Elites

MAP-Elites [44] generates diverse high-quality solutions

by filling a discrete behavior-performance map over gen-

erations with solutions, retaining the highest performing

individual per cell. We propose Minimize Surprise MAP-

Elites [43] that evolves actor-predictor ANN pairs using

our task-independent minimize surprise reward for pre-

diction accuracy (Eq. 3.1) as the performance measure in

standard MAP-Elites and sensor values as the dimensions of

the behavior-performance map. The approach is fully task-

independent, potentially allowing for behavioral diversity

within behavior categories (i.e., patterns in our self-assembly

scenario) and across behavior categories within one evolu-

tionary run.

For our self-assembly scenario, we define a behavior-perfor-

mance map Mwith five dimensions -0 − -4 based on the

swarm’s discretized mean sensor values in the last time step

of an evaluation. Mean sensor values greater than 0.5 are

mapped to 1, otherwise to 0. We aggregate two sensors each
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Algorithm 4:MAP-Elites

Output: behavior-performance map M

1 4 ← 0 // current evaluation
2 M← ∅ // initialize empty map
/* until maximum number of evaluations is reached */

3 while 4 < 4max do
/* initialization */

4 if 4 < 4init then
5 generate random individual i′

/* main loop */
6 else
7 apply random selection and mutation to generate

individual i′

/* determine performance and behavioral descriptor */
8 �′, b_des← evaluate individual i′

/* store individual i′ if the respective map cell is
empty or i′ has the better performance */

9 if M(b_des) = ∅ or �(b_des) < �′ then
10 M(b_des) ← (i′, �′)
11 4 ← 4 + 1

for dimensions -0 − -2 and four sensors each for dimen-

sions -3 and -4 (see Fig. 5.8) resulting in 3
3 × 5

2 = 675 map

cells. This aggregation of sensor values is based on sym-

metries in the nine defined patterns (see Sec. 4.2.2 and

Fig. 5.9), which keeps the solution set concise. A potential

other option would be using each of our ' = 14 sensors

as one dimension, resulting in 2
14 = 16,384 map cells. This

would also increase computational load considerably be-

cause potentially more individuals have to be evaluated to

fill the behavior-performance map with high-quality solu-

tions. Since we are confident that our nine defined patterns

form an extensive solution set, we do not expect more in-

teresting behaviors to emerge by drastically increasing the

size of the behavior-performance map in this way and rely

on our computationally less expensive discretization of the

behavior-performance map. In each evaluation, both an indi-

vidual’s performance � (Eq. 3.1) and its behavioral descrip-

tor b_des = [-0, -1, -2, -3, -4] along the five defined map

dimensions are determined.

We initialize Minimize Surprise MAP-Elites (see Alg. 4) by

evaluating 4init = 2,500 individuals and placing them into

their respective map cells M(b_des). Per individual, we do

three independent evaluations of 500 time steps each, assign-

ing the minimum fitness reached in these three evaluations

as the overall fitness. After initialization, a random cell of the

map is chosen and offspring created by mutation, that is, we

add a uniformly random number in [−0.4, 0.4] to each value

of the genome, that represents individual i, with a probabil-

ity ?mut of 0.1. In total, we do 4max = 250,000 evaluations per

independent evolutionary run, equaling the number of eval-



5 In-Depth Analysis Using the Self-Assembly Scenario 82

(a) lines

(b) clustering

(c) triangular lattices

Figure 5.9: Example illustrations of lines,

clustering, and triangular lattices to ex-

emplify symmetries in the defined pat-

terns (reprinted from Sec. 4.2.2). Agents

in line structures detect neighbors di-

rectly in front and behind them (dimen-

sions -0 and -2), clustered agents detect

neighbors at least in their Moore neigh-

borhood (dimensions -0 , -1 , -3), and

agents in triangular lattices detect neigh-

bors two grid cells in front and behind

them (dimension -2). Circles represent

agents, their color and the lines give their

headings.

uations in 50 independent evolutionary runs with standard

minimize surprise. We do 10 independent MAP-Elites runs

per grid size ! × !, ! ∈ {15, 20}.

5.3.2 Metrics

As before, we classify emergent behaviors based on the

nine defined patterns presented in Sec. 4.2.2 and measure

their solution quality & (Eq. 4.11) to compare behavioral

diversity. Additionally, we introduce pattern coverage �pat.

Pattern coverage �pat is the amount of different emergent

patterns normalized by the nine defined patterns, that is,

the percentage of found patterns, per evolutionary run. It

is a measure for the emergent behavioral diversity within

one evolutionary run. In standard minimize surprise each

run leads to one best evolved individual and thus always

to a pattern coverage �pat of 0.11. But novelty search and

Minimize Surprise MAP-Elites explicitly push for behavioral

diversity within one evolutionary run and can output several

patterns per run (i.e., �pat ≥ 0.11).

Furthermore, we quantify the quality of the Minimize Sur-

prise MAP-Elites runs using three metrics proposed by

Mouret and Clune [44]: (i) coverage �map, (ii) precision �̄,
and (iii) global performance �max.

Coverage �map and precision �̄ are both calculated with re-

spect to the number of filled cells in the behavior-performance

map M. We define the number of filled map cells mfilled as

mfilled =

2∑
-0=0

2∑
-1=0

2∑
-2=0

4∑
-3=0

4∑
-4=0

filled(-0, -1, -2, -3, -4) ,

(5.5)

with map dimensions -0 − -2 ∈ [0 .. 2], map dimensions

-3, -4 ∈ [0 .. 4], andmeasure filled(-0, -1, -2, -3, -4) being
1 if map cell M(-0, -1, -2, -3, -4) is filled with a solution

and 0 otherwise.

Coverage �map is the percentage of cells in the behavior-

performancemap that are filled with solutions and is defined

as

�map =
mfilled

mtotal

, (5.6)

with number mtotal of map cells that theoretically could be

filled. Based on preliminary experiments, we assume that

all 675 cells theoretically can be filled in our self-assembly

scenario (i.e., mtotal = 675).
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Figure 5.10: Pattern coverage �pat for

50 independent novelty search runs per

grid side length ! ∈ {15, 20} in our self-

assembly scenario.

Precision �̄ is themean performance (i.e., prediction accuracy;

Eq. 3.1) of the filled map cells. We define precision �̄ as

�̄ =
1

mfilled

2∑
-0=0

2∑
-1=0

2∑
-2=0

4∑
-3=0

4∑
-4=0

�(-0, -1, -2, -3, -4) ,

(5.7)

with �(-0, -1, -2, -3, -4) being the performance of the so-

lution in map cell M(-0, -1, -2, -3, -4).
Global performance�max is themaximumperformance found

in the behavior-performance map as given by

�max = max

-0 ,-1 ,-2∈[0 .. 2],-3 ,-4∈[0 .. 4]
�(-0, -1, -2, -3, -4) .

(5.8)

5.3.3 Results

First, we analyze the results of our novelty search variantwith

a task-independent behavioral characteristic and Minimize

Surprise MAP-Elites individually. Afterwards, we compare

standard minimize surprise, novelty search, and Minimize

Surprise MAP-Elites, particularly in terms of behavioral

diversity and solution quality.

Novelty Search

As previously discussed, we consider two sets of potential

solutions in our novelty search runs: (i) all 250,000 individu-

als (N-SVA), and (ii) the 50 individuals with the best solution

quality out of all 250,000 evaluated individuals (N-SVQ). Pre-
diction accuracy � (Eq. 3.1) is not measured in novelty search.

Thus, we only evaluate pattern coverage �pat, solution qual-

ity & (Eq. 4.11), and behavior distributions.

Pattern coverage �pat is measured per evolutionary run and

we consider all 5,000 evaluated individuals per independent

novelty search run as potential solutions for the calculation.

We find a median pattern coverage �pat of 0.77 for the 15 ×
15 grid andof 0.88 for the 20×20 grid, see Fig. 5.10. Thismeans

that we find a median of seven and eight different patterns,

respectively, out of theninepossible patternsper evolutionary

run. The difference in pattern coverage �pat for the two grid

sizes is partly caused by swarm density as already found

for minimize surprise (see Sec. 4.4). Squares cannot form on

the smaller grid due to the high swarm density of 0.44; the

pattern can only perfectly form in swarm densities up to 0.25

(i.e., grid side length ! ≥ 20). However, squares and swirls

generally rarely emerge on both grid sizes and are probably
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(a) solution quality & (b) behavior distributions

Figure 5.11: Solution quality & (Eq. 4.11) and behavior distributions of 50 independent novelty search runs with behavioral charac-

teristic b_char (Eq. 5.4) with solution set N-SVA containing all 250,000 evaluated individuals and solution set N-SVQ containing the

50 individuals with best solution quality as potential solutions for grid sizes 15 × 15 and 20 × 20 in our self-assembly scenario. Behavior

distributions give the percentage of clustering (CL), aggregation (AG), loose grouping (LG), lines (LN), pairs (PR), triangular lattices (TL),
squares (SQ), swirls (SW) and random dispersion (RD).

(a) coverage �map and pattern cover-

age �pat

(b) precision �̄ and global perfor-

mance �max

Figure 5.12: Coverage �map (filled

map cells; Eq. 5.6), pattern coverage

�pat (percentage of emergent pattern

types), precision �̄ (mean prediction

accuracy; Eq. 5.7), and global perfor-

mance �max (maximum prediction ac-

curacy; Eq. 5.8) for 10 independent Mini-

mize Surprise MAP-Elites runs per grid

size ! × !, ! ∈ {15, 20} in our self-

assembly scenario.

hard to form. On the larger grid, swarm density is almost

too low for the formation of repetitive triangular lattices

and thus the pattern does not always emerge. All other

six patterns (i.e., clustering, aggregation, loose grouping,

lines, pairs, and random dispersion) are found in all runs.

Although we find high pattern coverage, it is not guaranteed

that solution quality & is high for all formed patterns and

that a post-selected solution set is equally diverse.

For solution set N-SVA, we find a median solution quality

of 0.46 on the 15 × 15 grid and of 0.5 on the 20 × 20 grid,

see Fig. 5.11a. By contrast, solution set N-SVQ leads to a

median solution quality of 1.0 on both grid sizes, which is

intuitive since we selected this solution set based on solution

quality.Consequently, selecting individuals basedon solution

quality results in a set of high-performing solutions.However,

we find statistically significant differences in the behavior

distributions of N-SVA and N-SVQ on both grid sizes (FE,

? < 0.001), see Fig. 5.11b. For N-SVA, we find more grouping

behaviors on the smaller grid andmore dispersion behaviors,

lines, and pairs on the larger grid. For N-SVQ, grouping

behaviors prevail on both grid sizes and structures that

require correct positioning, such as triangular lattices, are

rare. It is probably harder to reach high solution quality &
for patterns that require correct positioning of several agents

and thus the easier-to-form grouping and random dispersion

patterns dominate in N-SVQ. In consequence, N-SVQ leads

to four pattern types less than N-SVA on both grid sizes.

Overall, novelty search successfully pushes towards behav-

ioral diversity as we find high pattern coverage �pat. But not

all solutions lead to high-quality behaviors and post-selecting

high-quality solutions may reduce behavioral diversity.

Minimize Surprise MAP-Elites

Next, we analyze the quality of our Minimize Surprise

MAP-Elites runs. We find a median coverage �map of 0.97
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Figure 5.13: Behavior-performance map of one representative Minimize Surprise MAP-Elites run on the 15 × 15 grid and examples for

several emergent structures. Dimensions-0−-4 represent two to four sensors each (see Fig. 5.8)with-0−-2 ∈ [0 .. 2] and-3 , -4 ∈ [0 .. 4].
Cell colors give the performance � ∈ [0, 1], white map cells are empty (i.e., no solution was found). Dark blue lines mark areas where

certain pattern types perform well.

on the 15 × 15 grid and of 0.95 on the 20 × 20 grid, see

Fig. 5.12a. Thus, nearly all (i.e., ≥ 0.95 × 675 = 621) cells

of the behavior-performance map are filled with solutions.

Pattern coverage �pat is also high with a median of 0.83

on the 15 × 15 grid and of 0.88 on the 20 × 20 grid. That

means, we find a median of 7.5 patterns on the smaller grid

and of eight patterns on the larger grid. As discussed in the

previous section for novelty search, the difference in pattern

coverage �pat is partly caused by swarm density. As before,

clustering, aggregation, loose grouping, lines, pairs, and

random dispersion are found in all runs, but squares, swirls,

and triangular lattices generally rarely emerge. Solutions are

also high performing with a median precision �̄ of 0.64 and a

median global performance �max of at least 0.84 on both grid

sizes, see Fig. 5.12b. In total, we find high-quality behaviors

for the formation of a variety of different patterns.

Fig. 5.13 visualizes the behavior-performance map of one

Minimize Surprise MAP-Elites run on the 15 × 15 grid as

representative example. Areas of high performance (i.e., red

areas) each match the criteria of one of the nine defined

patterns closely. Structure formations that deviate slightly

from the defined classification criteria (i.e., & < 1.0) can
still reach high performance (i.e., prediction accuracy �;

Eq. 3.1), since each predicted sensor accounts only for
1

14
th

of the total performance. Consequently, several map cells

can contain well performing solutions for the formation of

the same pattern. We always find more than one solution

for a pattern type, if any. Map cells with worse performance
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(a) performance � (b) solution quality &

(c) behavior distributions

Figure 5.14: Performance � (Eq. 3.1), solution quality& (Eq. 4.11), and behavior distributions of the 50 best solutions of Minimize Surprise

MAP-Elites (MS-MAP-E; 1 independent run), minimize surprise (MS; 50 independent runs), and novelty search (N-SVQ; 50 independent

runs) per grid size ! × !, ! ∈ {15, 20} with clustering (CL), aggregation (AG), loose grouping (LG), swirls (SW), lines (LN), pairs (PR),
triangular lattices (TL), and random dispersion (RD).

usually contain grouping or random dispersion behaviors

because these patterns are not based on the exact positioning

and heading of several agents unlike, for example, lines

and pairs. Overall, this shows that our Minimize Surprise

MAP-Elites approach finds high-quality solutions for the

self-assembly of different patterns and diverse solutions to

the assembly of each pattern.

Comparison of Minimize Surprise, Novelty Search, and Minimize
Surprise MAP-Elites

We compare performance � (Eq. 3.1) of standard minimize

surprise and Minimize Surprise MAP-Elites as well as the

resulting behavioral diversity and solution quality & of

standard minimize surprise, novelty search, and Minimize

Surprise MAP-Elites. For a fair comparison, we select 50 best

solutions out of the same number of evaluations per ap-

proach. From minimize surprise, we take the best evolved

individuals of 50 independent evolutionary runs from our

previous experiments (see Sec. 4.4). One Minimize Surprise

MAP-Elites run has 250,000 evaluations, which is as many as

50 independent minimize surprise and novelty search runs.

Thus, we pick the 50 best solutions based on performance �
(Eq. 3.1) of one representative Minimize Surprise MAP-Elites

run for our comparison. As prediction accuracy (Eq. 3.1) is

not and cannot be measured in novelty search, we compare

minimize surprise and Minimize Surprise MAP-Elites with

our solution set N-SVQ, which contains the 50 best solutions
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of 50 independent novelty search runs selected by solution

quality &. These high-quality solutions generally would

allow for high prediction accuracy.

First, we compare the performance � (Eq. 3.1) of the 50 best

solutions of Minimize Surprise MAP-Elites and minimize

surprise, see Fig. 5.14a. We find statistically significantly bet-

ter performance for Minimize Surprise MAP-Elites on the

15× 15 grid but no significant differences on the 20× 20 grid

(MW-U, ? < 0.001). Next, we compare solution quality &
(Eq. 4.11) of the three approaches, see Fig. 5.14b. Novelty

search reaches statistically significantly better solution qual-

ity than Minimize Surprise MAP-Elites and minimize sur-

prise on both grid sizes (KW, ? < 0.001; MW-U with BC,

? < 0.001). However, novelty search has a median solution

quality of 1.0, since we use solution set N-SVQ that contains

the best solutions based on solution quality &. Thus, the

comparison is biased. Selecting solutions based on solution

quality in Minimize Surprise MAP-Elites would lead to a

competitive median solution quality of 0.97. For Minimize

Surprise MAP-Elites and minimize surprise, we do not find

significant differences in solution quality. Last, we compare

behavioral diversity and find statistically significant differ-

ences on both grid sizes (FE, ? < 0.001), see Fig. 5.14c. On

the 15 × 15 grid, novelty search has a significantly different

behavior distribution than Minimize Surprise MAP-Elites

and minimize surprise. By contrast, minimize surprise has a

significantly different behavior distribution than the other

two approaches on the 20 × 20 grid. This is intuitive, since

we find the least number of different patterns (i.e., four)

for the significantly different behavior distributions, but the

maximum number of different patterns (i.e., seven) on both

grid sizes for Minimize Surprise MAP-Elites.

Comparingminimize surprise, novelty search, andMinimize

Surprise MAP-Elites, the differences between the three evolu-

tionary approaches become apparent. Novelty search creates

a large number of diverse solutions within one run without

putting weight on improving those over generations by only

aiming for novel behaviors. Minimize surprise produces

behavioral diversity across independent evolutionary runs

while aiming to improve prediction accuracy (Eq. 3.1) of its

individuals over generations in a single run. And Minimize

Surprise MAP-Elites both improves solutions over gener-

ations and produces behavioral diversity. Hence, novelty

search requires post-evaluation to select the best performing

individuals, while the other two approaches already pro-

vide high-quality solutions. Even when the solution set of

Minimize Surprise MAP-Elites is to be reduced, it requires

less post-evaluation effort than novelty search because it out-

puts 675 high-quality solutions instead of 250,000 potential

solutions of varying quality.

Overall, we find that Minimize Surprise MAP-Elites outper-

forms the other two approaches. It leads to high-quality
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3: To keep this study concise, we do not

show the data for the experiments where

we vary a single hyperparameter.

solutions and the greatest behavioral diversity (i.e., the most

different pattern types) on both grid sizes as intended by

quality-diversity algorithms. But standardminimize surprise

reaches similar solution quality on both grid sizes and a com-

petitively diverse behavior distribution on the 15 × 15 grid.

Thus, the standard, and rather simple, minimize surprise

approach is also promising. In particular, the lower num-

ber of evaluations in one evolutionary run makes standard

minimize surprise more suitable for applications where the

number of evaluations should be kept to a minimum, such as

real robot experiments where battery life is limited and wear

and tear of the hardware must be avoided. We show that our

standard minimize surprise approach can be applied to real

robots in Chs. 10 and 11. For the rest of this thesis, we focus

on the standard minimize surprise approach and explore its

potential in different scenarios and settings. However, we

will investigate the very promising combination of quality-

diversity algorithms and our task-independent minimize

surprise approach further in future work.

5.4 Hyperparameter Optimization

In all our previous experiments, we have used a fixed set

of hyperparameters to evolve self-assembly behaviors with

minimize surprise (see Sec. 4.1). Here, we test how the num-

ber of simulation runs per fitness evaluation (repetitions),

evaluation length ), population size �, number of genera-

tions 6max, and mutation rate ?mut influence the resulting

fitness (Eq. 3.1) [42]. We do 20 independent evolutionary

runs per tested parameter combination on grid sizes 15 × 15

and 20 × 20. The two grid sizes are examples for denser and

sparser settings, since swarm density affects the emergence

of behaviors and thus different parameter sets may be opti-

mal. Our experiments on hyperparameter optimization are

divided into two parts. First, we do experiments where we

vary a single hyperparameter at a time while fixing the rest

to the values used in our previous experiments (see Tab. 5.2).

Based on the results of these first experiments, we test differ-

ent hyperparameter combinations afterwards, since also the

combination of the different parameters can influence the

resulting fitness.

Variation of One Hyperparameter First, we vary one hyperpa-

rameter while fixing the rest to their initial values used in

our previous experiments. Tab. 5.2 summarizes initial and

tested values. For one to ten repetitions, we do not find signif-

icantly different fitness for both grid sizes (KW, ? < 0.05).
3

Evaluation lengths ) between 50 and 500 time steps do not

lead to significant differences in fitness on the 20 × 20 grid,

but this only holds true for 200 to 500 time steps on the

15 × 15 grid (MW-U with BC, ? < 0.05). This is in line with
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Table 5.2: Initial hyperparameter values used in our previous experiments and values tested for hyperparameter optimization in our

self-assembly scenario.

hyperparameter initial value tested values

# of simulation runs per fitness evaluation 10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
evaluation length ) (time steps) 500 {50, 100, 200, 300, 400, 500}
population size � 50 {10, 20, 30, 40, 50, 60, 70, 80}
number of generations 6max 100 {50, 60, 70, 80, 90, 100}
mutation rate ?mut 0.1 {0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.2, 0.3}

Table 5.3: Tested combinations of pop-

ulation size � and number of genera-

tions 6max for hyperparameter optimiza-

tion in our self-assembly scenario.

� 6max

10 500

20 250

25 200

40 125

50 100

100 50

our findings on the temperature of the system (see Fig. 4.19)

showing that the swarm quickly assembles into the structure.

Numbers of generations 6max between 50 and 100 do not

lead to significantly different fitness on the 15 × 15 grid (KW,

? < 0.05). On the 20 × 20 grid, we find significantly better

fitness for 90 generations than for numbers of generations be-

tween 50 and 70 but no significant differences for numbers of

generations between 80 and 100 (MW-U with BC, ? < 0.05).

Population sizes � between ten and 80 do not lead to sig-

nificant differences on the 15 × 15 grid. On the 20 × 20 grid,

population sizes of 50 and more have significantly better fit-

ness than population size ten (MW-U with BC, ? < 0.05). We

do not find statistically significant differences for mutation

rates ?mut between 0.01 and 0.3 on both grid sizes (MW-U

with BC, ? < 0.05). Other mutation rates, however, may lead

to significantly lower fitness.

In total, we find that we can speed up evolution by reducing

repetitions and evaluation length without loss in fitness.

The total number of evaluations (i.e., population size � ×
number of generations 6max) does not impact fitness on the

15 × 15 grid significantly, but 4,000 or more evaluations

should be done on the 20 × 20 grid.

Variation of Hyperparameter Combinations Based on our previ-

ous results, we test different combinations of mutation rate,

population size, and number of generations next. Thereby,

population size � influences thewidth (i.e., exploration of the

solution space) and the number of generations 6max the depth

of the search. We do 5,000 evaluations divided between pop-

ulation sizes � of 10 to 100 and 50 to 500 generations 6max,

see Tab. 5.3. For all combinations of population size and

generations, we vary mutation rates between 0.01 and 0.3,
that is, we have in total 54 hyperparameter combinations per

grid size. We do two simulation runs of 200 time steps each

per fitness evaluation. Fig. 5.15 visualizes best fitness for the

different hyperparameter combinations on the 15 × 15 and

the 20 × 20 grids. On both grid sizes, we find statistically

significantly different fitness for the different hyperparameter

combinations (KW, ? < 0.01). We find the maximummedian

best fitness for population size 10 and 500 generations, that

is, 0.78 for mutation rate 0.04 on the 15× 15 grid and 0.84 for

mutation rate 0.05 on the 20 × 20 grid. In total, we find no
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(a) 15 × 15 grid

(b) 20 × 20 grid

Figure 5.15: Best fitness per combination

of mutation rate ?mut, population size �
and number of generations 6max with

� × 6max = 5,000 evaluations per setup.

Medians are indicated by red bars [42].

significant differences for population sizes of ten to 40 and

125 to 500 generations for all mutation rates (MWwith BC,

? < 0.01). Higher population sizes and thus fewer genera-

tions may lead to significantly lower fitness than some other

hyperparameter settings.

In summary, we find that for both grid sizes (i.e., swarm den-

sities) low population sizes and many generations are best

for evolving self-assembly behaviors with minimize surprise.

Mutation rate and number of simulation runs per fitness

evaluation do not significantly impact fitness. Evaluation

length requires a greater minimum time with increasing

swarm density to not affect fitness negatively, probably be-

cause agents may need more time to self-assemble into a

structure due to the sparser swarm density.

5.5 Discussion and Conclusion

Our in-depth analysis has shown that we can evolve robust,

scalable, and diverse high-quality behaviors with our task-

independent minimize surprise approach. The evolutionary

process is robust to noise, which is an important prerequi-

site for experiments with real robots. In addition, emergent

behaviors are robust to disturbances, such as the damage

of the assembled structure in our self-assembly scenario.

Since behaviors are scalable with swarm density, the effort

to generate swarm behaviors for different densities can be

reduced. Furthermore, the comparison with novelty search

and MAP-Elites shows that our standard minimize surprise

approach leads to high behavioral diversity and solution

quality. However, the combination of our minimize surprise

reward with quality-diversity algorithms instead of simple

evolutionary algorithms allows for similar or even higher

behavioral diversity and competitive solution quality. Thus,
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wewill put more focus on it in future work. Last but not least,

we found that fitness (i.e., prediction accuracy) is best when

running evolution for many generations using a small popu-

lation size, while short evaluation lengths and few repetitions

are sufficient. Thus, carefully selecting hyperparameters can

lead to higher prediction accuracy and speed up evolution.



Engineered Self-Organization 6
Chapter Contents

In this chapter, we engineer self-organization to bias emer-

gence with minimize surprise towards desired behaviors

and exemplify the approach in our self-assembly scenario.

We...

I Sec. 6.1: partially predefine predictions to bias emer-

gence towards grouping behaviors and lines,

I Sec. 6.2: fix all predictions to predefine emergence to

grouping behaviors or lines, and

I Sec. 6.3: draw a conclusion.

Parts of this chapter are based on [38–42].

(a) lines (! = 15)

(b) clustering (! = 20)

(c) loose grouping (! = 15)

(d) aggregation (! = 15)

Figure 6.1: Resulting behaviors in the

self-assembly scenario using minimize

surprise with partially predefined pre-

dictions aiming for grouping behaviors

and lines. Agents are represented by cir-

cles, their color and the lines indicate

their headings.

In our previous self-assembly experiments (see Ch. 4), we

have used minimize surprise with complete freedom, that is,

we relied completely on the innate motivation to maximize

prediction accuracy. Consequently, we had no direct influ-

ence on the emergent behaviors. In this chapter, we present

variants of our standard minimize surprise approach (see

Ch. 3) that enable us to push evolution towards the emer-

gence of desired behaviors (research question Q2, Sec. 1.2)

and show its competitiveness to evolutionary algorithms

with task-specific fitness functions (research question Q3).

Assuming that a certain behavior is associated with a specific

sensor input pattern, we can influence the evolution of behav-

iors with minimize surprise by predefining what we want an

agent to predict and thus also to perceive. This means that

agents have prior beliefs about what they expect to perceive

in their environment (cf. the ‘Dark-RoomProblem’ in Sec. 3.1).

To elaborate, we engineer self-organization by predefining

some or all of the agents’ predictor outputs B̃0, . . . , B̃'−1

(see Fig. 4.2b) to fixed, desired values while still rewarding

high prediction accuracy (Eq. 3.1). High fitness can then be

achieved by good predictions of the unfixed outputs B̃A (if
any) and by appropriate behaviors that create sensor input

satisfying the fixed and unfixed sensor predictions. Thus, we

push evolution towards the emergence of desired behaviors

without having to tailor a task-specific fitness function [20].

Without the loss of generality, we exemplify our approach to

engineer self-organization by (partially) predefining sensor

predictions inminimize surprise by aiming for the emergence

of groupingbehaviors and lines on the 15×15 and20×20grids

in our self-assembly scenario (see Sec. 4.1). If not indicated

otherwise, we keep the setup for our self-assembly scenario

including all parameters (see Tab. 4.1) as before. We do

50 independent evolutionary runs per setting and evaluate
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1: Swirls are not considered, since they

require exact positioning and headings

of groups of four agents. In contrast, ag-

gregation, clustering, and loosegrouping

are all based on clusters of at least seven

agents with less strict rules regarding

positioning and heading (see Sec. 4.2.2).

the resulting behaviors based on our metrics presented in

Sec. 4.2.2.

6.1 Partially Predefining Sensor Predictions

First, we partially predefine predictions, that is, we fix some

of the agent’s predictor outputs B̃A to desired values while

leaving all other predictor outputs unfixed. As mentioned

before, we still reward high prediction accuracy (Eq. 3.1).

Consequently, agents need good predictions of the unfixed

outputs and behaviors matching both the fixed and the

unfixed predictor outputs to reach high fitness.

Experimental Setup We exemplify our approach of minimize

surprise with partially predefined predictions (MS-PP) by
aiming to bias emergence towards lines and grouping behav-

iors (i.e., aggregation, clustering, and loose grouping here
1
)

in our self-assembly scenario, see Fig. 6.1. For this, we set

the predictions of the sensors in front and behind the agent

to 1 (i.e., B̃0 = B̃3 = B̃8 = B̃11 = 1, see Fig. 6.2). The predictor

ANN still has to predict the other ten sensor values. It has ten

output neurons, as well as 15 input neurons (i.e., 14 sensor

values and one action value, see Sec. 4.1) and 12 hidden

neurons. The actor ANN is left as before. Since we reward

high prediction accuracy for both the fixed and the unfixed

predictor outputs, our minimize surprise fitness function

(Eq. 3.1) adapts to

�MS-PP =
1

)#'

)−1∑
C=0

#−1∑
==0

( predefined predictions: occupied grid cells︷                           ︸︸                           ︷∑
A∈{0,3,8,11}

(1 − | 1 − B=A (C)|) +∑
A∈{1,2,4,5,6,7,9,10,12,13}

(1 − | B̃=A (C) − B=A (C)|)︸                                              ︷︷                                              ︸
unfixed predictions

)
,

(6.1)

B̃=A (C) = 1

predictor output

Figure 6.2: Partially predefined sensor

value predictions aiming to bias emer-

gence towards grouping behaviors and

lines in our self-assembly scenario. Un-

fixed sensor predictions are given by B̃A ,
the circle represents the agent, and the

line indicates its heading.

with evaluation length) in time steps, swarm size# , number

of sensors per swarm member ', and prediction B̃=A (C) for
and actual value B=A (C) of sensor A of agent = at time step C.
By partially predefining sensor predictions in this way, we

facilitate the emergence of lines and grouping behaviors as

predicting no more neighbors than the predefined ones (i.e.,

predicting 0 for the ten unfixed predictor outputs) matches

exactly the predictions for line structures (see Fig. 4.22f)while

predicting several more neighbors matches the predictions

for grouping behaviors (see Figs. 4.22a – 4.22c). All other
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(a) 15 × 15 grid (b) 20 × 20 grid

Figure 6.3: Best fitness �MS-PP (Eq. 6.1) over generations 6 of 50 independent evolutionary runs using minimize surprise with partially

predefined predictions aiming for lines and grouping behaviors on grid sizes ! ∈ {15, 20} in our self-assembly scenario. Medians are

indicated by the red bars.

2: The results forminimize surprisewith

predefined predictions aiming for group-

ing behaviors (MS-GR) and lines (MS-LN)

will be discussed in detail in Sec. 6.2.

behaviors need some of the predefined predictions to be 0

(instead of 1), see Fig. 4.22.

In almost all other respects, we keep the setup for our self-

assembly scenario as before except for the mutation rate for

the 20×20 grid, whichwe had to set to 0.3 to obtain a converg-

ing fitness curve. This was probably necessary because task

difficulty may be increased on the 20× 20 grid. To determine

the success of our approach, we investigate, in particular,

the impact of partially predefining sensor predictions on the

resulting behavior distributions.

Results The increase in best fitness over generations for

both grid sizes is visualized in Fig. 6.3. The median best

fitness (Eq. 6.1) of the last generation is 0.72 for the 15 × 15

grid and 0.78 for the 20× 20 grid. Compared to our standard

minimize surprise approach (MS), we find significantly higher

fitness on the 15 × 15 grid and similar fitness on the 20 × 20

grid when partially predefining predictions (MW-U with

BC, ? < 0.05), see Fig. 6.4a.
2
Furthermore, we find median

solution qualities (Eq. 4.11) of 0.83 on the 15 × 15 grid and of

0.76 on the 20×20 gridwhenpartially predefiningpredictions

(see Fig. 6.4b). This means that at least 76 % of the swarm

assembles into the dominant structure. Compared to our

standard minimize surprise, we find similar solution quality

on the 15 × 15 grid and statistically significantly greater

solution quality on the 20×20 gridwhenpartially predefining

predictions (MW-U with BC, ? < 0.01).

