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Abstract. The study of asynchronous circuit behaviors in the presence of component and wire delays has
received a great deal of attention. In this paper, we consider asynchronous circuits whose components can be any
non-deterministic sequential machines of the Moore type, and describe a formal model for these circuits and their
behaviors under the inertial delay model.

We model an asynchronous circ@itby a networkN of modules with delays associated with its components
and/or wires. We compute the behaviohoassuming arbitrary inertial delays in the modules, and take this behavior
to be correct. We defind to be strongly delay-insensitive if its behavior remains correct in the presence of arbitrary
stray delays, where correctness is defined through the notion of observational equivalence (or bisimulation), one of
the strongest forms of behavioral equivalence. We introduce the notion of quasi semi-modularity, which generalizes
Muller’s definition of semi-modularity to non-deterministic networks. We prove that a circuit, with all the wire
delays taken into account, is strongly delay-insensitive if and only if its behavior is quasi semi-modular.

Keywords: asynchronous, bisimulation, delay-dense, isochronic, module, network, semi-modular, speed-
independent, delay-insensitive

1. Introduction

Although much of today’s digital design is synchronous, there has been a considerable
interest in asynchronous circuits [2], especially during the past decade. In contrast to a
synchronous circuit, whose operation is under the control of a global clock signal, an
asynchronous circuit uses local handshaking among its components. Potential advantages in
using asynchronous circuits include lower energy consumption, higher speed, and avoidance
of clock distribution problems [2].

Among asynchronous designs, the class of so-called delay-insensitive circuits has re-
ceived special attention [3, 4, 5, 17, 18, 19, 20, 21]. Roughly speaking, a circuit is delay-
insensitive if it continues to operate correctly even if the delays in its components and wires
change arbitrarily. When such a circuit is designed in a modular fashion, it is possible to
replace its components by better ones (faster, more power-efficient, etc.), without changing
the correctness of its operation, although, its performance may be affected.

*This research was supported by the Natural Sciences and Engineering Research Council of Canada under grant
No. OGP0000871, and was done while the second author was at the University of Waterloo.
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Another important reason for designing delay-insensitive circuits comes from the fact
that wire delays do not scale down proportionally to other factors, such as switching time
and clock period, affecting the behavior of a circuit, when the size of that circuit is scaled
down [13]. This scaling problem has become increasingly troublesome in VLSI design, as
itis often desirable to map the existing layout of a circuit onto a smaller region as technology
improves.

We represent delays in the commonly-used inertial delay model. In this model, a compo-
nentignores a pulse generated on one of its inputs if the duration of the pulse is shorter than
the component’s switching delay; so an enabled action on a component may be cancelled
prematurely if the pulse is too short.

In the next two sections, we give a brief survey of previous work on delay-insensitivity
and semi-modularity. For a more detailed account of the two concepts, refer to the recent
survey by J. A. Brzozowski [1].

1.1. Semi-modularity and speed-independence

Early work on circuit behavior in the presence of delays traces back to D. E. Muller’s theory
of “speed-independent” circuits [7, 11, 12]. Muller considers algjonomousircuits,
i.e., circuits without external inputs. He assumes that wire delays are negligible, and only
components have delays.

A circuit is composed of a set of nodes representing logic componenisnahy state
variable is associated with each node. In Muller's terminology, a nadeexcited and
thus unstable in a circuit states if its current values disagrees with itsmplied value
§. The implied value is determined by the Boolean expression for that node. Each node has
a unique implied value at any time, so it behaves deterministically.

Muller describes the behavior of a circuit by a sealdbwed sequence circuit states,
which specify the order in which the state variables change, but not the times of change. Two
statesa andb belong to the samequivalence class a can be reached frommthrough an
allowed sequence, and vice versa. Ldie the partial order defined over these equivalence
classes as followsALB if there existsaa € A andb € B such thab can be reached from
a through an allowed sequence. For each allowed sequence, there is a unique sequence of
equivalence classes and a definite “last” class, calledetmsinal class Muller defines a
circuit to bespeed-independemtith respect to a state if all allowed sequences starting
with u have the same terminal class.

In asemi-modulacircuit behavior, if nodé is excited in stats, but does not change to
its implied values' when the circuit goes to statethen it must still be excited in state
and to the same valug. In other words, semi-modularity requires that no state transition
can change the implied value of any unchanged state variable which is unstable. The term
“semi-modular” was adopted because a certain partially ordered set corresponding to such
a behavior is a semi-modular lattice. Muller shows that circuits exhibiting semi-modular
behaviors form @ropersubclass of speed-independent circuits. More recently, A. J. Martin
[5] has used the term “stability” to mean semi-modularity, and has basically taken it as a
definition of delay-insensitivity.

Semi-modularity has also been related to freedom from static hazards. Intuitively, hazards
represent spurious pulses at the outputs of circuit elements. A. Yakovlev et al. [19] define a
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static hazard under the inertial delay model to be a change of the implied value of an unstable
state variable while the variable remains unchanged. So by their definition, semi-modularity
implies freedom from static hazards. Martin [5] also states informally that semi-modularity
guarantees the absence of hazards.

Yakovlev et al. [19] compare the traditional notion of speed-independence and semi-
modularity to some other properties of circuit behaviors, some of which are local (such
as determinism, persistence, commutativity, and local confluence), and others (such as
permutability and global confluence) are not. They offer alternative definitions of speed-
independence and semi-modularity based on these properties. For example, they define
speed-independence as global confluence for behaviors which can be infinite, semi-modula-
rity-1 as local confluence, and semi-modularity-2 as the lattice-theoretic semi-modularity.
They also prove equivalence results among the various properties for the same behavior. For
example, they revise a proof of Muller's to show that determinism, persistence, and com-
mutativity imply semi-modularity-2.

1.2. Delay-insensitivity

C. E. Molnar et al. introduce the “foam-rubber wrapper” postulate [9] to describe delay-
insensitive specifications of circuit components. A componentis viewed as being surrounded
by a “foam-rubberwrapper.” The inner surface of the wrapper corresponds to the component
interface, whereas the outer surface defines the environment interface. The foam-rubber
analogy suggests that the distance between the inner and outer surfaces along one wire may
be different from that along another wire, representing different (and possibly time-varying)
delays.

Following Molnar’s informal idea, J. T. Udding gives the first formal definition of delay-
insensitivity [17]. He considers a mechanism interacting with the environment through sig-
nals on its input and output wires. He usesaae structureo specify all possible sequences,
calledtraces of communication actions that can take place between the mechanism and its
environment. He suggests that such a specification is delay-insensitive if and only if there is
notransmission interferena@ computation interferencdransmission interference occurs
when two consecutive signals are transmitted along a wire, and computation interference
occurs when a signal is sent to the mechanism but the mechanism is not ready to receive it,
or a signal is sent to the environment but the environment is not ready to receive it.

Udding defines a trace structure to be delay-insensitive if it satisfies four rules, later called
the JTU rules. For example, one of the rules states informally that there should not be any
ordering among input signals of a mechanism, and the same holds for output signals. Udding
shows that a trace structure and its environment satisfy these four rules if and only if there
is no computation or transmission interference.

