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Abstract

We advocate the use of implicit fields for learning gen-
erative models of shapes and introduce an implicit field de-
coder, called IM-NET, for shape generation, aimed at im-
proving the visual quality of the generated shapes. An im-
plicit field assigns a value to each point in 3D space, so
that a shape can be extracted as an iso-surface. IM-NET
is trained to perform this assignment by means of a binary
classifier. Specifically, it takes a point coordinate, along
with a feature vector encoding a shape, and outputs a value
which indicates whether the point is outside the shape or
not. By replacing conventional decoders by our implicit de-
coder for representation learning (via IM-AE) and shape
generation (via IM-GAN), we demonstrate superior results
for tasks such as generative shape modeling, interpolation,
and single-view 3D reconstruction, particularly in terms of
visual quality. Code and supplementary material are avail-
able at https://github.com/czq142857/implicit-decoder.

1. Introduction
Unlike images and video, 3D shapes are not confined to

one standard representation. Up to date, deep neural net-
works for 3D shape analysis and synthesis have been devel-
oped for voxel grids [18, 45], multi-view images [39], point
clouds [1, 32], and integrated surface patches [16]. Specific
to generative modeling of 3D shapes, despite the many pro-
gresses made, the shapes produced by state-of-the-art meth-
ods still fall far short in terms of visual quality. This is re-
flected by a combination of issues including low-resolution
outputs, overly smoothed or discontinuous surfaces, as well
as a variety of topological noise and irregularities.

In this paper, we explore the use of implicit fields for
learning deep models of shapes and introduce an implicit
field decoder for shape generation, aimed at improving the
visual quality of the generated models, as shown in Fig-
ure 1. An implicit field assigns a value to each point
(x, y, z). A shape is represented by all points assigned to
a specific value and is typically rendered via iso-surface
extraction such as Marching Cubes. Our implicit field de-

Figure 1: 3D shapes generated by IM-GAN, our implicit
field generative adversarial network, which was trained on
643 or 1283 voxelized shapes. The output shapes are sam-
pled at 5123 resolution and rendered after Marching Cubes.

coder, or simply implicit encoder, is trained to perform this
assignment task, by means of a binary classifier, and it has a
very simple architecture; see Figure 2. Specifically, it takes
a point coordinate (x, y, z), along with a feature vector en-
coding a shape, and outputs a value which indicates whether
the point is outside the shape or not. In a typical application
setup, our decoder, which is coined IM-NET , would follow
an encoder which outputs the shape feature vectors and then
return an implicit field to define an output shape.

Several novel features of IM-NET impact the visual
quality of the generated shapes. First, the decoder output
can be sampled at any resolution and is not limited by the
resolution of the training shapes; see Figure 1. More im-
portantly, we concatenate point coordinates with shape fea-
tures, feeding both as input to our implicit decoder, which
learns the inside/outside status of any point relative to a
shape. In contrast, a classical convolution/deconvolution-
based neural network (CNN) operating on voxelized shapes
is typically trained to predict voxels relative to the extent
of the bounding volume of a shape. Such a network learns

https://github.com/czq142857/implicit-decoder


Figure 2: Network structure of our implicit decoder, IM-
NET. The network takes as input a feature vector extracted
by a shape encoder, as well as a 3D or 2D point coordinate,
and it returns a value indicating the inside/outside status of
the point relative to the shape. The encoder can be a CNN
or use PointNET [32], depending on the application.

voxel distributions over the volume, while IM-NET learns
shape boundaries; this is well exemplified in Figure 3 (top).
Experiments show that shapes generated by our network
possess higher surface quality than results from previous
methods, as shown in Figure 1 and results in Section 4.

In addition, shape evolution is a direct result of changing
the assignments of point coordinates to their inside/outside
status and such assignments are precisely what our network,
IM-NET, learns. In contrast, convolution kernels compute
voxels as weighted averages, where the kernel windows
are not “shape-aware”. Thus a CNN-based decoder typi-
cally evolves shape geometries by means of intensity vari-
ations; see Figure 3 (bottom). As a result, our network
produces cleaner interpolation results than previous works,
even when there are topological changes; see Figure 5.

We embed IM-NET into several contemporary analysis
and synthesis frameworks, including autoencoders (AEs),
variational autoencoders (VAEs), and generative adversar-
ial networks (GANs), by replacing the decoders employed
by current approaches with ours, leading to IM-AEs and
IM-GANs. This allows assessing the capabilities of our
novel decoder for tasks such as shape representation learn-
ing, 2D or 3D shape generation, shape interpolation, as well
as single-view 3D shape reconstruction. Extensive experi-
ments and comparative studies, both quantitative and quali-
tative, demonstrate the superiority of our network over pre-
vious works, particularly in terms of visual quality.