Fig. 6.4c visualizes the resulting behavior distributions for

the standard minimize surprise approach and for minimize

surprise with partially predefined predictions. As we have

discussed in Sec. 4.4, we already find a majority of lines

and grouping behaviors on the 15 × 15 grid when running

our standard minimize surprise approach with complete

freedom, but only 31 % of the runs lead to those behaviors on

the 20× 20 grid. Thus, we push evolution towards the search

for solutions that are otherwise rarely found by partially pre-

defining predictions. Accordingly, the behavior distributions
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(a) best fitness � in the last generation (b) solution quality &

(c) behavior distributions

Figure 6.4: Fitness � (Eqs. 3.1, 6.1, 6.2, and 6.4, respectively), solution quality & (Eq. 4.11), and behavior distributions of the best

evolved individuals of 50 independent evolutionary runs using minimize surprise (MS), minimize surprise with partially predefined

predictions (MS-PP; Sec. 6.1), and minimize surprise with predefined predictions aiming for grouping behaviors (MS-GR; Sec. 6.2.1) and
lines (MS-LN; Sec. 6.2.2) per grid size ! ∈ {15, 20} in our self-assembly scenario. The behavior distributions give the percentage of

resulting structures with clustering (CL), aggregation (AG), loose grouping (LG), lines (LN), pairs (PR), triangular lattices (TL), and random

dispersion (RD). The data for minimize surprise (MS) is reprinted from Ch. 4 for easier comparison. Medians are indicated by the red bars

in the box plots.

(a) clustering
(see Fig. 6.1b)

(b) lines
(see Fig. 6.1a)

Figure 6.5: Mean sensor predictions in

the self-assembly scenario with partially

predefined predictions aiming for group-

ing behaviors and lines. The four sensor

predictions directly in front and behind

the agent are predefined to 1, all other

sensor values are still predicted by the

predictor ANN. Agents are represented

by circles and the lines indicate their

headings.

for minimize surprise and minimize surprise with partially

predefined predictions are similar on the 15 × 15 grid but

statistically significantly different on the 20 × 20 grid (FE

with BC, ? < 0.001). For minimize surprise with partially

predefined predictions, we find 64 % grouping behaviors

(i.e., clustering, aggregation, loose grouping) and 36 % lines

on the 15 × 15 grid. Compared to the runs with the standard

minimize surprise approach, the formation of line structures

increases by 16 percentage points (pp) and grouping behav-

iors decrease by 8 pp while pairs and triangular lattices do

not emerge anymore. On the 20× 20 grid, we find 90 % lines,

2 % pairs, and 8 % clustering when partially predefining

predictions. Compared to our standard minimize surprise

approach, we notice an increase of 2 pp in clustering and of

65 pp in the formation of lines. Pairs form only in one run

and no random dispersion as well as no triangular lattices

emerge anymore.

As before (see Sec. 4.4), we study themean sensor predictions

of the best evolved individuals when partially predefining

sensor predictions and compare them to the formed struc-

tures. In our study, we focus on the ten sensors that are

still predicted by the predictor ANN here. In the emergent

grouping behaviors, we observe that the mean sensor predic-

tions of all agents are above 0.5 for at least three of the ten

unfixed sensor predictions on the 15× 15 grid and for at least

four sensor predictions on the 20 × 20 grid (see Fig. 6.5a). A
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mean sensor prediction above 0.5 states that a grid cell is

predicted by all agents to be occupied in at least half of the

time steps. Similarly, for line structures maximally two of the

sensors on the 15 × 15 grid and maximally three sensors on

the 20× 20 grid are on average predicted above 0.5, since the
predefined predictions already match the occupied grid cells

in the structure (see Fig. 6.5b).

Overall, we find a decrease in the variety of resulting struc-

tures by partially predefining sensor predictions while emer-

gent behaviors still have high fitness and solution quality.

As expected, we could push emergence towards lines and

grouping behaviors by predefining some of the sensor values

even on the 20×20 gridwhere these behaviors are little found

when using the standard minimize surprise approach. Thus,

we successfully engineered an influence on the emergence

of structures. However, we cannot avoid a dependence on

swarm density as in our previous experiments (see Sec. 4.4).

Grouping behaviors generally rarely form in low swarm

densities and thus lines prevail on the 20 × 20 grid when

partially predefining predictions.

6.2 Predefining All Sensor Predictions

Next, we predefine all sensor predictions, that is, we fix all of

the agents’ predictor outputs B̃A to desiredvalues but continue

to reward prediction accuracy (Eq. 3.1). Consequently, we

remove the predictor network because it has become super-

fluous. High fitness can be achieved by behaviors that create

sensor input satisfying the fixed sensor predictions. Thus,

we predefine the emergence of desired behaviors similarly to

when using an evolutionary algorithm with a task-specific

reward that relies on local information only.

Since we biased emergence towards lines and grouping be-

haviors in our previous experiment on minimize surprise

with partially predefined predictions, we also aim for group-

ing behaviors and for line structures in the following ex-

periments. The predefined predictions then serve as local

templates for the targeted structures in our self-assembly

scenario, which is similar to approaches used in cellular au-

tomata research [173] (see Sec. 2.2.1). In our first experiment,

we aim for grouping behaviors and show that minimize

surprise with predefined predictions is competitive to an

evolutionary algorithm with a task-specific reward. In the

second experiment, we aim for lines and show how the emer-

gence of behaviors can be influenced further by changing the

geometry of the environment.
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Figure 6.6: Predefined sensor value pre-

dictions for grouping behaviors in our

self-assembly scenario. All sensor pre-

dictions are predefined to 1 here. The

circle represents the agent and the line

indicates its heading.

6.2.1 Grouping Behaviors

First, we predefine emergence to grouping behaviors (i.e., ag-

gregation, clustering, loose grouping) and show the competi-

tiveness of our minimize surprise approach with predefined

predictions to an evolutionary algorithm with a task-specific

fitness function [40, 41].

Experimental Setup

We evolve grouping behaviors (i.e., clustering, aggregation,

and loose grouping) in our self-assembly scenario using the

previously presented evolutionary algorithm (see Sec. 4.1)

with two different fitness functions: (i) the minimize surprise

fitness function with predefined predictions (MS-GR), and
(ii) a task-specific fitness function as a baseline.

Minimize Surprise with Predefined Predictions In our first ex-

periment on minimize surprise with predefined predic-

tions, we fix the predictions of all sensor values to 1 (i.e.,

B̃A = 1, A ∈ [0 .. ' − 1]; see Fig. 6.6) while still rewarding

high prediction accuracy to predefine emergence to group-

ing behaviors (MS-GR). Thus, our minimize surprise fitness

function (Eq. 3.1) adapts to

�MS-GR =
1

)#'

)−1∑
C=0

#−1∑
==0

predefined predictions:

occupied grid cells︷                   ︸︸                   ︷
'−1∑
A=0

(1 − | 1 − B=A (C)|) , (6.2)

B̃=A (C) = 1

with evaluation length) in time steps, swarm size# , number

of sensors per swarm member ', and value B=A (C) of sensor A
of swarm member = at time step C. In comparison to our

fitness functionwith partially predefinedpredictions (Eq. 6.1),

all sensor predictions B̃=A (C) are set to fixed values here. High

fitness is reached when agents detect many neighbors as

common in grouping behaviors.

Task-Specific Fitness Function As a baseline, we use our evo-

lutionary algorithm (see Sec. 4.1) with a task-specific fitness

function aiming for the emergence of grouping behaviors.

Our task-specific fitness function rewards shorter mean dis-

tances to the center of (agent) mass in the last time step )
of an evaluation, which is a common choice for evolving

aggregation behaviors [133, 134]. We define fitness �TS as

�TS = 1 − 1

!#

#−1∑
==0

3"(CoM()), %=())) , (6.3)
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(a)minimize surprise with predefined predictions (b) evolutionary algorithm with the task-specific fitness function

Figure 6.7: Best fitness over generations 6 of 50 independent runs each of minimize surprise with predefined predictions for grouping

behaviors (�MS-GR; Eq. 6.2) and an evolutionary algorithm with the task-specific fitness function �TS (Eq. 6.3) on the 20 × 20 grid in our

self-assembly scenario. Medians are indicated by the red bars.

3: The maximum Manhattan distance

between two points on a torus is
!G
2
+ !H

2
.

with swarm size # , grid size !, Manhattan distance 3"
(Eq. 4.5), center of agent mass CoM()), and position %=())
of agent = in the last time step ) of the evaluation. We

calculate the center of mass on our 2D grid with periodic

boundary conditions using the algorithm by Bai and Breen

[363]. Distances between center of mass and agents are

calculated using the Manhattan distance as agents cannot

move diagonally in our self-assembly scenario (see Sec. 4.2).

We normalize the Manhattan distance between agent and

center of mass by the maximum possible distance, that is,

grid side length ! for square grids.
3
Therefore, fitness is

theoretically normalized to [0, 1], but since each grid cell

can be occupied by maximally one agent, the maximum

possible fitness is 0.69 on the 15 × 15 grid and 0.76 on the

20 × 20 grid.

Results

The increase in best fitness over generations for bothminimize

surprise with predefined predictions and the evolutionary

algorithm with the task-specific fitness function on the 20 ×
20 grid are visualized in Fig. 6.7. For the approach with the

task-specific fitness function, the median best fitness (Eq. 6.3)

of the last generation is 0.63 for the 15 × 15 grid and 0.66 for

the 20 × 20 grid. Thus, fitness is optimized successfully by

evolution. Forminimize surprisewithpredefinedpredictions,

we reachmedianbest fitness (Eq. 6.2) of 0.71on the 15×15grid

and of 0.63 on the 20×20 grid. We do not compare the fitness

of both approaches due to the differing fitness functions.

But when comparing minimize surprise with predefined

predictions and the standard minimize surprise approach,

we find similar fitness on the 15 × 15 grid and significantly

higher fitness for the standard minimize surprise approach

on the 20× 20 grid (MW-U with BC, ? < 0.001), see Fig. 6.4a.

Due to the low swarm density, agents may need more time

to assemble into groups on the 20 × 20 grid, making the

prediction task harder and thus leading to lower fitness. This

is also in line with our finding that grouping behaviors only
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(a) solution quality & (b) behavior distributions

Figure 6.8: Solution quality & (Eq. 4.11) and behavior distributions of the best evolved individuals of 50 independent evolutionary

runs each using minimize surprise with predefined predictions (MS-GR) and an evolutionary algorithm with a task-specific fitness

function (TS) aiming for grouping behaviors per square grid size ! ∈ {15, 20} in the self-assembly scenario. The behavior distributions

give the percentage of resulting structures with clustering (CL), aggregation (AG), and loose grouping (LG). Medians are indicated by the

red bars in the box plots.

rarely emerge for standard minimize surprise and minimize

surprise with partially predefined predictions on the 20 × 20

grid (see Fig. 6.4c).

We find median solution qualities & (Eq. 4.11) of 0.98 on the

15× 15 grid and of 0.94 on the 20× 20 grid when predefining

predictions. For the approach with the task-specific fitness

function, we find median solution qualities of 0.96 on the

15 × 15 grid and of 0.78 on the 20 × 20 grid, see Fig. 6.8a. On

both grids, the solution quality of the emergent behaviors is

significantly higher for minimize surprise with predefined

predictions than for the evolutionary algorithmwith the task-

specific fitness function (MW-U with BC, ? < 0.001). Thus,

more agents assemble into the dominant structure in the

behaviors evolved with minimize surprise with predefined

predictions.

As expected, both the evolutionary algorithm with the task-

specific fitness function and minimize surprise with prede-

fined predictions lead only to grouping behaviors (i.e., clus-

tering, aggregation, loose grouping, see Fig. 6.9), see Fig. 6.8b.

Thus, both approaches lead to statistically significantly dif-

ferent behavior distributions than the standard minimize

surprise approach (FE with BC, ? < 0.01). However, the

behavior distributions for the evolutionary algorithm with

the task-specific fitness function and minimize surprise with

predefined predictions are similar on the 15 × 15 grid but

statistically significantly different on the 20 × 20 grid. The

approach with the task-specific fitness function leads to a

majority of aggregation behaviors on both grid sizes. By

contrast, in minimize surprise with predefined predictions,

wemainly find aggregation on the 15×15 grid, but clustering

prevails on the 20×20 grid. The different nature of the fitness

functions seems to cause this difference. The task-specific

fitness function has a global view on aggregation by calcu-

lating the distance to the center of mass (Eq. 6.3). Contrarily,

the fitness function of minimize surprise with predefined

sensor predictions (Eq. 6.2) equates to using a local template

for behaviors, here the grouping behaviors. It does not differ-
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(a) aggregation (! = 15)

(b) loose grouping (! = 15)

(c) clustering (! = 20)

Figure 6.9: Resulting behaviors in the

self-assembly scenario using minimize

surprise with predefined predictions for

grouping. Agents are represented by cir-

cles, their color and the lines indicate

their headings.

4: https://youtu.be/XYZgqPYt-kY

entiate between aggregation, clustering, and loose grouping,

and even distant clusters can have high fitness. Clustering

emerges more easily on the larger grid due to the low swarm

density while aggregation can easily form in the high swarm

density of the smaller grid. Consequently, the combination

of swarm density and fitness function leads to the differences

in the behavior distributions.

In the last part of our comparison, we compare the run-

time of minimize surprise with predefined predictions to

the runtime of the evolutionary algorithm with the task-

specific fitness function. We run each approach five times on

a MacBook Pro (2017) with a 3.1 GHz Intel Core i5 proces-

sor (7th generation) and 16 GB RAM for the 15× 15 grid case.

Both the evolutionary algorithmwith the task-specific fitness

function and minimize surprise with predefined predictions

have a runtime of approximately 23 min each and are thus

competitive in that regard.

Overall, predefining predictions in our minimize surprise

approach allows us to predefine emergence to desired behav-

iors and leads to high-quality solutions. As a result, minimize

surprise with predefined predictions offers a more intuitive

way to target specific behaviors than defining a task-specific

fitness function. Task-specific fitness functions may even re-

quire global information, such as the center of agent mass in

our scenario here, while minimize surprise with predefined

predictions relies on local information only. In consequence,

swarm density has a greater impact in our minimize sur-

prise approach than in the evolutionary algorithm with the

task-specific fitness function.

6.2.2 Lines

In a second experiment with minimize surprise with pre-

defined predictions, we predefine the emergence of lines

(MS-LN). Furthermore, we investigate the influence of the

geometry of the environment and the initial agent poses on

the emergent structures. A video illustrating our experiments

is online.
4

Experimental Setup

We fix the sensor predictions for the sensors directly in front

and behind the agent to 1 (i.e., B̃0 = B̃3 = B̃8 = B̃11 = 1) and all

other predictor outputs to 0, see Fig. 6.10. This matches the

real and predicted sensor values of agents assembled into

line structures, see Fig. 4.22f. Consequently, our minimize

surprise fitness function (Eq. 3.1) adapts to

https://youtu.be/XYZgqPYt-kY
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Figure 6.10: Predefined sensor value pre-

dictions for lines. Agents predict to sense

neighboring agents directly in front and

behind them while they do not expect

neighbors an any other grid cell in their

sensor view. The circle represents the

agent and the line indicates its heading.

�MS-LN =
1

)#'

)−1∑
C=0

#−1∑
==0

( predefined predictions: occupied grid cells︷                            ︸︸                            ︷∑
A∈{0,3,8,11}

(1 − | 1 − B=A (C)|) +∑
A∈{1,2,4,5,6,7,9,10,12,13}

(1 − | 0 − B=A (C)|)︸                                        ︷︷                                        ︸
predefined predictions: empty grid cells

)
,

B̃=A (C) = 1

B̃=A (C) = 0

(6.4)

with evaluation length) in time steps, swarm size# , number

of sensors per swarm member ' , and value B=A (C) of sensor A
of agent = at time step C.

As before, we test our approach on square grids with side

lengths ! ∈ {15, 20}. Additionally, we investigate the influ-

ence of the geometry of our torus grids (i.e., the ratio of one

diameter to the other) by using rectangular fundamental

polygons. Thereby, we bias emergence towards the formation

of horizontal or vertical lines. First, we use a 25×8 grid, which

leads to a swarm density of 0.5 (i.e., 50 % of the grid cells are

occupied by agents). The agents can either self-assemble into

horizontal lines (in x-direction along the longer diameter of

the torus) or vertical lines (in y-direction along the shorter

diameter of the torus) to reach maximum fitness values in

this scenario. Second, we use a 11 × 18 grid resulting in a

swarm density of approximately 0.51. Theoretically, the best

possible fitness can be reached if the agents self-assemble

into nine horizontal lines (in x-direction along the shorter

diameter of the torus) with 11 agents each and thus one

agent would be left without a proper spot. Thus, we increase

the bias towards horizontal lines here. We then study the

effect of the environment’s geometry on the emergent line

structures by comparing the quantity of behaviors leading

to horizontal, vertical, and maze-like line structures on all

four grid sizes (i.e., 15 × 15, 20 × 20, 25 × 8, 11 × 18). Formed

line structures are categorized as mostly horizontal or mostly

vertical when more than two thirds of the resulting lines are

formed horizontally or vertically, respectively. Otherwise the

formed line structure is categorized as maze-like.

Results

As expected, lines emerge in all runs on all four grid sizes

when predefining predictions as described above. Conse-

quently, we successfully predefined emergence by setting

sensor predictions to fixed values as in our previous experi-

ment when aiming for grouping behaviors. In the following,

we study the resulting line structures in more detail.
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(a) best fitness �MS-LN in the last generation (b) solution quality &

Figure 6.12: Fitness �MS-LN (Eq. 6.4) and solution quality & (Eq. 4.11) of the best evolved individuals of 50 independent evolutionary

runs using minimize surprise with predefined predictions aiming for lines for grid sizes 15 × 15, 20 × 20, 25 × 8, and 11 × 18 in the

self-assembly scenario. Medians are indicated by the red bars.

(a) horizontal lines (! = 20)

(b) vertical lines (! = 15)

(c)maze-like lines (! = 20)

Figure 6.11: Resulting behaviors in the

self-assembly scenario on square grids

usingminimize surprisewith predefined

predictions for lines. Agents are repre-

sented by circles, their color and the lines

indicate their headings.

Square Grids On the square grids, we find a median best

fitness �MS-LN (Eq. 6.4) of 0.85 for the 15 × 15 grid and of

0.88 for the 20 × 20 grid in the last generation, see Fig. 6.12a.

Furthermore, we find median solution qualities & (Eq. 4.11)

of 0.67 on the 15 × 15 grid and of 0.89 on the 20 × 20 grid

(see Fig. 6.12b).

On the 15 × 15 grid, the best evolved individuals let agents

self-assemble into mostly horizontal lines and into mostly

vertical lines in 28 % of the cases each (see Fig. 6.11). The

remaining 44 % of runs result inmaze-like line structures. On

the 20× 20 grid, agents self-assemble in 22 % of the runs into

mostly horizontal lines and in 22 % of the runs into mostly

vertical lines. In the remaining 56 % of the runs, agents form

maze-like line structures. Thus, the ANN pairs evolved on

the square torus grids lead to the formation of a variety of

line structures.

25 × 8 Grid We find a median best fitness �MS-LN (Eq. 6.4;

see Fig. 6.12a) of 0.82 in the last generation and a median

solution quality & (Eq. 4.11; see Fig. 6.12b) of 0.64 on the

25 × 8 grid.

The best evolved individuals let agents self-assemble into

mostly vertical lines in 32 % and into mostly horizontal lines

in 16 % of the cases, see Figs. 6.13a and 6.13b. The remaining

52 % of runs result in maze-like line structures, see Fig. 6.13c.

Compared to the 15 × 15 grid, which has a similar swarm

density, we observe an increase in the formation of vertical

lines and a decrease in the formation of horizontal lines

on the 25 × 8 grid. The overall formation of horizontal and

vertical lines decreases slightly from 56 % to 48 %. Thus, we

find only a small effect of the rectangular grid size on the

formation of horizontal and vertical lines overall, but it leads

to an increase in the formation of vertical lines.

11 × 18 grid We find a median best fitness �MS-LN (Eq. 6.4;

see Fig. 6.12a) of 0.81 in the last generation and a median
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(a)mostly horizontal lines (b)mostly vertical lines

(c) maze-like line structures

Figure 6.13: Resulting behaviors in the self-assembly scenario on the 25× 8 grid using minimize surprise with predefined predictions for

lines. Agents are represented by circles, their color and the lines indicate their headings.

(a) mostly horizontal lines (b)mostly vertical lines (c)maze-like line structures

Figure 6.14: Resulting behaviors in the

self-assembly scenario on the 11×18 grid

with predefined predictions for lines.

Agents are represented by circles, their

color and the lines indicate their head-

ings.

solution quality & (Eq. 4.11; see Fig. 6.12b) of 0.69 on the

11 × 18 grid.

The best evolved individuals let agents self-assemble into

mostly horizontal lines in 42 % and into mostly vertical lines

in 4 % of the runs, see Figs. 6.14a and 6.14b. The remaining

54 % of runs result in maze-like line structures, see Fig. 6.14c.

Consequently, we have successfully biased evolution towards

horizontal lines, since they emerge frequently here.

Grid-Spanning Lines Wefind that the geometry of the environ-

ment influences the number of runs in which lines spanning

the whole grid length are formed. On the 15 × 15 grid, we

find grid-spanning lines in 20 % of the runs in which lines

form with the standard minimize surprise approach, in 67 %

when partially predefining predictions, and in 68 % when

predefining all predictions. By contrast, we do not observe

any grid-spanning lines on the 20 × 20 grid for all three min-

imize surprise variants. There are two potential reasons that

are also related: (i) the swarm density is too low or (ii) the

side length of the grid is too large to allow the formation

of grid-spanning lines even when predefining emergence
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grid size total vertical horizontal

15 × 15 68 28 40

20 × 20 0 - -

25 × 8 94 90 4

11 × 18 88 12 76

Table 6.1: Total percentage of grid-

spanning lines and percentage of ver-

tically and horizontally grid-spanning

lines using minimize surprise with pre-

defined predictions for lines in our self-

assembly scenario.

5: Please note that this re-evaluation of

the genomes with new random starting

poses led to the classification of 0.7 % (7

out of 1000 runs) as random dispersion

on the 15 × 15 grid and to pairs in 0.1 %

(1 out of 1000 runs) on both the 25 × 8

grid and the 11 × 18 grid.

to lines. The runs on the rectangular grids provide more

insight.

While the 15 × 15, 25 × 8, and 11 × 18 grids have comparable

swarm densities (i.e., 0.44 to 0.51), we find more runs in

which grid-spanning lines are formed for the rectangular

grids, see Tab. 6.1. On the 25 × 8 grid, 94 % of the runs lead

to grid-spanning lines and 88 % of the runs on the 11 × 18

grid. We find both horizontally and vertically grid-spanning

lines on the 25 × 8 grid and thus large grid side lengths

do not generally prevent the formation of grid-spanning

lines. However, the majority of the runs leads to vertically

and only few runs to horizontally grid-spanning lines. As

the vertical side length is much smaller, grid-spanning lines

may be formed more easily along this shorter side. On the

11 × 18 grid, the majority of runs leads to horizontally grid-

spanning lineswhile few runs lead tovertically grid-spanning

lines. Here, the formation of vertical lines does not allow for

maximum fitness and thus horizontal lines prevail in general.

Overall, we conclude that grid-spanning lines form easier

along shorter sides of the grid but also swarm density and

the geometry of the environment influence their formation.

Influence of the Initial Agent Poses on Structure Orientation Last,

we analyze the influence of the agents’ initial poses on the

orientation of the formed line structures. We re-evaluate

the best evolved individuals using minimize surprise with

predefined predictions for lines on the two square grids 15×
15 and 20×20, and the two rectangular grids 25×8 and 11×18.

We use new random starting poses in 20 independent runs

per best evolved individual, that is a total of 1,000 runs per

grid size.
5
AnANNpair is considered to formmostly vertical,

mostly horizontal or mostly maze-like lines, respectively, if

more than half of these 20 evaluations with new random

initial poses lead to the formation of such line structures.

Otherwise, the ANN pair is classified as forming diverse line

structures.

Both on the 15 × 15 grid and on the 20 × 20 grid, we observe

a decrease in the quantity of ANN pairs that lead to the

formation of lines in a certain orientation, that is, vertical,

horizontal ormaze-like. Diverse line structures are formed by

70 % of the best evolved individuals on the 15 × 15 grid and

by 60 % on the 20 × 20 grid, see Tab. 6.2. Thus, the behaviors

evolved on the square torus grids do not lead to the formation

of specifically oriented line structures, but the initial agent

poses influence the formation of the final structure.
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Table 6.2: Percentage of mostly horizontal, mostly vertical and mostly maze-like line structures when predefining all sensor predictions

for lines. Values of the 50 initial runs (one random starting position) and of the re-evaluations (20 random starting positions/initial run,

1,000 runs in total) per grid size are given.

grid size vertical horizontal maze-like diverse

15 × 15 initial run 28 28 44

re-evaluations 2 14 14 70

20 × 20 initial run 22 22 56

re-evaluations 2 2 36 60

25 × 8 initial run 32 16 52

re-evaluations 38 6 30 26

11 × 18 initial run 4 42 52

re-evaluations 0 52 36 12

By contrast, the amount ofANNpairs formingmostly vertical

andmostly horizontal lines stays similar to the initial runs for

the 25×8 and the 11×18 grids. In line with our previous find-

ings, the best evolved individuals have a tendency towards

vertical lines in the initial run and in the re-evaluations on the

25 × 8 grid. In this setting, maximum fitness can be reached

only when agents assemble into grid-spanning horizontal or

vertical lines. The tendency towards vertical lines probably

arises because their formation of is easier; they are much

shorter than grid-spanning horizontal lines. The initial agent

poses have thus only a small impact on the resulting line

structures in this case. On the 11 × 18 grid, the percentage of

horizontal lines even increases by 10 pp in the re-evaluations.

In this setting, maximum fitness can be reached only when

agents assemble into grid-spanning horizontal lines. Thus,

as expected, the majority of best evolved individuals leads to

the formation of horizontal lines independent of the initial

agent pose. Overall, we find that although the initial agent

poses influence the orientation of the final line structure, the

geometry of the environment has a stronger influence.

6.3 Discussion and Conclusion

Minimize surprise enables us to engineer self-organization

by (partially) predefining predictions. We have shown that

there is a gradient from running our minimize surprise ap-

proach with complete freedom (i.e., no sensor predictions

are predefined; see Ch. 4) to simplifying it to a special kind of

evolutionary algorithm with a task-specific fitness function

(i.e., all sensor predictions are predefined). In the latter case,

all outputs of the predictor are fixed, whichmakes the respec-

tive ANN obsolete. Fitness is then directly defined via the

desired sensor pattern and the predefined predictions serve

as a local template for the behavior. As shown in Fig. 6.4c,

the standard minimize surprise approach has the freedom

to evolve a diversity of behaviors. By partially predefining

some sensor predictions, we can limit the variety of emergent
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behaviors to a subset. Predefining all sensor predictions can

be seen as a special way of defining a task-specific fitness

function that leads to the evolution of a desired behavior

without requiring global information. Additionally, chang-

ing the environment, such as its geometry, enables us to

bias the evolutionary process even more. In total, we can

trigger the emergence of desired behaviors by engineering

self-organization.



Evolution of Dynamic Behaviors
in Complex Environments 7

Chapter Contents

In this chapter, we study the evolution of dynamic be-

haviors in complex environments with minimize surprise.

We...

I Sec. 7.1: introduce the experimental setup and

I Sec. 7.2: evaluation metrics,

I Sec. 7.3: present our results, and

I Sec. 7.4: draw a conclusion.

In all previous studies using our standard minimize sur-

prise approach (see Ch. 3), we found repetitive behaviors

that are easy to predict due to constant sensor input. Con-

sequently, the resulting behaviors are limited in behavioral

plasticity, which is the ability of agents to react to variations

in their sensor input with different behaviors that are suit-

able for the given context [364]. In this chapter, we aim to

push evolution towards more dynamic behaviors (research

question Q4, Sec. 1.2) by modifying environment, agent ca-

pabilities, and fitness function. We draw inspiration from

studies focusing on adaptation to environmental influences

and survivability. In robot ecology, Egerstedt et al. [26] fo-

cus on the survivability of agents to enable long duration

autonomy. We adopt their idea of introducing ecological

constraints by limiting the agent’s battery making recharging

necessary, which corresponds to an animal’s need to find

nutrition to survive. Similar to Miras et al. [365], we investi-

gate the effect of environmental conditions by testing both

a static environment (except for the behavior of the swarm

itself) and an environment that is dynamic independent from

agent behavior. In addition, we divide our environment into

two different zones introducing spatial variability. Last, we

extend our fitness function with additional task-specific and

task-independent rewards to push evolution towards more

dynamic behaviors.

7.1 Experimental Setup

In this section, we introduce the simulation environment and

the adaptation of our minimize surprise approach for our

scenario aiming for dynamic behaviors in complex environ-

ments.
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risk zonesafe zone

Figure 7.1: Experimental arena in our

scenario evolving dynamic behaviors

in complex environments. Gray squares

mark immovable blocks and the yellow

circle is the light source. Orange circles

represent agents, black lines in the cir-

cle give their heading, and black lines

around the agents give orientation and

sensor range of their proximity sensors.

The red line marks the division of the

arena into the safe zone and the risk zone.

1: https://gitlab.iti.uni-luebeck.

de/minimize-surprise/

dynamic-behaviors

2: https://arcade.academy/

7.1.1 Simulation Environment

First, we present our experimental arena, the agent model,

and the tested environment and agent modifications.

Arena

We use a 2D continuous simulation environment
1
that is

implemented using the Python Arcade
2
library. Arcade is a

framework for creating 2D video games providing an inbuilt

physics system and graphics. Thus, we make a first step

towards more realistic simulation environments here.

The experimental arena has a size of 1540 px × 805 px and

is bounded by walls built of blocks, see Fig. 7.1. The arena

is divided into two zones: a safe zone and a risk zone. The

safe zone is mostly empty, but blocks along the walls are

placed in unique patterns per compass direction. The risk

zone contains 34 randomly placed blocks of size 35 px×35 px

that serve as obstacles. A light source of radius 120 px is

placed between these obstacles. Light intensity Idecreases

with distance to the light source as given by

I=
(!G − 3!()2

!G
2

, (7.1)

where 3!( is the distance to the light source along the x-axis

and !G is the arenawidth.Wenormalize light intensityIto be

between 0 and 1, resulting in maximum light intensity I= 1

in the center of the light source and a light intensity of

approximately zero at the western arena boundary. The light

source serves as a charging station for the agents’ batteries.

https://gitlab.iti.uni-luebeck.de/minimize-surprise/dynamic-behaviors
https://gitlab.iti.uni-luebeck.de/minimize-surprise/dynamic-behaviors
https://gitlab.iti.uni-luebeck.de/minimize-surprise/dynamic-behaviors
https://arcade.academy/
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1.0

0.75

0.5

0.25

0

Figure 7.2: Agent model in our scenario

aiming for dynamic behaviors in com-

plex environments. The orange circle rep-

resents the agent, the black line gives its

heading. Black lines with red stripes rep-

resent the agent’s five proximity sensors

and the gradations of the sensor values

are given by the red stripes and the num-

bers.

3: �# = #×R2×�
!G×!H =

5×(20 px)2×�
1540 px × 805 px

≈
0.00506 with swarm size # , agent ra-

dius R, arena width !G , and arena

length !H .

Agents

We use circular agents with a radius R of 20 px, see Fig. 7.2.

Agents have a battery that lasts for )battery = 2,000 time

steps, that is, the battery is initially fully charged to a value

of b(0) = 1 and discharges by 0.0005 per time step. When

agents have contact with the light source, their batteries

are recharged by 0.01 per time step (i.e., charging is 20×
faster than discharging). If an agent’s battery is completely

discharged, the agent is stopped on its current position.