J. C. Ebergen [4] defines delay-insensitivity with a somewhat different approach. He
specifies a circuit element by a regular expression-like program describing the communica-
tion behavior between the element and its environment. Such a program can be translated
into a set of simpler programs in a systematic way. Each of the simpler programs represents
the behavior of some basic element, such as a fork, a Muller C-element, or a toggle. The
network of these basic elements forms a realization, calésdmpositionof the original
element. If all the basic elements used are so-called delay-insensitive elements, then the
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circuit element is said to be delay-insensitive. Ebergen has shown that his definition of
delay-insensitivity is equivalent to that of Udding.

D. L. Dill [3] develops methods for the specification and automatic verification of asyn-
chronous circuits. He uses a more general notion of trace structure, peadied closed
trace structure which contains a set cfuccessful traceand a set ofailure traces Trace
structures are required to lbeceptive meaning that the component should be ready to
accept input from the environment at any time. A trace strucBlisesaid toconform toa
trace structurd if Scansafelysubstitute fofT in a circuit; safe substitution preserves the
failure-freedonof the trace structures, where a trace structure is failure-free if its failure set
is empty. Dill defines delay-insensitivity via an operalidron trace structures. Basically,
DI attaches delays to all the inputs and outputs of a component specified by the trace struc-
ture (a foam-rubber wrapper). A trace structlires said to be delay-insensitive if and only
if DI(T) conforms toT .

T. Verhoeff [18] calls an asynchronous circuit componeguroeessA process is specified
by a trace structure, as used by Udding. Verhoeff shows that several characterizations of
delay-insensitivity are equivalent under certain assumptions. He also extends the JTU Rules
to include progress as a correctness concern.

1.3. Contribution of the paper

1.3.1. The network model. In this paper, we consider asynchronous networks whose com-
ponents are non-deterministic sequential machines of the Moore type [10]. Non-determinism
permits us to include arbiters in our networks. We also allow components to have multiple
outputs. We describe a formal model for these networks and their behaviors.

Yakovlev et al. [19] also develop a model which allows non-deterministic circuit com-
ponents. The structural property of a circuit is captured bfgynchronous Control Struc-
ture (ACS) and the behavior of the circuit is described bytate Transition Diagram
(STD) There are at least three differences between their model and ours:

e We can associate state variables to components and/or wires any way we want. But an
ACS is basically a “wire-state” model, since state variables are associated with wires
only. So component delays are incorporated into wire delays. Also, an STD may be
contradictory meaning that two states in the STD which are identical in value could in
fact represent different physical states. We make such distinctions explicit.

o In their model, only the behavior of an ACS is given (as an STD). So the components of
the ACS are in a sense abstract; their behaviors can only be inferred from the STD. In our
model, component behaviors are completely specified in the form of finite state machines,
and the network behavior is implied.

e We use the notion of “pre-programmed non-determinism.” So non-determinism is con-
fined within a single module. This is achieved by expanding the excitation from a single
value to a set of values. In the model of Yakovlev et al., non-determinism is implied from
the STD specification.

1.3.2. Strong delay-insensitivity of networksRecall the intuitive notion of delay-insensiti-
vity. A circuit is delay-insensitive if it continues to operate correctly even if the delays in its
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components and wires change arbitrarily. All the existing definitions of delay-insensitivity
are concerned with a component interacting with its environment. The component is said
to behave delay-insensitively if the variations of delays in its input and output wires do not
violate its specification, which is typically given in the form of a trace structure. These
definitions focus on the delay-insensitivity of communications between two parties (the
component and its environment). Also, component delays are incorporated into wire delays.

In this paper, we take a different approach. We are concerned with the insensitivity of a
networkof components to wire delays.

Consider the following scenario. A designer has come up with a preliminary design of an
asynchronous circuit. This design consists of a collection of logic components, which we
callmodulesand these components are interconnected by wires, which wmoalkctions
Our model is quite flexible, for it permits the designer to use low-level modules, like logic
gates, or higher-level modules, like counters and arbiters. Each module is represented by its
binary inputs and outputs, by a single multi-valued state variable (to keep the model simple
and to abstract the internal design details of the module), and by its next-state and output
functions. The state variable permits us to associate a delay with each component. To keep
our model general, we assume that all such delays are arbitrary, finite, inertial delays.

As to wire delays, our model offers several choices. For simplicity, the designer might
want to assume that only the logic components have delays, i.e., to use a speed-independent
model for the first analysis. Or, if it is expected that some of the connections may be long
and may have appreciable delays, the designer might model such wire delays as delay
modules. Finally, if a more conservative model is desigddwires may be assumed to
have delays, in which case each wire will have a delay module inserted in it. In summary,
the first model of the circuit to be designed is a netwirbf modules, some of which are
logic components and others delay modules, as determined by the designer. We call these
modules theriginal modules.

It should be noted that, since delays are modules, a network with some wire delays added
is still a network of modules, and the same analysis method applies to both the original
network, and the network with added delays.

Assume now that the behavior of netwdxkobtained as above has been analyzed and
that it satisfies the given specification. We are interested in finding out whether the presence
of stray delays, which were not taken into accountNh can cause incorrect behavior.

For this purpose, we studielay extensionsf N. A delay extensiorN of N is a network
obtained fromN by inserting any number of (stray) delays in the connectiond.oNote

that several delays may be inserted in any connection. We now compare the behaMiors of
andN. SinceN has additional state variables corresponding to the stray delays, we must
assume that changes in the stray delays are unobservable. Having done that, we insist that
the behaviors oN andN (ignoring the stray delays) should be the same. If the behavior

of N agrees with the behavior of for each delay extensidd of N, then we declarél to

be strongly delay-insensitive.

It remains to define what we mean by the statement “the behavidtsaafiN should be
the same.” Here, we use the notiorobBervational equivalencalso known abisimulation
This is one of the strongest forms of behavioral equivalence, since it requirds tratN
should be capable of simulating each other’s behaviors step-by-step. A similar approach has
been used by Shintel and Yoeli [14], but with a different motivation and in a different context.
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One of our main results requires that the network under consideration shodédaye
dense meaning that, of each pair of adjacent components of the network, at least one is a
delay. For example, to obtain a delay-dense model it suffices to insert a delay in each wire;
a network with all wire delays taken into account is caltday-completeWe argue that
the delay-complete model is the appropriate one, if we are interested in studying delay-
insensitivity. Clearly, if one is interested in delay-insensitivity, one should not assume that
wires have zero delay.

1.3.3. Quasi semi-modularity and strong delay-insensitivitylo permit the handling of
non-deterministic modules, we generalize Muller’'s notion of semi-modularity. We choose
the termquasi semi-modularityfor our new concept.

The main result of the paper is that for delay-dense networks, strong delay-insensitivity
is equivalent to quasi semi-modularity.

1.4. Organization of the paper

The paper is organized as follows. In Section 2, we present our model for modules, whereas
in Section 3, we discuss networks of modules and network behaviors. Sections 4 and 5
concentrate on the definitions of strong delay-insensitivity of networks and quasi semi-
modularity of network behaviors, respectively. In Section 6, we give the proof of our main
result. Section 7 concludes the paper.