2. Related work
There have been a variety of 3D shape representations

for deep learning of shapes, such as voxel grids [9, 14, 28,
45, 46], octrees [18, 35, 40, 43, 44], multi-view images [29,
39], point clouds [1, 12, 13, 32, 33, 47, 48], geometry im-
ages [37, 38], deformable mesh/patches [16, 38, 42, 47],
and part-based structural graphs [27, 49]. To the best of our
knowledge, our work is the first to introduce a deep network
for learning implicit fields for generative shape modeling.

Figure 3: CNN-based decoder vs. our implicit decoder. We
trained two autoencoders with CNN decoder (AECNN) and
our implicit decoder (AEIM), respectively, on a synthesized
dataset of letter A’s on white background. The two models
have the same CNN encoder. (a) and (b) show the sampled
images during AE training. (c) and (d) show interpolation
sequences produced by the two trained AEs. See more com-
parisons in the supplementary material.

With remarkable progress made on generative modeling
of images using VAEs [24], GANs [3, 15, 34], autoregres-
sive networks [41], and flow-based models [23], there have
been considerably fewer works on generative models of 3D
shapes. Girdhar et al. [14] learned an embedding space of
3D voxel shapes for 3D shape inference from images and
shape generation. Wu et al. [45] extended GANs from im-
ages to voxels and their 3DGAN was trained to generate
3D voxel shapes from latent vectors. Achlioptas et al. [1]
proposed a latent-GAN workflow that first trains an autoen-
coder with a compact bottleneck layer to learn a latent rep-
resentation of point clouds, then trains a plain GAN on the
latent code. Common issues with these methods include
limited model resolution, uneven and noisy shape surfaces,
and inability to produce smooth shape interpolation.

Recently, Li et al. [27] introduced a part-based autoen-
coder for 3D shape structures, i.e., a hierarchical organiza-
tion of part bounding boxes. The autoencoder is tuned with
an adversarial loss to become generative. Then a separate
network is trained to fill in part geometries within the con-
fines of the part bounding boxes. Their method can pro-
duce cleaner 3D shapes and interpolation results, mainly
owing to the decoupling of structure and geometry genera-
tion. However, their network has to be trained by segmented
shapes with structural hierarchies. In contrast, our implicit
encoder is trained on unstructured voxel shapes.

The output of our decoder IM-NET can be sampled at
resolutions higher than that of the training shapes, how-
ever, it is not designed for the purpose of (voxel) super-
resolution. There have been works on single image super-
resolution using deep networks, e.g., [11, 25], which are
trained with low- and high-resolution image pairs. Progres-
sive training [22] is another technique to improve image
quality, and we adopt it in our work to reduce training times.

Most learning-based methods for single-view 3D recon-
struction encode input images with deep convolutional net-



works, then use an appropriate decoder to reconstruct 3D
shapes depending on the shape representations. The most
commonly used representations are voxels [9, 14, 46] and
point clouds [12, 13]. Voxels are natural extensions of
image pixels, which allow migrating state-of-the-art tech-
niques from image processing to shape processing. How-
ever, voxel representations are usually constrained by GPU
memory size, resulting in low-resolution results. Octree
representations attempt to fix the memory issues by predict-
ing surfaces in a coarse-to-fine manner [18, 44].

The recent work by Huang et al. [21] also trains a net-
work to perform binary classification, like IM-NET. How-
ever, the key distinction is that our network assigns in-
side/outside based on spatial point coordinates. Hence, it
learns shape boundaries and effectively, an implicit func-
tion that is Lipschitz continuous over point coordinates, i.e.,
it maps close-by points to similar output values. Moreover,
IM-NET can input an arbitrary 3D point and learn a contin-
uous implicit field without discretization. In contrast, their
network operates on convolutional features computed over
discretized images and learns the inside/outside assignment
based on multi-scale image features at a point x.

Point clouds can be lightweight on the decoder side by
producing few thousand points. However, these points do
not provide any surface or topological information and pose
a reconstruction challenge. In Deep Marching Cubes, Liao
et al. [28] proposed a differentiable formulation of march-
ing cubes to train an end-to-end 3D CNN model for mesh
reconstruction from point clouds. However, the resulting
mesh still shares common issues with other CNN-based net-
works, e.g., low resolution (323) and topological noise.