Agents have a differential drive with a maximum linear

speed Emax of 4 px per time step and a maximum angular

velocity wmax of ±3
◦
per time step. We restrict agents to

forward movement and rotation here to simplify the setting

(e.g., reducing the number of required sensors).

Each agent has 'sen = 8 sensors: five proximity sensors

B0, . . . , B4, one light intensity sensor B5, one compass B6,

and one sensor B7 detecting battery level b. Thus, we use

exteroceptive and proprioceptive sensors in this setup. All

sensor values BA are in range [0, 1]. The proximity sensors

are distributed equidistantly on the front half of the agent’s

circumference with the outermost sensors being along the

wheel axis. Agents have no proximity sensors at their back,

since linear movement is restricted to the forward direction.

Each proximity sensor has a range of 105 px and outputs

one of five discrete values in {0.0, 0.25, 0.5, 0.75, 1.0}. These
discrete values are inversely proportional to the distance to

the detected obstacles, as visualized in Fig. 7.2. We include a

simple hardware protection layer to avoid collisions between

agents. If an agent’s forward movement with its current

speed E would result in a collision with an obstacle or agent,

it performs a rotation on the spot with its current angular

velocity w.

In all experiments,weuse a swarmsize# of 5 agents resulting

in a swarm density �# of approximately 0.01.
3

Modifications

We test the effect of three different agent and environment

modifications, and combinations thereof, on the emergent

behaviors in our experiments: energy sharing (ES), risk of

sudden discharge (RoSD), and changing environment (CE).

Energy Sharing (ES) Energy sharing enables agents to equally

share their battery levels when in contact. Consequently,

battery level b=(C) of agent = at time step C is updated to
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(a) layout for C ∈ [0, 1

5
))

(b) layout for C ∈ [ 1
5
), 2

5
))

(c) layout for C ∈ [ 2
5
), 3

5
))

(d) layout for C ∈ [ 3
5
), 4

5
))

(e) layout for C ∈ [ 4
5
), ))

Figure 7.3: Arena layouts over an eval-

uation of ) time steps in the changing

environment (CE) setup in our scenario

aiming for dynamic behaviors in com-

plex environments. Layout (a) is also the

layout used over the full evaluation in

experiments with a static environment.

4: We investigate potentially dynamic

environments in which agents move pas-

sive objects in Chs. 9 and 11.

b=(C) =
1

|Scontact

= (C)| + 1

(b=(C) +
∑

8∈Scontact

= (C)
b8(C)) , (7.2)

withScontact

= (C) being the set of agents that agent = is currently

in contact with. Energy sharing has two benefits: (i) agents

with completely discharged batteries can be recharged, and

(ii) not all agents need to move through the risk zone to keep

the batteries of the entire swarm charged.

Risk of Sudden Discharge (RoSD) We increase the hazard in the

risk zone by introducing a probability that the battery of an

agent that is currently in the risk zone suddenly discharges

completely, rendering the agent useless. Consequently, it is

advantageous to stay in the risk zone only as short as needed

to recharge. When risk of sudden discharge is applied in a

setting, batteries of agents located in the risk zone discharge

completely with a probability ?RoSD of 0.0013 per time step.

If an agent stays for the full evaluation length in the risk

zone, the total probability of sudden battery discharge is 0.4.
We use this rather low total probability of sudden battery

discharge in ourfirst experiments, sinceweaim to increase the

pressure to leave the risk zone quickly without complicating

the evolution of collective behaviors too severely. Using

higher probabilities could make it hard to find behaviors

that allow swarms to survive over the full evaluation in the

evolutionary process.

Changing Environment (CE) In our standard setup, the envi-

ronment is static (i.e., fixed arena layout). By automatically

changing the layout of the risk zone several times during an

evaluation, we create an environment that is dynamic inde-

pendent of the swarm behavior.
4
We change the positions of

obstacles and the light source in equal time intervals, that is,

every
1

5
th of the total evaluation length ), see Fig. 7.3. This

increases the difficulty of predicting the risk zone further.

7.1.2 Minimize Surprise

Following our minimize surprise approach (see Ch. 3), we

equip each agent with an actor-predictor ANN pair. Actor

and predictor are both three-layer ANNs with an input, one

hidden and an output layer.

In this scenario, the actor has ten input, seven hidden, and

two output neurons, see Fig. 7.4a. It receives an agent’s

'sen = 8 current sensor values and its action values 00(C − 1)
and 01(C − 1) of the previous time step C − 1 as input and

outputs two action values 00(C) ∈ [0, 1] and 01(C) ∈ [−1, 1].
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...
...

B0(C)

B7(C)

00(C − 1)

01(C − 1)

00(C)

01(C)

(a) actor

...
...

...

B0(C)

B7(C)

00(C)

01(C)

B̃0(C + 1)

B̃5(C + 1)

(b) predictor

Figure 7.4: Actor-predictor ANN pair in

the scenario aiming for dynamic behav-

iors in complex environments. 00(C − 1)
and 01(C−1) are the agent’s last, and 00(C)
and 01(C) are its next action values deter-

mining linear speed E and angular ve-

locity w, respectively. B0(C), . . . , B7(C) are
the agent’s eight sensor values at time

step C. The predictor outputs predic-

tions B̃0(C+1), . . . , B̃4(C+1) for an agent’s

five proximity sensors and B̃5(C + 1) for
its light sensor for time step C + 1. Com-

pass B6 and battery level B7 are trivial to

predict and thus excluded here.

Action value 00(C) gives the linear speed E and 01(C) the
angular velocity w. The action values are multiplied by the

maximum possible linear speed Emax and angular veloc-

ity wmax, respectively.

The predictor has ten input, eight hidden, and six output

neurons, see Fig. 7.4b. It receives an agent’s 'sen = 8 current

sensor values and its next action values 00(C) and 01(C) as
input and outputs predictions for the agent’s five proximity

sensor values B̃0(C + 1), . . . , B̃4(C + 1) and its light sensor

value B̃5(C + 1) of the next time step C + 1. The battery level b=
detected by sensor B7 linearly decreases or, when charging,

increases over time and the compass value B6 linearly changes

with the rotation of the agent. Thus, both sensors are trivial

to predict and excluded here, since they do not provide an

incentive for more interesting behaviors.

Charged agents propagate inputs through actor and pre-

dictor every time step. By contrast, agents with completely

discharged batteries are stopped and do not predict their

sensor values, which in turn prevents an increase in fitness.

In our experiments, we use two extended minimize sur-

prise fitness functions to push evolution towards dynamic

behaviors. Based on the first works in 2D environments

by Borkowski and Hamann [37], we do not expect that us-

ing our standard minimize surprise fitness function would

lead to more dynamic behaviors than the previously found

repetitive basic swarm behaviors in our scenario here. Next

to rewarding prediction accuracy (see Ch. 3), fitness func-

tion �MSC has an additional task-independent reward for

curiosity, while fitness function �MSH additionally includes a

task-specific reward for homing.

Fitness function �MSC rewards curiosity in addition to predic-

tion accuracy and thus is fully task-independent. Curiosity is

the desire to know or learn [366], motivating humans [367]

and robots [316, 368] to seek out for novel stimuli. Here, we

push agents to seek new sensory experiences by reducing fit-

ness when sensor values are constant for more than 150 time

steps. We limit the maximum achievable fitness per time step

to 1 − �, with penalty factor � ∈ [0, 1] linearly increasing

between 150 and 350 time steps with constant sensor values

(i.e., an increase of 0.005 per time step). The penalty factor

is reset to zero as soon as at least one sensor value differs

from its value in the previous time step. We define fitness

function �MSC as

�MSC =
1

)#

)−1∑
C=0

#−1∑
==0

5=(C) , (7.3)

with evaluation length ) in time steps, swarm size # , and

fitness of agent = in time step C
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5=(C) = min

(
1 − �=(C),

1

'pred

'pred−1∑
A=0

(1 − | B̃=A (C) − B=A (C)|)
)
,

(7.4)

with penalty factor �=(C) ∈ [0, 1] for agent = at time step C,
and prediction B̃=A (C) for and actual value B=A (C) of sensor A of
agent = in time step C for each of the five predicted sensors

(see Fig. 7.4b).

Fitness function �MSH combines our task-independent re-

ward for prediction accuracy with a task-dependent reward

for homing. Thus, we increase the evolutionary pressure

that agents reach the light source for recharging their bat-

teries, which can be seen as a survival instinct. We define

fitness �MSH as

�MSH =
1

)#

)−1∑
C=0

#−1∑
==0

(
b=(C)

prediction accuracy︷                                           ︸︸                                           ︷(
1

'pred − 1

'pred−1∑
A=0

(1 − | B̃=A (C) − B=A (C)|)
)
+(1 − b=(C)) B=

5
(C)︸︷︷︸

homing

)
,

(7.5)

with evaluation length ) in time steps, swarm size # , battery

level b=(C) of agent = in time step C, light intensity sensor

value B=
5
(C), and prediction B̃=A (C) for and actual value B=A (C)

of sensor A of agent = in time step C for each of the five

predicted sensors. Thus, fitness function �MSH is a weighted

sum of prediction accuracy and detected light intensity as

a measure of the agent’s distance to the light source where

the weighting depends on the battery level. Proximity to the

light source is rewarded the higher, the lower the battery

level.

As in our previous experiments, we use a simple evolutionary

algorithm (see Sec. 2.3.2) to evolve the actor-predictor ANN

pairs using the two defined fitness functions �MSC (Eq. 7.3)

and �MSH (Eq. 7.5). We run the evolutionary algorithm for

6max = 150 generations (i.e., termination criterion) and eval-

uate each genome in one independent simulation run for

) = 3,000 time steps each. The potential overall fitness of

a genome decreases with the number of completely dis-

charged agents, since discharged agents do not output sensor

predictions. An evaluation is terminated early if all agents

are completely discharged before all 3,000 time steps have

passed. Genomes encode the synaptic weights of both neural

networks (see Sec. 3.2) and we randomly generate the initial

population P(0) by drawing the weights from a uniform

distribution in [−1, 1]. We place agents with a uniformly

random heading uniformly random in the safe zone at the
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fitness function RoSD ES CE

�MSH - - -

�MSC

- - -

x - -

- x -

x x -

- x x

Table 7.1: Tested settings in our scenario

aiming for dynamic behaviors in com-

plex environments with agent and en-

vironment modifications (see Sec. 7.1.1)

risk of sudden death (RoSD), energy shar-

ing (ES), and changing environment (CE),
and fitness functions �MSH (Eq. 7.5) re-

warding prediction accuracy and hom-

ing and �MSC (Eq. 7.3) rewarding predic-

tion accuracy and curiosity.

parameter value

arena size !G × !H 1540 px × 805 px

swarm size # 5

# of sensors 'sen 8

# of predictor outputs 'pred 5

sensor values BA {0, 1}
action value 00 [0, 1]
action value 01 [−1, 1]
max. linear speed Emax 4

px

C

max. angular velocity wmax ±3
◦ 1

C

population size � 50

number of generations 6max 150

evaluation length ) (time steps) 3,000

# of simulation runs per fitness evaluation 1

elitism 1

mutation rate ?mut 0.4

Table 7.2: Parameters for our scenario

aiming for dynamic behaviors in com-

plex environments.

beginning of each evaluation. Thus, agents cannot be initially

placed on the light source, which would bring advantages for

survival, since the battery does not last for the full evaluation

length. For the evolutionary algorithm, we use a population

size � of 50, proportionate parent selection, age-based sur-

vivor selection, and elitism of one. We generate � = � − 1

offspring for the population of the next generation. We apply

mutation only, that is, we do not use recombination. Each

value v of a genome is mutated with a probability ?mut of 0.4
by adding a uniformly random number from [−0.4, 0.4]. We

test six different settings by differently combining our two fit-

ness functions and the environment and agent modifications

explained above as specified in Tab. 7.1. For each setting, we

do ten independent evolutionary runs. Tab. 7.2 summarizes

all parameters.

7.2 Evaluation Metrics

As before, we analyze the overall success of our evolutionary

runs based on fitness (Eqs. 7.3 and 7.5). Since we aim for

dynamic behaviors, we analyze the best evolved individ-

uals and categorize the resulting behaviors also based on

(i) time)
risk

# agents spent in the risk zone, (ii) time)
enter

# until
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agents first enter the risk zone, and (iii) time )
empty

# agents

have empty batteries.

We define mean time )
risk

# agents spent in the risk zone as

)
risk

# =
1

#

#−1∑
==0

Crisk= , (7.6)

with swarm size # and time steps Crisk= agent = has spent in

the risk zone.

Time )
enter

# is the mean time until agents first enter the risk

zone by crossing the zone border visualized in Fig. 7.1.

We define )
empty

# as the mean time swarm members have

empty batteries, as given by

)
empty

# =
1

#

)∑
C=)battery

#∑
==0

c=(C) , (7.7)

with swarm size # , evaluation length ), maximum battery

life )battery, and count of charged agents

c=(C) =
{

1, if b=(C) = 0.0

0, otherwise

, (7.8)

where b=(C) is the battery level of agent = at time step C. In our

experiments, we evaluate each genome for ) = 3,000 time

steps, but a fully charged battery only lasts for )battery =

2,000 time steps. Thus, we measure mean time )
empty

# agents

have empty batteries over the last 1,000 time steps of an

evaluation. A value of 1,000 indicates that all agents have

empty batteries and were not able to recharge, while a value

of 0 indicates that all agents were able to recharge their

batteries.

We use all three metrics for an overall comparison of the

best evolved individuals of the different setups (see Tab. 7.1).

Furthermore, we categorize the resulting behaviors based

on time )
risk

# agents spent in the risk zone, and time )
enter

#
until agents first enter the risk zone. As explained before,

agents need to recharge their batteries to survive for the

full evaluation. The point of time at which agents first enter

the risk zone can thus serve as an indicator for the swarm

behavior because a single recharge is only potentially suffi-

cient if agents recharge at the earliest after 1,000 time steps.

In this case, agents may enter risk zone already a few time

steps earlier, since the light source serving as the charging

station is located at the end of the risk zone. Consequently,
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(a) MSH (b) MSC

Figure 7.5: Best fitness in the last gen-

eration rewarding prediction accuracy

and homing (MSH; �MSH, Eq. 7.5) and

prediction accuracy and curiosity (MSC;
�MSC, Eq. 7.3) with environment and

agent modifications risk of sudden dis-

charge (RoSD), energy sharing (ES), and
changing environment (CE) for ten inde-

pendent evolutionary runs per setting in

our scenario aiming for dynamic behav-

iors in complex environments. Medians

are indicated by the red bars.

5: We do not test for statistically signifi-

cant differences between settings using

different fitness functions, since the re-

sults would have only limited informa-

tive value.

we differentiate four different behavior categories (see also

Fig. 7.7). The first category are swarms entering the risk

zone quickly ()
enter

# < 750) and staying there for the rest

of the run (i.e., ) − )enter

# ≈ )risk

# ). The second category are

swarms that enter the risk zone quickly ()
enter

# < 750), but

leave it again (i.e., ) − )enter

# � )
risk

# ). Agents potentially

enter the risk zone several times, since the first recharge may

not be sufficient to survive for the full evaluation length.

The third category are swarms that enter the risk zone late

enough ()
enter

# > 750) that one battery recharge is sufficient

to survive for the remainder of the evaluation. The fourth

category are swarms that do not enter the risk zone at all

(i.e., )
enter

# > 2,000). Agents are not able to recharge their bat-

teries and the run terminates before the maximum possible

evaluation length ) of 3,000 time steps. The second and third

categories, in particular, have the potential for interesting,

dynamic behaviors.

7.3 Results

Wefirst compare the best evolved individuals of our six tested

settings on an overall level, followed by a more detailed

analysis of the resulting behaviors.

7.3.1 Overall Comparison of the Different Settings

First, we analyze the best fitness in the last generation of the

six different settings specified in Tab. 7.1. We find a median

best fitness of 0.77 in the setting using fitness function �MSH

(Eq. 7.5) rewarding prediction accuracy and homing, see

Fig. 7.5a. In the five settings using fitness function �MSC

(Eq. 7.3) rewarding prediction accuracy and curiosity, we

find median best fitnesses between 0.69 (setting with risk

of sudden discharge (RoSD)) and 0.82 (setting with energy

sharing (ES) and changing environment (CE)), see Fig. 7.5b.
These five settings

5
lead to statistically significant differ-
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(a) time )
risk

# agents spent in the risk zone (b) time )
enter

# until agents first enter the risk zone

(c) time )
empty

# agents have empty batteries

Figure 7.6: Time )
risk

# agents spent in the risk zone (Eq. 7.6), time )
enter

# until agents first enter the risk zone (only runs with at least one

agent entering the risk zone are included), and time )
empty

# agents have empty batteries (Eq. 7.7) rewarding prediction accuracy and

homing (MSH; Eq. 7.5) and prediction accuray and curiosity (MSC; Eq. 7.3) with environment and agent modifications risk of sudden

discharge (RoSD), energy sharing (ES), and changing environment (CE) for ten independent evolutionary runs per setting in our scenario

aiming for dynamic behaviors in complex environments. Medians are indicated by the red bars.

ences in fitness (KW, ? < 0.001), indicating an influence of

our agent and environment modifications on fitness. The

setting with risk of sudden discharge (RoSD) leads to statisti-

cally significantly worse fitness than the setting without any

modifications and the setting with energy sharing (ES) and
changing environment (CE) (MW-U with BC, ? < 0.01).

Next, we compare time )
risk

# agents spent in the risk zone

(Eq. 7.6), time )
enter

# until agents first enter the risk zone,

and time )
empty

# agents have empty batteries (Eq. 7.7), see

Fig. 7.6. We find statistically significant differences in the

time )
risk

# spent in the risk zone for the six different settings

(KW, ? < 0.001). In the setting using fitness function �MSH,

agents spent a median of 2,754 time steps in the risk zone,

that is, they are in the risk zone for nearly the complete

run. In the setting using fitness function �MSC, agents spent

median times between 1,402 time steps (RoSD) and 2,550 time

steps (RoSD + ES) in the risk zone. Except for the setting using

fitness function �MSC with modifications risk of sudden

death (RoSD) and energy sharing (ES), all settings using fitness
function �MSC lead to significantly lower times spent in the

risk zone than the setting using fitness function �MSH (MW-U

with BC, ? < 0.05). Agents enter the risk zone after a median

time )
enter

# between 245 time steps (�MSH) and 438 time steps
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6: settingwith fitness function �MSH; set-

tings with fitness function �MSC with no

modifications, with energy sharing (ES),

and with energy sharing (ES) and chang-

ing environment (CE)

7: setting with fitness function �MSC

with risk of sudden discharge (RoSD)

(�MSC + ES).We do not find statistically significant differences

here (KW, ? < 0.05), since agents enter the risk zone in all

settings quickly. We measure time )
empty

# of agents having

empty batteries.Wefindmedian values ranging from0.0 time

steps
6
to 252.2 time steps.

7
The differences in time )

empty

#
agents have empty batteries are statistically significant (KW,

? < 0.05). The setting using fitness function �MSC with

energy sharing (ES) and changing environment (CE) leads
to significantly lower values than the setting using fitness

function �MSC with risk of sudden discharge RoSD (MW-U

with BC, ? < 0.05). This is expected, since the risk of sudden

discharge modification can lead to immediate discharges

of agent batteries, which in turn increases the time )
empty

#
agents have empty batteries.

In total, evolution successfully optimizes the actor-predictor

pairs in all six settings. The best evolved individuals lead to

behaviors that enter the risk zone quickly and stay there for

most of the run. Consequently, agents are close to the light

source to recharge their batteries and succeed in surviving for

the full evaluation in most runs. However, the scenario using

fitness function �MSC and environment modification risk of

sudden discharge (RoSD) leads to several runs where agents

donot enter the risk zone at all, leading to an early termination

of these runs. Consequently, the RoSD setting is probably

harder than the other settings. Since all settings lead to long

times spent in the risk zone, we do not find a significant bias

towards dynamic behaviors that let agents switch between

the zones based on battery level. Nevertheless, there may be

some best individuals leading to dynamic behaviors. Thus,

we investigate the resulting behaviors in more detail in the

next step.

7.3.2 Emergent Behaviors

Fig. 7.7 visualizes the categorization of the best evolved

individuals based on time )
enter

# until agents first enter the

risk zone and time )
risk

# agents spent in the risk zone (see

Sec. 7.2).

Homing The majority of the best evolved individuals of all

settings leads to homing behaviors, that is, agents enter the

risk zone quickly (i.e., )
enter

# < 750) and stay for the rest

of the run in the risk zone (i.e., ) − )enter

# ≈ )risk

# ) moving

more or less closely around the light source. For the setting

using fitness function �MSH (Eq. 7.5), all runs lead to homing

behaviors, which is probably due to the included reward for

reaching the light source. Fig. 7.8a visualizes one homing

behavior as representative example. Although the risk zone
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Figure 7.7: Categorization of the best evolved individuals based on time )
enter

# until agents first enter the risk zone and time )
risk

# agents

spent in the risk zone in our scenario aiming for dynamic behaviors in complex environments. The diagonal indicates the remaining

runtime (i.e., ) − )enter

# ) and thus the maximum time agents can still spent in the risk zone. The dashed line marks the time at which

the initial battery charge is depleted, that is, after 2,000 time steps. We include the data for ten best evolved individuals per setting

with MSH and MSC indicating that, respectively, prediction accuracy and homing (Eq. 7.5) and prediction accuracy and curiosity (Eq. 7.3)

are rewarded, as well as environment and agent modifications risk of sudden discharge (RoSD), energy sharing (ES), and changing

environment (CE).

includes several obstacles, which complicate the prediction

task, the proximity sensor values are still low enough to allow

for high prediction accuracy when constantly predicting low

sensor values. Light intensity is high in the risk zone as

correctly predicted by the predictor ANN (see Fig. 7.9a).

Random Walk and Wall Following Several best evolved indi-

viduals in all settings using fitness function �MSC result in

behaviors where agents enter the risk zone quickly (i.e.,

)
enter

# < 750) but leave it again (i.e., ) − )enter

# � )
risk

# ). By

qualitative analysis, we find wall following and randomwalk

behaviors causing agents to enter and leave the risk zone

several times in this category. Swarms probably exploit the

hardware protection to prevent collisions with obstacles here.

Fig. 7.8b visualizes a wall following behavior allowing trivial

predictions for the proximity sensors. Although light inten-

sity changes linearly with distance to the light source, the

predictor does not predict it well, see Fig. 7.9b. However,

agents can recharge their batteries when passing over the

light source, which guarantees survival for the full evaluation

length ).

Dynamic Behaviors A few best evolved individuals of settings

using fitness function �MSC with agent and environment

modifications lead to potentially dynamic behaviors, that is,

agents enter the risk zone late enough (i.e., )
enter

# > 750) that

one recharge can be sufficient to survive for the rest of the eval-

uation. Here, we find that agents switch the location where

they exhibit a random walk (Fig. 7.8c) or circling behavior

(Fig. 7.8d) based on battery level. As before, the predictions

for the proximity sensors are trivial for these behaviors. But

light intensity changes with the switch between safe zone
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(a) homing (�MSH)

(b)wall following (�MSC with RoSD and ES)

(c) dynamic behavior: random walk (�MSC with RoSD and ES)

(d) dynamic behavior: circling (�MSC with ES)

(e) fail: circling without recharging (�MSC with RoSD)

Figure 7.8: Sample agent trajectories and mean sensor values and predictions for the agents’ five proximity sensors B0 , . . . , B4 and light

sensor B5 over the full evaluation length ) = 3,000 time steps of the respective best evolved individual in our scenario aiming for dynamic

behaviors in complex environments. The trajectories of the five agents in the swarm are represented by different colors. Settings are

specified in parenthesis with fitness function �MSH (Eq. 7.5) rewarding prediction accuracy and homing, fitness function �MSC (Eq. 7.3)

rewarding prediction accuracy and curiosity, risk of sudden discharge (RoSD), and energy sharing (ES).
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(a) homing (�MSH; see Fig. 7.8a) (b)wall following (�MSC with RoSD and ES; see Fig. 7.8b)

(c) dynamic behavior: random walk (�MSC with RoSD and ES;
see Fig. 7.8c)

(d) dynamic behavior: circling (�MSC with ES; see Fig. 7.8d)

Figure 7.9: Predictions for and real values of light sensor B5 of one representative swarm member per behavior over evaluation length

) = 3,000 time steps in our scenario aiming for dynamic behaviors in complex environments. Settings are specified in parenthesis with

fitness function �MSH (Eq. 7.5) rewarding prediction accuracy, fitness function �MSC (Eq. 7.3) rewarding homing and prediction accuracy,

risk of sudden discharge (RoSD), and energy sharing (ES).

and risk zone. The predictors for the dynamic circling behav-

iors are able to adjust their light sensor predictions with the

distance to the light source (see Fig. 7.9d), but the predictors

for the dynamic random walk behaviors fail to do so (see

Fig. 7.9c). The best evolved individual of the setting with risk

of sudden discharge (RoSD) that is categorized as a dynamic

behavior leads to a very short time )
risk

# agents spent in the

risk zone and a long time )
enter

# until agents enter the risk

zone. However, this is caused by several agents not entering

the risk zone at all or failing to recharge, indicating a poor

performance of this behavior.

Fail We find five runs that lead to behaviors failing to

recharge agent batteries (i.e., )
enter

# > 2,000) in total, all for

settings using fitness function �MSC. The setting with energy

sharing (ES) leads to one failed run, while the setting with

risk of sudden discharge (RoSD) leads to four failed runs. In

most cases, agents drive in circles in the safe zone until they

run out of battery as visualized in Fig. 7.8e. This behavior

allows for easily predictable, low sensor values but prevents

that the swarm survives.



7 Evolution of Dynamic Behaviors in Complex Environments 121

7.4 Discussion and Conclusion

Our experiments aiming for dynamic behaviors in com-

plex environments lead to mixed results. Our fitness func-

tion �MSH combines our task-independent reward for pre-

diction accuracy with a task-specific reward for homing,

resulting in homing behaviors only. By contrast, fitness func-

tion �MSC combines the reward for prediction accuracy with

a task-independent reward for curiosity. We find a variety of

repetitive behaviors, including homing, wall following, and

random walk. But in the settings including environment and

agentmodifications, we also find a small set of more dynamic

behaviors that let agents change the location of behavior exe-

cution based on battery level. Some of these more dynamic

behaviors let agents adjust their sensor predictions, in partic-

ular for the light sensors, based on the current position. That

is, light sensor predictions are lowwhile agents are in the safe

zone and switch to higher values when the agents move to

the risk zone. Including environmental influences and more

agent capabilities is thus a promising first step to enable

the evolution of dynamic behaviors but still leads only to a

limited amount of behaviors with behavioral plasticity [364].

For this reason, we mainly focus on our standard minimize

surprise approach for the rest of this thesis. In future work,

we will intensify our studies on evolving dynamic behaviors

with minimize surprise to determine how evolutionary pres-

sure towards dynamic behaviors can be further increased. In

particular, our environment modifications changing environ-

ment (CE) and risk of sudden discharge (RoSD) in combination

with the agentmodification energy sharing (ES) seem promis-

ing (see Sec. 3). Both environment modifications increase

the entropy of the environment and make it more dynamic

independent from the swarm behavior. By further increasing

environment entropy and dynamics, we can potentially also

increase evolutionary pressure for dynamic behaviors. In

future work, we will study the effects of increasing the so

far rather low risk of sudden discharge on the emergent

behaviors. In addition, we will include random disruptive

perturbations [328], similar to changing weather in the real

world, in our environment. For example, the obstacle posi-

tions could change more frequently and agents that are not

part of the swarm could move through the environment.



Scenarios



Figure 8.1: Screenshot of the simulation

environment for the collective percep-

tion scenario in the BeeGround simulator.

The arena is 2m×2m, bounded bywalls,

and has black and white grid cells on its

surface. The yellow robots indicate their

current opinion via the LED on top (red

represents black, blue represents white).

Collective Perception 8
Chapter Contents

In this chapter, we evolve collective decision-making be-

haviors in the collective perception scenario. We...

I Sec. 8.1: introduce the experimental setup, and

I Sec. 8.2: the evaluation metrics and the setup for

benchmarks,

I Sec. 8.3: evaluate the emergent behaviors individually

and in benchmark experiments, and

I Sec. 8.4: draw a conclusion.

In all other scenarios, we evolve spatial organization and

navigation behaviors with minimize surprise. In theses cases,

the sensor values of the robots varywith the evolved collective

behavior. In this chapter, we aim for the evolution of collective

decision-making behaviors with minimize surprise (research

question Q5, Sec. 1.2). Here, the coupling between evolved

collective behaviors and sensor input is weaker. Sensors

related to the current opinions of the swarm members vary

with the collective decision-making behavior, but the values

of sensors perceiving other aspects of the environment (e.g.,

the quality of available options) are not influenced by the

decision-making behavior. Consequently, the evolutionary

process can only simplify the prediction of the sensors related

to the current opinions of the swarm members by adapting

the actor ANN in our minimize surprise approach. This can

potentially lead to simple collective behaviors that always

choose a fixed option independent of the actual best option.

Thus, evolving collective decision-making behaviors with

minimize surprise is probably challenging.

We use collective perception [220], that is, swarm mem-

bers have to collectively decide which of two environmental

feature is more frequent, as our sample scenario. Several re-

searchers studied collective decision-making in this scenario,

for example, evolving collective decision-making behaviors

with a task-specific fitness function [231], using an Ising-

based approach that takes into account learned preferences

of agents [229], making decisions in a sparse swarm using a

Bayesian algorithm [228], and implementing multi-feature

collective decision-making [224, 225] (see Sec. 2.2.3). Here,

we use the basic collective perception setup by Valentini

et al. [220] to evolve decision-making mechanisms with our

minimize surprise approach in a realistic simulation environ-

ment. Robots concurrently execute low-level motion routines

and a probabilistic state machine for decision-making that

can be used with different decision-making mechanisms.

Valentini et al. [220] use the majority rule [222] and the
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1: https://gitlab.iti.uni-luebeck.

de/minimize-surprise/

collective-perception

2: A consensus is reached when all

# robots agree on the same opinion (i.e.,

environmental feature here).

voter model [223] in their experiments. In this chapter, we

evolve decision-making mechanisms that are applied in the

probabilistic finite state machine by using the actor of our

actor-predictor ANN pair as a decision-making mechanism

rather than a controller for robot motion.

8.1 Experimental Setup

In this section, we introduce our custom robot model, the

simulation environment, the adaptation ofminimize surprise

for the collective perception scenario, and the setup for our

benchmark experiments.
1
We base our general experimental

setup (i.e., arena and robot control) on Valentini et al. [220].

8.1.1 Simulation Environment

We use the Unity-based BeeGround simulator [45], which

was specifically developed for swarm robotics (see Ch. 2.1.2).

Our simulation environment is a square 2 m× 2 m arena that

is bounded by walls, see Fig. 8.1. There are two features in

the environment, which are represented by black and white

grid cells of 10 cm × 10 cm each on the arena surface. Robots

have to collectively reach a consensus
2
which of the two

features is the best option with the better option quality (i.e.,

best-of-2 problem [221]). Option quality �8 is the frequency
of feature 8 ∈ {black,white} as defined by

�8 =
M8

Mblack +Mwhite

, (8.1)

where M8 is the number of 8 = black or 8 = white grid cells,

respectively. Normalized option quality �∗
8
is defined as

�∗8 =
�8

max{�black, �white}
, (8.2)

evaluating to �∗
8
= 1 for the feature with the better option

quality (i.e., higher frequency) and to �∗
8
∈ [0, 1) for the

feature with the worse option quality. Problem difficulty is

given by

�∗
min

= min{�∗
black

, �∗
white
} , (8.3)

that is, the normalized option quality of the worse feature.

The more similar the option qualities of both features, the

higher the problem difficulty.

https://gitlab.iti.uni-luebeck.de/minimize-surprise/collective-perception
https://gitlab.iti.uni-luebeck.de/minimize-surprise/collective-perception
https://gitlab.iti.uni-luebeck.de/minimize-surprise/collective-perception
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straight motion

obstacle

avoidance

unstuck

rotation

�= < 0

obstacle

detected

turned

by �=

after Cstr=

after Crot=

no obstacle

detected

Figure 8.2: Finite state machine for robot

motion adapted from Valentini et al.