2. Modules

We now introduce our model of asynchronous components, which we call “modules.” To
hide the details of the internal design of a module, we represent it only by an abstract internal
state, which is not necessarily binary. This also helps to keep the model simple. However,
the inputs and outputs of a module remain binary.

We do not introduce delays in the input and output wires of a module for at least two
reasons. First, wire delays are frequently ignored in modules designed on a small area of a
chip; this small area is referred to as an “equipotential region” by Seitz [13]. Second, we
want to have the ability to model isochronic forks and similar components, since they are
used in many practical designs.

As a convention, ik = (X1, ..., Xy) IS an orderech-tuple, thenX = {x, ..., X} is the
corresponding set. Also, & = {xi, ..., Xy} is a set of elements explicitly represented in
that order, therx = (X, ..., X,) is the corresponding-tuple.

Definition 1 A module Mis a sequential machind = (S, X, y, Z, 3, A), where

S is a finite set ofnternal statef M;

X = {X4, ..., Xm} is the set obinary input variableswherem > 0;
y is theinternal state variable

Z ={z, ..., zp} is the set obinary output variableswherep > 0;
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Figure L  Graphical representation of a module.

e § is theexcitation functions : {0, 1}™ x S — 25\{#}, satisfying the restriction that, for
anya € {0, 1}™ andb € S, eithers(a, b) = {b} orb & §(a, b);
o L = (A1,...,Ap) is theoutput functioni : S — {0, 1}P.

Note thatm = 0 is allowed; in this case, the module isaurce Similarly, p = 0 is
allowed, and the module issink A module M can be represented by a directed graph
G = (V, &), wherey = XYU{y}U Z,andf = (X x {y}H) U({y} x £), as shown infigure 1.

A total state tof moduleM is a pair(a, b), wherea is a binarym-tuple representing input
values, and € S represents the internal state. TheBet §(t) is an non-empty subset of
S, called theexcitation state sebr simply, theexcitationof M in statet. If T = {b}, then
the statd and the moduléM are said to batable and the internal state cannot change. If
T # {b}, thent andM areunstableand, at any time, the internal state may change to any
stateb’ € T non-deterministically selected by the module. If the cardinality @ always
1, the module is said to b#eterministic In that case, we view as a function from the set
of total states ta5.

The output of the modul@ is determined solely by the present internal state. If the
internal state changes, and the implied output differs from the output before the change, the
new output value appeairsstantaneouslyogether with the internal state change.

Definition 1 permits us to treat any non-deterministic sequential machine of the Moore
type [10] as a module. In particular, delays (or wires with delays), forks, logic gates,
latches, counters, C-elements, and arbiters are included. Note that in this model forks are
isochronic meaning that all the output branches change at exactly the same time. The
delay of the internal state of a fork becomes the common delay of its output branches.
Anisochronicforks can be modelled within a network by associating delays to the wires
connected to the fork outputs; see Section 3.

Example 1 A delay is a moduleM® = ({0, 1}, {x{}, y9, {28}, 89, 19) with 8¢ anda? de-

fined asin Table 1. For future applications, we often use the superd¢dpdentify a delay
module. Note that we could also define a module that behaves like a delay but has several
outputs; however, the terdelay modulgor delay, will be reserved for one-output delays.

Example 2 An (isochronic) fork hass = {0, 1}, m = 1, p = 2, and$ and as defined
in Table 2.

Example 3 A three-input majority element h&&={0, 1}, m=3, p=1, ands andx as
defined in Table 3.
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Table 1 Delay.
X
y [ 0 1| 2y
0 0 1 0
1 0 1 1
89(x, y)
Table 2 Fork.
X
y 0 1 r(y)
0 0 1 00
1 0 1 11
3(X,Y)
Table 3 Three-input majority element.
X
y 000 001 010 011 100 101 110 1114 A(y)
0 0 0 0 1 0 1 1 1 0
1 0 0 0 1 0 1 1 1 1
3(X,y)
Table 4 A set-reset latch.
X
y 00 01 10 11 ALY)
0 0 0 1 1 01
1 1 0 1 1 10
3(X, y)

Example 4 A set-dominant set-reset latch héis= {0, 1}, m = 2, p = 2, and§ andA as

defined in Table 4.

Example 5 A Muller C-element ha$ = {0, 1}, m = 2, p = 1, and$ andA as defined in

Table 5.

Example 6 A modulo-4 counter ha§ = {0,1,2,3}, m = 1, p = 2, andé and X as

defined in Table 6.

Example 7 A simple arbiter hass = {0, 1, 2}, m = 2, p = 2, ands and as defined in
Table 7. This module is non-deterministic, functioning as an arbitration device. When both
inputs are 1 and the module is in state 0, the next state is chosen to be either 1 or 2, arbitrarily.
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Table 5 Muller C-element.

y 00 01 10 11 AY)

0 0 0 0 1 0
1 0 1 1 1 1
(X, y)
Table 6 Modulo-4 counter.
X
y 0 1 A(y)
0 0 1 00
1 2 1 01
2 2 3 10
3 0 3 11
3(x,y)
Table 7 An arbiter.
X
y 00 01 10 11 AY)
0 {0} {2} {1} (1,2} 00
1 {0} {0} {1} {1} 10
2 {0} {2} {0} {2} 01
(X, y)

3. Networks

We now introduce our circuit model, which we call a “network.” Networks are composed of
interconnected modules. We restrict our analysis to closed, or autonomous, networks. Typ-
ically, an open network can be transformed into a closed one by modeling the environment
as a set of modules. For example, to analyze the behavior of a two-way arbitration device
interacting with its environment, we can model the two agents sending and receiving re-
quests as two modules. If an agent may send a new request only when its previous request
has been granted, then we can model this simply as a delay module. If requests may be
sent arbitrarily, then we can use a binary module whose excitation is always the inverse of
its present internal state; note that in this case, the module is a source. Also, we can use a
non-deterministic module with two outputs to model random requests from the environment.
We use the following conventions. Modules are indexed by superscripts; all the com-
ponents, such as the state variables, associated with mbtuee given the superscript
i. Also, specific components of a tuple are indexed using subscripts, unless otherwise
specified.
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Figure 2 An example of a network.

Definition 2 A network Nis a pair{M, K), where

e M ={M...,M"},n>1,is asetof modules;

¢ K is a set otonnectionseach of which is an ordered pdis, x;), wherez; is the output
variable of some module, angl is the input variable of some module. Moreover, for each
input variablex; (respectively, for each output varial#g, there is exactly one output
variablez; (respectively, one input variablg) such that(z, x;) € K.

We assume that all networks in consideration are connected as graphs. Note that we do not
allow wired-and or wired-or connections; these are replaced by corresponding multi-input
modules. Normally, an outpatfrom a moduleM can be distributed t& other modules
through a fork, for somé& > 1. Our model also permits this in one of two ways: We
can either use a fork module, or we can replateby a module in which the output
is replaced byk copies ofz. Figure 2 shows a network composed of a C-element and
a two-output inverter, where the two outputs of the inverter are simply replicas of each
other.

