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Abstract

We introduce the geometric problem of stackabilization: how to
geometrically modify a 3D object so that it is more amenable to
stacking. Given a 3D object and a stacking direction, we define a
measure of stackability, which is derived from the gap between the
lower and upper envelopes of the object in a stacking configuration
along the stacking direction. The main challenge in stackabilization
lies in the desire to modify the object’s geometry only subtly so that
the intended functionality and aesthetic appearance of the original
object are not significantly affected. We present an automatic algo-
rithm to deform a 3D object to meet a target stackability score using
energy minimization. The optimized energy accounts for both the
scales of the deformation parameters as well as the preservation of
pre-existing geometric and structural properties in the object, e.g.,
symmetry, as a means of maintaining its functionality. We also
present an intelligent editing tool that assists a modeler when mod-
ifying a given 3D object to improve its stackability. Finally, we
explore a few fun variations of the stackabilization problem.
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1 Introduction

Stacking objects on top of each other is a common task performed
by humans. Objects are often stacked to make or save space, for
instance, while shipping or storing them. In product design and
engineering, efforts have been invested to allow compact stacking
without compromising the product’s intended functionality. One of
the most celebrated examples of stackable objects are chairs, where
many space-saving and aesthetic designs of stackable chairs have
been realized [Fiell and Fiell 2000].

An intriguing geometric question about stacking is: what makes
some 3D objects more amenable to stacking than others. It is clear
that concavity plays an important role for simple shapes such as
those of bowls or cups. However, to precisely define and improve
the stackability of a 3D shape turns into an interesting and challeng-
ing geometry problem, especially for shapes with more complex
structures, such as tables and chairs.

In this paper, we are interested first in a geometric characterization
of stackability for 3D shapes and second, in the development of al-
gorithms to make a given 3D object more stackable. We use a new
term for such an operation — stackabilization. The main challenge
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Figure 1: Stackabilization: improving the stackability of 3D ob-
jects (yellow denotes input and green denotes output) by analyzing
and optimizing geometry. The object geometry is only altered subtly
so as to maintain the intended functionality and aesthetic appear-
ance of the original object.

in stackabilization lies in the desire to only modify the shape’s ge-
ometry and structure in subtle ways so as to maximize its stackabil-
ity, while not adversely affecting its shape, functionality and aes-
thetic appearance. Understanding stackability and developing tools
for stackabilization will assist designers in creating 3D models that
can be packed together more compactly. Figure 1 shows the before-
and-after of stackabilization of two shapes and illustrates the saving
in space achieved.

The need for a specific tool, automatic or semi-automatic, and algo-
rithms to assist a designer or modeler in solving stackabilization is
emphasized by the global and unpredictable nature of the problem.
As many examples in this paper illustrate, a small modification to
the shape can have a great effect on the stackability of objects, while
large modifications can have little to no effect at all. The reason is
that modifying the shape on one side affects the contact with the
opposite side. This problem is amplified when the shapes become
more complex with certain parts cluttered, occluded, or inaccessi-
ble. Hence, the key problem for designers, even when manually
modifying the shape, is to recognize which modifications are bet-
ter and where to apply them in order to have the largest effect on
stackability and the smallest effect on the design. This is exactly the
strength of our automatic stackability analysis and the correspond-
ing stackabilization algorithm.

Stackability. Geometrically, stacking an object on top of a copy
of itself along a stacking direction can be achieved by translating
one object copy along the stacking direction, just until the the two
copies have no overlap, i.e., they are just touching each other. We
call such a configuration the stacking configuration and the surface
regions where the two copies maintain contact the contact regions.
The extent of the minimal stacking translation can be found by
looking at the maximum gap between the upper envelope of the
object and the lower envelope of its rigidly transformed copy along
the stacking direction, and the contact regions are the regions inside
these envelopes where this maximum gap is achieved. We define
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Figure 2: The components for defining object stackability: the up-
per envelope (in blue), lower envelope (in orange), the shape extent
h along the stacking direction r, and contact regions (in red).

the stackbility of an object using this maximum gap and its extent
along the stacking direction; see Figure 2.