Some other works [16, 38] deform a surface template
(e.g., square patches or a sphere) onto a target shape. But
many shapes cannot be well-represented by a single patch,
while outputs from multi-patch integrations often contain
visual artifacts due to gaps, foldovers, and overlaps. In
Pixel2Mesh, Wang et al. [42] used a graph-based CNN [36]
to progressively deform an ellipsoid template to fit an im-
age. The end-to-end network directly generates meshes but
the results tend to be overly smoothed, capturing only low-
frequency features while restricted to sphere topology.

3. Implicit decoder and shape generation
An implicit field is defined by a continuous function over

2D/3D space. Then a mesh surface can be reconstructed by
finding the zero-isosurface of the field with methods such
as Marching Cubes [30]. In our work, we consider using
neural networks to describe a shape in such an implicit way.
For a closed shape, we define the inside/outside field F of
the shape by taking the sign of its signed distance field:

F(p) =
{

0 if point p is outside the shape,
1 otherwise. (1)

Assume the in-out field is restricted in a unit 3D space, we
attempt to find a parameterization fθ(p) with parameters
θ that maps a point p ∈ [0, 1]3 to F(p). This is essen-
tially a binary classification problem, which has been stud-
ied very well. Multi-layer perceptrons (MLPs) with recti-
fied linear unit (ReLU) nonlinearities are ideal candidates
for such tasks. With sufficient hidden units, MLP family is
able to approximate the field F within any precision. This
is a direct consequence of the universal approximation theo-
rem [20]. Notice that using MLPs also gives us a represen-
tation which is continuous across space, so that the mesh
can be recovered by taking the k-isosurface of the approxi-
mated field, where k is an appropriate threshold.

3.1. Data preparation

The training of such implicit model needs point-value
pairs. It is natural to first voxelize or rasterize the shape
for the sake of convenience and uniform sampling. For 3D
shapes, we use the same technique as in Hierarchical Sur-
face Prediction (HSP) [18] to get the voxel models in differ-
ent resolutions (163, 323, 643, 1283). We sample points on
each resolution in order to train the model progressively.

A naive sampling would take the center of each voxel
and produce n3 points. A more efficient approach when
dealing with shapes is to sample more points near shape sur-
faces and neglect most points far away, leading to roughly
O(n2) points. To compensate for the density change, we as-
sign a weight wp to each sampled point p, representing the
inverse of the sampling density near p. The implementation
of such a sampling method is flexible and varies according
to resolution and shape category; more details can be found
in the supplementary material. Most 2D shapes are already
rasterized into images. For simplicity, we apply the naive
sampling approach for images with an appropriate thresh-
old to determine whether a pixel belongs to the shape.

3.2. Network structure of IM-NET

Our model is illustrated in Figure 2. The skip connec-
tions (copy and concatenate) in the model can make the
learning progress faster in the experiments. They can be
removed when the feature vector is long, so as to prevent
the model from becoming too large. The loss function is a
weighted mean squared error between ground truth labels
and predicted labels for each point. Let S be a set of points
sampled from the target shape, we have:

L(θ) =
∑
p∈S |fθ(p)−F(p)|2 · wp∑

p∈S wp
(2)

3.3. Shape generation and other applications

Our implicit field decoder, IM-NET, can be embedded
into different shape analysis and synthesis frameworks to



support various applications. In this paper, we demon-
strate shape autoencoding, 2D and 3D shape generation, and
single-view 3D reconstruction. Due to page limit, the mod-
els are briefly introduced here. Detailed structures and hy-
perparameters can be found in the supplementary material.

For auto-encoding 3D shapes, we used a 3D CNN as en-
coder to extract 128-dimensional features from 643 voxel
models. We adopt progressive training techniques, to first
train our model on 163 resolution data, then increase the
resolution gradually. Notice that the structure of the model
does not change when switching between training data at
different resolutions, thus higher-resolution models can be
trained with pre-trained weights on low-resolution data. In
the experiments, progressive training can stabilize training
process and significantly reduce training time.