[220]. The robot executes a random walk

behavior by switching between straight

motion and rotation. Time periods Cstr= and

Crot= specify the time robot = spends in

straight motion and rotation, respectively.

When the robot detects obstacles with its

proximity sensors, it switches to obstacle

avoidance, that is, it turns by angle �=
away from the obstacle. Buffer values �=
less than zero indicate that the robot got

stuck between obstacles and the robot

turns until it does not detect any obsta-

cles anymore to get unstuck.

3: The sensors are located at 0
◦
, that is,

in the robot’s heading direction, as well

as at ±25
◦
, and ±50

◦
.

Figure 8.3: Robot model in the collec-

tive perception scenario. The robot has a

differential drive, five frontal proximity

sensors (dashed lines), a ground sensor

(not visible), and a LED indicating its cur-

rent opinion on top. The arrow indicates

its heading.

8.1.2 Robot

Platform

We use a custom robot model that is similar to popular robot

platforms, such as the Thymio II [77] and the e-puck [78]. Our

custom robot has a diameter of 7 cm, a differential drive with

a maximum speed of 10
cm

s
, and a LED on top indicating its

current opinion. We initialize the swarm members in equal

parts with the current opinion black and white. The robot

has five horizontal frontal proximity sensors
3
with a range

of 10 cm that are updated every 0.15 s. In addition, it has

a binary ground sensor that measures every 0.2 s whether

the arena surface below the robot is black (0) or white (1).

Robots can broadcast messages containing their ID and their

current opinion to their neighbors in a 70 cm radius (i.e.,

local communication). We use a swarm of # = 20 robots

resulting in a swarm density �# of approximately 0.02.

Control

The behavior of our robots is based on the low-level motion

routines and the decision-making behavior of the direct

modulation of majority-based decision (DMMD) [222] and

direct modulation of voter-based decision (DMVD) [223]

approaches used by Valentini et al. [220]. Different decision-

making mechanisms can be applied in the decision-making

behavior.We implement themotion routines and thedecision-

making behavior in two separate finite state machines that

are executed concurrently.

RobotMotion The statemachine for robotmotion implements

a random walk behavior, see Fig. 8.2. Robot = moves straight

(straight motion state) for a random time period Cstr= that is

sampled from an exponential distributionwith amean of 40 s.

Afterwards, the robot turns on the spot in a random turning

direction (rotation state) for a random time period Crot= that is

sampled from a uniform distribution with bounds [0 s, 4.5 s].
The robot then moves straight again.
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exploration

black

dissemination

black

decision-making

mechanism

exploration

white

dissemination

white

decision-making

mechanism

black white

after

C
exp

=

after

C
exp

=

after Cdis= after Cdis=

staystay

switch switch

Figure 8.4: Probabilistic finite state

machine for decision-making based

on Valentini et al. [220]. The state ma-

chine has an exploration and a dissemina-

tion for each of the two features in the

environment (i.e., black andwhite). Time

periods C
exp

= and Cdis= specify how long

robot = stays in the exploration and dissem-

ination state, respectively. The decision-

making mechanism updates the robot’s

current opinion after dissemination and

the robot switches to the respective ex-

ploration state. Dotted lines represent

stochastic and solid lines deterministic

transitions.

We implement an enhanced variant of the obstacle avoidance

routine by Valentini et al. [220] that is triggered when a

robot detects an obstacle (i.e., wall or other robot) with its

proximity sensors while moving straight. The robot then

turns until its heading points to the opposite direction of

the nearest detected obstacle (obstacle avoidance state). We

add a random value sampled from a uniform distribution

with bounds [−25
◦, 25

◦] to the rotation angle �= = 180
◦
to

avoid thrashing. As this approach cannot completely prevent

thrashing, we additionally introduce the unstuck state in

which the robot rotates into a random direction until no

obstacles are detected by the proximity sensors. The robot

switches from obstacle avoidance to unstuck when buffer �=
indicates that the robot got stuck (i.e., �= < 0). The buffer

value �= decreases when the robot is rotating (i.e., the active

state is rotation or obstacle avoidance) and increases up to a

maximum of 7.5 s when the robot is moving straight (i.e.,

the active state is straight motion). Buffer values less than

zero (�= < 0) indicate that the robot has mainly rotated

recently and is thus probably stuck between obstacles. After

the robot has avoided the obstacles, it switches back to

random walk behavior.

Decision-Making Behavior The decision-making behavior is

implemented as a probabilistic finite state machine (PFSM)

that can be used with different decision-making mechanisms

(e.g., the majority rule in the DMMD [222] strategy and the

voter model in the DMVD [223] strategy). The PFSM has

four states: an exploration and a dissemination state for each

of the two environmental features. As the state machine for

decision-making and the state machine for robot motion are

executed concurrently, robots always perform random walk

and obstacle avoidance in parallel to these four states.

In the exploration state, robot = explores its environment by

sampling the local ground color and determining a quality

estimate �̂= of its current opinion. The quality estimate �̂=
is the proportion of measurements where the sampled local

ground color matches a robot’s current opinion. After time

period C
exp

= , which is drawn from an exponential distribution
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with a mean of 10 s, the robot switches to the dissemination

state.

In the dissemination state, the robot broadcasts its current

opinion to its local neighborhood for a time period Csend= that

is sampled from an exponential distribution with a mean

of )send�̂= . We set the design parameter )send to 10 s and

robots broadcast their current opinion with 1 Hz. Robots

modulate positive feedback by scaling)sendwith their current

quality estimate �̂= as this results in longer dissemination of

higher quality opinions. Subsequent to sending its opinion,

the robot records for Creceive= = 3 s its neighbors’ opinions in

a message queue with a maximum length Qmax of four and

maximally one opinion per neighbor. After time period Cdis= =

Csend= +Creceive= , the robot applies a decision-makingmechanism

to update its current opinion and switches to the respective

exploration state.

8.1.3 Minimize Surprise

We use our minimize surprise approach (see Ch. 3) to

evolve decision-makingmechanisms. As before, each robot is

equipped with an actor-predictor ANN pair. Actor and pre-

dictor are both three-layer ANNs with an input, one hidden

and an output layer. We use the sigmoid function as the

transfer function. Inputs are propagated through the ANN

pair at the end of each robot =’s dissemination phase. As

explained above, the time periods C
exp

= and Cdis= determining

the length of the exploration and dissemination phases are

randomly drawn and thus the number of ANN propagations

per robot may vary. Consequently, we need to adapt our

standard minimize surprise fitness function (Eq. 3.1) slightly.

We adjust fitness � to

� =
1

')

#−1∑
==0

C=−1∑
C=0

'−1∑
A=0

(1 − | B̃=A (C) − B=A (C)|), (8.4)

with swarm size # , number of sensors per swarm mem-

ber ', number of ANN propagations C= of robot =, total

number of ANN propagations ) =
∑#−1

==0
C= of the swarm,

robot =’s prediction B̃=A (C) for the real value of sensor A at
ANN propagation C and the real value B=A (C) of sensor A at
ANN propagation C.

In addition, we introduce a task-specific variant of this stan-

dard minimize surprise fitness function that includes addi-

tional evolutionary pressure similar as in Ch. 7. We define

penalized fitness �p as

�p =

(
1 − !
�
+ !

)
� , (8.5)
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B0(C)

B1(C)

B2(C)

0(C − 1)

0(C)

(a) actor

...

B0(C)

B1(C)

B2(C)

0(C)

B̃0(C + 1)

B̃1(C + 1)

B̃2(C + 1)

(b) predictor

Figure 8.5: Actor-predictor ANN pair in

the collective perception scenario. The

actor serves as a decision-makingmecha-

nism here. B0(C) and B1(C) are the robot’s
aggregated neighbor opinions and B2(C)
is the robot’s ground sensor value at the

currentANNpropagation C. 0(C−1) is the
robot’s last decision or current opinion

and 0(C) is the robot’s current decision

or updated opinion on the best option.

B̃0(C + 1) and B̃1(C + 1) are the predictions
for the robot’s aggregated neighbor opin-

ions and B̃2(C+1) is the robot’s prediction
for its ground sensor value at the next

ANN propagation C + 1.

with minimize surprise fitness � (Eq. 8.4), penalty factor � >
1, and percentage ! ∈ [0, 1] of robots having the best option

as their opinion at the end of the evaluation. Thus, fitness

is reduced when the swarm did not reach a consensus for

the best option by the end of the evaluation. The maximum

penalty of 1 − 1

� is applied if the swarm reaches a consensus

for the lower quality option. By reducing fitness this way,

we introduce a task dependence to the fitness function that

results in a stronger coupling between the collective percep-

tion scenario and the desired behavioral outcome. We use a

penalty factor � of two in our experiments.

For the usage in our minimize surprise approach, we aggre-

gate the information in a robot’s message queue at the end

of the dissemination phase to serve as sensor input at ANN

propagation C. We define B0(C) as the percentage of neighbor
opinions with value white as

B0(C) =
Qwhite

Qobs

∈ [0, 1] , (8.6)

with number of received messages with opinion white Qwhite

and the current length of the message queue Qobs . Addition-

ally, B1(C) gives the number of received messages normalized

by the maximum queue length Qmax. We define B1(C) as

B1(C) =
Qobs

Qmax

∈ [0, 1] . (8.7)

The actor (see Fig. 8.5a) serves as the decision-making mech-

anism that is used at the end of the dissemination phase (see

Sec. 8.1.2). The feedforward ANN has four input neurons,

three hidden neurons, and one output neuron. We input the

aggregated neighbor opinions B0(C) and B1(C), the current

binary ground sensor reading B2(C), and the robot’s current

opinion determined by its last decision 0(C − 1). We map the

actor output to the binary decision value 0(C) representing
the robot’s updated opinion on the best option.

The predictor (see Fig. 8.5b) is a recurrent ANN with four in-

put neurons, four hidden recurrent neurons, and three output

neurons. It receives the aggregated neighbor opinions B0(C)
and B1(C), the current binary ground sensor reading B2(C),
and the robot’s updated opinion 0(C) as inputs. We intro-

duce a coupling with the environment and the collective

perception task by including the ground sensor reading B2(C).
The predictor outputs predictions in [0, 1] for the aggregated
neighbor opinions B̃0(C + 1) and B̃1(C + 1) and the ground

sensor value B̃2(C + 1).
As before (see Sec. 4.1), we use a simple evolutionary al-

gorithm to evolve the ANN pairs. We run evolution for

300 generations using the standard minimize surprise fitness



8 Collective Perception 129

parameter value

arena side length ! 2 m

swarm size # 20

task difficulty �∗
min

{0.25, 0.52}
number of sensors ' 3

aggregated neighbor opinions B0, B1 [0, 1]
ground sensor B2 {0, 1}
decision 0 {0, 1}
population size � 50

number of generations 6max {300, 600}
evaluation length 200 s

# of simulation runs per fitness evaluation 6

elitism 1

mutation rate ?mut 0.2

Table 8.1: Parameters for the evolution-

ary runs in the collective perception sce-

nario.

function (Eq. 8.4) and for 600 generations using the penal-

ized fitness function (Eq. 8.5). Each genome is evaluated in

six independent evaluations for 200 s. Genomes encode the

synaptic weights of both neural networks (see Sec. 3.2) and

we randomly generate the initial population P(0) by draw-

ing the weights from a uniform distribution in [−0.5, 0.5].
The fitness of a genome is the minimum fitness observed

in its six independent evaluations. We aim to prevent that

actor-predictor pairs are optimized to output a fixed opinion

independent from the actual best option by evaluating each

individual using three different black and white patterns

and the inverse of these patterns. That is, we evaluate each

genome in settings with differing best options but the same

problem difficulty �∗
min
∈ {0.25, 0.52}. For the evolutionary

algorithm, we use a population size � of 50, proportionate

parent selection, age-based survivor selection, and elitism of

one. We generate � = � − 1 offspring for the population of

the next generation. For variation, we apply mutation only,

that is, we do not use recombination. Each value of a genome

is mutated with a probability ?mut of 0.2 and by adding a

random number drawn from the uniform distribution on the

interval [−0.4, 0.4]. For each setting, we do ten independent

evolutionary runs per fitness function and problem diffi-

culty �∗
min
∈ {0.25, 0.52}. All parameters are summarized in

Tab. 8.1.

8.2 Evaluation Metrics and Benchmarks

We validate our approach by comparing best evolved indi-

viduals to state-of-the-art decision-making mechanisms in

benchmark experiments. In this section, we introduce the

metrics used for quantitative comparison and the settings

for the benchmark experiments.
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4: Since consensus is reached when all

# robots agree on the same opinion,

a swarm may lose consensus if one

or more robots switch their opinion

after the first consensus. The consen-

sus time )# does not take into account

whether the swarm loses its first consen-

sus. While it is very unlikely for voter

model and majority rule to lose consen-

sus or even switch consensus to the op-

posite option, we cannot guarantee this

for the evolved decision-making mech-

anisms. But in the experiments for all

decision-making mechanisms, we only

observed in one voter model run that

consensus switched from one option to

the other. Thus, we consider consensus

time to be a useful indicator for decision

speed.

Table 8.2: Problem difficulty �∗
min

(Eq. 8.3) and corresponding feature ra-

tio (lower quality option : better quality

option).

�∗
min

feature ratio

0.25 20 : 80

0.52 34 : 66

0.67 40 : 60

0.82 45 : 55

8.2.1 Metrics

As before, we evaluate the success of evolution with our min-

imize surprise approach based on the best fitness (Eqs. 8.4

and 8.5). In addition, we analyze the decision-making mech-

anisms based on two common metrics for the best-of-2 prob-

lem [220, 221]: (i) consensus time )# and (ii) exit probabil-

ity �# .

Consensus time )# is the minimum time a swarm needs to

reach a first consensus and thus quantifies decision speed.
4

We calculate the mean consensus time)# as the average over

all runs leading to consensus.

Exit probability �# is the percentage of runs in which the

swarm successfully reached a consensus for the best option

and thus quantifies decision accuracy.

Speed and accuracy are known to be often conflicting goals

in (collective) decision-making, that is, faster decision speed

results in loss of decision accuracy (i.e., speed versus accuracy

trade-off [222, 369, 370]).

8.2.2 Benchmarks

The probabilistic finite state machine for decision-making

(see Fig. 8.4) can be used with different decision-making

mechanisms. Thus,we compare our evolveddecision-making

mechanisms with the voter model and the majority rule.

These two state-of-the-art mechanisms were also used in

the initial collective perception experiments by Valentini

et al. [220]. The voter model lets robots take the opinion of a

random neighbor. By contrast, when applying the majority

rule, robots adopt the opinion endorsed by the majority

of their neighbors and themselves. From each minimize

surprise setting (i.e., fitness function and problem difficulty

used to evolve the controllers), we select the ANN pair with

fitness closest to the median of the best fitness of the last

generation as a representative example for our benchmark

experiments.

We benchmark the decision-making mechanisms in the two

problem difficulties �∗
min
∈ {0.25, 0.52} used in evolution as

well as in two harder problem difficulties �∗
min
∈ {0.67, 0.82}

to test the scalability of the decision-making mechanisms

in problem difficulty (see Tab. 8.2). Each decision-making

mechanism is run 1,000 times for 400 s per problem diffi-

culty �∗
min

. To ensure maximal comparability, we use the

same evaluation settings (i.e., initial robot poses, initial robot

opinions, ground pattern of black and white tiles) for the

different mechanisms. Without loss of generality, the best

option in all settings is black.
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(a) best fitness � over generations 6 (b) decision-making process

Figure 8.6: Best fitness � (Eq. 8.4) over generations 6 and decision-making process over time in seconds s of the best evolved individuals

using our standard minimize surprise approach in the collective perception scenario for 10 independent evolutionary runs. The

decision-making process is represented by the percentage of swarm members with the best option as opinion over the evaluation run.

Blue boxes represent evaluations leading to the consensus for the best option and gray boxes represent evaluations leading to an incorrect

consensus. The gray area gives the exit probability �# over time. The mean consensus time )# is given by the dashed red line. Medians

are given by the red bars in the boxes. For clearer illustration, we only plot the data of every second generation or time step.

8.3 Results

First, we analyze if decision-making mechanisms emerge

in the evolutionary runs with our standard minimize sur-

prise approach and with minimize surprise with penalized

fitness (see Sec. 8.1.3). Afterwards, we compare the evolved

decision-making mechanisms in benchmark experiments

with the majority rule and the voter model.

8.3.1 Standard Minimize Surprise Approach

In the first step, we aim to evolve decision-making mecha-

nisms with our standard minimize surprise approach. We

do ten independent evolutionary runs for 300 generations

each using problem difficulty �∗
min

= 0.52.

Fig. 8.6a visualizes the increase in best fitness � (Eq. 8.4) over

generations reaching a median of 0.81 in the last generation.

The predictor (see Fig. 8.5b) has thus a median prediction ac-

curacy of 81 %. We find that our minimize surprise approach

successfully optimizes the ANN pairs over generations.

Fig. 8.6b shows the decision-making process over the 200 s

long evaluations for the best evolved individuals. All eval-

uations lead to consensus resulting in a mean consensus

time )# of 41.7 s. But only half of the evaluations reach

consensus for the best option, that is, we find an exit proba-

bility �# of 50 %. As explained in Sec. 8.1.3, each genome is

evaluated in six independent evaluations whereof three have

black as the best option and three white. We find that all best

evolved individuals lead to a consensus for one of these two

options independent of the actual best option. Part of the

best evolved individuals always lead to a consensus for black,

the other individuals always for white. Consequently, each

best evolved individual reaches the correct consensus only

in half of its evaluations. High fitness can still be reached as
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(a) best option: white (b) best option: black

Figure 8.7:Mean actor decision output 0 (cf. Fig. 8.5a) andmean inputs to and outputs of the predictor (cf. Fig. 8.5b) for one representative

best evolved individual in our collective perception scenario using our standard minimize surprise approach with (a) white and (b) black

as the actual best option. B0 (Eq. 8.6) is the percentage of neighbors with opinion white, B1 (Eq. 8.7) the percentage of neighbors relative

to the maximum possible number of neighbors, and B2 the ground sensor reading.

the prediction task is trivial. We illustrate this based on the

mean real and predicted values for a best evolved individual

always leading to a consensus for white as representative

example, see Fig. 8.7. The percentage of neighbors relative

to the maximum possible number of neighbors B1 is easy to

predict as it is almost always at the maximum (B1 ≈ 1.0). The
actors output a fixed opinion 0 independent from the actual

best option. Thus, each swarm member switches to the con-

sensus opinion after its first dissemination phase when the

decision-making mechanism is executed the first time. This

leads to consensus as quickly as possible and high prediction

accuracy as the neighbor opinions B0 are easy to predict. The

ground sensor values B2 depend on the actual best option.

We find higher mean values showing a run with white as

the best option in Fig. 8.7a than in Fig. 8.7b visualizing a run

with black as the best option. The mean predictions for the

ground sensor match the mean real values closely. Thus, evo-

lution successfully optimized the predictor to output ground

sensor predictions matching the actual frequencies of the

ground colors. In total, two of the three predictor outputs

are trivial to predict due to the fixed opinion output of the

actor. The results of this exemplary run are representative

for all runs using the standard minimize surprise fitness

function (Eq. 8.4).

Overall, we find that the optimization of the ANN pairs with

our standard minimize surprise approach is too detached

from the collective perception task in the presented experi-

mental setup. Only the ground sensor introduces a coupling

between the swarm and the environment with the collective

perception task, which is too weak to lead to the emergence

of decision-making mechanisms here. Evolution exploits the

easiest possible solution leading to high fitness, which is

making neighbor opinions easily predictable by setting the

actor’s decision output to a fixed opinion independent from

the actual best option.While evolution successfully optimizes

fitness, the resulting behaviors are of no practical use and

we refrain from investigating this setup further. Instead, we
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(a) best fitness �p over generations 6 for �∗
min

= 0.25 (b) decision-making process for �∗
min

= 0.25

(c) best fitness �p over generations 6 for �∗
min

= 0.52 (d) decision-making process for �∗
min

= 0.52

Figure 8.8: Best fitness �p (Eq. 8.5) over generations 6 and decision-making process over time in seconds s of the best evolved

individuals using our minimize surprise approach with penalized fitness in the collective perception scenario for problem difficulties

�∗
min
∈ {0.25, 0.52}. The decision-making process is represented by the percentage of swarm members with the best option as opinion

over the evaluation run. Blue boxes represent evaluations leading to the consensus for the best option and black boxes represent

evaluations leading to no consensus. The gray areas give the exit probability �# over time. The mean consensus times )# are given

by the dashed red lines. Medians are given by the red bars in the boxes. For clearer illustration, we only plot the data of every fourth

generation and of every second time step.

add an additional evolutionary pressure to push emergence

towards decision-making mechanisms in the next step.

8.3.2 Minimize Surprise with Penalized Fitness

Next, we aim to evolve decision-making mechanisms using

minimize surprise with penalized fitness as described in

Sec. 8.1.3. We do ten independent evolutionary runs for

600 generations per problem difficulty �∗
min
∈ {0.25, 0.52}.

Figs. 8.8a and 8.8c show the increase in best fitness �p (Eq. 8.5)
over generations for both problem difficulties. We find a

median best fitness of 0.88 for problem difficulty 0.25 and

of 0.77 for problem difficulty 0.52 in the last generation. The

harder problem difficulty of 0.52 leads to more variability in

fitness in the higher generations of the run. This has probably

two related reasons: (i) the problem difficultymakes reaching

consensus hard and (ii) the penalized fitness rigorously

punishes ANNpairs that do not lead to the correct consensus

or a consensus at all. As visualized in Fig. 8.8d, not all

evaluations in the harder problem difficulty setting lead to a

consensus. Since the fitness of an ANN pair is the minimum

fitness of six evaluations, even a single evaluation not leading

to consensus significantly worsens its fitness. Increasing the

number of generations and the evaluation length for the
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(a) best option: white (b) best option: black

Figure 8.9:Mean actor decision output 0 (cf. Fig. 8.5a) andmean inputs to and outputs of the predictor (cf. Fig. 8.5b) for one representative

best evolved individual in our collective perception scenario with problem difficulty �∗
min

= 0.52 using our minimize surprise approach

with penalized fitness with (a) white and (b) black as the best option. B0 (Eq. 8.6) is the percentage of neighbors with opinion white,

B1 (Eq. 8.7) the percentage of neighbors relative to the maximum possible number of neighbors, and B2 the ground sensor reading.

harder problem difficulty probably leads to less variability

and better convergence of the fitness curve.

Figs. 8.8b and8.8d show thedecision-makingprocess over the

200 s long evaluation runs for the best evolved individuals for

both problem difficulties. For problem difficulty �∗
min

= 0.25,

a consensus for the best option is reached in all evaluations

(i.e.,�# = 100 %).Wefind amean consensus time)# of 56.8 s
in this setting. For problem difficulty �∗

min
= 0.52, the mean

consensus time )# is 90.4 s. We find an exit probability �#
of 73 %, that is, 73 % of the evaluations reach the correct

consensus. The remaining 27 % of the evaluations do not

reach consensus. We find that two of the ten best evolved

individuals do not lead to consensus in any of their six

evaluations each, and one best evolved individual leads

to consensus in only two of its six evaluations. However,

there is a tendency towards correct consensus in all runs in

which the swarm has not reached consensus, see Fig. 8.8d.

Again, increasing the length of the evaluations or running

evolution for more generations could enable evolution to

find a decision-making mechanism in every run.

Fig. 8.9 visualizes the real and predicted values for the best

evolved individual of a minimize surprise run with penal-

ized fitness in problem difficulty �∗
min

= 0.52 serving as a

representative example for all best evolved individuals reach-

ing consensus. Similar to our standard minimize surprise

approach, the actual mean ground sensor B2 values and their

predictions differ based on the best option and the percentage

of neighbors relative to the maximum possible number of

neighbors B1 is always close to 1.0. But in contrast to the

previous case, the percentage of neighbors with opinion

white B0 and the actor’s decision output 0 are high when

the best option is white and low when the best option is

black. The decision output is furthermore neither exactly

zero nor exactly one, indicating that the actor does not con-

stantly output a fixed value. Overall, we find that minimize

surprise with penalized fitness leads to the emergence of

decision-making mechanisms.
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Table 8.3: Mean consensus times )# and exit probabilities �# (see Sec. 8.2) for the benchmark runs in our collective perception scenario.

We compare voter model (VM), majority rule (MR), an ANN pair evolved with minimize surprise with penalized fitness in the easier task

difficulty �∗
min

= 0.25 (MS-E), and an ANN pair evolved in the harder task difficulty �∗
min

= 0.52 (MS-H). Values are calculated based

on 1,000 runs of 400 s per decision-making mechanism and problem difficulty �∗
min

.

decision-making �∗
min

= 0.25 �∗
min

= 0.52 �∗
min

= 0.67 �∗
min

= 0.82

mechanism

)# �# )# �# )# �# )# �#

VM 94.9 s 100.0 % 154.7 s 97.1 % 192.5 s 83.4 s 206.3 s 60.2 %

MR 69.5 s 96.7 % 84.5 s 83.5 % 86.8 s 72.8 % 94.1 s 61.1 %

MS-E 58.4 s 100.0 % 119.8 s 99.2 % 178.0 s 90.5 % 222.4 s 55.6 %

MS-H 54.8 s 100.0 % 90.1 s 100.0 % 121.6 s 98.5 % 161.1 s 87.6 %

8.3.3 Benchmarks

Last, we evaluate the competitiveness of the decision-making

mechanisms evolved with our minimize surprise approach

in benchmark experiments. We compare voter model (VM),
majority rule (MR), and one best evolved ANN pair per prob-

lem difficulty �∗
min

= 0.25 (MS-E) and �∗
min

= 0.52 (MS-H)
used in the evolutionary settings with minimize surprise

with penalized fitness (see Sec. 8.2.2). We do not compare

against standard minimize surprise (see Sec. 8.3.1), since

no decision-making mechanisms emerged in this case. As

described in Sec. 8.2.2, we run 1,000 independent runs

with black as the best option per setting (i.e., problem dif-

ficulty �∗
min
∈ {0.25, 0.52, 0.67, 0.82} and decision-making

mechanism). The performance of the four decision-making

mechanisms under investigation is compared based on mean

consensus time )# and exit probability �# (see Sec. 8.2). We

conducted control experiments with white as the best option

and obtained comparable results; we do not show the data

here.

In general, we find increasing mean consensus times )# and

decreasing exit probabilities �# with increasing problem

difficulty �∗
min

for all four decision-making mechanisms, see

Tab. 8.3.

As already discussed by Valentini et al. [220, 222], the voter

model is more accurate (i.e., higher �# ) while the majority

rule is faster (i.e., shorter )# ). This result is in line with the

speed versus accuracy tradeoff (see Sec. 8.2). For the hardest

problemdifficulty (i.e., �∗
min

= 0.82), we find that themajority

rule leads to a slightly higher exit probability �# than the

voter model. As visualized in Fig. 8.11d, the majority rule

always leads to consensus – either a correct or an incorrect

one. In contrast, the swarm did not reach a consensus in 27 %

of the runs for problem difficulty �∗
min

= 0.82 with the voter

model. We expect that the exit probability �# is also higher

for the voter model than for the majority rule in this problem

difficulty when increasing runtime with the expense of an

even higher mean consensus time )# .
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(a) �∗
min

= 0.25 (b) �∗
min

= 0.52 (c) �∗
min

= 0.67 (d) �∗
min

= 0.82

Figure 8.10: Consensus time )# (see Sec. 8.2) per problem difficulty �∗
min

for the benchmark runs in our collective perception scenario.

We compare voter model (VM), majority rule (MR), an ANN pair evolved with minimize surprise with penalized fitness in the easier task

difficulty �∗
min

= 0.25 (MS-E), and an ANN pair evolved in the harder task difficulty �∗
min

= 0.52 (MS-H). Each box summarizes the data of

1,000 independent runs. Red bars give the median consensus time, blue bars the mean consensus time )# .

(a) �∗
min

= 0.25 (b) �∗
min

= 0.52 (c) �∗
min

= 0.67 (d) �∗
min

= 0.82

Figure 8.11: Exit probability �# (see Sec. 8.2; green part of the bars) per problem difficulty �∗
min

for the benchmark runs in our collective

perception scenario. We compare voter model (VM), majority rule (MR), an ANN pair evolved with minimize surprise with penalized

fitness in the easier task difficulty �∗
min

= 0.25 (MS-E), and an ANN pair evolved in the harder task difficulty �∗
min

= 0.52 (MS-H). Values
are calculated based on 1,000 runs per decision-making mechanism and problem difficulty �∗

min
. The gray parts of the bars give the

percentage of runs in which no consensus was reached and the red parts indicate the percentage of runs in which an incorrect consensus

(i.e., for the worse option) was reached.

The decision-making mechanism evolved in the easier prob-

lem difficulty setting (MS-E) results in comparable decision

speed and accuracy as the voter model, see Figs. 8.10 and 8.11.

While not all runs lead to consensus, none leads to a wrong

consensus. We expect an increase in the exit probability �#
when increasing run time.

The decision-making mechanism evolved in the harder prob-

lem difficulty setting (MS-H) results in the best decision accu-

racy of the four compared mechanisms, see Fig. 8.11. Except

for the easiest task difficulty �∗
min

= 0.25, the majority rule

outperforms MS-H in decision speed, but MS-H is faster than

the voter model and MS-E. Overall, MS-H is a fast and accu-

rate decision-making mechanism. This is probably caused

by the penalized fitness �p (Eq. 8.5) used to evolve this

behavior. The penalized fitness explicitly rewards decision

accuracy by penalizing wrong opinions and implicitly re-

wards decision speed by minimizing surprise. Minimize

surprise intrinsically rewards fast decisions, since a consen-

sus is easy to predict for the swarm members. In all problem

difficulties �∗
min

, MS-H outperforms MS-E. This suggests that
optimizing controllers in harder problem difficulties leads to

the emergence of better performing decision-making mech-

anisms. In future work, we will investigate whether this is

generally true or whether there is an ideal problem difficulty
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for optimizing the decision-making mechanisms.

A big difference between voter model, majority rule, and

the decision-making mechanisms evolved using minimize

surprise with penalized fitness (MS-E and MS-H) is the data
used to make decisions. Voter model and majority rule make

their decision solely based on their neighbors’ opinions. By

contrast, the evolved decision-making mechanisms use both

their neighbors’ opinions and their ground sensor readings.

This enables swarmmembers to determine the best option in-

dependently of the rest of the swarm, for example, when they

receive sparse opinions from their neighbors.We assume that

this additional input contributes to the better performance

of the MS-H decision-making mechanism. Detailed analysis

to verify this assumption is left for future work.

8.4 Discussion and Conclusion

Collective decision-making is essential to make a swarm

autonomous on the macro-level (i.e., the global or swarm

level) [6] by enabling swarms, for example, to synchronize

or to allocate tasks [119]. But, as mentioned in the introduc-

tion, collective decision-making is more complex than our

previously studied spatial organization and navigation be-

haviors, since the swarm’s decision does not directly affect

the environmental features it should potentially be based on.

Thus, it is not surprising that our study on evolving collec-

tive decision-making mechanisms with minimize surprise

in the collective perception scenario shows limitations of

our approach. The standard minimize surprise approach

exploits the easiest possible way to reach high prediction

accuracy, which may lead to undesired behaviors for the

system designer. In our case, the coupling between possible

collective behaviors and the sensors perceiving the quality of

the environmental features was too weak to evolve desired

collective decision-making mechanisms. Instead, we found

behaviors that let the swarm quickly reach a consensus for

one option – regardless of the actual best option. Several

options to push evolution with our standard minimize sur-

prise approach to desired behaviors can be explored, such as

increasing the weight of the ground sensors in the prediction

task.

Here, we chose to add task-specific evolutionary pressure to

evolve the desired decision-making mechanisms. We found

competitive decision-making mechanisms both regarding de-

cision speed and accuracy. However, as we have introduced

an evolutionary pressure towards reaching a correct con-

sensus, the influence of minimize surprise on the resulting

behaviors is unknown. We expect that minimize surprise

increases decision speed as fast decisions allow for easy

predictions of neighbor opinions. We will validate this as-

sumption in additional experiments in future work. While
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the mean inputs and outputs of the ANN pairs give a first

glimpse into the evolved decision-makingmechanisms, an in-

depth study of the resulting behaviors could be informative

and is future work.