When objects are stacked, we call the line strips that connect the
centroids of all copies of the objects the stacking trajectory. The
connected line segments in the stacking trajectory have a constant
angle. The stacking trajectory is a straight line only if the trans-
lated copies are identical (Figure 1) with a possible rotation about
stacking direction as shown in Figure 3(a). In contrast, the stack-
ing trajectory of the cups in Figure 3(b) is not a straight line since
the copies are rotated relative to each other and not only about the
stacking direction. In some cases, adding an additional rigid trans-
formation for stacking can create an overlap between non-adjacent
copies of the object. For example, in Figure 3(a), the stool at the top
of the stack intersects the one at the bottom, preventing any more
stacking and resulting in a finite stack height.

Optimization. Following the goal of introducing only small mod-
ifications to a given object while improving its stackability, our
strategy for stackabilization is to make local shape deformations
near the contact regions. We perform a best-first search in the space
of possible deformations, to locally deform the object in the vicinity
of contact regions so as to maximize its stackability, while respect-
ing a multitude of constraints. The constraints imposed serve to
define the energy that guides the local search for the best defor-
mations. This energy maintains the shape, structure, and function-
ality of the object. Specifically, our algorithm strives to maintain
the bounding box of the object, with its extent along the stacking
direction strictly preserved; it also maintains, as much as possi-
ble, the inter- and intra-part symmetries, among other functionality-
oriented geometric or structural properties.

We adopt a component-wise controller framework similar to Zheng
et al. [2011] as the deformation model for our stackabilization task.
The cuboid and generalized cylinder (GC) controllers bound the
shape parts and store geometric and structural shape properties
among the parts. The local search to improve stackability is car-
ried out in the feasible parameter space of the controllers, while the
stored shape properties act, in part, to constrain the search.

Interactive Design. Building on the core module for locally im-
proving stackability, we develop an interactive tool which allows
the user to design stackable objects in several manners. In au-
tomatic settings, the user only needs to specify a target stacking
height of a given number of objects, and the tool computes a hand-
ful of different feasible results respecting the user target. In manual
settings, the tool visually provides several suggestions for modi-
fications that can increase the stackability of an object. The user
can then select one of those suggestions to deform the shape. This
procedure can occur iteratively until the desired design is reached.
The implementation of our algorithm along with the interactive
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Figure 3: Different stacking trajectories and object rotations (the
stacking results are for illustration purpose only and were not pro-
duced using our tool). (a) A straight line trajectory is still possible
by only rotating the copies about the stacking direction. Note that
rotations can result in intersections between non-adjacent copies
as seen in the highlighted region. (b) More general rotations of the
stacked copies can lead to a zigzagging stacking trajectory.

editing tool are available at our project page (http://www.computer-
graphics.cn/ hh/projects/stackem/ ).

To test the utility and potential of the automatic tool, we conducted
a preliminary user study comparing stackabilization using the tool
vs. manual shape editing and obtained encouraging initial findings.
Finally, we present several extensions to the basic problem of trans-
lational stackabilization. First, if the user can partition the shape
into a few parts or remove one of its parts, our algorithm can greatly
simplify the task of stacking rather complex shapes. We also show
that our stackabilization algorithm is adaptable to other deformation
methods, such as surface deformation.

2 Related work

Recently, computer graphics researchers have become more inter-
ested in leveraging shape analysis techniques to assist in design
and engineering tasks such as architectural modeling [Kelly and
Wonka 2011], layout design [Merrell et al. 2010; Merrell et al.
2011; Yu et al. 2011], inverse assembly [Lau et al. 2011], func-
tionality visualization [Mitra et al. 2010] and physically valid shape
creation [Umetani et al. 2012]. By combing real-time visual feed-
back with the ease of incorporating engineering and functional con-
straints resulting from shape analysis, these tools greatly facilitate
the otherwise expensive and difficult design process, making rapid
prototyping and fabricating of 3D digital objects a reality.

Our work falls into the general problem domain of shape optimiza-
tion. Early works in computer graphics on the subject have focused
on low-level geometric properties such as surface smoothness and
triangle quality [Hoppe et al. 1993]. Such properties are not inher-
ently related to the objects themselves but rather are artifacts of the
digitization process. More related are works which optimize for
higher-level shape properties. Mitra et al. [2007] symmetrize ob-
jects with minimal geometry modification. Closer to our work is the
2D escherization problem studied by Kaplan and Salesin [2000],
where a given polygon is minimally altered so that it becomes more
tilable. In this paper, we introduce and solve a new geometry prob-
lem, stackabilization of 3D objects. Our algorithm operates on
more complex objects than simple polygons and the modification
must be structure-preserving.