For 3D shape generation, we employed latent-GANs [1,
2] on feature vectors learned by a 3D autoencoder. We did
not apply traditional GANs trained on voxel grids since the
training set is considerably smaller compared to the size of
the output. Therefore, the pre-trained AE would serve as
a means for dimensionality reduction, and the latent-GAN
was trained on high-level features of the original shapes. We
used two hidden fully-connected layers for both the gener-
ator and the discriminator, and the Wasserstein GAN loss
with gradient penalty [3, 17]. In generative models for 2D
shapes, we used the same structure as in the 3D case, ex-
cept the encoder was 2D CNN and the decoder took a 2D
point as input. We did not apply progressive training for 2D
shapes since it is unnecessary when the images are small.

For single-view 3D reconstruction (SVR), we used the
ResNET [19] encoder to obtain 128-D features from 1282

images. We followed the idea from AtlasNET [16] to
first train an autoencoder, then fix the parameters of the
implicit decoder when training SVR. In our experiments,
we adopted a more radical approach by only training the
ResNET encoder to minimize the mean squared loss be-
tween the predicted feature vectors and the ground truth.
This performed better than training the image-to-shape
translator directly, since one shape can have many differ-
ent views, leading to ambiguity. Pre-trained decoders pro-
vide strong priors that can not only reduce such ambiguity,
but also shorten training time, since the decoder was trained
on unambiguous data in the autoencoder phase and encoder
training was independently from the decoder in SVR phase.

We reconstructed the 3D meshes by Marching Cubes,
and 2D images by sampling a grid of points then optionally
applying thresholding to obtain binarized shapes.

4. Results and evaluation
In this section, we show qualitative and quantitative re-

sults on various tasks using our implicit decoder, IM-NET,
and compare them with state-of-the-art approaches. We
used the dataset provided by [18], which contains 2563-

voxelized and flood-filled 3D models from ShapeNet Core
dataset (v1) [7], and the corresponding rendered views. To
compare with other methods that output point clouds, we
first used Marching Cubes to obtain meshes from the 2563-
voxelized models, then used Poisson-disk Sampling [10] to
obtain 10000 points. This gave us point clouds with only
points on the surfaces of the meshes. We evaluated our
method, and others, on five representative categories: plane,
car, chair, rifle, and table. These categories contain 4,045,
7,497, 6,778, 2,373, and 8,509 3D shapes, respectively.

4.1. Quality metrics

In our experiments, both qualitative (via visual exami-
nation) and quantitative evaluations are provided. Specific
to shapes, most evaluation metrics for encoding and recon-
struction are based on point-wise distances, e.g., chamfer
distance (CD), or global alignment, e.g., mean squared error
(MSE) and intersection over union (IoU) on voxels. How-
ever, these may not be the best visual similarity or qual-
ity metrics. For example, slightly adjusting the angles be-
tween the legs of a chair and its seat may be barely percep-
tible, compared to removing one shape part, yet the latter
could lead to a lower CD or IoU. Past works, e.g., [31],
have shown that low-frequency displacements (e.g., bend-
ing a leg) in shapes are less noticeable than high-frequency
errors over local surface characteristics such as normals and
curvatures. Metrics such as MSE, CD, and IoU do not ac-
count for visual quality of the object surfaces.

A less frequently used visual similarity metric in the
computer vision community, the light field descriptor
(LFD) [8], has been widely adopted in computer graphics.
Inspired by human vision system, LFD considers a set of
rendered views of a 3D shape from various camera angles.
Each projected image is then encoded using Zernike mo-
ments and Fourier descriptors for similarity comparisons.

4.2. Auto-encoding 3D shapes

We first compare IM-NET with CNN decoders. For each
category, we sorted the shapes by name and used the first
80% as training set and the rest for testing. We trained one
model with our implicit decoder (IM-AE) and another with
3D CNN decoder (CNN-AE) on each category. The 3D
CNN decoder is symmetric to the 3D CNN encoder (details
can be found in the supplementary material). Both mod-
els had the same encoder structure and were trained on 643

resolution for the same number of epochs between 200 and
400, depending on the size of the dataset.

Table 1 evaluates reconstruction results using several
common evaluation metrics: MSE, IoU, symmetric Cham-
fer distance (CD), and LFD. MSE and IoU were computed
against the ground truth 643 voxel models. For CD and
LFD, we obtained meshes from the output voxel models
by Marching Cubes with threshold 0.5. We sampled 2,048



Plane Car Chair Rifle Table
CNN64-MSE 1.47 4.37 7.76 1.62 5.80
IM64-MSE 2.14 4.99 11.43 1.91 10.67
CNN64-IoU 86.07 90.73 74.22 78.37 84.67
IM64-IoU 78.77 89.26 65.65 72.88 71.44
CNN64-CD 3.51 5.31 7.34 3.48 7.45
IM64-CD 4.22 5.28 8.96 3.78 12.05
IM256-CD 4.23 5.44 9.05 3.77 11.54
CNN64-LFD 3,375 1,323 2,555 3,515 1,824
IM64-LFD 3,371 1,190 2,515 3,714 2,370
IM256-LFD 3,236 1,147 2,453 3,602 2,201