The set of state variables of the netwadwkis ) = {y*,...,y"}. A state ofN is a
combination of the internal states of all the moduledNinSo the set of states df is
S=8'x---xS". If se S, theith component o is denoted by .

Definition 3 Lety' e ). Thenetwork excitation functiom; : S — 25\{@} of y', is
the module excitation functiosi of M' with arguments changed as follows(#, x/) is a
connection, then thgh input argument of' is A (y"). Fory' € Y ands € S, theexcitation
of y' in states, denoted b\§, is § = A; (S).

If (z*k‘, x,‘) is a connection, the output functio performs an instantaneous encoding
of the state of modul&1" and provides thé&th bit of the encoded value as thé input to
moduleM'. Sincer™ depends solely og", the excitation functiom\; becomes a function
of y". This functional dependency is captured by the “feed” relation: A moMlilés said
to feeda moduleM!, denoted by M', M) e F, if some output oM’ and some input of
M1 form a network connection. Note that the case whetej (a self-loop) is allowed. The
relation 7 can also be viewed as being defined over the set of state variables. That is,
(y', yh e Fifand only if (M, M1) e F.
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A network states is stable if all the modules are stablesythat is, if§ = {s} forall i;
otherwises is unstable We denote the set of unstable state variables in staye

Us) =y e V1S # (s}

We now define the behavior of a network. The basic notions are those of Muller [11],
though we prefer to use the terminology in [2]. For simplicity and other reasons, we assume
that only one state variable changes at a time. This is essentialjgtiezal single-winner
(GSW) model [2]. We support our decision as follows. Since we are mainly interested
in delay-insensitive circuits, for which wire delays have to be considered, it would seem
inappropriate to choose a model in which simultaneous input or output changes play a sig-
nificant role. Also, for semi-modularity, the other network property we are concerned with,
we have the observation that for a semi-modular behavior, the GSW model produces the
same terminal class as tgeneral multiple-winnemodel, in which simultaneous variable
changes are allowed. This is because semi-modularity requires that no unstable state vari-
able can become stable without changing its value. Thus, variables changing simultaneously
can always be made to change sequentially. In fact, some very recent work [15, 16] on our
network model supports our choice. It turns out that in the context of delay-insensitivity
and semi-modularity, the single change assumption does not affect the results of analysis
of asynchronous circuits.

The GSW relationover the set of states of a netwokk is a binary relatiorR, such
that(s, t) € R, orsRt, if and only if s differs fromt in exactly one component s #t;,

y' € U(s), andt € S.

Definition 4 A (GSW) behaviorof a networkN is an initialized directed grapB =
(g, @, R), where

e g € S is theinitial state;
e Q, specifying the vertices d, is the set of states reachable frgnaia the GSW relation
R!

Q={seS|qR'sk
e R, specifying the edges @, is the GSW relatiofr restricted toQ.

If (s,t) € R, we attach to edgés, t) atag (s, t) € Y, which denotes the state variable
in which s andt differ.

With the notation for behaviors established, we have the following proposition, which
merely states that if the excitation of a state varigblehanges due to a change of variable
y', theny' must feedy!.

Proposition 1. Let(s,t) € R andz(s,t) =Y. If S; # T; for some j#i, then(y', y!) e
F.
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Proof: Sincej # i, we haves; = t;. Thus, ifS§; # T;, the value of some input argument
of Aj must have changed during the state transition. As the only state variable changed is
y', we must havey', y!) € F. O

A behaviorB = (q, @, R) of a networkN can be viewed as a non-deterministic finite
automator3 = (), Q, q, p, Q), where

e )Y is the input alphabet;

e Qs the state set;

e ( is the initial state;

e p is the state transition functiop,: 9 x Y — ZQ, such that

p(s,y) = {t € Q| sRtandz(s, t) = y'}

forse Qandy €
Q is the set of accepting states.

Note thatp (s, y') = @ implies that there is no transition labellgdleaving states.
We extend the state transition functiprto p*: Q x Y* — 22, which can be defined
inductively as follows. Fos € Q, y' € ), andw € )",

o p*(s,€) ={s} _
o p*(s,wy') ={t € Q|t e p(s,y) for somes e p*(s, w)}.

We often represent the state géts, w) by the short-hand forrew. The languagé (B3)
accepted bys is defined in the usual way,

L(B) = {w € V" |qu # ¥}.
It is worth noting that_ (B) is always prefix-closed.

Example 8 Refer to the network shown in figure 2. The set of state variablgs is

{y*, y?}. The behavior of this network with initial staig/, y?) = (0, 0) is shown in

figure 3. From now on, when showing particular state tuples, we omit parentheses and
commas, for brevity; also, unstable state components are in boldface.

Example 9 Figure 4 shows a networM’ composed of a two-output C-element and two
inverters. The two outputs of the C-element are simply replicas of each other. The behavior
of N’ with initial state @0is shown in figure 5.

2
’-»ooy01y11y10
1
y

Figure 3 Behavior of the network shown in figure 2.
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Figure 5. Behavior of networkN’.

4. Strong delay-insensitivity of networks

We now describe how we model stray delays in a network. We then give a formal definition
of strong delay-insensitivity of networks.

4.1. Delay extensions

To determine whether a network is delay-insensitive, we wish to examine how the distribu-
tion of delays in the wires affects the behavior of the network. We motivate our approach
to this problem by Charles Molnar’s “foam-rubber wrapper” principle [9]. This intuitive
idea corresponds to surrounding each module in a network by delays. However, instead of
“wrapping” all the modules by delays at once, we choose to proceed inductively using the
notion ofdelay extensianThis facilitates the mathematical treatment of the problem.

Definition 5 Let N= (M, K) be a network. Adelay successasf N is a networkN =

(M, K) obtained fronN by inserting a delay!"** in a connectiore = (zL, xl') of N. That
is, . is connected to the input dfi"*2, the output ofM"™** is connected to/, and the
connectione is removed. The seD(N) of delay extensions of a network i defined
inductively, as follows,

e N € D(N); A
e if N € D(N), then each delay successorfis also inD(N).

By definition, there cannot be a cycle of inserted delays in a delay extension. This fact
is used in the proofs of Propositions 3 and 4 below. As a convention, we denote a delay
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extension of a networkl by N. Furthermore, all the componentsiéf any object associated
with N, e.g., a behavior, and the components of that object are all marked by the hat
In order to compare the behavior of a netwdikwith the behavior of a delay extension
of N, it is essential that we relate corresponding states and state transition sequences in the
two behaviors.

Definition 6 LetN € D(N). Theprojection of a stat& of N with respect toN is the|)|-
tuples = § | Y obtained fron$ by removing aII components corresponding to variables not
in ). Similarly, theprojection of a wordp € " with respect taN is the wordw = w | Y
obtained fromw by erasing all the symbols not .

Note that in general, any module can be “projected out”; however, for the purpose of our
analysis, only delays are projected out. In contrast to projections of states, we also have the
notion of extensions of states.