We found that the decision-making mechanisms evolved

in the harder problem difficulty have better scalability in

problem difficulty.We aim to find the ideal problem difficulty

for evolving controllers in future experiments and want to

test whether increasing problem difficulty over generations

may be beneficial.

Overall, this study is a first step towards the evolution of

decision-making mechanisms with minimize surprise. Our

first results are promising, but further analysis is necessary

to fully understand the dynamics of the evolutionary process

and the resulting decision-making mechanisms.



Table 9.1:Experimental setups for the col-

lective construction scenario with num-

ber of agents # , number of blocks �,
agent-block ratio # : �, and grid size

! × !.

# � # : � ! × !
10 32 5 : 16 16 × 16

16 32 1 : 2 16 × 16

32 32 1 : 1 16 × 16

20 50 2 : 5 20 × 20

25 50 1 : 2 20 × 20

50 50 1 : 1 20 × 20

25 75 1 : 3 20 × 20

Collective Construction 9
Chapter Contents

In this chapter, we study the evolution of behaviors for col-

lective construction in 2D torus gridworldswithminimize

surprise. We...

I Sec. 9.1: introduce the experimental setup and

I Sec. 9.2: the evaluation metrics,

I Sec. 9.3: study the impact of the agent-block ratio on

the emergent behaviors,

I Sec. 9.4: engineer self-organized construction, and

I Sec. 9.5: draw a conclusion.

Parts of this chapter are based on [47].

Approaches to object clustering and collective construction

(see Sec. 2.2.1) differ in their complexity ranging from sim-

ple reactive control [193, 201] to calculating local rules for

the robots offline [195]. We aim for the evolution of object

clustering and collective construction behaviors using our

minimize surprise approach in simple 2D torus grid worlds

in this scenario (research question Q5, Sec. 1.2). By providing

manipulable objects (blocks) to the agents (see Fig. 9.1), we

increase task complexity compared to our previous works

in which we generated behaviors requiring only agent-agent

interaction, such as collective motion [28, 37] (see Ch. 7)

and self-assembly [38, 39] (see Ch. 4), or minimal agent-

environment interaction, such as collective decision-making

(see Ch. 8). Agents can then push these blocks around to form

different structures and thereby change their environment,

that is, the environment is potentially dynamic beyond the

dynamics of the swarm itself.

Figure 9.1: Illustration of the collective

construction scenario. Agents are rep-

resented by circles, their color and the

lines give their headings. Blocks are rep-

resented by brown squares.

9.1 Experimental Setup

For our collective construction scenario, we use a simple

simulation of a 2D torus grid world with a homogeneous

swarmof# simulated agents as in our self-assembly scenario

(see Ch. 4). We use two different side lengths ! ∈ {16, 20}
(here, number of grid cells) of the square that serves as

the fundamental polygon of the torus. Additionally, we

distribute � blocks of building material in the environment.

These blocks can be moved by agents and thus agents can

change their environment. But in contrast to our dynamic

environments in Ch. 7, blocks do not change positionwithout

being actively manipulated by agents.
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(a) agent sensors

(b) block sensors

Figure 9.2: Sensormodel in the collective

construction scenariowith labels for each

sensor. Each agent has 12 binary sensors

covering the six grid cells in front of

it: one set of six sensors senses agents,

another set of six sensors senses blocks.

The blue circle represents the agent and

the black line indicates its heading.

... ...

B0(C)

B11(C)

00(C − 1)

00(C)

01(C)

(a) actor

... ...
...

B0(C)

B11(C)

00(C)

B̃0(C + 1)

B̃11(C + 1)

(b) predictor

Figure 9.3:Actor and predictor networks

in the collective construction scenario.

00(C − 1) is the agent’s last action value

and 00(C) is its next action determin-

ing whether to move or turn. 01(C) is
its turning direction. B0(C), . . . , B11(C) are
the agent’s 12 sensor values at time step C,
B̃0(C + 1), . . . , B̃11(C + 1) are its sensor pre-
dictions for time step C + 1 [47].

Both agents and blocks occupy one grid cell each and each

grid cell can be occupied by either one agent or one block.

Changeable quantities in this scenario are swarm density

and block density, and hence the agent-block ratio. We keep

a constant block density (�� =
�
!×! ) of 0.13 in all, except one,

experimental setups for our collective construction scenario.

Swarm density (�# =
#
!×! ) and agent-block ratio are varied

by using different swarm sizes# . Thereby, we can investigate

the effects of the agent-block ratio on the emergent behaviors.

All studied setups are summarized in Tab. 9.1.

Our simulated swarm consists of simple agents. Each agent

has two sets of binary sensors (agent sensors, block sensors)

covering each the six grid cells in front of it, see Fig. 9.2, that

is, a total of ' = 12 sensors. Sensors B0, . . . , B5 (see Fig. 9.2a)

enable agents to sense other agents while sensors B6, . . . , B11

(see Fig. 9.2b) enable the observation of blocks. Each agent =
has a position %=(C) = (G=(C), H=(C)) and a discrete head-

ing �=(C) = (ℎG=(C), ℎ
H
=(C)), that is either North � = (0, 1),

East � = (1, 0), South � = (0,−1), or West � = (−1, 0), at
time step C. In each time step, agents execute one of two

possible actions: moving one grid cell forward, that is,

%=(C + 1) = ((G=(C) + ℎG=(C))mod !G ,

(H=(C) + ℎH=(C))mod !H) ,
�=(C + 1) = �=(C) ,

(9.1)

or rotating ± 90
◦
on the spot, that is,

%=(C + 1) = %=(C),
�=(C + 1) = (−ℎH=(C), ℎG=(C)) or
�=(C + 1) = (ℎH=(C),−ℎG=(C)) .

(9.2)

A move forward is only possible if the grid cell in front is

not occupied by another agent or if the agent attempts to

push maximally one block to an empty grid cell. If an agent

attempts to move on a grid cell already occupied by another

agent, to push a block to an already occupied grid cell or to

push more than one block, the move forward is prevented

and the agent stays on its current grid cell.

Following our minimize surprise approach (see Ch. 3), we

equip each agent with an actor-predictor ANN pair as visu-

alized in Fig. 9.3. Actor and predictor are both three-layer

ANNs with an input, one hidden and an output layer. We

use the hyperbolic tangent tanh as the transfer function and

map the network outputs to our discrete action values and

sensor value predictions. The actor network (see Fig. 9.3a)
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parameter value

grid side length ! {16, 20}
swarm size # {10, 16, 20, 25, 32, 50}
# of blocks � {32, 50, 75}
# of sensors and predictor outputs ' 12

sensor values BA {0, 1}
action value 00 {straight,turn}
action value 01 ±90

◦

population size � 50

number of generations 6max 100

evaluation length ) (time steps) 1,000

# of simulation runs per fitness evaluation 10

elitism 1

mutation rate ?mut 0.1

Table 9.2: Parameters for the collective

construction scenario.

has 13 input neurons, seven hidden neurons, and two output

neurons. It determines the agent’s next action by outputting

two action values: 00(C) decides whether to move or turn and

01(C) determines the turning direction (i.e., ±90
◦
). The actor

receives the agent’s 12 current sensor values B0(C), . . . , B11(C)
and its last action 00(C − 1) as inputs. As in our self-assembly

scenario (see Ch. 4), we use only 00(C) as input to the ANNs

as the turning direction 01(C) is solely informative when

00(C) selects to turn. The predictor network (see Fig. 9.3b) has

13 input neurons, 12 hidden recurrent neurons, and 12 output

neurons. It outputs predictions B̃0(C + 1), . . . , B̃11(C + 1) for
the ' = 12 sensor values of the next time step C + 1. That

is, agents predict whether they may see other agents and

also whether they may see blocks. The predictor receives the

agent’s 12 current sensor values B0(C), . . . , B11(C) and its next

action 00(C) as inputs.
As in all scenarios, we evolve the actor-predictor ANN pairs

using a simple evolutionary algorithm and reward high

prediction accuracy as defined by our minimize surprise

fitness function (Eq. 3.1). Consequently, agents can simplify

the prediction of whether they may see blocks by creating

‘boring environments’ with areas of few blocks and areas

of many blocks. Our swarm is homogeneous both related

to the agent model and the controller, that is, each swarm

member has an instance of the same genome in a given eval-

uation. Genomes encode the synaptic weights of both neural

networks (see Ch. 3.2) and we randomly generate the initial

population P(0) by drawing the weights from a uniform dis-

tribution in [−0.5, 0.5]. We run the evolutionary algorithm

for 6max = 100 generations and evaluate each genome in ten

independent simulation runs for ) = 1,000 time steps each

using uniformly random initial agent and block positions.

The fitness of a genome is the minimum fitness (Eq. 3.1)

observed in those ten evaluations. For the evolutionary al-

gorithm, we use a population size � of 50, proportionate

parent selection, age-based survivor selection, and elitism

of one. We generate � = � − 1 offspring for the population
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of the next generation. Mutation adds a uniformly random

number in [−0.4, 0.4] to each value v of a genome with a

probability ?mut of 0.1. We evaluate all experimental setups

(see Tab. 9.1) in 20 independent evolutionary runs and post-

evaluate the best evolved individuals (i.e., the ANNpair with

the highest fitness in the last generation of an evolutionary

run). Tab. 9.2 summarizes all parameters.

9.2 Evaluation Metrics and Methods

We validate our approach by conducting post-evaluation of

the best evolved individuals. In this section, we define several

metrics for the quantitative evaluation and classification of

the emergent behaviors.

9.2.1 Metrics

We define two metrics next to fitness (Eq. 3.1) for the evalu-

ation of the best evolved individuals in our collective con-

struction scenario: (i) similarity ( of block positions at the

start and the end of the run and (ii) agent movement "#

and block movement"�.

The similarity ( of the block positions is defined as the

quantity of grid cells that are both occupied by blocks at the

start (i.e., time step C = 0) and at the end (i.e., time step C = ))
of the run normalized by the total number of blocks. It serves

as an indicator to assess how much the block structure was

changed by the agents. We define similarity ( as

((S(0),S())) = 1

�

∑
%1∈S())

match(%1) (9.3)

with number of blocks �, sets S(C) = {%1(C) : 1 ∈ [0 .. � − 1]}
containing the position %1(C) = (G1(C), H1(C)) of each block 1
at time step C, and match

match(%8) =
{

1, if ∃*8 ∈ S(0) : %8 = *8

0, otherwise

. (9.4)

In addition, we measure the movement of agents "# and

of blocks "�, that is, the mean distance covered by agents

or the mean distance blocks were pushed. It is the mean

accumulated displacement of agents or blocks over a time

period of � = !×!
2

time steps as in our previous work [28].

We calculate displacement using the Manhattan distance,

since our grid world environment and the discrete agent

headings do not allow diagonal movement. The Manhattan

distance 3"(%= , %<) between two positions %= = (G= , H=)
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1: https://gitlab.iti.uni-luebeck.

de/minimize-surprise/

collective-construction-torus

2: For conciseness, we denote by %1 the

position %1(C) of block 1 in time step C

of the post-evaluation run, that is, we

omit the time step in our notation in the

following.

and %< = (G< , H<) on a torus with side length ! is defined

as

3"(%= , %<) =min(|G= − G< |, ! − |G= − G< |)+
min(|H= − H< |, ! − |H= − H< |) .

(9.5)

We define agent movement"# or block movement"� as

"# = "� =
1

�Ψ

)−1∑
C=)−�

Ψ−1∑
#=0

3"(%#(C), %#(C + 1)), (9.6)

with Ψ being the swarm size # in the case of measuring

agent movement "# andΨ being the number of blocks �
in the case of measuring block movement "�; %#(C) and
%#(C + 1) are the positions of agent or block # at time steps C
and C + 1, respectively. Block movement indicates how much

agents have manipulated their environment.

9.2.2 Classification of Emergent Block Structures

In our collective construction scenario, we classify the re-

sulting behaviors by the best evolved individuals based on

the structures formed by blocks. We differentiate between

four different types of block structures: pairs (PR), lines (LN),
clustering (CL), and random dispersion (RD). Block structures

formed by the best evolved individuals at the start (C = 0)

and the end (C = )) of a run are automatically classified

based on their highest resemblance to one of the four struc-

ture types using Python scripts.
1
The highest resemblance

to a structure type is determined by measuring the solution

quality @/ for each of the four possible block structures /

at the respective time step C.2 The formed block structure is

then labeled according to its highest solution quality (i.e.,

max({@PR, @LN, @CL, @RD})). We define solution quality @/ of

structure type / as

@/ =
1

�

�−1∑
1=0

21/ , (9.7)

withnumber of blocks� and criterion 21
/
of structure type/ ∈

{PR, LN,CL,RD} that evaluates to one (21
/
= 1) if block 1

fulfills the structure criterion and to zero (21
/
= 0) otherwise.

Thus, solution quality measures how many blocks from the

set of all blocks S� fulfill the structure criterion.

https://gitlab.iti.uni-luebeck.de/minimize-surprise/collective-construction-torus
https://gitlab.iti.uni-luebeck.de/minimize-surprise/collective-construction-torus
https://gitlab.iti.uni-luebeck.de/minimize-surprise/collective-construction-torus
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3: All neighboring blocks 1 above a

horizontal line or pair structure (i.e.,

� = (1, 0)) or, respectively, to the right

of a vertical line or pair structure (i.e.,

� = (0, 1)) are given by set S:
NB,1

=

{1 : (G1 , H1) = (G< + �H , H< + �G), 1 ∈
S� , < ∈ S:

PL
}. Similarly, all neighbor-

ing blocks 1 below a horizontal line or

pair structure (i.e., � = (1, 0)) or, re-

spectively, to the left of a vertical line

or pair structure (i.e., � = (0, 1)) are

given by set S:
NB,2

= {1 : (G1 , H1) =
(G< − �H , H< − �G), 1 ∈ S� , < ∈ S:

PL
}.

Figure 9.4: Illustration of pairs (PR) in our

collective construction scenario. Blocks

are represented by brown squares.

Pairs (PR) and lines (LN) are formed by blocks that are hori-

zontally or vertically placed next to each other as illustrated

in Figs. 9.4 and 9.5. The criteria for pairs and lines differ

only in the structure length: pairs consist of two blocks,

while lines are at least three blocks long. An individual

pair or line : is formed out of a set S:
PL

of adjacent blocks

1 ∈ S� where ∀1, < ∈ S:
PL
∃r ∈ ℤ : %1 = (%< + r�) mod !,

and ∀1, < ∈ S:
PL

: 3"(%1 , %<) < |S:
PL
| with block posi-

tions %1 = (G1 , H1) and %< = (G< , H<), structure orienta-

tion � = (�G , �H) = (1, 0) for horizontal lines and pairs and

� = (0, 1) for vertical lines and pairs, andManhattan distance

3"(·, ·) (Eq. 4.5) hold. That is, each block in a pair or line

structure has at least one neighboring block on an adjacent

grid cell in the direction of the structure’s orientation. Lines

and pairs can both have up to half of their length of neigh-

boring blocks on each side next to them (i.e., |S:
NB,1
| ≤ |S

:
PL
|

2
,

|S:
NB,2
| ≤ |S

:
PL
|

2
with S:

NB,1
and S:

NB,2
being sets of neighboring

blocks per side of the structure
3
), whereby no two adjacent

grid cells parallel to the structure are allowed to be occupied

by blocks. The latter can be determined using the Manhattan

distance (Eq. 9.5) as all neighboring blocks have to be at least

one grid cell apart, which equals a Manhattan distance of at

least two. Several pairs or lines S:
PL

can be assembled out of

all blocks S� on the grid. The set SPR of all assembled pairs

is given by

SPR = {S:
PL

: |S:
PL
| = 2, |S:

NB,1 | ≤
|S:

PL
|

2

, |S:
NB,2 | ≤

|S:
PL
|

2

,

∀8 , 9 ∈ (S:
NB,1 ∪ S:

NB,2), 8 ≠ 9 : 3"(%8 , %9) ≥ 2,

0 ≤ : <  } ,
(9.8)

with  being the number of sets of adjacent blocks S:
PL
.

We define the criterion 21
PR

for block 1 being part of a pair

structure as

21
PR
=

{
1, if ∃SPL ∈ SPR : 1 ∈ SPL
0, otherwise

. (9.9)
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Figure 9.5: Illustration of lines (LN) in our

collective construction scenario. Blocks

are represented by brown squares.

(a) von Neumann neighborhood

(b)Moore neighborhood

(c) diagonal neighborhood

Figure 9.6:Moore, vonNeumann, and di-

agonal neighborhoods of a block. Blocks

are represented by brown squares, and

blue grid cells give the neighboring grid

cells.

Accordingly, the set (!# of all assembled lines is given by

SLN = {S:
PL

: |S:
PL
| > 2, |S:

NB,1 | ≤
|S:

PL
|

2

, |S:
NB,2 | ≤

|S:
PL
|

2

,

∀8 , 9 ∈ (S:
NB,1 ∪ S:

NB,2 |), 8 ≠ 9 : 3"(%8 , %9) ≥ 2,

0 ≤ : <  } .
(9.10)

As already stated above, lines differ only by the length of the

structure (|S:
PL
| > 2) from pairs. We define the criterion 21

LN

for block 1 being part of a line structure as

21
LN
=

{
1, if ∃SPL ∈ SLN : 1 ∈ SPL
0, otherwise

. (9.11)

We define clustering (CL) and random dispersion (RD) based
on the Moore (see Fig. 9.6b), von Neumann (see Fig. 9.6a),

and diagonal (see Fig. 9.6c) neighborhoods. The set S1
VN

of

blocks in the von Neumann neighborhood of a block 1 is

given by

S1
VN

= {< : 3"(%< , %1) = 1, < ∈ S�} , (9.12)

that is, all neighboring blocks with a Manhattan distance of

one. The set S1
"

of blocks in the Moore neighborhood of a

block 1 is given by

S1
M
= {< : min(|G< − G1 |, ! − |G< − G1 |) ≤ 1,

min(|H< − H1 |, ! − |H< − H1 |) ≤ 1,

< ∈ S� , < ≠ 1} .
(9.13)

The setS1
�
of blocks in the diagonal neighborhood of a block 1

is given by

S1� = {< : min(|G< − G1 |, ! − |G< − G1 |) = 1,

min(|H< − H1 |, ! − |H< − H1 |) = 1, < ∈ S�} .
(9.14)

Clusters (Fig. 9.7) are formed by blocks that have at least

four blocks in their Moore neighborhood and at least three

blocks in their von Neumann neighborhood, as well as their

neighbors. Blocks that are part of a line (i.e., 21
LN
= 1) cannot
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Figure 9.7: Illustration of clustering (CL)
in our collective construction sce-

nario. Blocks are represented by brown

squares.

Figure 9.8: Illustration of random dis-

persion (RD) in our collective construc-

tion scenario. Blocks are represented by

brown squares.

be part of a cluster and are excluded from the calculation of

the cluster criterion. We define 2 8
BNH

as the measurement if

block 8 has at least four blocks in its Moore neighborhood

and at least three blocks in its von Neumann neighborhood.

2 8
BNH

is defined as

2 8
BNH

=

{
1, if |S8

M
| ≥ 4 ∧ |S8

VN
| ≥ 3

0, otherwise

. (9.15)

The criterion 21
CL

for block 1 to be classified as a part of a

cluster is then defined as

21
CL
=


1,

if 21
BNH

= 1

∨ (∃< ∈ S� : (2<
BNH

= 1 ∧ 1 ∈ S<"))
0, otherwise

, (9.16)

that is, block 1 has either itself sufficiently many neighbors

as defined by 2 8
BNH

to be classified as a part of a cluster or is

in the neighborhood of a block < that fulfills this criterion.

Randomly dispersed blocks (Fig. 9.8) have maximally one

direct diagonal neighbor. This means that these blocks have

no neighbors in their von Neumann neighborhood S1
VN

and

maximally one neighbor in their diagonal neighborhood S1
D
.

We thus define the criterion 21
RD

for block 1 to be classified

as randomly dispersed as

21
RD
=

{
1, if |S1

D
| ≤ 1 ∧ |S1

VN
| = 0

0, otherwise

. (9.17)

9.3 Impact of the Agent-Block Ratio

In our first experiments, we study the impact of the agent-

block ratio using the standard minimize surprise approach

(see Ch. 3) in the seven different experimental setups (see

Tab. 9.1). For six experimental setups, we use a constant block

density of 0.13 by setting either 32 blocks on a 16× 16 grid or

50 blocks on a 20×20 grid. On both grids, we do experiments

with agent-block ratios of 1 : 1 (high swarm density) and 1 : 2

(intermediate swarm density). In addition, we use a ratio

of 5 : 16 on the smaller grid and of 2 : 5 on the larger grid (low

swarm densities), see Tab. 9.3. Furthermore, we increase the

block density to 0.19 in a setup with 25 agents and 75 blocks

(i.e., a 1 : 3 agent-block ratio) on the 20 × 20 grid to show the

effects on the resulting structures.
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Table 9.3: Evaluation metrics (see Sec. 9.2) of 20 independent evolutionary runs in the collective construction scenario with # agents and

� blocks: median best fitness � (Eq. 3.1) in the last time step of all runs; quantity, similarity ( (Eq. 9.3), mean block movement"� , and

mean agent movement"# (Eq. 9.6) for runs with block movement, that is, with a similarity ( smaller one; percentages of formed block

structures (i.e., lines LN, pairs PR, clustering CL, and random dispersion RD) at the start (C = 0) and end (C = )) of the runs. Median values

in parentheses [47].

# − � grid median similarity ( < 1.0 structures

# � ratio size fitness � qty. ( "� "# C LN PR CL RD

10 32 5 : 16 16 × 16 0.91 11

0.78

(0.88)

0.0

(0.0)

0.43

(0.47)

0

T

0.0

0.0

20.0

27.5

0.0

5.0

80.0

67.5

16 32 1 : 2 16 × 16 0.90 11

0.65

(0.78)

0.0

(0.0)

0.49

(0.48)

0

)
0.0

2.5

15.0

15.0

0.0

12.5

85.0

70.0

32 32 1 : 1 16 × 16 0.89 14

0.418

(0.34)

0.0

(0.0)

0.38

(0.42)

0

T

0.0

5.0

7.5

47.5

0.0

10.0

92.5

37.5

20 50 2 : 5 20 × 20 0.90 10

0.85

(0.87)

0.0

(0.0)

0.33

(0.42)

0

)
0.0

0.0

2.5

7.5

0.0

0.0

97.5

92.5

25 50 1 : 2 20 × 20 0.90 10

0.82

(0.83)

0.0

(0.0)

0.43

(0.45)

0

T

0.0

0.0

7.5

12.5

0.0

0.0

92.5

87.5

50 50 1 : 1 20 × 20 0.87 7

0.49

(0.42)

0.0

(0.0)

0.24

(0.29)

0

)
0.0

5.0

12.5

27.5

0.0

0.0

87.5

67.5

25 75 1 : 3 20 × 20 0.86 6

0.78

(0.82)

0.0

(0.0)

0.20

(0.20)

0

T

5.0

15.0

50.0

47.5

0.0

0.0

45.0

37.5

Figure 9.9: Best fitness � over genera-

tions 6 of 20 independent evolutionary

runs on the 20 × 20 grid with 50 agents

and 50 blocks in the collective construc-

tion scenario. Medians are indicated by

the red bars [47].

A median best fitness (Eq. 3.1) of at least 0.86 in the last

generation is reached across all experiments, see Tab. 9.3,

meaning that a median of 86 % of the sensor values are

predicted correctly by the prediction networks. We infer that

the prediction task is easy as high fitness values are reached

in all runs. Fig. 9.9 shows the increase of the best fitness

over generations of 20 independent evolutionary runs using

50 agents and 50 blocks on a 20× 20 grid. It is representative

for the fitness curves observed in all experiments.

Since we are aiming for collective construction, we study

the runs with altered block positions, that is, with a similar-

ity (Eq. 9.3) lower than 1.0, in more detail. First, we compare

the quantity of runs with altered block positions in the six

different experimental setups with a block density of 0.13.

For the smaller agent-block ratios, half of the 20 runs on

the 20 × 20 grid and 11 runs on the 16 × 16 grid lead to

the alteration of block positions. The number rises to 14 on

the 16 × 16 grid and decreases to seven on the 20 × 20 grid

for a 1 : 1 ratio. The mean and median similarities in these

runs with altered block positions decrease (i.e., more moved

blocks) with increasing agent-block ratios. Precisely, runs
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4: https://youtu.be/T9s5669ypXM

with a 1 : 1 ratio have about 40 percentage points (pp) lower

median similarities than smaller ratios and thus block posi-

tions are altered most. In the scenario with increased block

density (i.e., 75 blocks on a 20 × 20 grid), six runs lead to

the alteration of block positions. The mean similarity is high,

that is, few blocks are moved.

For all runs of the seven experimental setups, we measure

no block movement (Eq. 9.6) during the last � time steps

(i.e., � = 128 for the 16 × 16 grid and � = 200 for the 20 ×
20 grid). Consequently, block pushing happens, if any, at

the beginning of the runs. The system then converges, that

is, blocks have fixed positions and form stable structures.

We find agent movement in all runs with block movement,

that is, runs with a similarity below 1.0. In contrast, agent

movement (Eq. 9.6) is mostly zero in runs without altered

block positions (i.e., similarity ( is 1.0) indicating that agents

mostly turn in this case. Nevertheless, in a few runs agents

move constantlywithout pushing any blocks or self-assemble

into structures.

We classify the block structures formed by the best evolved

behaviors at the end (C = )) of the run using our metrics

defined in Sec. 9.2.2, see Tab. 9.3. The best evolved behaviors

most frequently lead to the random dispersion of blocks

(Fig. 9.10b) in all experiments except for the 1 : 3 agent-block

ratio setup. The formation of pairs of blocks prevails in the

latter scenario. Pairs of blocks (Fig. 9.10c) also form frequently

in all other experiments while lines emerge rarely. Clusters

(Fig. 9.10a) form only on the smaller grid, maybe because

agents need to push blocks more grid cells forward to group

them on the larger grid. Overall, we find a variety of swarm

behaviors emerging due to our task-independent reward for

high prediction accuracy. A video of emergent behaviors is

online.
4

Next we compare the distribution of formed block structures

at the start (C = 0) and the end (C = )) of the runs of the

best evolved individuals to estimate to which extend agents

changed their environment, see Fig. 9.11. In the experimental

setups with a block density of 0.13, the uniformly random

initialization of block positions leads mostly to randomly

dispersed block structures. In addition, in less than 20 % of

the runs pairs of blocks form due to the random initialization.

The denser block distribution in the experimental setup

with the higher block density (i.e., block density of 0.19

with 75 blocks on a 20 × 20 grid) reduces the probability of

dispersion and increases the probability of pairs during the

initial random block placement.

In the scenarios with a block density of 0.13, we find that the

best evolved behaviors decrease dispersion by 5 to 15 pp for

the lower agent-block ratios. For the 1 : 1 agent-block ratio,

dispersion decreases by 55 pp on the 16 × 16 grid and by

20 pp on the 20 × 20 grid during the runs. The percentage

https://youtu.be/T9s5669ypXM
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(a) clustering on a 16 × 16 grid with 10 agents and 32 blocks

(b) dispersion on a 16 × 16 grid with 16 agents and 32 blocks

(c) pairs on a 20 × 20 grid with 20 agents and 50 blocks

(d) lines on a 20 × 20 grid with 25 agents and 75 blocks

Figure 9.10: Block structures at the start

(left) and end (right) of a run in the col-

lective construction scenario. Agents are

represented by circles, their color and

the lines give their headings. Blocks are

represented by brown squares [47].
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Figure 9.11: Distributions of formed

block structures at the start (C = 0,

left) and end (C = ), right) of the post-

evaluation runs of the 20 best evolved

individuals for the different experimen-

tal setups with swarm size # and block

quantity � (see Tab. 9.1) in our collec-

tive construction scenariowith clustering

(CL), lines (LN), pairs (PR), and random

dispersion (RD).

Figure 9.12: Quantity # of runs of the

20 best individuals with a similarity ( <
1.0 (Eq. 9.3, left) and with different block

structure classifications at the start (C = 0)

and the end (C = )) of the runs (changed
block structure, right) in our collective

construction scenario for the different

experimental setups with swarm size #
and block quantity � (see Tab. 9.1).

drop in dispersion is always less than the initial percentage of

randomly dispersed block structures. We find that agents do

not push blocks into a new structure in all runs with altered

block positions. The scenarios with lower agent-block ratios

lead to ten to eleven runs with altered block positions (i.e.,

similarity ( < 1.0), but in only one to four runs the block

structure changes from start to end of the run, see Fig. 9.12.

By contrast, the scenarios with a 1 : 1 agent-block ratio lead

to different structure classifications at the end of the run than

at the beginning of the run in four out of seven runs on the

20 × 20 grid and 11 out of 14 runs on the 16 × 16 grid. The

scenario with a block density of 0.19 resulted in six runs

with altered block positions (i.e., similarity ( < 1.0), all of
which have different block structure classifications at the start

and end of the run. Nevertheless, the structure distribution

does only slightly change with an increase of 10 pp in lines

and a decrease of 2.5 pp and 7.5 pp, respectively, in pairs

and random dispersion. Consequently, it is the only setup in

which the amount of pairs decreases during the runs.

Overall, we find that the scenarios with a 1 : 1 agent-block

ratio and a block density of 0.13 lead to the greatest alteration

of block structures and thus the most active collective con-

struction behaviors. Furthermore, different structures form

on the two grid sizes; clustering, for example, can only be

found on the smaller grid. Using a higher block density of

0.19 with a 1 : 3 agent-block ratio did not improve our results.

Consequently, we focus on the first six experimental setups

with the lower block density of 0.13 in the following.
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Figure 9.13: Best fitness � (Eq. 9.18) over

generations 6 of 20 independent evolu-

tionary runs on the 20 × 20 grid with

20 agents and 50 blocks in the collec-

tive construction scenario with prede-

fined predictions aiming for pairs and

lines. Medians are indicated by the red

bars [47].

Figure 9.14:Agent sensor predictions for

the collective construction scenario with

predefined predictions. All six sensor

predictions are set to 0, that is, agents

predict to sense no other agents. The

circle represents the agent and the line

indicates its heading.

Figure 9.15: Block sensor predictions for

the collective construction scenario with

predefinedpredictions for pairs and lines

of blocks. The circle represents the agent

and the line indicates its heading.

9.4 Engineered Self-Organized Construction

In the next experiments, we set the sensor predictions to

fixed values to predefine that the resulting behaviors of the

evolutionary process lead to the formation of desired block

structures, while still rewarding high prediction accuracy

(see Ch. 6). To elaborate, we still use the fitness function

of our minimize surprise approach as defined in Eq. 3.1,

but predefine the sensor predictions to values matching our

targeted block structures. As before, actors are only indirectly

rewarded by being paired with a predictor. High fitness can

only be reached if the actors lead to ‘predictable’ behavior,

that is, to the formation of the desired block structure here.

We set the agent sensor predictions to 0 (i.e., B̃0 = B̃1 = B̃2 =
B̃3 = B̃4 = B̃5 = 0, see Fig. 9.14) and vary the block sensor

predictions in three different experiments.

In the first experiment, we aim for pairs and lines by pre-

defining the sensor predictions for the two block sensors in

front of the agent to 1 (i.e., B̃6 = B̃9 = 1), while all other pre-

dictions are set to 0 (i.e., B̃7 = B̃8 = B̃10 = B̃11 = 0, see Fig. 9.15).

Consequently, we require all agents to have a pair or line

of blocks directly in front of them to maximize their fitness.

Our minimize surprise fitness function (Eq. 3.1) adapts to

� =
1

)#'

)−1∑
C=0

#−1∑
==0

( predefined predictions: empty grid cells︷                                       ︸︸                                       ︷∑
A∈{0,1,2,3,4,5,7,8,10,11}

(1 − | 0 − B=A (C)|) +∑
A∈{6,9}

(1 − | 1 − B=A (C)|)︸                      ︷︷                      ︸
predefined predictions: grid cells occupied by blocks

)
,

(9.18)

B̃=A (C) = 0

B̃=A (C) = 1

with evaluation length) in time steps, swarm size# , number

of sensors per swarmmember ', and prediction B̃=A (C) for and
value B=A (C) of sensor A of swarm member = at time step C.