Table 1: 3D reconstruction errors. CNN and IM represent
CNN-AE and IM-AE, respectively, with 64 and 256 indicat-
ing sampling resolutions. The mean is taken over the first
100 shapes in each tested category. MSE is multiplied by
103, IoU by 102, and CD by 104. LFD is rounded to inte-
gers. Better-performing numbers are shown in boldface.

Figure 4: Visual results for 3D reconstruction. Each column
presents one example from one category. IM-AE64 is sam-
pled on 643 resolution and IM-AE256 on 2563. All results
are rendered using the same Marching Cubes setup.

points from the vertices for each output mesh and compare
against ground truth point clouds to compute CD. Note that
CNN-AE has fixed output size (643), yet our implicit model
can be up-sampled to arbitrarily high resolution by adjust-
ing the sampling grid size. In Table 1, IM256 is the same
IM-AE model but sampled at 2563.

Although CNN-AE beats IM-AE in nearly all five cat-
egories in terms of MSE, IOU, and CD, visual examina-
tion clearly reveals that IM-AE produces better results, as
shown in Figure 4; more such results are available in the
supplementary material. This validates that LFD is a better
visual similarity metric for 3D shapes. On one hand, the
movement of some parts, for example, table boards, may
cause significant MSE, IOU and CD changes, but bring lit-
tle visual changes; on the other hand, legs are usually thin,
so that missing one leg may cause minor MSE, IOU and
CD changes, but can bring significant visual changes. As
remarked above, MSE, IOU and CD do not capture well

Figure 5: 3D shape interpolation results. 3DGAN, CNN-
GAN, and IM-GAN are sampled at 643 resolution to show
the smoothness of the surface is not just a matter of sam-
pling resolution. Notice that the morphing sequence of IM-
GAN not only consists of smooth part movements (legs,
board), but also handles topology changes.

surface quality: a smooth but not exactly aligned surface
might have poorer evaluation results than an aligned jagged
surface. The situation is better when using LFD. However,
since LFD only renders the silhouette of the shape without
lighting, it can only capture surface condition on the edge
of the silhouette. We expect better evaluation metrics to be
proposed in the future, and for the following experiments,
we use LFD as our primary evaluation metric.

Note that in the table example in Figure 4, a 643 res-
olution represents an under-sampling, while going up to
2563 reveals more details. This indicates that our genera-
tive model is able to generate a table board thinner than the
resolution of the training data, which shows that the model
learned the implicit field from the whole shape in the space
rather than merely learning voxel distributions.

4.3. 3D shape generation and interpolation

Next, we assess and evaluate improvements made by our
implicit decoder for generative modeling of 3D shapes. We
trained latent-GANs on both CNN-AE and IM-AE to ob-
tain CNN-GAN and IM-GAN. We also compared our re-
sults with two state-of-the-art methods, 3DGAN [45] and
the generative model for point clouds in [1] (PC-GAN).
For 3DGAN, we used the trained models made available
online by the authors. PC-GAN was trained using latent
WGAN [1]. The autoencoder of PC-GAN was trained on
our aforementioned point cloud data for 400 epochs for
each category. PC-GAN, CNN-GAN, and IM-GAN were
trained on the training split of the dataset for 10,000 epochs.
3DGAN was not trained using train/test split [45].

To compare the generative schemes, we adopted the eval-
uation metrics from [1], but replaced CD or EMD by LFD.
Suppose that we have a testing set G and a sample set A,
for each shape in A, we found its closest neighbor in G us-
ing LFD, say g, and mark g as “matched”. In the end, we



Plane Car Chair Rifle Table Average w/o planes Average

COV-LFD (%) 3DGAN [45] 12.13 25.07 62.32 18.80 29.58
PC-GAN [1] 73.55 61.40 70.06 61.47 77.50 67.61 68.80
CNN-GAN 69.22 73.00 77.73 61.26 83.73 73.93 72.99
IM-GAN 70.33 69.33 75.44 65.26 86.43 74.12 73.36

MMD-LFD 3DGAN [45] 1,993 4,365 4,476 5,208 4,010
PC-GAN [1] 3,737 1,360 3,143 3,891 2,822 2,804 2,991
CNN-GAN 3,745 1,288 3,012 3,819 2,594 2,678 2,892
IM-GAN 3,689 1,287 2,893 3,760 2,527 2,617 2,831

Table 2: Quantitative evaluation of 3D shape generation. LFD is rounded to integers. See texts for explanation of the metrics.

