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Abstract

We present a face recognition method based on sparse
representation for recognizing 3D face meshes under ex-
pressions using low-level geometric features. First, to en-
able the application of the sparse representation frame-
work, we develop a uniform remeshing scheme to establish
a consistent sampling pattern across 3D faces. To handle
facial expressions, we design a feature pooling and rank-
ing scheme to collect various types of low-level geometric
features and rank them according to their sensitivities to
facial expressions. By simply applying the sparse repre-
sentation framework to the collected low-level features, our
proposed method already achieves satisfactory recognition
rates, which demonstrates the efficacy of the framework for
3D face recognition. To further improve results in the pres-
ence of severe facial expressions, we show that by choos-
ing higher-ranked, i.e., expression-insensitive, features, the
recognition rates approach those for neutral faces, without
requiring an extensive set of reference faces for each indi-
vidual to cover possible variations caused by expressions
as proposed in previous work. We apply our face recogni-
tion method to the GavabDB and FRGC 2.0 databases and
demonstrate encouraging results.

1. Introduction

Sparse representation, also known as compressed sens-
ing [6, 7], has been applied recently to image-based face
recognition [26] and demonstrated encouraging results. Un-
der this framework, each face is represented by a set of fea-
tures, which sufficiently characterize each individual. With
the prior knowledge that faces of the same individual are
similar to each other, a probe face can be considered as
being well approximated by linearly combining thek ref-
erence faces of the same individual in the training set. In
other words, a probe face is inherentlyk-sparse[6] on the
basis of alln reference faces in the training set. Compared
with conventional methods, recognition method based on
the sparse representation framework has several unique ad-

vantages. First, by solving anL0-norm minimization prob-
lem, the objective of the recognition method is to relate a
probe face with theminimumnumber of reference faces.
Considering that the task of face recognition is to find a sin-
gle individual out of the entire dataset, this objective is nat-
urally better suited for face recognition purposes. Second,
due to the inherentsource-and-error separationproperty,
the presence of irrelevant features will not degrade recog-
nition performance, as long as the remaining features are
sufficiently informative. A strong empirical evidence is that
the 2D face recognition method proposed in [26] can toler-
ate up to40% occlusion and70% data corruption. Third, in
the sparse representation framework, increasing the number
of individuals in the dataset in fact improves the sparsity
and thus will not likely degrade recognition performance,
which is in contrast to conventional methods [2, 24].

Despite the promising advantages, the use of sparse rep-
resentation for face recognition does not eradicate obstacles
posed by several practical issues, such as lighting, pose, and
especially facial expressions, which tend to distort almost
all the features and can thus compromise the sparsity of the
representation. To achieve robustness to expressions, the
authors in [26] postulated that a well-designed training set
is needed such that the set of reference faces for each in-
dividual covers possible variations caused by expressions.
Nevertheless, most existing databases do not fulfill this re-
quirement. It may turn out to be either an unrealistic or
expensive criterion to achieve in practice.

3D face data are less sensitive to lighting variation and
pose change, which have been adopted either as an addition
or a substitution to face images in recognition tasks [13].
However, 3D faces have their own difficulties. First, the ab-
sence of a consistent parameterization among face meshes
or point clouds makes it impossible to directly obtain reg-
istered features with a uniform sampling pattern; this pre-
vents appearance-based methods or the sparse representa-
tion framework from being applied. More importantly, fa-
cial expressions can cause severe global geometry varia-
tions, resulting in degraded recognition performance [3, 17]
or heavy computational load [4, 12].



In this paper, we present a face recognition method based
on sparse representation for recognizing 3D face meshes.
Our main contributions come from two aspects. First, to
enable the application of the sparse representation frame-
work, we develop a simple yet effective uniform remesh-
ing scheme to obtain a consistent sampling pattern across
face mesh surfaces. Unlike previous works which rely on
either high-level features or a planar uniform grid to char-
acterize 3D face geometry, we impose uniform connectivity
onto the 3D face surfaces for recognition which turns out
to be a prerequisite to enabling the collection of registered
low-level features and subsequent application of the sparse
representation framework. Second, we develop a feature
pooling and ranking scheme to improve the robustness of
our method to severe expressions. This scheme eliminates
the necessity of constructing an extensive set of reference
faces foreach individual, which we believe complements
previous work in [26]. Our experimental results on Gav-
abDB [18] and FRGC 2.0 [9] databases show that, using
merely the most common low-level features,e.g., mean cur-
vatures at vertices, triangle areas and triangle inner angles,
our approach achieves encouraging recognition rates.