  

Figure 4: Slight deformations on the shape may cause significant
changes to the stackability (numbers in black) and gap function (in
blue), whose maximum determines the minimum translation along
the stacking direction.

Figure 5: Changing the stacking direction slightly can change the
stackability considerably.

In other fields such as mechanical engineering, compact packing of
2D or 3D objects is a well-studied problem. For example, Dong
et al. [2011] optimize shape morphing to fit components in a lim-
ited space. They apply a mass-spring physical morphing method to
under-hood layout design for vehicles. To the best of our knowl-
edge, the problem of automated stackabilization had not been ad-
dressed before. The geometric and structural complexity of the ob-
jects and the degrees of freedom allowed in deforming the objects
far exceed those addressed in a typical packing problem.

The focus of this work is to characterize object stackability and
stackabilization. Our approach requires a deformation model which
defines an underlying parameter space in which we formulate the
constrained search we need to solve. We utilize either iWires [Gal
et al. 2009] or component-wise controllers [Zheng et al. 2011] that
are designed for interactive structure-preserving editing.

3 Stackability

Let us first consider the case of stacking that translates identical
shape copies along the stacking direction. We define the stacka-
bility of an object along a stacking direction r using the maximum
gap between the upper and lower envelopes of the object and its
extent along r. Given a 3D shape M and a stacking direction r, we
first compute two envelopes of the shape along r. Intuitively, these
envelopes represent the two visible surfaces along r from two op-

posite directions. For simplicity, we will refer to them as the upper
u(M, r) and lower l(M, r) envelopes of the shape (See Figure 2).
The difference between the two envelopes along direction r defines
a gap function, whose value is the distance between them:

f(M, r) = u(M, r)− l(M, r). (1)

The maximum of f : fmax(M, r) = max(f(M, r)), defines the min-
imal stacking translation along the stacking direction r.

Changing the shape of the object M would result in a different gap
function, as shown in Figure 4, and can produce different stacka-
bility measures. The regions on the shape where the maximum of
the gap function appears are called the contact regions as they are
the places where the copies of the shape are in contact while stack-
ing. These regions always occur in pairs, one on the upper and the
other on the lower envelope, as illustrated in Figure 2. The contact
regions are important for stackability as deformations of the shape
near the contact regions tend to have the most impact on the stack-
ability of the shape. Note that the gap function, contact regions,
and thus stackability can differ considerably for different stacking
directions r; see Figure 5.

To derive our stackability measure, suppose that a shape M has a
volume V (M) of its axes orientated bounding box (OBB). Given
a stacking direction r, denote h(M, r) as the extent of M along r
(maximum difference in the direction r between all points on M ),
V (M, r) as the volume of M ’s OBB along r, and fmax(M, r) as the
maximum of the gap function of M . The total volume of n such
shapes without stacking is V0 = n · V (M), while the total volume
of a stack of n such shapes along r is:

V1 =
1 + (n− 1)fmax(M, r)

h(M, r)
· V (M, r). (2)

Hence, we define the space saving ratio of using stacking as 1 −
V1/V0 and at the limit we get the stackability S(M, r) of a shape
M along direction r:

S(M, r) = lim
n→∞

(1− V1/V0) = 1− fmax(M, r)
h(M, r)

· V (M, r)
V (M)

, (3)

In other words, our definition of stackability reflects the space (vol-
ume) saving ratio of stacking multiple copies of an object along a
stacking direction r.

Note that in cases when an additional rigid transformation is used
to stack objects, one can compute the OBB volume of the stack of
n copies Vstack, and the shape’s original OBB volume V (M), and
define the stackability as

S(M,n) = 1− Vstack

n · V (M)
. (4)

Although this measure depends on n (e.g. n = 9 in Fig 3a), many
times n is pre-selected, for instance when there are physical restric-
tions of weight or space. In other cases a relatively large number of
objects can be chosen, e.g. n = 20.