Figure 6: 3D shape generation results. One generated shape from each category is shown for each model; more results are
available in the supplementary material. Since the trained models of 3DGAN did not include plane category, we fill the blank
with another car. The ball-pivoting method [6] was used for mesh reconstruction (c) from PC-GAN results (b).

calculate the percentage of G marked as “matched” to ob-
tain the coverage score (COV-LFD) that roughly represents
the diversity of the generated shapes. However, a random
set may have a high coverage, since matched shapes need
not be close. Therefore, we match every shape in G to the
one in A with the minimum distance and compute the mean
distances in the matching as Minimum Matching Distance
(MMD-LFD). Ideally, a good generative model would have
higher COV-LFD and lower MMD-LFD values.

We first sampled shapes using the subject generative
model to obtain A, where the number of sampled shapes
is five times the number of shapes in the testing split (G) of
that category. For PC-GAN, we employed the ball-pivoting
method [6] to reconstruct the shape surface, while for all
the other generative models, we used Marching Cubes. IM-
GAN was sampled at 643 in quantitative evaluation.

Quantitative and qualitative evaluations are shown in Ta-
ble 2 and Figure 6, respectively. Overall, IM-GAN performs
better on both COV-LFD and MMD-LFD. More impor-
tantly, IM-GAN generates shapes with better visual qual-
ity compared to other methods, in particular, with smoother
and more coherent surfaces. 3DGAN appears to suffer from
mode collapse on several categories, leading to lower cov-
erage. Point clouds generated by PC-GAN are recognizable

but lack detailed features; high-quality reconstruction from
only 2048 generated points would be challenging. In addi-
tion, as shown in Figure 5, IM-GAN exhibits superior ca-
pability in 3D shape interpolation. As usual for the latent
generative models, the interpolation is carried out by a lin-
ear interpolation between two latent codes; in-between 3D
shapes are then generated from the intermediate codes.

We trained the IM-GAN further with 1283 resolution
data on category plane, car and rifle. Figure 1 shows some
results sampled at 5123. We also include, in the supple-
mentary material, videos showing interpolation results of
IM-GAN sampled at 2563, and comparisons between inter-
polations in IM-AE and IM-GAN latent spaces.

4.4. 2D shape generation and interpolation

To evaluate IM-GAN for 2D shape generation, we con-
ducted our experiments on the MNIST dataset since hand-
written digits are naturally 2D shapes. We compared our
results against DCGAN [34], VAE [24], and WGAN with
gradient penalty [3, 17]. We also included the 2D ver-
sion of CNN-GAN. In addition, we substituted the CNN
decoders of VAE and WGAN with our implicit decoders,
to obtain VAEIM and WGANIM . We trained all mod-
els on 5,000 binarized images from the training split of



DCGAN [34] CNN-GAN IM-GAN VAE [24] VAEIM WGAN [17] WGANIM Oracle
COV-CD (%) 3.9 82.7 75.2 72.1 74.9 86.5 84.7 88.4
MMD-CD 0.846 0.155 0.151 0.145 0.14 0.158 0.149 0.137
PWE (nat) -282.83 -8.07 -6.16 17.39 30.6 -24.54 -4.17 18.99
PWE-nb (nat) -230.47 130.93 128.38 304.57 318.07 97.32 93.1 241.19
IS [26] 3.26 8.79 9.36 9.09 9.42 8.9 9.22 9.8
IS-nb 3.26 8.8 9.39 7.58 8.28 8.95 9.22 9.88

Table 3: Quantitative evaluation for 2D shape generation. Oracle is the results obtained by using the training set as the
sample set. The metrics without suffix “-nb” are evaluated using binarized images. PWE and IS are the higher the better. The
better results in each subgroup (latent-GAN, VAE, WGAN) are bolded, and the best results over all models are underlined.

Figure 7: Visual results for 2D shape generation. The first part of each row presents an interpolation between 9 and 6, except
for DCGAN since it failed to generate number 6 or 9. The second part of each row shows some generated samples. The
sampled images are not binarized. More samples and binarized images can be found in the supplementary material.