We find amean best fitness of about 0.8 in all six experimental

setups, see Tab. 9.4. This is up to 0.08 lower than in our first
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Table 9.4: Evaluation metrics (see Sec. 9.2) of 20 independent evolutionary runs in the collective construction scenario with predefined

predicted pairs of blocks, # agents and � blocks: median best fitness (Eq. 3.1) in the last time step of all runs, similarity ( (Eq. 9.3),

mean block movement"� , mean agent movement"# (Eq. 9.6), and percentages of formed block structures (i.e., lines (LN), pairs (PR),
clustering (CL), and random dispersion (RD)) at the start (C = 0) and end (C = )) of the runs. Median values in parentheses [47].

# − � grid median structures

# � ratio size fitness � ( "� "# C LN PR CL RD

10 32 5 : 16 16 × 16 0.87

0.66

(0.69)

0.03

(0.03)

0.25

(0.24)

0

)
0.0

0.0

20.0

85.0

0.0

2.5

80.0

12.5

16 32 1 : 2 16 × 16 0.85

0.56

(0.56)

0.02

(0.0)

0.21

(0.22)

0

)
0.0

10.0

12.5

72.5

0.0

5.0

87.5

12.5

32 32 1 : 1 16 × 16 0.81

0.44

(0.42)

0.0

(0.0)

0.26

(0.26)

0

)
0.0

15.0

12.5

55.0

0.0

15.0

87.5
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0.0

75.0

0.0

5.0

100.0

5.0
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(a) initial positions (b) final positions

Figure 9.16: Resulting pair structure

with predefined sensor predictions using

25 agents and 50 blocks on a 20× 20 grid.

Agents are represented by circles, their

color and the lines give their headings.

Blocks are represented by squares.

experiments without predefined predictions (see Tab. 9.3).

Fig. 9.13 visualizes the increase of the best fitness over gener-

ations of 20 independent evolutionary runs with 20 agents

and 50 blocks on a 20 × 20 grid with predefined predictions

pushing emergence towards lines and pairs of blocks. It is rep-

resentative for the fitness curves observed in all experiments

with predefined predictions.

Blockpositionswere altered in all runs, that is,wealwayshave

similarities ( (Eq. 9.3) smaller than 1.0. For the lower agent-

block ratios, the median similarity decreased by roughly

20 pp on the 16 × 16 grid and by 30 pp on the 20 × 20 grid

compared to our initial experiments without predefined

predictions (see Tab. 9.3). We thus find a greater alteration

of the block structures using low agent-block ratios than

before. This finding is supported by the formed structures

as the best evolved behaviors decrease random dispersion

during the runs by at least 67 pp. The setups with a 1 : 1

agent-block ratio reach similar median similarities in both

the experiments without predefined predictions and the

experiments with predefined predictions aiming for pair and

line structures. Nevertheless, random dispersion decreases
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Figure 9.17: Block sensor predictions

for the collective construction scenario

with predefined predictions for cluster-

ing. The circle represents the agent and

the line indicates its heading.

also by at least 67 pp in the runs with a 1:1 agent-block

ratio when predefining predictions aiming for pairs and lines

compared to amaximum of 55 pp in the experiments without

predefining predictions. In all six experimental setups, the

majority of formed structures are pairs (Fig. 9.16) and we

also observe lines. Consequently, predefining predictions

successfully pushes emergence towards the formation of

pairs and lines of blocks.

In the second experiment, we want to provoke that the

agent swarm forms clusters of blocks. We predefine that

all block sensors predict that a block will be sensed (i.e.,

B̃6 = B̃7 = B̃8 = B̃9 = B̃10 = B̃11 = 1, Fig. 9.17). Consequently,

our minimize surprise fitness function (Eq. 3.1) adapts to

� =
1

)#'

)−1∑
C=0

#−1∑
==0

( predefined predictions: unoccupied grid cells︷                              ︸︸                              ︷∑
A∈{0,1,2,3,4,5}

(1 − | 0 − B=A (C)|) +∑
A∈{6,7,8,9,10,11}

(1 − | 1 − B=A (C)|)︸                                ︷︷                                ︸
predefined predictions: grid cells occupied by blocks

)
,

(9.19)

B̃=A (C) = 0

B̃=A (C) = 1

with evaluation length) in time steps, swarm size# , number

of sensors per swarmmember ', and prediction B̃=A (C) for and
value B=A (C) of sensor A of swarm member = at time step C.

We find a median best fitness of 0.63 to 0.69 and thus

around 0.2 lower values than in our previous experiments.

We infer that the task complexity increased.

As when aiming for pairs and lines, block positions were

altered in all runs (i.e., similarity ( < 1.0). The median

similarity of block positions decreases with increasing agent-

block ratio onbothgrids fromaround50 % to22 %.Compared

to all previous experiments, we reach the lowest similarities

in this experiment and thus the most intense pushing of

blocks. The percentage of random dispersion decreases by at

least 65 pp during the runs and in three experimental setups

(see Tab. 9.1) agents push all initially randomly dispersed

block structures into other structure formations. We observe

that the amount of emerging clusters varies with swarm

density. Mainly pairs emerge for the two lower agent-block

ratios on both grids. While no clusters form for the lowest

agent-block ratio, one run on the 16 × 16 grid and roughly

half of the runs on the 20 × 20 grid result in clusters for the

1 : 2 agent-block ratio setups. The runs with the highest

swarm density and a 1 : 1 agent-block ratio mainly result in

clustering on both grid sizes (Fig. 9.18) but the number is

25 pp higher on the larger grid. We conclude that the task is
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Table 9.5: Evaluation metrics (see Sec. 9.2) of 20 independent evolutionary runs in the collective construction scenario with predefined

predicted block clusters, # agents and � blocks: median best fitness (Eq. 3.1) in the last time step of all runs, similarity ( (Eq. 9.3),

mean block movement"� , mean agent movement"# (Eq. 9.6), and percentages of formed block structures (i.e., lines (LN), pairs (PR),
clustering (CL), and random dispersion (RD)) at the start (C = 0) and end (C = )) of the runs. Median values in parentheses [47].

# − � grid median structures

# � ratio size fitness � ( "� "# C LN PR CL RD

10 32 5 : 16 16 × 16 0.66

0.57

(0.55)

0.05

(0.06)

0.24

(0.29)

0

)
0.0

2.5

20.0

82.5

0.0

0.0

80.0

15.0

16 32 1 : 2 16 × 16 0.67

0.38

(0.34)

0.06

(0.05)

0.23

(0.19)

0

)
0.0

5.0

10.0

80.0

0.0

5.0

90.0

10.0

32 32 1 : 1 16 × 16 0.64

0.20

(0.22)

0.04

(0.03)

0.18

(0.20)

0

)
0.0

0.0

5.0

40.0

0.0

55.0

95.0

5.0

20 50 2 : 5 20 × 20 0.68

0.45

(0.48)

0.03

(0.02)

0.11

(0.10)

0

)
0.0

0.0

5.0

90.0

0.0

0.0

95.0

10.0

25 50 1 : 2 20 × 20 0.69

0.32

(0.35)

0.02

(0.02)

0.14

(0.10)

0

)
0.0

0.0

0.0

55.0

0.0

45.0

100.0

0.0

50 50 1 : 1 20 × 20 0.64

0.24

(0.24)

0.01

(0.0)

0.15

(0.14)

0

)
0.0

0.0

15.0

20.0

0.0

80.0

85.0

0.0

(a) initial positions (b) final positions

Figure 9.18: Resulting block cluster

with predefined sensor predictions using

32 agents and 32 blocks on a 16×16 grid.

Agents are represented by circles, their

color and the lines give their headings.

Blocks are represented by squares [47].

5: � = 128 for the 16 × 16 grid and

� = 200 for the 20 × 20 grid

Figure 9.19: Block sensor predictions for

the collective construction scenario with

predefined empty predictions. The circle

represents the agent and the line indi-

cates its heading.

harder for smaller grids and lower agent-block ratios. Since

there is still agent and block movement in the last � time

steps
5
in all six experimental setups, an increased runtime

may lead to more clusters.

In the third experiment, we predefine that agents predict

no blocks in front of them (i.e., B̃6 = B̃7 = B̃8 = B̃9 = B̃10 =
B̃11 = 0, Fig. 9.19). Consequently, no specific block structure is

predefined in this case as long as agents do not detect blocks.

Our minimize surprise fitness function (Eq. 3.1) adapts to

� =
1

)#'

)−1∑
C=0

#−1∑
==0

predefined predictions: unoccupied grid cells︷                    ︸︸                    ︷
'−1∑
A=0

(1 − | 0 − B=A (C)|) , (9.20)

B̃=A (C) = 0

with evaluation length) in time steps, swarm size# , number

of sensors per swarmmember ', and prediction B̃=A (C) for and
value B=A (C) of sensor A of swarm member = at time step C.
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Table 9.6: Evaluation metrics (see Sec. 9.2) of 20 independent evolutionary runs in the collective construction scenario with predefined

zero predictions, # agents and � blocks: median best fitness � (Eq. 3.1) in the last time step of all runs, similarity ( (Eq. 9.3), mean block

movement"� , mean agent movement"# (Eq. 9.6), and percentages of formed block structures (i.e., lines (LN), pairs (PR), clustering
(CL), and random dispersion (RD)) at the start (C = 0) and end (C = )) of the runs. Median values in parentheses [47].

# − � grid median structures

# � ratio size fitness � ( "� "# C LN PR CL RD

10 32 5 : 16 16 × 16 0.93

0.77

(0.81)

0.0

(0.0)

0.46

(0.43)

0

)
0.0

5.0

10.0

15.0

0.0

5.0

90.0

75.0

16 32 1 : 2 16 × 16 0.93

0.58

(0.59)

0.0

(0.0)

0.52

(0.48)

0

)
0.0

0.0

0.0

35.0

0.0

15.0

100.0

50.0

32 32 1 : 1 16 × 16 0.91

0.30

(0.30)

0.0

(0.0)

0.42

(0.40)

0

)
0.0

7.5

5.0

40.0

0.0

42.5

95.0

10.0

20 50 2 : 5 20 × 20 0.93

0.754

(0.82)

0.0

(0.0)

0.45

(0.45)

0

)
0.0

2.5

10.0

2.5

0.0

5.0

90.0

90.0

25 50 1 : 2 20 × 20 0.93

0.57

(0.63)

0.0

(0.0)

0.52

(0.46)

0

)
0.0

0.0

10.0

45.0

0.0

15.0

90.0

40.0

50 50 1 : 1 20 × 20 0.907

0.351

(0.360)

0.0

(0.0)

0.37

(0.36)

0

)
0.0

5.0

0.0

45.0

0.0

35.0

100.0

15.0

We observe that blocks are moved around in almost all runs

(i.e., similarity ( < 1.0) except for one run on the 20× 20 grid

and for two runs on the 16 × 16 grid with the lowest swarm

density. The median best fitness is above 0.9 for all runs

(see Tab. 9.6) and between 0.02 and 0.06 higher than for the

runs without predefined predictions.

We find various structures in this experiment. Agents try to

disperse themselves to neither perceive agents nor blocks.

Grouping blocks in clusters, pairs or lines may be beneficial

but especially for lower swarm densities the initial struc-

tures may already allow all agents to disperse and find an

isolated position. Furthermore, we find the highest agent

movement in the last � time steps compared to all previous

experiments of the collective construction scenario, but there

is no block movement in these last time steps. Thus, agents

form block structures in the beginning of the runs as in

the experiments without predefined predictions while still

moving but avoiding those blocks in the end of the runs.

In summary, we can engineer self-organized construction

by predefining sensor value predictions. Some structures,

such as clustering or pairs, can easily be engineered while

predefining not to sense any blocks provides rather an addi-

tional intrinsic driver to group blocks. This is due to the fact

that block structures form independently from the agents

and their sensor model in contrast to the self-assembly sce-

nario (see Ch. 6). Lines and pairs, for example, can only be

differentiated by agents that are positioned perpendicular to

the structure as they can only sense more than two adjacent

blocks in this alignment to the structure. In a similar way, an

agent can sense up to three blocks in randomly dispersed

block structures.
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9.5 Discussion and Conclusion

Our study on self-organized collective construction with

minimize surprise shows that our approach can also be used

to evolve swarm behaviors that require agent-environment

interactions. Furthermore, we are able to engineer several

collective construction behaviors by predefining sensor pre-

dictions. Nevertheless, the emergence of behaviors that form

desired structures remains challenging. Preliminary inves-

tigations with seeds of block formations placed initially in

the environment showed that they can effectively trigger

the grouping of blocks at designated spots. However, seeds

were not as effective as predefining predictions. In future

work, we want to investigate the combination of predefined

predictions and seeds. This may allow us to evolve collective

construction behaviors with minimize surprise that build

desired structures at designated positions as realized in other

approaches, for example, by using blueprints of the target

structures that can be used for the calculation of local rules

for the robots [195] or in form of a scalar field guiding the

agents [201]. Based on this initial study of collective con-

struction with minimize surprise in a simple simulation

environment, we are confident that it can be realized in real

world settings, too. In Ch. 11, we make the first step towards

evolving collective construction behaviors on real robots by

aiming for object manipulation in a site clearance scenario in

realistic simulations and with real Thymio II robots.



Basic Swarm Behaviors in
Real-World Settings 10

Chapter Contents

In this chapter, we study the evolution of basic swarm be-

haviors using our minimize surprise approach in realistic

simulations and with real robots. We...

I Sec. 10.1: present the general setup of our approach

for real-world settings,

I Sec. 10.2: introduce the experimental setup for evolv-

ing basic swarm behaviors,

I Sec. 10.3: discuss our results in realistic simulations

and

I Sec. 10.4:with real robots, and

I Sec. 10.5: draw a conclusion.

Parts of this chapter are based on [42, 48].

In all previous scenarios, we used custom robot models

in simple simulations (Chs. 4, 9) and more complex, game

engine-based simulators (Chs. 7, 8).While those studies show

that our minimize surprise approach can be used to evolve a

variety of collective behaviors, the evolutionary algorithm

used so far is not suitable for the use with real robots. It re-

quires thousands of evaluations per evolutionary run, which

would wear down our hardware. In this chapter, we make

the step to evolve swarm robot controllers for real-world

applications with minimize surprise (see Fig. 10.1). First, we

address research question Q6 (see Sec. 1.2) by presenting

the general adaptation of our minimize surprise approach

for real-world settings. Afterwards, we evolve basic swarm

behaviors withminimize surprise in realistic simulations and

with real robots, which is a transfer of earlier works in simple

simulation environments by Hamann [28] and Borkowski

and Hamann [37] (see Sec. 3.3) to the real world. This also

contributes to our study on evolving collective behaviors

for scenarios with different environmental complexities and

agent capabilities with minimize surprise (research ques-

tion Q5, Sec. 1.2).

(a) realistic simulator Webots

(b) real robot experiments

Figure 10.1: Illustration of the scenario

aiming for basic swarm behaviors in real-

world settings.

10.1 Adaptation of Minimize Surprise for
Real-World Settings

The evolution of robot controllers for the application in the

real world is challenging, since there is a tradeoff between

optimization speed and avoiding the reality gap (see Sec. 5).
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parameter simulation real robots

mutation rate ?mut 0.1 0.1

max. evaluations 4max 1,000 400

time step length (sensor update rate) 10 ms 100 ms

evaluation length ) (time steps) 1,000 100

post-evaluation length )% (time steps) 10,000 1,000

re-evaluation probability ?reeval 0.2 0.2
re-evaluation weight 
 0.2 0.2

Table 10.1: Parameters for the evolution-

ary algorithm with (1+1)-selection used

in realistic simulations and real robot ex-

periments.

1: Webots R2020a is licensed under

the Apache License, Version 2.0

(https://www.apache.org/licenses/

LICENSE-2.0). The Thymio II Webots

model is licensed under the open

source Webots Assets license agreement

(https://cyberbotics.com/doc/

guide/webots-license-agreement).

2: (1 + 1)-selection is a form of (� + �)-
selection with number of parents � =

1 and number of offspring � = 1 (see

Sec. 2.3.2) [16].

We adapt our minimize surprise approach for real-world

settings by relying on a centralized online and onboard

evolutionary approach, which allows us to avoid the reality

gap. Consequently, we lose the advantages of optimization

in simulation, namely speeding up the search process and

avoiding wear and tear of the robot hardware. Furthermore,

we have to prevent costly damage to the real hardware

due to potential harmful robot behavior [371]. We address

these problems in a twofold way [48]: (i) by restricting the

number of evaluations [13] and (ii) by integrating a hardware

protection layer [372]. The former is addressed by our choice

of the evolutionary algorithm and the evolution architecture

that we present in this section. The hardware protection layer

is adjusted to our two real-world settings using Thymio II

robots [77] (see Sec. 2.1.2) in theWebots
1
[46] simulator and in

real robot experiments and is presented with the respective

experimental setups (see Secs. 10.2 and 11.1).

In our previous experiments in simulation (Chs. 4 - 9), we

used an evolutionary algorithm with proportionate par-

ent selection and age-based survivor selection conducting

several thousand evaluations per evolutionary run. In on-

line evolution, this would be too time consuming and, as

already mentioned, would wear down our hardware [13].

We therefore use an evolutionary algorithm with (1 + 1)-
selection

2
for our experiments in real-world settings [16, 373].

In (1 + 1)-selection, the current best individual forms the

parent population. We randomly initialize the initial parent

population by drawing weights from a uniform distribution

in [−1, 1]. With a 20 % chance, this current best individual

is re-evaluated to test its suitability for a possibly changed

environment. The updated fitness of the best individual �4
is calculated as an exponentially weighted mean

�4 = 
 5̂4 + (1 − 
)�4−1 , (10.1)

with weighting 
 = 0.2, fitness value 5̂4 reached during

re-evaluation, and previous best fitness �4−1. Otherwise,

offspring is created by adding a uniformly random value in

the range [−0.4, 0.4]with a 10 % probability (i.e., ?mut = 0.1)
to each value of the genome and evaluated. In survivor

selection, the best of these two individuals (i.e., current best

individual or offspring) is selected to form the next parent

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://cyberbotics.com/doc/guide/webots-license-agreement
https://cyberbotics.com/doc/guide/webots-license-agreement
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M
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time

Init Send Wait Receive Select & Mutate Send

Wait Receive Evaluate Send Wait

g � g

Figure 10.2: Schematic interplay of the

robots in our centralized online evolu-

tion architecture. The external master

robot (M) runs the evolutionary process:

it initializes the first genome (g) and

sends it to the clients (C). Clients evalu-

ate the received genome and send their

individual fitnesses (�) back. The mas-

ter determines the overall fitness, selects

the current best individual, decides if it

will be re-evaluated or creates offspring

by mutation, and sends the respective

genome to the clients. The process con-

tinues until terminated, that is, after 4max

evaluations here.

arena

M

C

C
C

C

g
�g � g �

g

�

Figure 10.3: Centralized online evolu-

tion architecture for our experiments in

real-world settings. One robot serves as

the master (M) and coordinates the evo-

lutionary process. This master robot is

placed outside the experimental arena.

The swarm members, or clients (C), re-

ceive a genome (g) from themaster robot,

evaluate it and send their individual fit-

nesses (�) back.

population. This approach has already proven to be suitable

for online evolution, for example, by Heinerman et al. [278]

in a collective foraging scenario with real Thymio II robots.

Online evolution allows for infinitely continued adaptation,

but we stop evolution after 1,000 evaluations in simulation

and after 400 evaluations on the real robots due to limitations

in battery life. We do a forward pass through the actor-

predictor ANN pair used in our minimize surprise approach

(see Fig. 3.1) with every sensor update, which is every 100 ms

on the real Thymio II robots and every 10 ms (simulated

time) in the Webots simulator. Thus, time is discretized into

steps of 100 ms and 10 ms, respectively, and we can calculate

fitness (Eq. 3.1) based on time steps as before. Individuals

are evaluated for 10 s each, which is 1,000 time steps in

simulation and 100 time steps on the real robots. Robots start

an evaluation at the last position of the previous evaluation.

To evaluate the variety of behaviors that emerges due to

our task-independent fitness function (Eq. 3.1), we re-run

the best evolved individual at the end of the evolutionary

run (i.e., the parent individual after 4max evaluations). We

post-evaluate the best evolved individual for 100 s to store

sensor values, predictions, and, in simulation, the robot

trajectories. The robot trajectories give each robot =’s pose
H=(C) = (%=(C), �=(C)) in the global coordinate frame of the

Webots simulatorwithposition%=(C) = (G=(C), H=(C)) (i.e., the
coordinates of the robot’s rotation center) and heading �=(C)
per time step C over the full duration of the post-evaluation.

Table 10.1 summarizes the parameters of the evolutionary

algorithm.

Fig. 10.3 shows the centralized online evolution architec-

ture [16] that we use in our experiments in real-world set-

tings in theWebots simulator and with real Thymio II mobile

robots. For the implementation of this evolution architecture,

we extend the real Thymio II robots with Raspberry Pis (RPi)

(see Sec. 2.1.2) for inter-robot communication capabilities via

Wi-Fi, increased processing power, and the programmability

in Python 3. In the following, we always refer to this extended

version with Thymio II. All of the functionalities provided

by the RPi are available by default in the Webots simulator.

In our online evolution architecture, one robot serves as a

central master. This master robot guides the evolutionary
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(a) arena in the Webots simulator with side length

! = 0.7 m

(b) real arena with side length ! = 1.5 m

master robot

walls

carpeted arena

swarm members

arena boundary

Figure 10.4: Experimental arenas used in the scenario aiming for basic swarm behaviors in real-world settings. We use square, carpeted

arenas with a swarm of ten robots placed in the arena evaluating genomes. The master robot handling the evolutionary process is placed

outside the arena. The arena boundaries are the edges of the carpeted floor in simulation and mirror film in the real arena. The low walls

in distance to the arenas’ boundaries prevent robots from leaving the arena completely.

3: The Emitter andReceiver nodes inWe-

bots can be used to model radio, serial

or infrared communication. We use sim-

ulated radio communication here, since

this resembles the communication via

Wi-Fi on the real robots.

4: Transmission Control Protocol

5: https://gitlab.iti.uni-luebeck.

de/minimize-surprise/

basic-swarm-behaviors-thymio

process, that is, it distributes genomes, collects individual

fitnesses, calculates the overall fitness, selects the best individ-

ual, and creates offspring all onboard the Raspberry Pi when

using the real robots and otherwise in the separate process of

this simulated robot in Webots. We place the master outside

the arena (i.e., it is not evaluating genomes itself) to prevent

experiment abortions due to hardware defects of the master

in the real robot experiments. Still, evolution is running fully

onboard on the real robots. The swarm members (clients)

receive the genomes from the master, evaluate them, and

send their individual fitnesses back. Fig. 10.2 illustrates this

interplay schematically. The communication between master

and clients is realized in the simulation with Webots’ built-in

Emitter and Receiver nodes.
3
On the real robots, we useWi-Fi

and a TCP
4
connection. In the case of transmission errors,

we evaluate genomes again in the next evaluation and do

not count the failed evaluation towards the total number of

evaluations.

10.2 Experimental Setup

In our first real-world scenario, we aim for the evolution

of basic swarm behaviors.
5
We use a swarm of # = 10

Thymio II [77] robots as clients and one Thymio II robot as

themaster (see Sec. 10.1). TheThymio II has a differential drive

with a maximum velocity of 20
cm

s
, but we restrict maximum

speed Emax to 12.6 cm

s
to reduce wear of the motors. We

use the Thymio II’s seven horizontal infrared (IR) proximity

https://gitlab.iti.uni-luebeck.de/minimize-surprise/basic-swarm-behaviors-thymio
https://gitlab.iti.uni-luebeck.de/minimize-surprise/basic-swarm-behaviors-thymio
https://gitlab.iti.uni-luebeck.de/minimize-surprise/basic-swarm-behaviors-thymio
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B5 B6

B7 B8B0

B1

B2 B3

B4

Figure 10.5: Thymio II robot in the We-

bots simulator and the positions of the

robot’s five horizontal IR sensors at the

front (B0 , . . . , B4), two horizontal IR sen-

sors at the back (B5, B6), and two ground

IR sensors (B7, B8).

6: �# =
#×L=×W=

!×! with robot

length L= , robot width W= , and arena

side length !.

Table 10.2: Swarm densities �# per

arena side length ! for the scenario aim-

ing for basic swarm behaviors in real-

world settings. All specified side lengths

are used in simulation; side lengths used

in simulation and in real robot experi-

ments are marked with a ‘*’.

! �#

0.7 m 0.25

0.8 m
∗

0.19

0.9 m 0.15

1.0 m
∗

0.12

1.5 m
∗

0.06

sensors, whereof five are located at the front (B0, . . . , B4) and

two are located at the back (B5 and B6), and its two IR ground

sensors (B7 and B8), see Fig. 10.5. Thus, we have ' = 9 sensor

values. The proximity sensors have a reach of about 10 cm

and are updated every 100 ms on the real robot and every

10 ms (simulated time) in Webots. We normalize all sensors

by their maximum value (i.e., BA ∈ [0, 1]).
Our square arenas have a side lengths of !. We vary swarm

density
6
by placing our robot swarm into arenas with dif-

ferent side lengths as in our self-assembly scenario (see

Ch. 4). In the Webots simulator, we use side lengths ! ∈
{0.7 m, 0.8 m, 0.9 m, 1.0 m, 1.5 m} while we restrict our-

selves to side lengths ! ∈ {0.8 m, 1.0 m, 1.5 m} in our real

robot experiments. This results in swarm densities �# be-

tween 0.06 and 0.25, see Tab. 10.2. As shown in Fig. 10.4,

the arenas have carpeted floor and robots can detect the

arena boundaries, that is, the edges of the carpeted floor

in simulation and mirror film in the real arena, with their

ground IR sensors. Since the ground IR sensors are located

in the front of the robots, backward driving robots detect

the arena boundaries only when they are already almost

completely out of the arena. Therefore, we add low walls in

distance to the real arena boundaries that prevent robots to

leave the arena completely. These walls are not detectable by

a robot’s horizontal IR sensors while the robot is completely

inside the arena. Overall, robots can differentiate between

other robots and the arena boundaries due to the different

used sensors. Other robots are detected by the horizontal IR

sensors (B0, . . . , B6) while the arena boundaries are detected

by the ground IR sensors (B7, B8).

We prevent damages to robots by adding a simple hardware

protection layer (see Sec. 10.1). A robot is stopped if:

1. The robot detects other robots with its front IR sensors

(B0, . . . , B4) and currently aims to drive rather straight

forward.

2. The robot detects other robots with its back IR sen-

sors (B5, B6) and currently aims to drive rather straight

backward.

3. The robot detects the arena boundaries with its ground

IR sensors (B7, B8) and currently aims to drive rather

straight forward or backward.

Driving rather straight means that the robot attempts to

drive in a circle with a radius larger than 5 cm. Consequently,

robots are still allowed to turn on the spot in these cases and

can thus avoid deadlocks. Robots could also exploit being

stopped in these cases to position themselves in structures

and create easily predictable environments. Overall, we keep

hardware protection simple and thus do not guarantee that

all crashes between robots are prevented. But this simple

hardware protection gives robots the freedom to evolve a
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Table 10.3: Parameters of the experimental setup for the scenario aiming for basic swarm behaviors in real-world settings. All specified

side lengths are used in simulation; side lengths used in simulation and in real robot experiments are marked with a ‘*’.

parameter value

arena side length ! {0.7 m, 0.8 m
∗ , 0.9 m, 1.0 m

∗ , 1.5 m
∗}

swarm size # 10

# of sensors and predictor outputs ' 9

sensor values BA [0, 1]
action values 00 , 01 [−1, 1]
max. speed Emax 12.6 cm

s

variety of behaviors, including their own obstacle avoidance

strategy.

Each robot is equipped with an actor-predictor ANN pair as

defined in our minimize surprise approach (see Sec. 3.2) and

rewarded for high prediction accuracy (Eq. 3.1). The actor (see

Fig. 10.6a) is a three-layer feedforwardANNwith eleven input

neurons, seven hidden neurons, and two output neurons. We

use the hyperbolic tangent as the transfer function. The net-

workoutputs twonormalized speeds 00(C), 01(C) ∈ [−1.0, 1.0]
for the Thymio II’s two differential drive motors with every

sensor update. These normalized speeds 00(C) and 01(C) are
scaledwith themaximumspeed Emaxwhen sent to the robot’s

motors. The previously described hardware protection layer

may overwrite the actor outputs to prevent robot damage;

fitness evaluation is not affected by these interventions and

continues as normal. The actor receives the current ' = 9 nor-

malized sensor values and the last set of normalized speeds

00(C − 1) and 01(C − 1) as input. The predictor (see Fig. 10.6b)
is a three-layer ANN with one recurrent hidden layer. The

network has eleven input neurons, ten hidden neurons, and

nine output neurons. We use the logistic sigmoid function

as the transfer function. The predictor outputs normalized

prediction values B̃0(C + 1), . . . , B̃8(C + 1) (B̃A ∈ [0, 1]) for the
nine used sensors. We input the normalized current sensor

values and the next normalized speeds 00(C) and 01(C).

...
...

B0(C)

B8(C)

00(C − 1)

01(C − 1)

00(C)

01(C)

(a) actor

...
...

...

B0(C)

B8(C)

00(C)

01(C)

B̃0(C + 1)

B̃8(C + 1)

(b) predictor

Figure 10.6: Actor and predictor net-

works in the scenario aiming for ba-

sic swarm behaviors in real-world set-

tings. 00(C − 1) and 01(C − 1) are a

robot’s last normalized speeds per wheel

of the Thymio’s differential drive, and

00(C) and 01(C) are its next speeds.

B0(C), . . . , B8(C) are the robot’s ' =

9 sensor values at time step C, B̃0(C +
1), . . . , B̃8(C+1) are its sensor predictions
for time step C + 1.

We do 20 independent evolutionary runs per arena size in

simulation and eight independent evolutionary runs per

arena size in the real robot experiments. To study the ef-

fectiveness of our approach, we additionally generate 20

random ANN pairs per arena size in simulation drawing

weights from a uniform distribution in [−1, 1]. We randomly

place the robots in the arena at the beginning of an evolution-

ary run. As mentioned in the previous section, robots start

an evaluation at the last position of the previous evaluation

afterwards. For post-evaluation of the best evolved individ-

ual at the end of the evolutionary run, we reset the arena in

simulation by placing the robots at random positions. In our

real robot experiments, the robots start post-evaluation at

their last position after 4max evaluations. Tab. 10.1 gives the

hyperparameters used for the evolutionary algorithm and
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7: https://youtu.be/Hai7fzyb_RA

8: The majority of runs leads to mean

covered distances of less than 1.0 m,

which is low compared to the theo-

retically possible maximum of 6.3 m.

The mean covered distance is maximally

2.02 m for the randomly generated indi-

viduals and 2.87 m for the best evolved

individuals.

9: The robot’s maximum rate of ro-

tation about the ICC is wmax =
EA−E;
W=

=
12.6 cm/s+12.6 cm/s

10 cm
= 2.52

rad

s

with right and left wheel speeds along

the ground EA and E; , and distance be-

tween wheels W= . We assume that the

robot always turns in the direction that

leads to the smallest absolute differ-

ence between headings �=(C + 1) and
�=(C). That means, if �=(C + 1) − �=(C)
is less than zero, we take the maxi-

mum of �=(C + 1) − �=(C) and −2� −
(�=(C + 1) − �=(C)). Otherwise, we take

the minimum of �=(C + 1) − �=(C) and
2� − (�=(C + 1) − �=(C)).

10: The radius of the Thymio II is approx-

imately 8.1 cm.

Tab. 10.3 summarizes the parameters for the experimental

setup.