Stackability Computation. To find the minimal stacking trans-
lation in the stacking configuration, there is a need to compute the
maximum gap between the upper envelope of the object and the
lower envelope of its rigidly transformed copy along the stacking
direction. To achieve this, one needs to define the two continuous
envelopes and compute their maximum distance. Instead, we uti-
lize graphical processing abilities allowing us to sample the two
envelopes by rendering them using OpenGL orthogonal view pro-
jection. To compute an “image” sample of the upper envelope, the



Figure 6: The original shape (in grey) has two deformed solutions
which have almost the same compactness of stacking. The solution
produced by our method (in green) keeps the original functional-
ity and aesthetic appearance, while the solution generated by gap-
function based method (in orange) loses most of the original func-
tionality. Top left shows the gap functions of these three shapes.

camera is placed at the centroid of the shape, facing towards a direc-
tion opposite to the stacking direction r, and then translated along
r until the entire object can be seen. In this configuration after
projection the depth buffer will contain only the closest pixels to
the camera which is a sampling of the upper envelope of the ob-
ject. To compute the lower envelope, a similar procedure is applied
when the camera is facing towards r and moved along the oppo-
site direction. Given these two envelope images, the gap function
is defined by their difference (see examples at top left of Figure 6).
To identify the contact regions we find all positions (pixels) con-
taining the maximum of the gap function. Since the stackability of
a shape differs for different stacking directions, we search for the
best direction by uniformly sampling the unit sphere and picking
the direction r that achieves the best stackability measure.

4 Improving stackability

In essence, minimizing the maximum of the gap function results in
an increase of the stackability of a shape. Figure 4 shows how the
maximum of the gap function directly determines the compactness
of the stacking. A naı̈ve approach to increase stackability would
be to reduce the maximum fmax(M, r) by changing the envelopes
and then reconstructing the shape. This approach has several disad-
vantages. First, given a gap function f(M, r), there are an infinite
number of modifications one can apply to the envelopes and it is not
clear which one would reduce stackability. Second, the gap func-
tion is defined by the envelopes and it hardly reflects the structure of
the 3D shape, and reconstructing a new shape from its envelopes is
not straightforward. More importantly, simple minimization of the
gap can alter the shape of the object and harm its functionality. For
example, stackability does not only relate to fmax(M, r), but also to
the shape extent h(M, r). In Figure 6, scaling down the gap func-
tion while keeping the upper envelope constant results in squashing
the stool. This is indeed space saving but destroys the functionality
and aesthetic appearance of the original shape.

In contrast, we propose a method that enables improving the stack-
ability of a shape while preserving its pre-existing geometric and
structural properties. First, we focus on modifications near the con-
tact regions of the shape instead of the whole envelopes, and sec-
ond, we use a set of constraints to preserve the shape’s structure.
However, even when limiting the deformations to these specific re-
gions, there is still a large space of feasible deformations. To this
end, we employ a Best-First Search in the space of possible shape
modifications. To guide the search, we use an energy function that
contains both a stackability improvement objective term as well as

Figure 7: Two kinds of joints considered in our deformation model:
point joints (green spheres) and linear joints (red bar).

structure preservation objective terms. Since stackability also de-
pends on the stacking direction chosen (see Figure 5), for each local
modification, we also search for the best stacking direction which
provides maximal stackability improvements.

4.1 Deformation model

To perform a structure-preserving editing to a shape, we adopt a
deformation model similar to the component-wise controllers pro-
posed in [Zheng et al. 2011]. The construction of component-wise
controllers demands a segmentation of the given shape into mean-
ingful parts. Structured objects can be easily decomposed into
meaningful parts, e.g., by the method proposed in [Attene et al.
2006]. Connected objects can be segmented with some user assis-
tance similar to [Meng et al. 2011].

Once the shape is segmented, we use two types of primitives to fit
the shape parts: cuboid and generalized cylinder (GC). Fitting a
cuboid amounts to computing the OBB of a part. To fit a GC, a
1D curve skeleton is first extracted from the component [Au et al.
2008], and then cross section circles are constructed with radii that
are defined by the distance from the skeleton to the surface. For
each part we select the primitive that fits the component better, but
this choice can be specified by the user as well.

Each type of primitive has some predefined degrees of freedom.
Both the cuboids and GCs can be rigidly transformed or scaled. In
addition, each cross section of a GC can be translated or scaled.
The translation or scaling of each cross section is propagated to
nearby cross sections using a Gaussian weight (with standard de-
viation σ = 0.2) depending on their distance along the axis. To
transfer the deformation from the primitive to the underlying ge-
ometry, we use mean value coordinates [Ju et al. 2005] for cuboids,
and skinning with dual quaternions [Kavan et al. 2007] for GCs.