MNIST dataset for 1,000 epochs. The training set contains
a smaller-than-usual amount of images, so that we can bet-
ter observe the different features learned by CNN models
and implicit models. The autoencoders of IM-GAN and
CNN-GAN were pre-trained for 200 epochs. We replace
LFD with chamfer distance in 2D images to obtain COV-
CD and MMD-CD for evaluation. We also report the in-
ception score for MNIST (IS) [26] and the log-likelihood
produced by Parzen-window estimate (PWE) [4, 5, 15]. For
COV-CD and MMD-CD, we sampled 5,000 images from
the subject models and compared against 1,000 ground truth
images from the testing split. For IS and PWE, we sampled
10,000 images and used the entire testing split.

Quantitative and qualitative evaluations are shown in Ta-
ble 3 and Figure 7, respectively. Models equipped with our
implicit decoders generally perform better. Due to inad-
equate training samples, DCGAN suffers from mode col-
lapse, suggesting that the WGAN loss is preferred to ex-
tract true features with smaller training sets. VAEs have
better performance over GANs when the output images are
binarized, since VAEs tend to produce blurry results. For
interpolation, CNN based methods tend to make old parts
disappear and then new parts appear. This phenomenon is
especially apparent in CNN-GAN and VAE. The implicit
model usually warps the shape, but can also carry the “dis-
appear and appear” trick. In visual comparison, IM-GAN
and WGANIM output cleaner and more recognizable “in-
between” digits. One can find missing or redundant parts
in the samples produced by CNN based methods, which are
vestiges of the “disappear and appear” phenomenon.

Plane Car Chair Rifle Table
HSP 6,307 2,009 4,255 6,360 3,765
AtlasNet25 4,877 1,667 3,244 6,507 2,725
AtlasNetO 5,208 1,751 4,124 6,117 3,909
IM-SVR 4,743 1,658 3,321 5,067 2,918

Table 4: Quantitative evaluation for SVR using LFD. The
means are taken over the first 100 shapes in the testing set
for each category and rounded to integers. AtlasNet25 is
AtlasNet with 25 patches (28, 900 mesh vertices in total)
and AtlasNetO (7, 446 vertices) is with one sphere. IM-
SVR and HSP were both reconstructed at 2563 resolution.

4.5. Single-view 3D reconstruction (SVR)

We compare our approach with two state-of-the-art SVR
methods, HSP [18], an octree-based method that uses 3D
CNN decoders to generate 2563 voxels, and AtlasNet [16],
which warps surface patches onto target shapes. For Atlas-
Net, we tested two setups for the initial surfaces, 25 patches
or a sphere, and denote them by AtlasNet25 and AtlasNetO,
respectively. For all methods, we trained individual models
for each category, and used grayscale images as inputs.

We used the train/test split in [18] to utilize the pre-
trained models of HSP, since HSP requires quite a long time
to converge. For HSP, we used the trained models made
available online by the authors, and continued training for
at most 2 days for each category and used the ones with the
lowest testing loss. For AtlasNet, we trained the autoen-
coder part for 400 epochs and SVR part for 400 epochs



Figure 8: Visual results for single-view 3D reconstruction.
See caption of Table 4 for output model settings.

and used the ones with the lowest testing loss. For our
method, we trained IM-AE for 200-400 epochs on 643 res-
olution, and IM-SVR for 1,000-2,000 epochs. The number
of epochs depends on the size of the dataset. We did not
train AtlasNet with such number of epochs since its testing
loss had stopped dropping. Since IM-SVR was trained to
map an image into a latent code, we did not have a good
evaluation metric for testing errors. Therefore, we tested
the last five saved checkpoints and report the best results.

Quantitative and qualitative evaluations are shown in Ta-
ble 4 and Figure 8, respectively. IM-SVR outputs were sam-
pled at 2563 resolution, same as HSP. Output mesh settings
for AtlasNet are from the authors’ code. Though IM-SVR
seems to have similar quantitative results with AtlasNet25,
please keep in mind that LFD only captures the silhouette of
the shape. AtlasNet25 represents shapes well yet clear arti-
facts can be observed since the shapes are made of patches
and there is no measure to prevent slits, foldovers or over-
lapped surfaces. AtlasNetO can generate cleaner shapes
than AtlasNet25, but the topology is pre-assigned to be
equivalent to a sphere, thus AtlasNetO can hardly recon-
struct shapes with holes. HSP can produce smooth surfaces
but failed to recover most details. We show the comparisons
of the first 16 shapes in the testing set for each category in
the supplementary material, and also provide the evaluation
results by chamfer distance to further verify that CD may
not be an ideal evaluation metric for visual quality.