10.3 Experiments in Realistic Simulations

First, we evolve basic swarm behaviors in the Webots simula-

tor with our minimize surprise approach. Running evolution

in simulation is fast and enables easier tracking of exper-

imental data, facilitating the analysis of the best evolved

individuals. A video of the resulting behaviors is online.
7

10.3.1 Metrics

We measure best fitness (Eq. 3.1) over evaluations to de-

termine the success of evolution as in previous scenarios.

In addition, we analyze and classify the behaviors of the

randomly generated individuals and the best evolved indi-

viduals based on two metrics: (i) the robots’ mean change

in heading � and (ii) the mean cluster size. We calculate

both metrics over the last � = 5,000 time steps of the post-

evaluation run giving robots time in the first half of the run

to cover some distance and initiate their dominant behavior.

We do not consider the distance covered by robots as it is low

for all runs.
8

We define the robots’ mean change in heading � as the

absolute accumulated angular displacement over the last

� time steps of the post-evaluation run as given by

� =
1

#

#−1∑
==0

��� )%−1∑
C=)%−�

(�=(C + 1) − �=(C))
��� , (10.2)

with # robots, post-evaluation length of )% time steps, and

headings �=(C) and �=(C + 1) of robot = at time steps C and
C + 1, respectively.

9
We use the absolute of the change in

heading per robot, since the turning direction is irrelevant

for behavior classification. Robots can reach a maximum

change in heading � of 126 rad when constantly turning in

the same direction with maximum angular velocity during

the last 5,000 post-evaluation time steps. Using an empirical

approach, we differentiate between stopped (� < 5), diverse

(5 < � < 55), and spinning (� > 55) behaviors. Robots turn

on the spot in spinning behaviors. Diverse behaviors can

range from robots turning slowly or in large circles to swarms

that are partially stopped and partially circling.

Our second metric is the mean cluster size in the last 5,000

post-evaluation time steps.We define that clusters are formed

out of robots that have at maximum twice the robot radius
10

distance to a minimum of one other cluster member. We

https://youtu.be/Hai7fzyb_RA
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Figure 10.7: Best fitness � of 20 inde-

pendent evolutionary runs over evalu-

ations 4 for the 1.0 m × 1.0 m arena in

simulation aiming for basic swarm be-

haviors in real-world settings.Only every

20th evaluation is printed for clearer il-

lustration. Medians are indicated by red

bars [343].

11: That is, a group of two robots, a group

of three robots, and five dispersed robots.

Table 10.4:Median best fitness � (Eq. 3.1)

for the best evolved individuals (evo) and
for the randomly generated ANN pairs

(random) per arena size ! × ! for the sce-

nario aiming for basic swarm behaviors

in realistic simulations.

! �

evo random

0.7 m 0.92 0.58

0.8 m 0.88 0.58

0.9 m 0.92 0.53

1.0 m 0.93 0.58

1.5 m 0.95 0.57

differentiate between behaviors leading to grouped and

dispersed robots based on a threshold for mean cluster size

of 1.43, which corresponds to five grouped robots.
11

10.3.2 Results

Fig. 10.7 visualizes the increase of best fitness of 20 indepen-

dent evolutionary runs over evaluations in the 1.0 m × 1.0 m

arena as representative example for all obtainedfitness curves.

We reach a median best fitness of at least 0.88 for the best

evolved individuals and of maximum 0.58 for the randomly

generated ANN pairs for all arena sizes, see Tab. 10.4. Conse-

quently, our approach outperforms pure random search in

fitness, that is, best evolved individuals have better prediction

accuracy than randomly generated individuals.

Next, we analyze the behavior diversity by post-evaluating

the best evolved individuals and the randomly generated

individuals. Over all arena sizes, we find more behaviors

that are categorized as diverse for randomly generated ANN

pairs than for best evolved individuals, see Fig. 10.8. The

majority of diverse behaviors leads to partially stopped and

partially circling swarms. For those behaviors, we assume

that predicting sensor inputs is hard as sensor values are

time-variant and vary for the individual swarm members.

Otherwise, most randomly generated ANN pairs lead to

behaviors with stopped robots that are either grouped or

dispersed and a few randomly generated individuals lead

to spinning dispersed robots. By contrast, evolution mostly

leads to stopped robots that are grouped or dispersed, or

spinning robots that are dispersed. All of these behaviors are

easy to predict as they have constant sensor values.

Grouped robots are stopped by hardware protection in most

cases guaranteeing constant sensor input. Rare cases lead to

robots staying on their current position by quickly switch-

ing turning direction or robots constantly turning on the

spot while still remaining close enough to be considered as

grouped. Grouped robots are positioned close enough to

detect each other with their horizontal proximity sensors

(B0, . . . , B6). Fig. 10.9a visualizes one run leading to stopped

grouped robots and their mean sensor values and predic-

tions over the post-evaluation run. In this run, robots detect
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(a) best evolved individuals (b) randomly generated ANN pairs

Figure 10.8: Mean change in heading � (Eq. 10.2) and mean cluster size over the last 5,000 time steps for the 20 best evolved individuals

and 20 randomly generated individuals per arena size ! × !, ! ∈ {0.7 m, 0.8 m, 0.9 m, 1.0 m, 1.5 m} in our scenario aiming for basic

swarm behaviors in realistic simulations. Gray lines categorize the resulting behaviors [343].

(a) stopped grouped robots (! = 0.8 m)

(b) stopped dispersed robots (! = 0.9 m)

(c) spinning dispersed robots (! = 0.9 m)

Figure 10.9: Robot positions at the end of the post-evaluation run and the swarm’s mean sensor values and predictions over the

post-evaluation run of three best evolved individuals leading to stopped robots that are dispersed or grouped, or to spinning dispersed

robots in our scenario aiming for basic swarm behaviors in realistic simulations. B0 , . . . , B4 give the frontal horizontal proximity sensors,

B5 and B6 the back horizontal proximity sensors, and B7 and B8 the ground IR sensors.
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Table 10.5: Median best fitness � for the

best evolved individuals per arena side

length ! for the scenario aiming for basic

swarm behaviors in real robot experi-

ments.

! �

0.8 m 0.81

1.0 m 0.87

1.5 m 0.94

neighbors mainly with their front right proximity sensors

(B3, B4) and in few cases also with their outer left and back

proximity sensors (B1, B5, B6). The ground IR sensors (B7, B8)

lead to real and predicted values matching the reflected

light from the arena’s carpet. Mean real sensor values and

predictions match closely in general. But slightly larger devi-

ations between actual and predicted values for a few sensors

do not affect the total fitness drastically, since each sensor

contributes only one ninth to the total fitness.

Stopped dispersed robots (see Fig. 10.9b) and spinning dis-

persed robots (see Fig. 10.9c) frequently distribute over the

arena by employing an emergent obstacle avoidance behav-

ior. In the case of stopped dispersed swarms, the robots

drive to different parts of the arena boundary where they are

stopped by hardware protection. Dispersed robots have con-

stant low horizontal proximity sensor values and predictions

(B0, . . . , B6 ≈ 0), that is, they neither detect nor predict other

swarm members. In our example for spinning dispersed

robots, see Fig. 10.9c, such low sensor values and predictions

for all horizontal proximity sensors are found. By contrast, we

find slightly higher proximity sensor values for the stopped

dispersed swarm, see Fig. 10.9b, which are caused by the

three grouped robots. As before, we find ground IR sensor

values that match the reflected light from the arena’s carpet

in both dispersion variants (B7, B8 ≈ 0.2). The swarm stopped

at the arena’s boundary (Fig. 10.9b) has lower right ground

IR sensor values (B8 ≈ 0.1) since this sensor detects the edge
of the carpeted floor, which leads to IR sensor values of zero.

The predictions for the ground sensors appear to be reversed

in this run. This may be caused by robots having detected

the arena boundary with their left ground IR sensors during

the evolutionary run and having optimized the predictor

accordingly. Since we randomly reposition the robots at the

beginning of the post-evaluation run, they may detect the

arena boundary with the other ground sensor than before.

High fitness values can still be reached as the difference

between predictions and actual sensor values is small.

10.4 Experiments with Real Thymio II Robots

Next, we evolve basic swarm behaviors in real robot exper-

iments with our minimize surprise approach. Each of the

eight independent evolutionary runs per arena size (see

Sec. 10.2) took approximately 80 min.

Fig. 10.10 visualizes the increase of best fitness over evalua-

tions in the 1.0 m × 1.0 m arena as representative example

for all obtained fitness curves. We reach a median best fitness

of at least 0.81 for the best evolved individuals for all arena

sizes, see Tab. 10.5.
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Figure 10.10: Best fitness � of eight in-

dependent evolutionary runs over eval-

uations 4 for the 1.0 m × 1.0 m arena in

real robot experiments aiming for basic

swarm behaviors. Only every 5th eval-

uation is printed for clearer illustration.

Medians are indicated by red bars.

12: The rotation between two time steps C

and C + 1 (ΔC = 100 ms) is Δ�(C , C +
1) = w(C)ΔC with w(C) being the angular

velocity set at time step C.

Unlike the runs in simulation, we do not have exact data for

the robot trajectories in our real robot experiments. However,

we can estimate the robots’ mean change in heading based on

the robots’ angular velocities determined by the set speeds

of its two differential drive wheels (i.e., actor outputs scaled

by Emax or zero if hardware protection is active).
12

This

calculation does not take into account influences of the

real world, such as friction or production-related differences

between themotors,which affect the actual change inheading.

But the calculated values are still a good estimate. We can

determine the approximate mean cluster size by hand, that

is, we count how many robot clusters form using the video

footage. This enables us to classify the behaviors of the best

evolved individuals based on mean change in heading and

mean cluster size in the last half of the post-evaluation run

(i.e., � = 500 time steps here) as before.

As in our runs in simulation, we mainly find stopped robots

that are grouped or dispersed, or spinning dispersed swarms,

see Fig. 10.11. We thus have comparable results in simulation

and real robot experiments. It is noticeable that half of the

runs in the 0.8 m × 0.8 m arena are classified as diverse. We

assume that the high swarm density in combination with

increased noise in the real worldmake it difficult to evolve be-

haviors leading to stopped or spinning swarms. We find low

sensor values and predictions for the horizontal proximity

sensors (B0, . . . , B6 ≈ 0) in dispersed swarms, see Figs. 10.12b

and 10.12c. Our grouped swarm, shown in Fig. 10.12a, has

high frontal proximity sensors values (B0, . . . , B4 > 0.4) and
low back proximity sensors values (B5, B6 < 0.2). The ground
IR sensor values of the grouped swarm are low (B7, B8 ≈ 0.25)

matching the reflected light from the arena’s carpet. By con-

trast, we find high ground IR sensor values (B7, B8 ≈ 0.62)

for the robots that are stopped at the arena’s boundary be-

cause the mirror film reflects light well (see Fig. 10.12b). The

spinning dispersed robots (see Fig. 10.12c) have intermediate

ground IR sensor values (B7, B8 ≈ 0.4), since a few robots are

close to the arena’s boundary.
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Figure 10.11: Approximated mean change in heading � and mean cluster size over the last 5,000 time steps for the eight best evolved

individuals per arena size ! × !, ! ∈ {0.8 m, 1.0 m, 1.5 m} in our real robot experiments aiming for basic swarm behaviors. Gray lines

categorize the resulting behaviors.

(a) stopped grouped robots (! = 0.8 m)

(b) stopped dispersed robots (! = 1.0 m; the two robots in the arena’s center are circling)

(c) spinning dispersed robots (! = 1.0 m)

Figure 10.12: Robot positions at the end of the post-evaluation run and the swarm’s mean sensor values and predictions over the

post-evaluation run of three best evolved individuals leading to stopped robots that are dispersed or grouped, or to spinning dispersed

robots in real robot experiments aiming for basic swarm behaviors. B0 , . . . , B4 give the frontal horizontal proximity sensors, B5 and B6 the

back horizontal proximity sensors, and B7 and B8 the ground IR sensors.
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10.5 Discussion and Conclusion

Our initial study of evolving swarm behaviors withminimize

surprise in realistic simulations and real robot experiments

has proven that our approach is suitable for online evolution

in real-world settings. In first experiments, we have evolved a

variety of simple swarm behaviors, that is, mainly dispersion

and grouping behaviors with either stopped or spinning

robots. The implemented hardware protection probably has a

huge influence on the resulting behaviors as swarmmembers

exploit being stoppedat the arena’s boundaryorwhengetting

too close to each other to stay on their current positions.

We want to investigate the effect of the chosen hardware

protection on the emergent behaviors in detail in future work.

Another influencing factor on the emergent behaviors is the

environment. In the scenario presented in this chapter, we

used a simple, empty environment in which swarmmembers

can only interact with each other. In the next chapter, we

make a first step towards more sophisticated and dynamic

environments by distributing blocks in the environment that

can be manipulated by the swarm.



(a) realistic simulator Webots

(b) real robot experiments

Figure 11.1: Illustration of the scenario

aiming for object manipulation behav-

iors in real-world settings.

1: https://gitlab.iti.uni-luebeck.

de/minimize-surprise/

object-manipulation-thymio

2: However, the number of input, hid-

den, and output neurons changes, since

we extend the robots with additional sen-

sors in this scenario. When using one ad-

ditional sensor (i.e., total of ' = 10), the

actor has 12 input, 7 hidden and 2 output

neurons, and the predictor has 12 input,

11 hidden and 10 output neurons. When

using three additional sensors (i.e., to-

tal of ' = 12), the actor has 14 input,

8 hidden and 2 output neurons, and the

predictor has 14 input, 13 hidden and

12 output neurons.

Object Manipulation Behaviors
in Real-World Settings 11

Chapter Contents

In this chapter, we study the evolution of object manipula-

tion behaviors using our minimize surprise approach in

realistic simulations and with real robots. We...

I Sec. 11.1: introduce the experimental setup,

I Sec. 11.2: discuss our results in realistic simulations

and

I Sec. 11.3: with real robots, and

I Sec. 11.4: draw a conclusion.

Parts of this chapter are based on [42, 48].

Previously, we have studied, among other things, the evo-

lution of collective construction behaviors in simulated 2D

torus grid environments (see Ch. 9) as well as basic swarm

behaviors in real-world settings (see Ch. 10). In this chapter,

we combine both previous approaches aiming for object

manipulation behaviors in real-world settings (research ques-

tion Q5, Sec. 1.2). We distribute manipulable objects (blocks;

see Fig. 11.1) in the environment as in our previous study of

collective construction in simple simulations, but here we

do experiments in realistic simulators and with real robots

using the approach presented in Ch. 10. For this purpose, we

extend the Thymio II mobile robot with a bulldozer blade

that enables it to push blocks, for example, to form clusters or

to clear an area from blocks as in blind bulldozing [193] (see

Sec. 2.2.1). The latter is a necessary behavior for the prepa-

ration of construction sites and thus object manipulation

behaviors that are forms of collective construction [192] can

potentially emerge.

11.1 Experimental Setup

Our setup for the evolution of object manipulation behaviors

withminimize surprise in real-world settings is similar to our

previous scenario, see Ch. 10.
1
We evolve the robot controllers

using the same online and onboard evolutionary approach

as before, see Sec. 10.1. The experimental setup is similar to

the one presented in Sec. 10.2, but we make several changes

to the arena, the robot platform, and the hardware protection

layer. Unchanged is the setup of the actor-predictor ANN

pairs.
2
We present the modifications in detail and refer the

reader to the previous chapter for all other details.

https://gitlab.iti.uni-luebeck.de/minimize-surprise/object-manipulation-thymio
https://gitlab.iti.uni-luebeck.de/minimize-surprise/object-manipulation-thymio
https://gitlab.iti.uni-luebeck.de/minimize-surprise/object-manipulation-thymio
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parameter value

arena side length ! 1.1 m

swarm size # 4

block densities �� {0.036, 0.14}
# of sensors and predictor outputs ' {10, 12}
sensor values BA [0, 1]
action values 00 , 01 [−1, 1]
max. speed Emax 12.6 cm

s

Table 11.1: Parameters of the experimen-

tal setup for the scenario aiming for

object manipulation behaviors in real-

world settings.

(a) extended Thymio II in Webots

(b) real Thymio II with bulldozer blade

B9

B10

B11

B5 B6

B7 B8B0

B1

B2 B3

B4

(c) sensor positions

Figure 11.2: Extended Thymio II for the

object manipulation scenario (a) in the

Webots simulator and (b) in reality, and

(c) the position of the robot’s seven hor-

izontal proximity sensors (B0 , . . . , B6),
two ground IR sensors (B7 , B8), two light

sensors (B10 , B11; invisible in simulation)

and one force sensor (B9) [374].

In our object manipulation scenario, we use a swarm of

# = 4 Thymio II robots as clients and one Thymio II robot

as the master. As before (see Sec. 10.2), we restrict the robots’

maximum speed Emax to 12.6 cm

s
to reducewear of themotors,

and use its seven horizontal proximity sensors (B0, . . . , B6)

and its two IR ground sensors (B7, B8). For this scenario, we

extend the simulated and real robots with a bulldozer blade

in a bumper style, two light sensors (B10, B11), and a pressure

sensor (B9). The light sensors are on top of the robot and

can detect light gradients. The force sensor measures forces

when the Thymio II pushes objects with its bulldozer blade.

In Webots, we modify the open-source PROTO-files of the

Thymio II Webots model to add sensors and the bulldozer

blade, see Fig. 11.2a. For the real robots, we connect the

force sensor (HSFPAR303A) and the light sensors (TSL45315;

not used in our real robot experiments here) to the RPi

(see Sec. 2.1.2). The bulldozer blade is built out of LEGO
®

parts and mounted to the LEGO
®
attachment points on

the Thymio II, see Fig. 11.2b. Fig. 11.2c indicates the sensor

positions on the extended Thymio II robot.

We initially place the robots at the center of arenas of size

1.1 m × 1.1 m, see Fig. 11.3. We use arenas with uniform

light conditions (standard arena) in simulation and real robot

experiments, see Figs. 11.3a and 11.3b. To investigate the

influence of light on emerging behaviors, we use a second

arena (gradient arena) in simulation that has a light bulb above

its center resulting in gradually decreasing light intensity

towards the arena boundaries, see Fig. 11.3c. The light sensors

are irrelevant in the standard arena and are only used in the

gradient arena. As before, the arenas have carpeted floor,

boundaries that can be detected by the robots with their

ground IR sensors, and walls in distance to the real arena

boundaries preventing robots to leave the arena completely.

Similar as in our collective construction scenario (see Ch. 9),

we randomly distribute blocks in the arena. In our real robot

experiments, wooden cubes of size 2.5 cm × 2.5 cm × 2.5 cm

that weigh about 10 g serve as the blocks. In simulation, we

use blocks of the same size but weighing 2 g to compensate

for differences between simulation and real world that we

determined in preliminary investigations. The blocks are too

small to be detected by the horizontal proximity sensors and

are only detected by the pressure sensors. This enables robots

to discriminate between other robots (B0, . . . , B6), blocks (B9),
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(a) real arena, high block density (�� ≈
0.14)

(b) simulated standard arena, low block

density (�� ≈ 0.04)

(c) simulated gradient arena, high block

density (�� ≈ 0.14)

Figure 11.3:Arenas used in our real robot

experiments and in theWebots simulator

in our scenario aiming for object manip-

ulation behaviors in real-world settings.

The initial pose (i.e., position and head-

ing) of each robot is fixed for all setups

while blocks are distributed randomly

at the beginning of the evolutionary run.

For each arena,weuse twodifferent block

densities �� ∈ {0.04, 0.14}. Not shown

is themaster robot guiding the evolution-

ary process that is positioned outside the

experimental arena, see Fig. 10.4 [374].

and the arena boundaries (B7, B8). We use two different block

densities �� in our experiments: a low block density of

ca. 0.04 (i.e., ≈ 55
blocks

sqm
) and a high block density of ca. 0.14

(i.e., ≈ 220
blocks

sqm
). Tab. 11.1 summarizes the parameters for

the experimental setup.

To prevent damage to the robots, we add a hardware pro-

tection layer (see Sec. 10.1) that is adapted to our object

manipulation scenario. Hardware protection intervenes as

follows:

1. If a robot detects a too close obstacle with its horizontal

proximity sensors (B0, . . . , B6), an escape behavior is

executed.

2. If a robot detects the arena boundaries with its ground

IR sensors (B7, B8), the robot is prevented to completely

leave the arena by being forced to turn on the spot.

3. If a robot detects a pushing force with its pressure

sensor (B9) exceeding an equivalent of ca. 10 blocks, the

robot is forced to turn away from the blocks on the spot

to avoid motor damage.

4. If a robot constantly drives backward for more than 9 s,

the robot is stopped to avoid motor damage as pushing

force cannot be measured in this driving direction. The

9 s limit is reset once positive motor values occur.

Backward driving robots detect the arena boundaries only

when they are already almost completely out of the arena,

since the ground IR sensors are in the front of the robot, see

Fig. 11.2c. In this case, the walls in distance to the arena’s real

boundaries trigger the robot’s escape behavior (1.) and the

robot drives back into the arena.

In simulation, we do 20 independent evolutionary runs per

block density in the standard arena and the gradient arena.

Additionally, we generate 20 random ANN pairs per arena

and block density in simulation to study the effectiveness

of our approach. In our real robot experiments, we do eight

independent evolutionary runs per block density. As before,

we post-evaluate the best evolved individual at the end of the

evolutionary run. In simulation, we reset the arena for post-

evaluation by placing the robots at their initial positions and

randomly distributing the blocks in the arena. We store start

and final positions of the blocks during the post-evaluation

runs in simulation in addition to the trackeddata as described

in Sec. 10.1. In our real robot experiments, the robots start

post-evaluation at their last position after 4max evaluations.

11.2 Experiments in Realistic Simulations

In the first step, we evolve object manipulation behaviors in

the Webots simulator with our minimize surprise approach,

which allows a detailed study of the emergent behaviors.
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11.2.1 Metrics

We measure best fitness (Eq. 3.1) over evaluations to deter-

mine the success of evolution as in previous scenarios. In

addition, we analyze and classify the behaviors of the best

evolved individuals and the randomly generated individuals

during the post-evaluation runs based on twometrics that are

based on robot and block positions: (i) distance 3# covered

by all robots and (ii) block displacement 3�.

We define the distance 3# covered by all robots as mean accu-

mulated robot displacement over post-evaluation runtime )%
as given by

3# =
1

#

#−1∑
==0

)%−1∑
C=0

| |%=(C + 1) − %=(C)| |2 , (11.1)

with # robots, and positions %=(C) and %=(C + 1) of robot =
at time steps C and C + 1, respectively. Robots can cover a

theoretical maximum distance 3# of 12.6 m when constantly

driving with maximum linear speed of 0.126
m

s
during the

10,000 post-evaluation time steps of 10 ms each.

We define block displacement

3� =
1

�

�−1∑
1=0

| |%1()%) − %1(0)| |2 (11.2)

as the mean Euclidean distance between the starting posi-

tions %1(0) and final positions %1()%) of the � blocks. The

theoretical maximum displacement of a block is the arena’s

diagonal, but we obviously expect a lower effective mean

distance. We find by qualitative analysis that a threshold

of 0.1 in block displacement 3� distinguishes behaviors that

lead to the pushing of blocks from behaviors with limited or

no block manipulation.

11.2.2 Results

As representative examples for all obtained fitness curves,

Fig. 11.4 visualizes the increase of best fitness � (Eq. 3.1)

over evaluations per block density �� ∈ {0.04, 0.14} in the

standard arena. For the best evolved individuals for both

block densities, the median best fitness in the last generation

is 0.99 in the standard arena and 0.97 in the gradient arena.

For the randomly generated ANN pairs, we find a median

best fitness of maximally 0.6, that is, evolution successfully

improves fitness over generations.
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(a) low block density (�� ≈ 0.04) (b) high block density (�� ≈ 0.14)

Figure 11.4: Best fitness � over evaluations 4 for the simulated standard arena per block density �� of 20 independent evolutionary runs

each in our object manipulation scenario. Only every 20th evaluation is printed for clearer illustration. Medians are indicated by red

bars [374].

3: https://doi.org/10.5281/zenodo.

4293487 [343]

Emergent Behaviors

We analyze the behavior diversity of the best evolved indi-

viduals and the randomly generated individuals. A video

of the emergent behaviors is online.
3
Fig. 11.5 quantifies

the resulting behaviors based on distance 3# covered by

all robots (Eq. 11.1) and block displacement 3� (Eq. 11.2).

We distinguish three classes of behaviors: (i) circling, (ii) re-

verse driving, and (iii) behaviors that lead to the pushing of

blocks.

Circling The majority of the resulting behaviors of the best

evolved individuals and the randomly generated ANN pairs

has robots turn on the spot or go in small circles, see Fig. 11.6a.

This results in short covered distances 3# and low block

displacement (i.e., 3� < 0.1 m). In the evolutionary runs, we

also find few cases where robots follow each other driving in

a circle (‘circle dance’) leading to larger covered distances 3# ,
see Fig. 11.6b. By using hardware protection’s escape behavior

or, in rare cases, an intrinsic obstacle avoidance behavior,

robots distribute themselves in the arena, which may lead to

the pushing of few blocks. In most cases, the robots seem to

execute a dispersion behavior for a limited duration at the

beginning of the run until robots do not detect each other

anymore.

Reverse Driving Some of the behaviors lead to robots driving

backward until they are stopped by hardware protection, see

Fig. 11.6c. Blocks are rarely pushed (3� < 0.1 m ) and the

robots cover only short distances 3# . When all robots are

stopped by hardware protection, the environment is static

and thus easily predictable.

Behaviors Leading to the Pushing of Blocks We find behaviors

leading to the pushing of blocks (i.e., 3� > 0.1 m) both in

the evolutionary runs and for the randomly generated ANN

https://doi.org/10.5281/zenodo.4293487
https://doi.org/10.5281/zenodo.4293487
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(a) best evolved individuals, low block density (�� ≈ 0.04) (b) best evolved individuals, high block density (�� ≈ 0.14)

(c) randomly generated ANN pairs, low block density (�� ≈ 0.04) (d) randomly generated ANN pairs, high block density (�� ≈ 0.14)

Figure 11.5: Distance 3# covered by all robots (Eq. 11.1) and block displacement 3� (Eq. 11.2) of the 20 best evolved individuals and

20 randomly generated individuals per arena and block density �� ∈ {0.04, 0.14} in our scenario aiming for object manipulation

behaviors in realistic simulations. The dashed gray line marks a threshold between behaviors leading to the pushing of blocks (above

line) and other behaviors [42, 48].

pairs. The best evolved individuals implement a random

walk leading to the pushing of blocks by exploiting the

hardware protection’s boundary avoidance behavior. This

also results in high covered distances 3# . Differences in the

resulting block formations for the two block densities are

probably caused by hardware protection. For the low block

density, robots clear the arena from blocks or, in one run,

push blocks around in the arena. By contrast, robots push

blocks into small clusters in the high block density runs, see

Fig. 11.6d. With increased block density, robots exceed the

threshold of maximum pushed blocks faster and turn away

from a potentially formed block cluster. In evolution, we find

such behaviors more often in the gradient arena than in the

standard arena for both block densities. The non-uniform

light conditions in the gradient arena increase prediction

difficulty, since light values fluctuate even in the simple

circling behavior, thus not allowing for trivial predictions as

in the standard arena. We assume that the overall increased

task difficulty enables the emergence of more block pushing

behaviors in the gradient arena. For the randomly generated

ANN pairs, behaviors leading to the pushing of blocks are

equally likely found for both arenas and block densities. We

find randomwalk behaviors leading to the pushing of blocks

as for the best evolved individuals in the standard arena.

But in the gradient arena, the majority of block pushing

behaviors of the randomly generated ANN pairs leads to

robots pushing blocks while driving in large circles.

While we find the same behavior classes for the best evolved
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(a) circling (gradient arena, �� ≈ 0.14)

(b) circle dance (standard arena, �� ≈ 0.04)

(c) reverse driving (gradient arena, �� ≈ 0.14)

(d) pushing of blocks (standard arena, �� ≈ 0.14)

Figure 11.6: Robot and block positions at the end of the post-evaluation run and the swarm’s mean sensor values and predictions over

the post-evaluation run of four best evolved individuals in our scenario aiming for object manipulation behaviors in realistic simulations.

B0 , . . . , B4 give the frontal horizontal proximity sensors, B5 and B6 the back horizontal proximity sensors, B7 and B8 the ground IR sensors,

B9 the pressure sensor, and B10 and B11 the light sensors (only used in the gradient arena).
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individuals and the randomly generated ANN pairs, Fig. 11.5

shows differences between the behavior distributions based

on distances 3# covered by all robots and block displace-

ment 3�. As in our previous scenario (see Sec. 10.3), we find

behavioral clusters for the best evolved individuals, while

the randomly generated ANN pairs lead to a broader distri-

bution. The best evolved individuals either lead to low block

displacement 3� and low distance 3# covered by robots (i.e.,

circling and reverse driving), or high block displacement and

high covered distance by robots (i.e., random walk leading

to pushing of blocks). Intermediate covered distances by

robots 3# are rarely found for the best evolved individuals

and lead in several cases to the sophisticated ’circle dance’ be-

havior (i.e., low 3� and high 3# ). For the randomly generated

ANNpairs, we find several behaviors leading to intermediate

distances 3# covered by robots. In these cases, robots drive in

larger circles, occasionally pushing blocks or avoiding other

robots in some runs. Consequently, we find that both actors

and predictors are optimized by evolution leading to more

distinctive behaviors and better fitness, that is, prediction

accuracy.

Predictions

A good interplay between actor and predictor (see Sec. 3.2)

allows for high fitness and prediction accuracy. Fig. 11.6 exem-

plifies themean sensor values and predictions of the different

emergent behaviors. For circling (Fig. 11.6b) and behaviors

leading to the pushing of blocks (Fig. 11.6d), we find that

robots donot predict or sense other robots (i.e., B0, . . . , B6 ≈ 0).

The ‘circle dance’ behavior is an exception, since it leads to

robots collectively driving in a circle detecting the robot in

front with their front left IR sensor B0, see Fig. 11.6b. In reverse

driving (Fig. 11.6c), robots detect and predict the outer arena

walls with their back IR sensors (B5, B6). For all behaviors, the

real and predicted ground IR sensor values (B7, B8) match

the light reflected from the arena’s carpet. Pressure sensor

values (B9) and predictions are low as hardware protection

forces robots to turn when pushing more than 10 blocks, that

is, B9 > 0.25. Thus, all sensors used in the standard arena

allow for trivial predictions. But in the gradient arena, light

intensity fluctuates based on the distance from the arena’s

center and thus, the light sensors (B10, B11) do not generally

allow for trivial predictions. Reverse driving behaviors lead

to constant, low light intensity as robots are usually stopped

by hardware protection at the arena’s boundaries where light

intensity is low, see Fig. 11.6c. By contrast, the detected light

intensity fluctuates in circling (Fig. 11.6b) and behaviors lead-

ing to the pushing of blocks. Fig. 11.7 illustrates oscillations of

the actual light intensity detected by the light sensors B10 and

B11 that are triggered by a repetitive circling behavior. For

most behaviors, we find that predictions roughly follow these

oscillations but with an offset, see Fig. 11.7b. In few cases,
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(a) real and predicted values of B10 (b) real and predicted values of B11

Figure 11.7: Real and predicted sensor values for light sensors B10 and B11 over post-evaluation runtime for one robot executing the

circling behavior shown in Fig. 11.6a [374].

we find rather complex and adapted sensor predictions as

depicted in Fig. 11.7a. Consequently, our approach, including

the chosen ANN structure, generally allows for sophisticated

predictor outputs.

A potential reason for the poor adaptation of the light sensor

predictions to the actual values is that the two light sensors

only account for one sixth of the total fitness. Thus, we

want to put more pressure on their prediction accuracy

by restricting the predictor outputs to light and pressure

sensors only (i.e., no prediction of IR sensors B0, . . . , B8).

We do 20 independent evolutionary runs in the gradient

arena with high block density. As before, we find predictions

following the fluctuations in light intensity with an offset.

This could also be caused by resetting the arena for the

post-evaluation runs: robots may be at different positions

in the arena at the end of the evolutionary run than at the

beginning and have optimized their predictions for different

light intensities as a result. We study this in more detail in

the next section.