The structural properties of each component and the inter-relations
among the components are key to preserving the structure and func-
tion of a given object. In this work, we preserve self symmetry,
pairwise symmetry, point joints, and line joints. We adopt the vot-
ing method of [Mitra et al. 2006] to detect all the self-symmetries of
the entire object. Then we check each component whether it pos-
sesses the same self-symmetries or has a symmetric counterpart.
Apart from symmetry, we also found that joints play an important
role in defining the functionality of man-made objects. A point
joint usually appears for tube-like segments, for example, between
a chair leg and seat (green spheres in Figure 7), and between the
handle and body of a cup. A linear joint occurs between two plate-
like segments of the shape, for example between a chair seat and
back (red bar in Figure 7). To compute the joints among compo-
nents, we voxelize the primitives and detect their intersections.

To make use of these relations, we construct a graph, in which each
node is a primitive, and each edge is the relation between two nodes.



Figure 8: Progress of stackabilization on a mug and a table model. During each iteration, contact parts (in orange) and active deformation
handles (in red) are detected. Contact-driven deformation is applied to the shape to improve its stackability.

Once a node is modified, this modification will be propagated to its
neighbors via the graph edges in a similar way as the controller-
based deformation work of Zheng et al. [2011]. During propaga-
tion, each edge will modify the other node so as to preserve the
relation it defines. In the case where more than one node is mod-
ified, the node that has the most modified neighbors is selected as
the next target to be propagated. When a node is constrained by
both symmetry and joints, a symmetry relation has precedence.

4.2 Contact-driven deformation

Recall that contact regions are identified by detecting the maximum
of the gap function. We refer to the object parts containing contact
regions as contact parts (colored in orange in Figure 8). We map
each contact region to deformation handles of the contact parts. A
deformation handle is a part of the primitive that is used to drive
the deformation of the primitive; it can be a point in, or a face of,
a cuboid, or a cross section of a GC (colored in red in Figure 8).
Once a deformation is applied to a handle, the result depends on the
global primitive properties and relations in the object. For example,
inter-part symmetries are preserved during the deformation of one
handle (see the legs of the table in Figure 8).

Once the deformation handles of the contact parts are identified, lo-
cal edits can be applied near the contact regions. The guiding prin-
ciple for these edits is to separate the contact region pairs by moving
the two regions apart. Such a contact-driven method helps reduce
the search space for stackability-improving modifications by effi-
ciently locating regions on the object part where modifications are
most likely to improve the stackability. Still, an exhaustive search
for the best edits is impractical due to the size of the search space
for the deformation handles. Hence, we derive a set of rules to pri-
oritize edits based on the different contact region pairings.

There are three types of contact regions: ring-like, linear, and dot-
like. Contact regions are all classified as being dot-like unless their
shape is considered as a line, by analyzing its bounds, or as a ring
by checking whether it has an interior hole. A ring-like contact re-
gion always leads to scaling of the deformation handle. A dot-like
contact region can either be translated vertically or horizontally. A
linear contact region leads to the same local edits as a dot-like con-
tact region, except that moves perpendicular to the stacking direc-
tion r are restricted to be along the direction that is perpendicular to
the primary direction of the linear contact region. Moreover, when
a single contact region lies on the boundary of the bounding vol-
ume, we limit the type of edits to movements perpendicular to r.
This way the shape is not squashed as squashing can dramatically
destroy the intended functionality of the shape (see Figure 6).

Figure 8 illustrates our contact-driven deformations. The deforma-

tion handles are highlighted in red and they are scaled or locally
translated depending on the different types of contact regions. The
deformation of the contact parts will later be propagated to other
parts via the relational edges in the graph that was defined in the
shape analysis stage (section 4.1).

4.3 Optimization

To improve stackability, the user sets a target stackability value and
our algorithm uses contact-driven deformations (4.2) to attempt to
achieve this goal. For some simple shapes, a single deformation
may be sufficient to attain the target stackability. However, for
shapes with a more complex structure, like tables or chairs, a trivial
solution usually does not exist, and multiple iterations of contact-
driven deformations are needed. Each iteration can utilize differ-
ent contact regions, and can generate multiple successor shapes us-
ing different modifications. To search for the best solutions which
introduces only subtle deformations to the given shape while im-
proving its stackability, we apply an optimization technique using
best-first search in the space of possible modifications.