Definition 7 Let N € D(N), and lets be a state oN. An extensiorof s with respect
to N is a states of N for which$ | Y = s. If §is an extension o and/(8) C Y (in
other words, if all the inserted delays are stablg)irthen we say tha is thestable-delay
extensiorof s.

Note that the stable-delay extension of a state is unique. We now prove two useful
propositions concerning state extensions. In the followmge D(N), ands and$ are
states ofN and N, respectively. We call a module & which is also present iftN an
original module.

Proposition 2. If § isthe stable-delay extension offsen the excitations of all the original
modules are the same in s afdthat is § = S for all i such that M € M.

Proof: By Definition 3, it suffices to prove that in stagethe value of each argument of

A; agrees with that of the corresponding argumentoih states. The arguments of; are

the input values toI' and the internal stat. Sinces, = §, we only need to worry about
the input arguments. Let theth input argument of\; bexf‘(éh). If MM is original, then we

are done. Otherwiséy" is an inserted delay. Then there exists a “chain” of inserted delays
of which M" is the tail, and some original modub? feeds the head of the chain. Ass

the stable-delay extensiongfall the delays in the chain are stable%iﬁ'hus,k?(ég) =§

where we assume that théh output ofM9 feeds the head of the delay chain. Furthermore,
kl &) =& = Ag(sg) On the other hand, it is clear th@?19, M) € F and the value of
thekth mput argument of\; is Ag(sg) = Ag(sg) which is the same as that of . O

Corollary 1. If § is the stable-delay extension oftlseni/(5) = U(S).
Proposition 3. Let$§ be an extension of, shen the stable-delay extension&tan be

reached frons by a sequence of changes on the inserted delays only. Formhadhg exists
w € (Y — Y)* such that’ € &w, where§ is the stable-delay extension of s.
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Proof: Let us assign “levels” to the inserted delaysNninductively as follows: a) A

delay is of level 1 if it is fed by an original module; b) a delay is of lekel 1 if it is

fed by a delay of levek. Note that there are no cycles of inserted delayfinAlso,

every delay has a unique input and output. Therefore, each inserted delay is assigned a
unique level. Starting in statg we change inserted delays which are unstable in such a
way that at each step, we always choose one which has the least level. We stop when all the
inserted delays are stabilized. One easily verifies that the process will terminate when the
stable-delay extensidi of s is reached. O

4.2. Definition of strong delay-insensitivity of networks

Given a networkN, we compute its behavior with respect to its initial state, and take
this behavior to be correct. The delay extensiondNafive a description of all possible
distribution of stray wire delays within the network. Rrto behave correctly regardless
of the delay distributions, that is, fod to be delay-insensitive, the behavior of any delay
extension ofN should also be correct. Thus, any delay extensioN ahould behave like
N as long as their initial states are “compatible.”

One of the strongest forms of behavioral equivalencebiservation equivalencg],
which we choose as the criterion for comparing the behavior of a network with the behavior
of its delay extension, and for defining strong delay-insensitivity of networks. In this context,
transitions occurring on the inserted delays are treated as non-observable “internal” actions;
in fact, they can be viewed simply as a passing of time. Note that observation equivalence
is also often referred to aseak bisimulationStrong bisimulation corresponds to graph
isomorphism.

As noted above, in order to compare the behavior of a network with the behavior of a
delay extension of the network, we have to choose an appropriate “compatible” initial state
for the latter behavior. The following definition makes this precise.

Definition 8  Let N be a delay extension df, and letB = (q, Q, R) be a behavior of
N. A behaviorB = (g, 9, R) of N is said to benitial-state compatible with Bf § is the
stable-delay extension of

In general, two behaviors are observationally equivalent if they can simulate each otherin
a step-by-step fashion when transitions on the non-observable variables are ignored. More
specifically, if two states from the two behaviors are similar, meaning that they agree
in value on the observable variables, then an observable transition enabled in one state
can also be observed from the state in the other behavior, and vice versa. Moreover, it is
undesirable to have a behavior going into an infinite loop without producing any observable
transitions. We call such a loopligelock We now define these concepts in the context of
network behaviors.

Definition @  Let I\:l be a delay extension df. Let B = (q, Q, R) be a behavior oN,
and letB = (g, @, R) be the behavior oN which is initial-state compatible witB. Two

A

statess € Q and$ e Q are said to beimilar if §is an extension aof.
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e BehaviorB is said to besafe with respect to B, whenevers € Q ands € Q are similar,

then for allf € O andw € 3", if f € &b andw | Y = y' for somey' € V), then there
existst € Q such that e sy andt andf are similar. That is,

A% o~ Y Ak A y
§ S0 —>bt—t = s>t

where—> denotes a sequence of zero or monebservabléransitions.

e BehaviorB is said to be&omplete with respect to 8 whenever$ € Q is an extension of
se O, thenforallt € sy, there existd € 3" andf € O suchthaf € 8w, | Y =y,
andt andf are similar. That is,

y N Ly S
S—t — s 5051 v 5t

e BehaviorB is said to bdivelock-free with respect to B all sequences of transitions
involving only the inserted delays are finite. Formally, forsa Q andw € (Y — ))*,
S ¢ Suw.

With unobservable transitions occurring on delay modules only, it can be shown that
completeness and livelock-freedom are satisfied by all delay extensions.

Proposition 4. Behavior B of Definition9 is always complete and livelock-free with
respect to B.

Proof: Refer to Appendix A. O
This results in our definition of strong delay-insensitivity of networks.

Definition 10 A networkN is strongly delay-insensitive with respect to a stat, dor
any delay extensioll of N, B is safe with respect t&, whereB andB are as defined in
Definition 9.

Example 10 Consider part of a networld, where two delays are connected to the arbiter

of Example 7, as shown in figure 6(a). Figure 6(c) shows the corresponding part of a delay
successoN of N, where the inserted delay is shaded. Let the current values and excitations
of the modules be as shown, where excitations are shown in brackets.

Each figure represents a network state. Staté N, as shown in figure 6(b), results
from states (figure 6(a)) by a delay change; stétef N (figure 6(d)) results from state
(figure 6(c)) by the same delay change; afsis,the stable-delay extension®©We assume
that the states of network modules not shown are the same in all four states.

Clearly,f is an extension df. In statef, the arbiter may change to state 1 or 2, whereas in
statet, the arbiter can only change to 2. This demonstrates a violation of safety. Therefore,
N is not strongly delay-insensitive with respect to state
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Figure 6. Example of safety violation.

5. Quasi semi-modularity and delay-dense networks

In this section, we first generalize Muller’s definition of semi-modularity to quasi semi-
modularity to allow non-deterministic modules. We compare quasi semi-modularity with
semi-modularity. We then define a special class of networks, the delay-dense networks,
which characterize asynchronous circuits for the purpose of delay-insensitivity analy-
sis. We prove that for delay-dense networks, quasi semi-modularity is preserved under delay
extensions.

5.1. Quasi semi-modularity and semi-modularity

Semi-modularity was initially defined in [11] for deterministic circuit behaviors. We gen-
eralize this original definition to suit our network model, which allows non-deterministic
modules.