Robot-Environment Feedback Loop

Next to the poorly adapted light sensor predictions, we find

that fitness of the post-evaluation runs is statistically signifi-

cantly lower than the best fitness at the endof the evolutionary

runs for all scenarios (MW-U, ? < 0.05). Both aspects indicate

a feedback loop during evolution: individuals change the

environment and the altered environment leads to adapted

individuals. As we reset the arena for post-evaluation, the

individuals may not be adapted to this ‘new’ environment

anymore. We test our hypothesis by doing 20 evolutionary

runs predicting only light and pressure sensors in the gradi-

ent arenawith high block density. By contrast to our previous

runs, we do not reset the arena for post-evaluation. Thus,

the best evolved individual is post-evaluated in the same

environment as at the end of the evolutionary run. In this

case, we no longer find statistically significantly different

fitness values. Robots frequently move to the arena’s edges
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(a) low block density (�� ≈ 0.04) (b) high block density (�� ≈ 0.14)

Figure 11.8: Best fitness � over evaluations 4 for both block densities �� of eight independent evolutionary runs each in real robot

experiments aiming for object manipulation behaviors. Only every 5th evaluation is printed for clearer illustration. Medians are indicated

by red bars.

Figure 11.9: Approximated distance 3#
covered by all robots and block displace-

ment 3� of the eight best evolved individ-

uals per block density �� ∈ {0.04, 0.14}
in our real robot experiments aiming

for object manipulation behaviors. The

dashed gray line marks a threshold be-

tween behaviors leading to the pushing

of blocks (above line) and other behav-

iors.

4: Robot displacement between two time

steps C and C+1 (ΔC = 100ms) isΔ%(C , C+
1) = E(C)ΔC with E(C) = EA (C)+E; (C)

2
being

the linear velocity of the robot set at time

step C.

during evolution and thus sense only low light intensities.

Consequently, adaptation to fluctuations in light intensity is

not rewarding as those are only small at the arena’s bound-

aries. Resetting the arena leads to higher light intensities and

fluctuations, and thus lower prediction accuracy.

11.3 Real Robot Experiments

Next, we evolve object manipulation behaviors in real robot

experiments with our minimize surprise approach. Each of

the eight independent evolutionary runs per block density

�� ∈ {0.04, 0.14} (see Sec. 11.1) took approximately 78 min.

Fig. 11.8 visualizes the increase of best fitness over evaluations

for both block densities. We reach a median best fitness of

0.97 for the low block density and of 0.94 for the high block

density.

Unlike for the simulations runs, we cannot directly log ei-

ther robot or block trajectories in our real robot experiments.

However, we can estimate the distance covered by all robots

based on their wheel speeds
4
and track block movement

based on the video footage. Since we do not find any block

pushing during the post-evaluation phase when manually

analyzing the videos, we refrain from using elaborate video

analysis approaches and set block displacement 3� for all

runs to 0.0 m. Fig. 11.9 visualizes the resulting behaviors

based on distance 3# covered by all robots and the manually

determined block displacement 3�. We find qualitatively the
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Figure 11.10: Mean sensor values and

predictions over the post-evaluation run

of one best evolved individual in our

scenario aiming for object manipula-

tion behaviors in real robot experiments.

B0 , . . . , B4 give the frontal horizontal

proximity sensors, B5 and B6 the back

horizontal proximity sensors, B7 and B8
the ground IR sensors, and B9 the pres-

sure sensor.

(a) circling (�� ≈ 0.14)

(b) reverse driving (�� ≈ 0.04)

(c) random walk (�� ≈ 0.04)

Figure 11.11: Robot and block positions

at the end of the post-evaluation run

of three best evolved individuals in our

scenario aiming for object manipulation

behaviors in real robot experiments.

same behaviors as in simulation: circling (Fig. 11.11a), reverse

driving (Fig. 11.11b), and random walk behaviors potentially

leading to the pushing of blocks (Fig. 11.11c). However, there

are some differences in the observed behaviors, since we

do not reset the arena for post-evaluation. We do not find

pushing of blocks: robots circle in areas of the arena that

have already been cleared of blocks, reverse driving robots

are stopped by hardware protection quickly, and we find

random walk behaviors only in arenas that have already

been cleared of blocks completely. As in the simulation runs,

we mainly find circling behaviors for both block densities.

We find reverse driving only in three runs in the low block

density. Random walk emerges once in the low block den-

sity and twice in the high block density (i.e., individuals

with 3# > 5 m in Fig. 11.9). Sensor value predictions are

also similar to the results in simulation, see Fig. 11.10 and

Sec. 11.2.2. All horizontal proximity sensor values and pre-

dictions (B0, . . . , B6) are most of the time approximately zero.

The ground IR sensor values and predictions match the re-

flected light from the arena’s carpet (i.e., B7, B8 ≈ 0.25). As

robots do not push blocks in the emergent behaviors, the

pressure sensor (B9) has low values and predictions.

11.4 Discussion and Conclusion

In this second scenario using realistic simulations and real

robot experiments, we have shown again that our minimize

surprise approach effectively leads to the emergence of di-

verse behaviors. Compared to our previous scenario aiming

for basic swarm behaviors, we increased the complexity

by adding manipulable blocks to the robots’ environment.

Robots show an innate motivation to clear areas from blocks

in order to simplify their predictions here. Structure for-

mation of blocks is unlikely because robots tend to push

blocks out of the arena instead of forming block clusters.

This is probably caused by the bulldozer blade that only

allows object pushing in 2D – a more sophisticate approach

would require at least block-pulling capabilities or even a

gripper [375]. Another limiting factor is our environment

with fixed boundaries. In our previous collective construc-

tion scenario (see Ch. 9), agents lived on a torus grid, which



11 Object Manipulation Behaviors in Real-World Settings 181

simplified the positioning and allowed for more structures

to emerge.

In our study, we have particularly shown that robots adapt to

a changing environment at runtime as it is manipulated by

themselves, that is, we have a robot-environment feedback

loop during evolution. We argue that our minimize surprise

approach increases reliability of the system in an open-ended

process of adaptation because the robots autonomously adapt

to any, possibly non-anticipated, situation. This happens due

to the doctrine of accurate predictions and we speculate that

predictable robot behaviors are considered generally to be

safe and reliable behaviors as also argued by Friston et al.

[340] for the biological case.

A big focus of our two scenarios was to show the feasibil-

ity of our approach in real-world settings. We have shown

that our minimize surprise approach implements a viable

option to deal with dynamic environments in real-world

multi-robot systems as it can be executed online and onboard.

However, we only presented the first step to adapt our ap-

proach for real-world applications, since our currently used

evolutionary setup still relies on a central master robot. In

future work, we plan to implement a fullscale distributed

online onboard evolutionary approach to further increase the

robustness of the system. Furthermore, we want to do more

robot experiments in different scenarios to continue show-

ing the diversity of emerging behaviors and the real-world

capability of minimize surprise.
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Chapter Contents

In this chapter, we ...

I Sec. 12.1: summarize our results and

I Sec. 12.2: present ideas for future work.

In this thesis, we have studied our minimize surprise ap-

proach in detail. We conclude by summarizing our results to

present an overall picture of the potential of our minimize

surprise approach and outline future work.

12.1 Summary and Discussion

We structure the summary and discussion of our results by

answering the six research questions we have posed in the

introduction (see Ch. 1).

Q1 How robust, scalable, and diverse are collective behav-
iors evolved with minimize surprise?

Based on a simple self-assembly scenario on a 2D torus grid,

we have shown that our minimize surprise approach leads

to robust, scalable, and diverse collective behaviors in Chs. 4

and 5.We have demonstrated the robustness of our minimize

surprise approach and of the emergent behaviors in Sec. 5.1.

When introducing sensor noise in our otherwise fully de-

terministic setup, our minimize surprise approach adapts

by selecting behaviors that are robust to sensor errors (e.g.,

aggregation and dispersion in our self-assembly scenario). In

addition, the resulting behaviors are robust to external distur-

bances, such as the damage of the self-assembled structure.

The swarm reassembles into the same structure type after

having removed or repositioned agents from the initially

formed structure. In Sec. 5.2, we have proven that behaviors

evolved with minimize surprise are scalable with swarm

density. Actor-predictor pairs that are specialized for a spe-

cific swarm density can be reused in other swarm densities

while still leading to the same behavior. Last but not least,

we have shown that minimize surprise leads to behavioral

diversity across several independent evolutionary runs. In

Sec. 4.4, we have found that the emergent behavioral diversity

depends on swarm density. High swarm densities lead to

mainly grouping behaviors while dispersion prevails in low

densities and the highest behavioral diversity emerges in

intermediate densities. In Sec. 5.3, we have also demonstrated

that our standard minimize surprise approach leads to com-

petitive behavioral diversity compared to task-independent
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novelty search and MAP-Elites variants (see also research

question Q3).

Q2 How can we engineer our minimize surprise approach
so that desired behaviors emerge?

We can engineer self-organization towards desired behaviors

by partially or completely predefining sensor predictions,

see Ch. 6. Thus, our minimize surprise approach can be used

in three variants: (i) fully task-independent giving evolution

the freedom to come up with creative solutions, (ii) biasing

evolution towards certain behaviors by partially predefining

predictions, and (iii) fully task-specific by predefining all pre-

dictions to evolve desired behaviors. We have exemplified all

three variants using our self-assembly scenario (see Sec. 4.1),

since the grid world and the binary sensors used in this setup

enable easy predefining of sensor predictions. Predefining

predictions in real-world settings and for desired behaviors

with time-variant sensor input is probably harder. Continu-

ous sensor values, noise, and other factors may complicate

determining sensor values associatedwith a specific behavior

in real-world settings. While predefining time-variant sensor

predictions is generally possible in our approach, it is chal-

lenging to specify the timing of changes in sensor input. Still,

our approach to engineer self-organization towards desired

behaviors by predefining predictions is promising and we

are confident that we can also apply it in real-world settings

and for evolving behaviors with time-variant sensor input.

Q3 How does minimize surprise compare to other ap-
proaches?

We have found that minimize surprise is effective and out-

performs random search in Sec. 4.5. But minimize surprise is

also competitive to state-of-the-art approaches. Asmentioned

before (see research questionQ1), we have compared ourmin-

imize surprise approach to novelty search andMAP-Elites in

Sec. 5.3. All three approaches output diverse behaviors: mini-

mize surprise results in behavioral diversity across several in-

dependent evolutionary runs while novelty search andMAP-

Elites generate behavioral diversity within one evolutionary

run. When comparing the same number of evaluations per

approach, our standard minimize surprise approach is com-

petitive to novelty search and MAP-Elites in solution quality,

fitness, and behavioral diversity. MAP-Elites and minimize

surprise output high-quality solution sets at the end of the

evolutionary run in contrast to novelty search that requires

high post-evaluation effort to select high-quality solutions.

MAP-Elites generates several diverse and high-performing

solutions within one run but requires more evaluations in a

single run to be able to fill the behavior-performance map

with high-quality solutions. Thus, standard minimize sur-

prise is potentially more suitable for the use on real robots.

Furthermore, we have compared minimize surprise with

predefined predictions to an evolutionary algorithm with a



12 Conclusion and Outlook 184

standard task-specific fitness function in Sec. 6.2. Both ap-

proaches lead to the emergence of the desired behavior, but

minimize surprise with predefined predictions offers a more

intuitive way of defining the fitness function.

Q4 How can we evolve dynamic behaviors that adapt their
behavior according to varying sensor input using our
minimize surprise approach?

In previouswork and in our self-assembly scenario (seeCh. 4),

we used static environments, except for the swarm behavior

itself, in combination with our task-independent reward for

prediction accuracy. This led to repetitive behaviors that are

easy to predict. In Ch. 7, we have shown that modifications

to the fitness function (e.g., including additional rewards for

curiosity or homing), environment (e.g., changing obstacle

positions), and agents (e.g., energy sharing between agents)

have the potential to push evolution towards more dynamic

behaviors that adapt to changes in their sensor input (i.e.,

behavioral plasticity [364]). Although none of the testedmod-

ifications guarantees the emergence of dynamic behaviors,

using complex and dynamic environments seems to be the

key to evolve such behaviors.

Q5 Can we evolve collective behaviors for scenarios with
different environmental complexities and agent capa-
bilities with minimize surprise?

In this thesis, we have successfully evolved collective behav-

iors for spatial organization, navigation, anddecision-making

with minimize surprise in six different scenarios. In the sim-

plest case, the swarm itself was the only dynamic element in

the environment (Chs. 4, 8, and 10). In other cases, the swarm

could change the environment by pushing manipulable ob-

jects (Chs. 9 and 11) or the obstacle positions dynamically

changed independent from the collective behavior (Ch. 7).

While minimize surprise successfully optimized the actor-

predictor ANN pairs in all scenarios, we have found that a

careful configuration of environment and robots is essential

to evolve collective behaviors that are useful for the user. In

particular our collective perception scenario (see Ch. 8) has

shown that a strong coupling between sensors and (desired)

collective behavior is required for the evolution of useful

behaviors. To elaborate, evolutionwill adapt the actors so that

the prediction of the sensor values that can be influenced by

the collective behavior will be simplified. Behaviors that are

as simple as possible to allow for easy sensor predictions will

potentially emerge. More complex behaviors, that depend

on sensors whose values cannot be influenced by the collec-

tive behavior due to the experimental setup, are unlikely to

evolve – especially if they do not simplify the prediction task.

Moreover, since each additional predicted sensor reduces

the impact on fitness of all other sensors proportionally, the

set of predicted sensors should only include sensors relevant

to the scenario and a potentially desired behavior. Although
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our first findings can provide some guidance, we still lack

clear guidelines for the configuration of environment and

robots to ensure the emergence of behaviors that are useful

to the user.

Q6 Which adaptations are necessary to apply minimize
surprise in real-world settings?

In Sec. 10.1, we have presented a centralized online and on-

board evolutionary architecture for minimize surprise that

has proven to be suitable for real-world settings. In realistic

simulations and real-world experiments, we have evolved ba-

sic collective behaviors (see Ch. 10) and object manipulation

behaviors (see Ch. 11) using this approach. As in our simpler

simulation environments, we have found behavioral diversity

across several independent evolutionary runs in these exper-

iments. In our object manipulation scenario, we have found

a robot-environment feedback-loop during evolution, that

is, robots change the environment and in turn adapt to the

changed environment. That means that minimize surprise

allows robot swarms to continuously adapt their behavior to

a changing environment, which is an important aspect for

open-ended evolution [13, 376].

12.2 Outlook

Our studies in this thesis have answeredmanyopenquestions

onminimize surprise, but, as inherent to research, have raised

several new ones. At the end of each chapter, we have already

presented open aspects for future work for the specific topic.

We conclude this thesis with a more general discussion of

potential future extensions of our work.

In all studies on minimize surprise, we have used simple

evolutionary algorithms to evolve the weights of neural net-

works with a fixed topology to generate diverse collective

behaviors across several independent evolutionary runs. In

future work, we want to study the effect on the resulting

behaviors when using more sophisticated evolutionary al-

gorithms with our minimize surprise fitness function. Not

only the network weights could be evolved but also the net-

work topology, for example, using NEAT [270], or even the

robot morphology, since embodiment plays an essential role

for intelligence [237]. Because our combination of minimize

surprise with standard MAP-Elites led to promising results

(see Sec. 5.3), combining minimize surprise with more so-

phisticated quality-diversity algorithms [44, 305] has likely

potential.

All our experiments were run completely either in simulation

or on the real robots, since the reality gap (i.e., differences

between simulation and real world) makes a transfer of

results from simulation to real robots challenging. However,
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using simulations to evolve controllers for real robots can

bring advantages in optimization speed and prevention of

wear and tear of our robot hardware. A promising option

to avoid the reality gap is to start the evolutionary process

in simulation to optimize our actor-predictor pairs and to

continue the evolutionary process for a fewmore generations

on the real robots to allow adaptation to the differences

between simulation and real world.

In Sec. 5.2, we have shown that minimize surprise leads

to behaviors that are often scalable with swarm density.

But the performance of the actor or predictor may decrease

when an actor-predictor pair is rerun in a much higher or

lower swarm density than the one used during evolution.

Scalability could be taken into account in the optimization

process by evaluating the actor-predictor pairs in different

swarm densities. This would probably have two effects: the

resulting actor-predictor pairs would scale well with swarm

density and the behavioral diversity would be decreased to

behaviors that perform well with all densities.

The essence of our minimize surprise approach is that we

evolve actor-predictor ANN pairs by rewarding only the pre-

dictor. The evolutionary operators are applied to the ANN

pair as a whole, that is, actor and predictor are mutated. An

alternative can be to use an approach of cooperative coevolu-

tion [377]. Actors and predictors are evolved alternately, that

is, the actor stays fixed while the predictor is evolved and

vice versa while always rewarding prediction accuracy. In

this way, the actor has time to adapt to the predictor and the

predictor has time to adapt to the actor without also having

to adjust to changes to the other ANN. This can potentially

allow for the emergence of more complex behaviors.

In our scenarios, swarms of ground mobile robots lived most

of the times in static environments, except for the swarm

behavior itself, and the swarm members predicted the val-

ues of exteroceptive sensors, which resulted in interesting

but repetitive collective behaviors. Since the prediction of

proprioceptive and interoceptive sensors can lead to a sense

of agency and a sense of self in living organisms [345], it

may also enable the evolution of interesting and potentially

intelligent behaviors in robot swarms. Our experiments on

the evolution of more dynamic behaviors in complex en-

vironments in Ch. 7 have shown that especially dynamic

environments have the potential to push evolution towards

dynamic behaviors that react to varying sensor input. En-

vironments that are even more dynamic and unstructured

(e.g., with continuously changing environmental conditions

or other autonomous agents that are not part of the swarm)

are also likely to lead to the evolution of more dynamic

behaviors. Interesting is also to evolve behaviors on other

robot platforms than the ground mobile robots used so far.

Different robot platforms come with different challenges, for

example, Uncrewed Aerial Vehicles (UAV) move in 3D space
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while our ground mobile robots move in 2D space, which

may lead to completely different collective behaviors.

Minimize surprise is generally suitable for the application in

real-world scenarios and allows for continuous adaptation to

changing environments aswe have shown in our experiments

in Chs. 10 and 11, which is particularly crucial in dangerous

and inaccessible environments [378]. But our currently used

centralized online onboard evolutionary approach has a sin-

gle point of failure, namely the master robot coordinating

the evolutionary process. The system can be made more

robust for long-term operation in the real world by using

embodied evolution (i.e., online distributed evolution) [291,

292]. Embodied evolution is also considered to have the po-

tential for realizing open-ended evolution. The latter aims for

the ongoing adaptation to changes in the environment, the

continuous generation of new behavioral patterns, and on-

going growth of complexity as found in nature [13, 376]. Our

minimize surprise approach has already proven its capability

of ongoing adaptation to environmental changes and of gen-

erating behavioral diversity over several evolutionary runs

due to the task-independent reward for prediction accuracy.

Combining minimize surprise with embodied evolution and

placing the swarm in highly dynamic and unstructured envi-

ronments, where novel and unforeseen situations can occur,

may enable ongoing behavioral innovation and adaptation

in one evolutionary run over long execution times. However,

the operating time of real robots is limited by two factors,

namely battery runtime and the robustness of the hardware.

These aspects can be addressed in the setup by including

a charging station and by repairing or replacing defective

robots.

In all our experiments, the predictor has only been used as

means to guide the evolution of collective behaviors. But

it could also be used as an indicator for changes in the

environment. That is, prediction accuracy of an optimized

predictor will likely decrease severely when the environment

changes considerably. For example, this could be used as

warning signal for the user when the actor-predictor pair

was optimized for an environment that is structured and

stationary except for the swarm behavior itself. Or it could be

used to influence the evolutionary process. Evolution could

pause as soon as high prediction accuracy is reached and the

current best evolved actor executed for a longer time period.

As soon as a decrease in prediction accuracy is detected,

evolution could continue to allow adaptation to the changes

in the environment.

In this thesis, we have proven the great potential of our

minimize surprise approach for evolving collective behaviors

for robot swarms in simulation and on real robots. Future

enhancements will make minimize surprise an even more

versatile approach that is easy and intuitive to use for a

variety of purposes and application scenarios. Users can
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apply minimize surprise to evolve desired behaviors by

predefining predictions or even evolve a variety of interesting

and potentially increasingly complex behaviors –maybe even

to the emergence of intelligent behavior.



Appendix



1: We do not use a recurrent ANN as in

previous experiments to simplify train-

ingusing gradient descent andbackprop-

agation.

Minimize Surprise Based on
Simple Machine Learning

Methods A
In this thesis, we use methods of evolutionary computation

for the automatic generation of swarm robotic controllers. An

alternativemaybe theuse of standardmachine learningmeth-

ods, such as gradient descent and backpropagation [242].

Here, we show the potential and the challenges of using

machine learning methods for minimize surprise in a simple

experiment with a single robot.

A.1 Experimental Setup

We introduce the arena and robot platform first and present

our machine learning-based minimize surprise approach

afterwards.

A.1.1 Arena and Robot

FigureA.1:Arena for our experiments on

machine learning-based minimize sur-

prise in the Webots [46] simulator. The

arena is 1 m × 1 m and contains an L-

shapedobstacle.A single Thymio II robot

is initially placed approximately in the

arena’s center.

In our experiment, we use a single Thymio II [77] ground

mobile robot (cf. Sec. 2.1.2) in the Webots [46] simulator that

is initially placed approximately in the arena’s center. We

only use the robot’s five horizontal front IR sensors B0, . . . , B4

(cf. Fig. 10.5), since we restrict robot movement to moving

straight forward and turning on the spot. The wheel speeds

for the Thymio II’s differential drive are specified by 00

and 01. We place the robot in an arena of size 1 m × 1 m

that is bounded by white walls, see Fig. A.1. Compared to

our previously studied swarm scenarios, the robot is in a

completely static environment here, since not even identical

swarm members introduce any dynamics. Thus, we increase

the complexity of the environment by placing an additional

L-shaped obstacle in the arena. To prevent collisions with

the walls or the obstacle, we include a simple hardware

protection layer. If the robot gets too close to a wall or the

obstacle, the robot will turn away from the wall for a random

time period.

A.1.2 Machine Learning-Based Minimize Surprise
Approach

...
...

...

B0(C)

B4(C)

00(C − 1)

01(C − 1)

B̃0(C + 1)

B̃4(C + 1)

Figure A.2: Predictor ANN in our exper-

iments on machine learning-based min-

imize surprise. The feedforward ANN

receives the robot’s current front IR sen-

sor values B0(C), . . . , B4(C) and its current

wheel speeds 00(C) and 01(C) as input,

and outputs sensor predictions B̃0(C +
1), . . . , B̃4(C + 1) for time step C + 1.

As in our minimize surprise approach based on methods

of evolutionary computation (cf. Ch. 3), we equip the robot

with an actor-predictor pair. In this experiment, the pre-

dictor is a three-layer feedforward
1
ANN, see Fig. A.2. The

predictor has seven input, seven hidden, and five output

neurons. The ANN receives a robot’s current front IR prox-

imity sensor values B0(C), . . . , B4(C) and its current wheel
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Algorithm 5: Template for the reactive behavior serving as the actor

for our machine learning-based minimize surprise approach.

parameters: sensor indices 8 , 9 ∈ {0, . . . , 4},
sensor thresholds Γ0 , Γ1 ∈ [0, 1],
turning directions T0 ,T1 ∈ {0, 1}

1 if B8(C) > Γ0 then
2 turn in direction T0

3 else if B 9(C) > Γ1 then
4 turn in direction T1

5 else
6 drive straight forward (i.e., 00(C) = 01(C))

2: https://scikit-learn.org/

stable/modules/generated/sklearn.

neural_network.MLPRegressor.html

3: 5 (G) = max(0, G)

speeds 00(C) and 01(C) as input and outputs IR sensor pre-

dictions B̃0(C + 1), . . . , B̃4(C + 1) for time step C + 1. Since

the actual sensor values B0(C + 1), . . . , B4(C + 1) of the next

time step C + 1 are the target values for the predictor out-

puts (i.e., sensor predictions B̃0(C + 1), . . . , B̃4(C + 1)) of the
current time step C, a labeled set of training data can be

automatically generated allowing to train the predictor in

a self-supervised [274, 346] way. We implement and train

the ANN with backpropagation and gradient descent using

the MLPRegressor2 class of the Python machine learning

library scikit-learn [379] with standard parameters except

for the number of neurons in the hidden layer that we set to

seven neurons here. By default, the MLPRegressor class uses

Adam [380] as the solver, the rectified linear unit function
3

as activation function, and a constant learning rate of 0.001.

Each training sample maps the sensor values B0(C), . . . , B4(C)
and wheel speeds 00(C) and 01(C) of time step C to the sensor

values B0(C + 1), . . . , B4(C + 1) of the next time step C + 1. Over

a learning run, we automatically create a labeled data set

adding one new training sample per time step. Once the

data set contains 15,000 training samples, the oldest training

sample is removed whenever a new training sample is added.

That is, we limit the data set size tomaximally 15,000 training

samples. Every 750 time steps, we first test the predictor with

the new 750 training samples (i.e., interleaved test-then-train

evaluation or prequential evaluation) and train it incremen-

tally [381] afterwards, that is, we use the existing model as a

starting point and retrain it with the updated data set.

As already explained in Sec. 3.2, we cannot manually or

automatically generate labeled data to train the actor us-

ing (self-)supervised learning, since our minimize surprise

approach is task-independent. Consequently, the deviation

between the current and a targeted robot behavior cannot

be determined and used for training. Therefore, we pair the

predictor with a reactive behavior serving as the actor that is

adapted during the learning run. Alg. 5 specifies the standard

structure of the reactive behavior. The reactive behavior has

six adaptable parameters: sensor indices 8 and 9 in {0, . . . , 4}
determining the used sensor values B8(C) and B 9(C), sensor

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
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4: All four conditions are based on re-

sults from preliminary investigations.

5: The MLPRegressor class uses the co-

efficient of determination '2
of the pre-

diction as testing score. The coefficient of

determination is defined as '2 = 1− RSS

TSS

with residual sum of squares RSS =∑
A
∑
C (BA (C) − B̃A (C))2 and total sum of

squares TSS =
∑
A
∑
C (BA (C) − B̄A )2 over

all time steps C included in the test set

with actual value BA (C) of sensor A at time

step C, predicted value B̃A (C) for sensor A
at time step C, andmean actual value B̄A of

sensor A. The best possible '2
value, and

thus score, is 1.0. Scores can be negative

indicating that the model fits poorly.

(a) clockwise wall following

(b) counterclockwise wall following

Figure A.3: Resulting wall following be-

haviors as representative examples for all

runs using our machine learning-based

minimize surprise approach. The blue

line gives the robot’s trajectory.

thresholds Γ0 and Γ1 in range [0, 1], and turning directionsT0

and T1 being 0 for counterclockwise (i.e., 00(C) = −01(C)) and
1 for clockwise (i.e., −00(C) = 01(C)) turning. These six pa-

rameters are uniformly randomly initialized within their

specified range at the start of a learning run. The reactive

behavior is adapted, similar to mutations in evolutionary

computation, when one of the four following conditions
4
is

met:

1. The predictor performs poorly on the test set, that is,

a score of less than −25.0 is reached.
5
In this case, the

robot usually got stuck in a corner of the arena.

2. The hardware protection layer of the robot interferes

to prevent collisions. This condition applies only after

the first training of the predictor, since the previously

executed reactive behavior may have led to a disad-

vantageous robot position in the arena (e.g., the robot

got stuck in an arena corner). Thus, the robot can free

itself from a potentially disadvantageous position using

both the currently executed reactive behavior and the

hardware protection in the first 750 time steps of the

execution of a reactive behavior.

3. The last five scores have a variance of less than 0.00016

and ameanvalue of less then 0.9. This is an indicator that
the learning process may be stuck in a local minimum.

4. The predictor has 15 negative scores in a row.

When at least one of these four conditions is met, we reset

the predictor network (i.e., weights are randomly initialized)

and change one randomly chosen parameter of the reactive

behavior. When adapted, sensor indices 8 or 9 are increased
or decreased by one, sensor thresholds Γ0 and Γ1 are replaced

by a uniformly randomly drawn value from range [0, 1], and
turning directions T0 and T1 are inverted.

We do eight independent learning runs in simulation and

stop training if a score of 0.95 or higher is reached.

A.2 Results

The eight independent learning runs led to a score of at

least 0.95 after a mean time of approximately 16 min (sim-

ulated time). Half of the runs resulted in clockwise wall

following behaviors, see Fig. A.3a, and the other half in coun-

terclockwise wall following behaviors, see Fig. A.3b. Due to

the simple reactive behavior structure, the robot cannot turn

around corners that exceed 180
◦
. Consequently, the resulting

wall following behaviors are simple. The robot drives on a

rectangular path on an area of the arena that is separated by

the L-shaped obstacle.

Alg. 6 gives the reactive behavior shown in Fig. A.3b as a

representative example. In this case, both the outer right IR
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Algorithm 6: Reactive behavior shown in Fig. A.3b generated using

machine learning-based minimize surprise.

1 if B4(C) > 0.009 then
2 turn in direction 0 (i.e., counterclockwise)

3 else if B1(C) > 0.706 then
4 turn in direction 0 (i.e., counterclockwise)

5 else
6 drive straight forward

Figure A.4: Score of the predictor ANN

over the learning run using machine

learning-based minimize surprise result-

ing in the reactive behavior visualized in

Fig. A.3b. The x-axis gives the test num-

ber with 750 time steps lying between

two tests. The blue line gives the score,

dashed red lines mark adaptations of the

reactive behavior. Discontinuities in the

curve indicate the reset of the predic-

tor ANN (i.e., weights are randomly re-

initialized). When there is no curve visi-

ble between twodashed red lines, thepre-

dictor performed poorly (i.e., score less

than −25.0) causing adaptation (adapta-

tion condition 1).

sensor B4 and the second sensor from left B1 (cf. Fig. 10.5)

trigger a counterclockwise turn when detecting the arena

walls or the obstacle.

As example, Fig. A.4 shows the course of the score over

the learning run resulting in the wall following behavior

visualized in Fig. A.3b. The reactive behavior is adapted six

times until a score above 0.95 is reached and none of the

adaptation conditions are met. In the shown run, adaptation

is triggered three times by the interference of the hardware

protection (condition 2), two times by test scores below −25.0
(condition 1), and one time by 15 negative scores in a row

(condition 4). This is representative for all runs: conditions 1

and 2 are frequently causing adaptations while conditions

three and four are only rarely met.

A.3 Discussion and Conclusion

Ourminimize surprise approach using simplemachine learn-

ing methods allows to generate robot controllers (i.e., the

actor) as a by-product while training a predictor ANN using

self-supervised learning. But the simplicity of our presented

setup does not guarantee that it can be easily applied to other

scenarios. On the contrary, preliminary experiments in a

maze and a line following scenario did not lead to promising

results yet. This is probably due to the simple structure of

the reactive behavior, which serves as the actor here, limiting

the possible behaviors. A potential solution is to increase the



A Minimize Surprise Based on Simple Machine Learning Methods 194

complexity of the reactive behavior or even to switch to an

ANN as before. But this also increases the number of param-

eters that need to be adapted and thus may complicate the

learning process or make it infeasible. Another critical point

are the conditions causing the adaptation of the actor. We

defined these conditions based on preliminary experiments

and thus cannot guarantee that they are equally suitable for

other scenarios.

However, the biggest challenge remains the application of

a machine learning-based minimize surprise approach to

multi-robot setups, since multi-agent learning is known to be

difficult (cf. also Sec. 2.3.1). Training actor-predictor pairs in a

homogeneous swarmmay require a central coordinator gath-

ering the training data and handling training of the predictor

ANN and the adaptation of the actor. Also, the adaptation

conditions have to be modified for the multi-robot setting.

Evaluating the conditions for each robot individually may

cause adaptations even when only a single robot performs

poorly while determining suitable thresholds for conditions

taking multiple robots into account may be challenging. Fur-

thermore, the environment gets more complex when adding

several robots, which may in turn require longer training

phases. Thus, a machine learning-based minimize surprise

approach requires a very careful configuration of the learning

strategy. On the contrary, evolutionary algorithms enable us

to optimize the actor-predictor pairs out of the box while

being competitive to standard machine learning methods [17,

18].
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