To guide the optimization, we define a measure between the de-
formed shape M and the original shape M0 that includes both a
shape preservation term and a stackability term (for simplicity of
notation, we drop the stacking direction r below):

E(M) = αD(M0,M)− (1− α)∆S(M0,M), (5)

where α is a weighting coefficient between the change of M
compared to M0 and the improvement of stackability. We use
α = 0.2 in all our experiments to place more weight on stacka-
bility improvement rather than shape changes. The second term
∆S(M0,M) = S(M) − S(M0) is the stackability change of the
current shape M compared to the original shape M0. The first term
D(M0,M) measures the shape change of M from M0, with re-
spect to some structure properties of the shape. In our experiments,
we take into account the change of OBB volume, proximity, bound-
ing box and symmetry of the deformed controllers,

D(M0,M) =
1
4

(
Dvol(M0,M) +Dprox(M0,M) +

DBB(M0,M) +Dsymm(M0,M)
)
. (6)

Suppose there are p primitives in the object, which are denoted as
{PM0} ({PM}) before (after) the deformation. The change of vol-



ume is the sum over the volume differences of all primitives,

Dvol(M0,M) =

p∑
i=1

‖(Vol(P i
M )− Vol(P i

M0
)‖

p∑
i=1

Vol(P i
M0

)
. (7)

The proximity change is the sum of distance differences between
all pairs of primitives,

Dprox(M0,M) =

∑
1≤i,j≤p

‖d(P i
M , P j

M )− d(P i
M0

, P j
M0

)‖
∑

1≤i,j≤p
d(P i

M0
, P j

M0
)

. (8)

The bounding box term sums over the extent differences along all
three main axes of the entire shape’s bounding box,

DBB(M0,M) =

∑
i∈{x,y,z}

‖hi(M)− hi(M0)‖
∑

i∈{x,y,z}
hi(M0)

. (9)

Suppose TM0 : aM0 → bM0 is the symmetry map for a symmet-
ric pair < aM0 , bM0 >, then the symmetry distortion generated
by the deformation is δ(T (aM ), bM ), where δ(•, •) sums up the
differences between corresponding vertices over all points of the
deformation controllers. Assume there are m symmetry pairs in
M0 which need to be preserved, then the symmetry distortion of
the deformation is measured by the sum of distortion over all those
symmetry pairs,

Dsymm(M0,M) =
1
m

m∑

i

δ(TM0(a
i
M ), biM ). (10)

Algorithm 1 Improve Stackability

Input: Shape M0, the target stackability targetS
Output: Improved shape M

currS = 0
U .enqueue(M0)
while currS < targetS do

Mc = U .dequeue()
currS = STACKABILITY(Mc)
if currS ≥ targetS then

M = Mc

else
E = CONTACTDRIVENDEFORM(Mc)
for each local modified shape ei ∈ E do

U .enqueue(Mc)
end for

end if
end while

To minimize E(M) in Equation 5, we employ a best-first search
(see Algorithm 1). We initialize the candidate set U of the search
with the given object U ← {M0}. In each iteration, we pick the
best candidate shape Mc ∈ U which has the minimum objective
energy (Equation 5). If its stackability reached the desired goal,
targetS, we stop and return Mc as our result. Otherwise we apply
contact-driven deformations to this candidate to create a number of
new successors, and we add each of them to U and continue. We
use a priority queue for the set U resulting in the best candidate
always being picked first in the next iteration.

The proposed algorithm can also generate multiple solutions if it
continues the search after the first solution is found. Recall that the
computation of stackability involves searching for the best stacking
direction, which is computationally expensive. With the observa-
tion that the best stacking direction should not change too much
during the optimization, the search is performed only inside a cone
that is centered at the previous stacking direction on the unit sphere.
Furthermore, the searching for stacking direction can also be re-
stricted to lie on the symmetry planes of the shape.