Definition 11 LetB = (g, Q, R) be a behavior of a networl. A states € Q is said to
be quasi semi-modulaif, for all t € Q, if (s,t) € R with (s, t) =y, thenS; C T; for
all j # i such thaty! e 24(s). If sis quasi semi-modular for a#l € Q, then the behavior
B is said to be quasi semi-modular.

Intuitively, quasi semi-modularity requires that once a state varigtidecomes unstable
andb is in its excitationb should remain in the excitation ungi changes. Our general-
ization is quite natural. If all the modules are deterministic, then quasi semi-modularity
coincides with semi-modularity. That is, semi-modularity implies quasi semi-modularity.

Example 11 For a violation of quasi semi-modularity, refer to figure 6(a) and (b). The
delay change involved alters the excitation of the arbiter and violates quasi semi-modularity.
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Figure 7. NetworkN.
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Figure 8 A quasi semi-modular behavior of.

Example 12 Figure 7 shows a networlK consisting of an arbiter, @-element, and two
delays. AC-element functions like a Muller C-element with inverted outputs; the two
outputs are replicas of each other, and equal to the complement of the internal state.

Figure 8 shows a quasi semi-modular behaviolNostarting from state/'y?y3y* =
0100. Since the inputs to the arbiter are 00, and the arbiter is in state 0, it is stable and
produces output 00. Since ti@element is in state 1 and has inputs 00, it is unstable;
it produces output 00, making the two delays stable. Hence, in the initial state, only the
C-element is unstable and the next state 8D he rest of the behavior can be computed
similarly.

This example illustrates that the setinclusion in Definition 11 cagrdyeer. For example,
in state0010, the arbiter can change to state 1 only; in a subsequentGafe resulting
from a change on a delay, the arbiter can change to either 1 or 2.

Example 12 also shows that quasi semi-modularity is less restrictive than semi-modularity.
According to Muller, semi-modular circuits form a proper subclass of speed-independent
circuits. By his definition, the behavior shown in figure 8 is not speed-independent with
respect to the statdl00, since there are two terminal classes; however, we see thatitis quasi
semi-modular. The existence of two terminal classes is attributable to the non-deterministic
behavior of the arbiter, rather than to the race between the two dgtesdy*. In that
sense, the circuit should be considered speed-independent.

Note that there are non-deterministic speed-independent circuits exhibiting quasi semi-
modular behaviors. An example can be found in figure 1 of the paper by Yakovlev et al. [19].

Finally, we comment on quasi semi-modularity and lattice theory. Muller [11] shows
that the partially ordered set of so-calleamulative statesf a semi-modular behavior is a
semi-modular lattice with a zero. A cumulative state is:aémple of integers recording the
number of changes on threbinary state variables. We were unable to establish a similar
correspondence between quasi semi-modularity and some appropriate lattice property.
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5.2. Delay-dense networks

An asynchronous circuit consists of a set of components interconnected by wires, where
each component can be modelled by a module. To model wire delays, we treat wires as
delay modules. Intuitively, an asynchronous circuit is delay-insensitive if the correctness
of its operation is independent of the delays in its components and in the wires connecting
the components. We assume that the delays are finite, but otherwise arbitrary. As both
component and wire delays are to be taken into account, any asynchronous circuit can be
modelled by alelay-densaetwork, defined as follows:

Definition 12 A networkN, as in Definition 2, iglelay-densd, wheneverM' feedsM
in N, then eithetM' or M! is a delay module.

For example, the networks of Examples 8 and 9 are not delay-dense. They become
delay-dense if we insert a delay in each of the network connections.

Indefining networks, we do not rule out self-loops around modules. However, if a network
is delay-dense, the only case where self-loops can exist is when the network consists of a
single delay module.

5.3. Quasi semi-modularity and delay-density

We prove that quasi semi-modularity of behaviors of delay-dense networks is preserved
under delay extensions. This result is essential in the proof of the main theorem of the
paper, which is presented in the next section.

Theorem 1. Let N be a delay-dense networnd letN e D(N). Let B= (q, Q, R)
be a behavior of Nand letB = (g, Q, R) be the behavior oN which is initial-state
compatible with B. If B is quasi semi-moduldinen so isB.

Proof: We first prove a lemma concerning delay successors. |

Lemmal. LetN beanetwork, andlet B (q, Q, R) be a quasi semi-modular behavior
of N. LetN be a delay successor of Mhere the extra delay s inserted in a connection
between two distinct modules. Without loss of generaiggume that the connection is from
M®to M2 If M2 is a delay thenB = (g, O, R), the behavior oN which is initial-state
compatible with Bis also quasi semi-modular.

Proof:  Note that in this lemma, we do not require the netwidrko be delay-dense. For
a proof of the lemma, see Appendix B. |

We now prove the theorem by induction on the number of inserted delays. The base case,
whereN = N, is trivial. Now assume tha = (g, Q, R} is quasi semi-modular. We insert
a delayM? into a connectiore of N. If e connects a module to itself, théd consists of
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Figure 9. Theorem 1 fails to hold for networks which are not delay-dense.

a single delay module; the result holds trivially in that case. Thus we assumb! thiat
inserted between two distinct moduls® andM!. Denote the resulting delay successor
by N. Thus,(M', M9), (M9, M) € F. Let B = (4, Q, R) be the behavior ol which is
initial-state compatible witlB. We shall prove thaB is quasi semi-modular.

If M1 is a delay, then the result follows from Lemma 1; otherwise, skhédelay-dense,
M must be a delay. L&M", M') € F. Clearly,M" is unique. Imagine that in the network
N, we change the index d¥l' to d, and call the new networkl. Obviously,B is a quasi
semi-modular behavior dfl as well. NowN can be viewed as being obtained froinby
insertingM' in the connection betweel" and M¢, in which case the new delay feeds
the delayM9. So the result we wish to prove again follows from Lemma 1. The proof of
Theorem 1 is completed by induction on the number of inserted delays.

It is worth noting that Theorem 1 does not necessarily hold for networks which are not
delay-dense. For example, consider the network consisting of a two-output inyested
an AND-gatey?, as shown in figure 9(a) (for now, assume that the box labgifeid a
delay-free connection). Let the initial state 6@ The corresponding behavior is quasi
semi-modular, as shown in figure 9(b). With a dejgyinserted, as shown in figure 9(a),
the corresponding behavior (figure 9(c)) is no longer quasi semi-modular; more specifically,
the state400 and001 are not quasi semi-modular.

6. Strong delay-insensitivity and quasi semi-modularity

In this section, the proof of the main theorem of the paper is presented. We first prove that
strong delay-insensitivity implies quasi semi-modularity; here, delay-density of networks is
not required. We then prove that, for delay-dense networks, quasi semi-modularity implies
strong delay-insensitivity. As any asynchronous circuit can be modelled by a delay-dense
network, we conclude that an asynchronous circuit is strongly delay-insensitive if and only
if its behavior is quasi semi-modular.

Theorem 2. If a network is strongly delay-insensitive with respect to a stdten its
behavior originating from that state is quasi semi-modular.