5. Conclusion, limitation, and future work

We introduced a simple and generic implicit field de-
coder to learn shape boundaries. The new decoder IM-NET
can be easily plugged into contemporary deep neural net-
works for a variety of applications including shape auto-
encoding, generation, interpolation, and single-view recon-
struction. Extensive experiments demonstrate that IM-NET
leads to cleaner closed meshes with superior visual quality
and better handling of shape topology during interpolation.

A key merit of our implicit encoder is the inclusion of
point coordinates as part of the input feature, but this comes
as the cost of longer training time, since the decoder needs
to be applied on each point in the training set. In prac-
tice, CNN-AE is typically 30 times faster than IM-AE on
643 data without progressive training. Even with progres-
sive training, IM-AE training took about a day or two and
CNN-AE is still 15 times faster. When retrieving gener-
ated shapes, CNN only needs one shot to obtain the voxel
model, while our method needs to pass every point in the
voxel grid to the network to obtain its value, therefore the
time required to generate a sample depends on the sampling
resolution. While AtlasNet also employed MLP as decoder,
AtlasNet25 is 5 times faster than ours in training, since At-
lasNet only needs to generate points on the surface of a
shape yet ours need to generate points in the whole field.

Our implicit decoder does lead to cleaner surface bound-
aries, allowing both part movement and topology changes
during interpolation. However, we do not yet know how
to regulate such topological evolutions to ensure a mean-
ingful morph between highly dissimilar shapes, e.g., those
from different categories. We reiterate that currently, our
network is only trained per shape category; we leave multi-
category generalization for future work. At last, while our
method is able to generate shapes with greater visual quality
than existing alternatives, it does appear to introduce more
low-frequency errors (e.g., global thinning/thickening).

In future work, we also plan to generalize IM-NET. First,
using MLPs to decode may be too simple and inefficient;
it is possible to improve the decoder structure to make the
model size smaller for faster inference. Second, besides
inside/outside signs, it is possible to train our decoder to
output other attributes, e.g., color, texture, surface normal,
signed distance, or deformation fields, for new applications.
Finally, IM-NET has shown signs of understanding shape
parts, suggesting its potential utility for learning part seg-
mentation and correspondence.

Acknowledgment. We thank Matt Fisher, Daniel Cohen-
Or, and the anonymous reviewers for their comments, and
Kangxue Yin and Ali Mahdavi-Amiri for proofreading. The
research is supported by NSERC and an Adobe gift fund.



References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. J. Guibas.

Learning representations and generative models for 3d point
clouds. In International Conference on Machine Learning
(ICML), 2018. 1, 2, 4, 5, 6

[2] M. Arjovsky and L. Bottou. Towards principled methods
for training generative adversarial networks. In International
Conference on Learning Representations (ICLR), 2017. 4

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gen-
erative adversarial networks. In International Conference on
Machine Learning (ICML), pages 214–223, 2017. 2, 4, 6

[4] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep gener-
ative stochastic networks trainable by backprop. In Interna-
tional Conference on Machine Learning (ICML), pages 226–
234, 2014. 7

[5] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mix-
ing via deep representations. In International Conference on
Machine Learning (ICML), pages 552–560, 2013. 7

[6] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface recon-
struction. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 5(4):349–359, 1999. 6

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015. 4

[8] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On
visual similarity based 3d model retrieval. In Computer
graphics forum, volume 22, pages 223–232. Wiley Online
Library, 2003. 4

[9] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In Proceedings of the European Conference
on Computer Vision (ECCV), 2016. 2, 3

[10] M. Corsini, P. Cignoni, and R. Scopigno. Efficient and flexi-
ble sampling with blue noise properties of triangular meshes.
IEEE Transactions on Visualization and Computer Graphics
(TVCG), 18(6):914–924, 2012. 4

[11] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a
deep convolutional network for image super-resolution. In
Proceedings of European Conference on Computer Vision
(ECCV), 2014. 2

[12] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3d object reconstruction from a single image. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 2, page 6, 2017. 2, 3

[13] M. Gadelha, R. Wang, and S. Maji. Multiresolution tree net-
works for 3d point cloud processing. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018. 2,
3

[14] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representation
for objects. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 484–499. Springer, 2016. 2,
3

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems (NIPS), pages 2672–2680, 2014. 2, 7

[16] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry.
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