5 User interface and interactions

We present two modes of interaction for stackabilization. In the
first, the user specifies a desired stackability value that reflects
his/her intended space saving requirement, then automatic stack-
abilization is performed according to Algorithm 1. The results of
the algorithm are a handful of solutions that satisfy the stackability
requirement, implementing different modifications to the original
shape. In the second mode, the user is involved in an interactive
editing session, our analysis technique is used to assist user edits,
by showing various suggestions, while improving the stackability.

Automatic stackabilization. The automatic algorithm starts
with the initial configuration and iterates the stackability improve-
ment procedure until achieving the goal set by the user. Since there
may exist multiple possible deformations in each iteration, our al-
gorithm explores different paths to the desired value of stackability.
The solutions are then sorted based on their energy value. The top-
rated results are presented to the user. The final user selection can
be based on aesthetics or functionality considerations.

Interactive suggestive stackabilization. In this mode of stack-
abilization, the stackability improvement process is performed by
the user who is assisted by our analysis. At each step, the user is
presented with all the possible stackability-improving edits, so the
most promising option can be chosen. All the edits are organized in
a tree structure, so the user can preview and evaluate the different
editing options, and roll back to previous suggested edits as well.
After selecting and applying the chosen edit option, new suggested
edit options are computed again. This cycle continues until the user
is satisfied with both the stackability value and the resulting de-
formed shape. This mode can better preserve the functionality and
aesthetics of the original shape compared to the automatic option,
as it utilizes user knowledge throughout the process.

6 Experiments

In this section, we show some visual results of stackabilization and
describe a preliminary user study we conducted to test the effective-
ness of our stackabilization tool in comparison to manual modeling
efforts. Findings from the study are also reported. The key question
that motivated the user study is whether our automatic stackability
analysis, along with the resulting stackabilization algorithm, has the
potential to outperform manual stackabilization.

Results. Container-type objects such as cups, baskets, pots,
vases, buckets, are often stored in stacks to save space. Figure
9 shows some results produced by our automatic stackabilization
tool. Stackable furniture are often stacked and stored in a compact
fashion when not in use. For example, stackable chairs are often
used as a means of expanding permanent seating in an auditorium,
arena or in a house of worship. Such kinds of furniture come in ver-
sions that are stacked horizontally as well as ones that are stacked
vertically. Figure 10 shows the stackabilization results of furniture,
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Figure 9: Stackabilization results on several container objects: cup, basket, hat, pot and bucket.

Figure 11: Two different stackabilization solutions for the table are
obtained by using cuboids or GCs to fit the legs respectively. These
two solutions have the same stackability (S = 0.8), but introduce
rather different distortions to the shape geometry and functionality.

including chairs, tables and stools.

Note that all these results are automatically generated by the au-
tomatic mode of stackabilization. Different choices of controllers
may result in different stackabilization outputs, mainly due to the
intrinsic degrees of freedom of the controller. Figure 11 shows
two different solutions of stackabilization created by fitting either
cuboids or cylinders to the legs.

Preliminary user study. We conducted a user study where hu-
man participants including both expert modelers and graduate stu-
dents in visual computing were asked to improve the stackability
of 3D objects to target stackability values while trying to maintain
the geometry and structure of the objects as much as possible. We
provided the users with a minimalistic modeling tool possessing
the same degrees of freedom for structure-preserving deformation
and editing as our automatic algorithm. The user was allowed to
change the stacking direction to achieve the target stackability more
quickly. In order not to place too much 3D modeling burden on the
participants, we deliberately selected test shapes that are not too
complex to analyze or visualize. We expect that more complex 3D
shapes will be more difficult to manipulate and stack manually.

The current user study is only informal and not intended to be seen
as a formal evaluation of our stackabilization tool. To rigorously
compare an automatic tool with manual 3D modeling has many
challenges and we leave that for future work. However, the initial
findings from the study are encouraging. For one, the study con-
firms that manual editing takes significantly more time to fulfill the
stackabilization goals compared to the automatic tool. We should
note however, that the modeling tool we developed for manual edit-
ing is inevitably limited. Some participants felt that more modeling
capabilities should have been offered. In terms of quality of results,

we find that the automatic tool generally achieves a better balance
between improving stackability and structure preservation. We also
asked the expert modelers to provide feedback. Generally, they felt
that the shapes are “a bit too easy” in terms of finding the right
strategy for improving the stackability. However, they all acknowl-
edged that to more precisely manipulate the 3D objects to achieve
the target takes more effort. This is consistent with our belief that
stackabilization is a delicate modeling task, raising the potential of
automated shape analysis and optimization.