Proof: Let N be a network, which is strongly delay-insensitive with respect to a gtate
Let B = (q, Q, R) be the corresponding behavio[. Lste D(N) be obtained from\AI
by inserting one delay irachconnection ofN. Let B = (g, Q, R) be the behavior oN
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which is initial-state compatible witB. By Definition 10,B is safe with respect t8. Let
us first prove a lemma for later use. |

Lemma 2. Letse Q. There exist$ € O such thas is the stable-delay extension of s.

Proof: We prove the result by induction. The base case, whete, is trivial. Lets € Q
andt € sy, forsomey' € ). Assume that there exisise O such thasis the stable-delay
extension of. By Proposition 2§ = §. Thus, there exists € Q such thaf € 8y and
f | Y =t. By Proposition 3, there exists € ()) — ))* such that’ € fw, wheref’ € Qis
the stable-delay extension bf Thus, the lemma is proven. O

Now suppose the is not quasi semi-modular. Then there exists) € Rwithz(r, s) =
y' such thatR; Z S; for somej # i with y! e U(r). Letb € R; suchthab ¢ §;.

By Lemma 2, there exisfse Q such that is the stable-delay extensionrofBy Propo-
sition 2, R = R andR; = R;. Thus, there exist§e Q such thaefy' and$ | Y =s.
By our construction of the networK, (y', y/) ¢ . By Proposition 1, we hav&; = §;.
Note thaty! € 2(r) =U(F). It follows thaty! e 14(8). Also,b € R; = R; = §;. Thus, there
existst € O such thaf € $y/ andfj =b. Recall that is an extension o and B is safe
with respect tdB. Therefore, there exists= Q suchthat e syl andt =f | Y. Thust; =b,
which implies thab € S;—a contradiction. Hencd® must be quasi semi-modular.

Theorem 3. If a behavior of a delay-dense network is quasi semi-modulzen the
network is strongly delay-insensitive with respect to the initial state of that behavior.

Proof: Let N be a delay-dense network. LBt = (q, @, R) be a quasi semi-modular
behavior of N. Let N € D(N), and letB be the behavior o which is initial-state
compatible withB. We shall prove thaB is safe with respect t8.

Let$ e O be an extension of € Q. Letf € O andw € Y’ be such thaf € &b and
W | Y =y forsomey e ). Letfi = b. Clearly, all we need to show is thiate S. Let
us writew asw = Gy 0, whereQ, (' € (Y — Y)*. Denote the state reached afteby §/,
§ € 80. Clearly,y' € U(8) andb € @1 Also, § is an extension o§. By Proposition 3,
there exist9 € (ﬁi — Y)* such tha8” € §'v, where§” is the stable-delay extension &f

By Theorem 1Bis quasi semi-modular. Singé, an original module, does not change
in o, we must hav&§ < §', which implies thab € §'. On the other hand, by Proposition 2,
we have§ = §'. Henceb e S. By definition, B is safe with respect t8. SinceN was
chosen arbitrarily, by Definition 10 is strongly delay-insensitive with respectgo O

Note that Theorem 3 does not necessarily hold for networks which are not delay-dense. For
example, consider netwoik, shown in figure 10 (ignorg? for now), consisting of a single
moduleM?, whose excitation and output function are given in Table 8.

Let the initial state b@. The corresponding behavi8ris quasi semi-modular, as shown
in figure 11(a). Now let us insert a delgy, as shown in figure 10. The corresponding
behaviorB of the resulting delay extensioN is given in figure 11(b). Note that in state
11 of B, M* may change to 2; but in stafieof B, M* can only change to 0. Therefore,
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Table 8 ModuleM?.

y 0 1 A(Y)
0 {2} {1, 2} 0
1 {0} {2} 0
2 {2} {1} 1
3(X, y)
ml
y!
Figure 10 NetworkN.
y! 2
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Figure 11 Theorem 3 fails to hold for networks which are not delay-dense.

B is not safe with respect tB, and consequently is not strongly delay-insensitive with
respect to staté.

Theorem 2 holds for all networks. Combining Theorem 2 and 3, we have the maintheorem
of the paper:

Theorem 4. A delay-dense network is strongly delay-insensitive with respect to a state if
and only if its behavior originating from that state is quasi semi-modular.

7. Conclusion

In this section, we first show the relationships among various classes of autonomous asyn-
chronous networks. We then discuss how the main result of the paper may be applied to
test whether a given network is strongly delay-insensitive. Finally, we mention briefly how
strong delay-insensitivity is related to the well-accepted notion of delay-insensitivity due
to Udding.
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Figure 12 A first classification of asynchronous networks.

0 0 0 1 0 0
M r!:l—»l:}—l ’—'[>‘>—] ’—_»z—o,_l
@ ®) @

©)

Figure 13 Network examples used in the first classification.

DD: delay-dense
Figure 15(a)
from [7]

SDI: strong delay-insensitive
QSM: quasi semi-modular
SM: semi-modular

SI: speed-independent

Figure 13(a) Figure 13(b)

Figure 14 A classification of deterministic asynchronous networks.

7.1. A classification of asynchronous networks

Figure 12 shows the relationship among strong delay-insensitivity, quasi semi-modularity,
and delay-density. The universal set is the seindfalized autonomous networks, i.e.,
autonomous networks with designated initial states. For regions corresponding to the empty
set, we show the relevant theorem. For other regions, we give the figure which shows a
network in that class.

Figure 14 shows a classification déterministicinitialized networks. Speed-indepen-
dence is as defined by Muller [11]. For general networks, we have discussed the relationship
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Figure 15 Network examples used in the second classification.

among quasi semi-modularity, semi-modularity, and Muller's speed-independence in
Section 5.1.

7.2. Testing strong delay-insensitivity of networks

Suppose that we are given a netwddkand an initial state], and we are to determine
whetherN is strongly delay-insensitive with respectqoWe cannot apply Definition 10
directly, since it would involve an infinite test. N happens to be delay-dense, then by
Theorem 4, we only need to check whether the behavidt ofiginating fromq is quasi
semi-modular; this problem is decidable. The test for quasi semi-modularity is linear in the
size of the behavior graph, but potentially exponential in the number of state variables. Here,
we assume that the size of the domain of each state variable is constant.

We do not have a complete test for all networks. However, we do have one positive test
and one negative test, both involving a test for quasi semi-modularity only. The negative
test uses Theorem 2: If the behaviorMforiginating fromq is not quasi semi-modular,
then N is not strongly delay-insensitive with respectcto The positive test is concerned
with delay-completion The delay-completion of a netwoiK is a delay extension dfl
obtained by inserting one delay module in each connectidw. of

Theorem 5. Let N be the delay-completion of a network N. Let=B (q, Q, R) be
a behavior of N and let B = (g, @', R') be the behavior of Nwhich is initial-state
compatible with B. If Bis quasi semi-modulathen N is delay-insensitive with respecttoq.

Proof: See the proof of Theorem 5.5 in [20]. O

Thus, giverN andq, we first construct the delay-completiondf We then check whether
the behavior of the delay-completion is quasi semi-modular. If the answer is yes, then by
Theorem 5, we conclude thistis strongly delay-insensitive with respectidJnfortunately,
there are networks for which neither the positive test nor the negative test gives a definitive
answer. An example of such a network was given in figure 9(a).
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7.3. Strong delay-insensitivity and Udding’s delay-insensitivity

Recall that the behavior of a network can be captured by a language (Section 3). If the

network is delay-dense, then for each component, we can obtain a description of its behavior
by projecting that language onto only the delay modules connected to the component. This
sublanguage is a trace set of the component. H. Zhang [20, 21] has shown that if the network
is strongly delay-insensitive, then the trace set of each component satisfies the JTU-rules;
but the converse is not true. We see this as a justification for the use of the term strong
delay-insensitivity.

Appendix A
Proof of Proposition 4

Proof: We prove livelock-freedom first. Suppose thatthere éistQandb € (V-Y)*+

such tha € &. Lety' be an inserted delay which appearsinClearly,y' must appear

at least twice ind. Thus, the (unique) state variatyethat feeds/ must have changed and
appears inb. It follows thaty" is an inserted delay. Applying the same argument repeatedly
(this time starting withy") leads to a contradiction, since there are no cycles of inserted
delays inN.

To prove completeness &, lets e O be an extension of € Q, and lett € sy. By
Proposition 3, there exists € () — ))* such tha’ € Sw, where§' is the stable-delay
extension ok. By Proposition 25 = §. Therefore, there exisfse §'y' such thaf is an
extension ot with respect taN. Thus, we havé € 8y C &y, 0y | Y =y, andfis
an extension of with respect taN. By Definition 9, Bis complete with respecttB. O

Appendix B
Proof of Lemma 1

Proof: By the construction of networN, we have(y!, y2) € F and(y?, y9), (y9, y?) €
F. The result follows from a series of four lemmata. In the following, we assume that
B = (g, Q, R) is quasi semi-modular. Also, |éte O be any state oN. The staté is said
to benormalif § | ) € Q;inthat case, welegs=5§ | ). m]

Lemma 3. Lets be normal. Ifi= d and i # 2, then§ = § and/(§)\{y?, y2} C U(s).
Proof:  Clearly, M' is an original module. One easily verifies that the input connections
to M' are identical in the two networkd andN. Thus, theAvaIue of each qrgumentmf
in s is equal to the value of the corresponding argumemoin 8. Hence,§ = S. The

second result follows immediately. O

Lemma 4. If § is normal but not quasi semi-modulathen y € /($).
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Proof: Lets=§| Y € Q. Suppose tha is not quasi semi-modular. Then there exists
f € Q such that

1. 60 eRwitht(8, ) =y o
2. there exist§ # i such thaty! € #4(5) andS; € T;.

By Proposition 1,(y', yl) € F. Also, y € U($), by definition. Assume thay® ¢
U(S). Then,i # dandj # d. SinceM? (a delay) has exactly one input,# d, and
(', yh, (y9, y?) € F, we must havg # 2.

Sincey? ¢ U(8), § is the stable-delay extension sf Also, M' and M/ are original.
By Proposition 2.5 = S; and§ = §. It follows that there exists € Q such thasRt,
(s, t) =y, andt = t | V. Thus,tis normal. Recall thaj # d andj # 2. By Lemma 3,
TJ = T;. On the other handyl e U(8) = U(s). Also, B is quasi semi-modular and
j #i. Therefore,S; C T;. Itfollows thatS; = S;  T; = Tj—a contradiction. Hence, if
§is not quasi semi-modular, thef € 2/(8). O

Lemma 5. If § is normal but not quasi sem| -modulathen either ¥ € U(8) or there
existst € O such that(s, f) R, 8, 1) =y, and§ g Tq.

Proof: Lets=3§ ] Y € Q. Suppose that is not quasi semi-modular. L&t j, andf be
as defined in the proof of Lemma 4. Again, we haye yi) € F andy' € U($). Assume
thaty? ¢ U/(8). Then,i #2andj # 2. SinceM (a delay) has exactly one outpljts 2,
and(y', yh), (y4,y? € F, we must havée #d.

Suppose thaj # d. By Lemma 3 SJ = ;. Similarly, § = S. It follows that there
existst € Q such thasRt, t(s,t) = y', andt ={ | V. Thus,{ is normal. By Lemma 3
again,T; = T;. On the other hand, by Lemma, € U(8) — {y%, y?} CU(s). Also, B is
quasi semi-modular anfl+ i. Therefore S; C T;. It follows that§; = §; € T; = T)—a
contradiction. Hencej = d. Since(y', y/) € F, we must havé = 1. Thus,(, f) € R,
7(3,f) = y!, and§ ¢ Ty, as in the lemma. O

Lemma 6. Forall € Q, § is quasi semi-modular and normal.

Proof: We proceed by induction. For the base case$tet§. Clearly,§is normal and
yd ¢ 1/(8). By Lemma 4§ is quasi semi-modular. Now, lét, §) € R with (f,8) = y'.
Assume that is quasi semi-modular and normal. We shall provedligtjuasi semi-modular
and normal.

Letr =f | Y e Q.If yd ¢ U(f), theni # dandR = R. It follows that§ | )
€ Q. Now assume thay® e U(f). If y> € U(F), then by changing/ in statef, we
would have a violation of quasi semi-modularity, contradicting the quasi semi-modularity
of f. Thereforey? ¢ U(f) andi # 2. Ifi =d,then§ | Y =f | Y e Q; otherwise, by
Lemma 3, we hav&i = R;, which implies thag | ) € Q. Hence§is normal.

Suppose thatis not quasi semi-modular. Let the output verteMfwhich is connected
to M? bez}. Clearly,z} is connected td2 in N. By Lemma 4,y¢ € U(8). It follows that
i #d. By Lemma 5, there are two cases to consider.
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e y? € U(9): Note thaty? is a delay. Sincé # d, y? € U(f). By an argument similar to
the one given above, we hayé ¢ /(f). Thus,i = 1 andy* € U (f). On the other hand,
sincey? ¢ U(F), f is the stable-delay extension iof It foIIows thaty!, y?> € U(F) =
U(r) and there exists € Q such thatr Rs, r(r S) = y ands = § | Y. We have
Ry = AL(r) = Ai(f1) = Ry = fg and S = Al(s) = AL(&) = S Sincey? € U(9),

& # §. Butfy = &. Therefore,R, # S, which violates quasi semi-modularity of
B—a contradiction. A

e There existd € Q such that(s,f) € R, ©(5,f) = vy, and& ¢ Ty Sincey? ¢
UB), & = & Also, & # A&, sincey? € U®B). Lets = 8§ | Y € Q. Then,
S # Ai(s1), which implies thaty? € 2/(s). On the other hand, by Lemma 3, we have
S, = S,. Therefore, there eX|stse Q such thasRt, (s, t) = y andt =1 ¢ ). We
haveS, = Al (s) = Al &) = Sj and similarly,T, = Td SmceSj g Td, i.e. Sj #* Td,
we haveS, 75 To, wh|ch violates quasi semi-modularity BfF—a contradiction again.

Hence § is quasi semi-modular. The lemma is proven by induction. O

By Lemma 6,8 is quasi semi-modular for afl € Q. Hence B is quasi semi-modular.
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