7 Conclusion, discussion and future work

We have presented a method that analyzes and optimizes the ge-
ometry of a given 3D shape to increase its stackability. The key to
solving the problem of stacking an object onto itself lies in the anal-
ysis of the relation between its upper and lower envelopes, which
we expressed as the gap function.

In other fields, the problem of fitting two geometries together is re-
ferred to as “docking”. Typically, docking problems take two sep-
arate geometries as input, while here we “dock” the geometry of a
shape to itself, or specifically, the geometries of the upper and lower
envelopes of the same object. The two docking parties are tightly
coupled by the body of the shape itself, constraining the problem.
The objective of increasing the stackability is subject to maintain-
ing the overall shape, and thereby its functionality, which are the
main challenges one faces when solving this problem.

We used shape analysis to better constrain the possible deforma-
tions to a subset where the semantic relations of the shape are pre-
served. We presented an automatic optimization method to increase
the stackability of a given shape, and presented a user interface
where guided manual editing of shapes could support better func-
tionality and aesthetics preservation.

Limitations. Our deformation is based on component-wise con-
trollers [Zheng et al. 2011] and supports only cuboids and GCs.
This could be extended to other controllers and more sophisticated
deformation methods. In addition, our set of feasible deformations
that can be applied to the shape is limited. For instance, we do not
bend the shape or change its topology, e.g., to create a hole. Such
modifications can at times assist stackability without harming the
functionality of the object. Figure 12 shows that our tool can search
for the best stacking direction, but fail to improve stackability. The
reason is two-fold: first the shape is not designed to be stackable,
which needs more drastic deformation to stackabilize; second, both
the controllers and the allowed deformations are too limited to al-
low such drastic shape changes. Last but not the least, our cur-
rent work does not take into account of physical constraints such as
stability, which can be a critical requirement in real-world applica-
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Figure 10: Stackabilization results on several furniture models.

Figure 12: A failure case: Our analysis algorithm was able to
detect the best stacking direction for the swivel chair (left) but failed
to improve its stackability within the current search space (middle),
while an expert modeler can (right).

tions. The recent work on physical valid shape creation [Umetani
et al. 2012] may be adapted to address this limitation.

For stacking along polynomial trajectories,we suspect that an addi-
tional conflict checking mechanism is required for each additional
copy in the stack. If we consider a piecewise linear path, we could
iteratively add new copies to the stack then optimize the shape such
that only non-destructive shape modifications are allowed. How-
ever, in the current implementation we do not detect the conflicts
between non-adjacent copies.

Future directions. The resemblance of our problem to the dock-
ing problem opens opportunities for potentially new problems. For
example, extending the problem to deal with articulated shapes,
possibly with parts that can be folded like the one demonstrated
in Figure 13. Another interesting problem is the docking or stack-
ing of two separate geometries, or a multi-way one, which turns
into a packing problem. The uniqueness of our work is that we aim
at modifying and optimizing the geometries of the participating ob-
jects, rather than to search for rigid (or articulation) transformations
that dock or pack them together to save space.

Other extensions to our work include the use of more complex
shape modifications such as part removal or object partitioning to
improve stackability. For instance, by separating the seat from the
chair in Figure 14, both the seat and what remain in the chair are
easier to stackabilize. These types of modifications can become
rather complex even for a designer, but using our analysis tool
greatly simplifies this task. Another direction is using surface de-
formation to stack up organic shapes, like the bottle in Figure 15.
Generally speaking, our method optimizes the geometry of a shape
to improve its functionality, or one of its properties. We believe
that this will open the way to other application-driven geometric
optimizations, beyond stackabilization.
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Figure 13: Folding (and then stacking) is another type of space-
saving technique that is not handled by our method. It also poses
an interesting, likely more complex, geometry analysis and opti-
mization problem worth exploring.

Figure 14: Object partitioning may make stackabilization easier.
The chair shown may be difficult to stackabilize as a whole, but
when divided into two parts, each part is easy to stackabilize.

Figure 15: Our approach can be extended to include other de-
formation types such as freeform surface deformations needed to
improve the stackability of this bottle.
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