2. Background and motivation

Most existing 3D face recognition methods are based on
strategically extracted high-level features,e.g., shapes of
facial curves [23], concave and convex facial regions [3],
partial face regions [14, 19], or deformation distance met-
rics [12]. In these methods, most efforts have been spent on
extracting these features and the recognition performance
generally depends on their reliability. In this work, however,
we are interested in adopting low-level geometric features
to face recognition for several reasons. First, collectinglow-
level features requires less sophisticated algorithms. Sec-
ond, low-level features tend to be more reliable, since the
collection process does not rely on pre-defined semantic ex-
traction strategy. More importantly, the redundancy carried
in the large number of low-level features can be naturally
exploited by the sparse representation framework to achieve
robustness against occlusion and data corruption.

However, collecting low-level features on 3D face sur-
faces is a non-trivial task, simply because samples of the
original input can be placed at arbitrary locations, unlike
the 2D case where a fixed Cartesian grid is employed. Due
to the lack of a uniform sampling pattern, there is no nat-
ural correspondence between the low-level geometric fea-
tures collected from different 3D faces. This motivates us
to develop a remeshing scheme to embed a uniform con-
nectivity onto all 3D face surfaces, and thus imposing a
correspondence between any low-level features defined on
matching triangles or vertices on the remeshings across
3D surfaces. In addition, as will be shown later, the col-
lected low-level features are not sufficiently informativeto

Figure 1. 3D face examples from GavabDB. Top row: neutral
faces. Bottom row: expressioned faces. Faces in the same col-
umn belong to the same individual.

achieve satisfactory recognition performance under conven-
tional appearance-based methods,e.g., PCA [24]. It is the
sparse representation framework that facilitates the use of
low-level features for robust face recognition in our ap-
proach. Note that methods based on range images [17, 20]
can also be viewed as imposing uniform sampling pattern
onto 3D faces. However, the acquisition of range images in-
volves anR3 → R

2 projection, which is not pose-invariant.
It is well-known that expressions can significantly distort

facial geometry (Figure 1), and this has become the major
limiting factor for robust 3D face recognition. To handle
this issue, most existing works rely on the selection of cer-
tain high-level expression-invariant features [4, 12, 21,25].
For example, the authors in [4] assume that face surfaces
are isometric under expression and select bending-invariant
canonical forms of face surfaces as the expression-invariant
feature. Face recognition method based on sparse repre-
sentation [26], despite its superior robustness to occlusion,
cannot directly handle expressions, due mainly to the fact
that distortions caused by expressions may occur over al-
most the entire facial area, whereas occlusions only affect
partial regions. In this paper, we design a feature pooling
and ranking scheme, which first collects a large set of low-
level features and then, via a training process, ranks them
according to their sensitivities to expressions. By choosing
higher-ranked expression-insensitive features, our recogni-
tion method achieves robustness to severe expressions.

3. Method

We characterize each face by adescriptor, whose ele-
ments are a set of registered low-level geometric features.
To enable the collection of such features, a uniform remesh-
ing scheme is first applied. Then, we use a feature pool-
ing and ranking scheme to obtain expression-insensitive de-
scriptors by stacking higher-ranked features, which are fi-
nally used to recognize 3D faces under the framework of
sparse representation.

3.1. Uniform remeshing

Consistent remeshing has been studied in previous
works, e.g., [22], for the purpose of blending shapes and
animation. These methods are specially designed to achieve



Figure 2. Facial mask. Left: an ideal mask. Right: an approx-
imated mask, where the desired locations of the markers at the
corner of the right eye and the chin tip are occluded, and thusthe
closest nearby vertices are selected.

Figure 3. Sample faces with data defects from GavabDB. From left
to right: 1) - 2) occlusion by hair; 3) occlusion by head rotation;
4) occlusion by hand; 5) impulse noise around the chin causedby
scanning artifacts due to shading; 6) under-sampled facialarea.

robustness against shape or topology variations across input
meshes, but at the expense of more costly computation. Our
remeshing scheme, in contrast, is only targeted at face sur-
faces, which have a relatively stable shape. Computational
load is, however, of more importance, especially when oper-
ating on large face databases. Bearing these in mind, we de-
velop an efficient remeshing scheme for face meshes, which
starts by building a face mask from 7 markers. Then, by an
iterative subdivision and displacement procedure, remeshed
faces at different resolutions can be obtained.

Mask: Our remeshing scheme starts by building a simple
mask which contains 6 triangles and 7 vertices, as shown
in Figure 2 (left). The 7 vertices are facial markers, which
are defined as the nose tip, the center of the two eyebrows,
the outer corners of the two eye sockets; the two points on
the facial outline contour at the same level as the center of
the mouth; and the chin tip. In fact, there exist algorithms
capable of automatically detecting such markers,e.g., [1].
However, the databases we are working on carry various
data errors and deteriorations, as can be seen in Figure 3.
Due to such defects, in this work we choose to manually
select the 7 markers. As can be seen, the main purpose
of the mask is to crop out and subsequently triangulate the
desired facial region. Note that for real applications, some
of the desired markers may be occluded. When this occurs,
we place the corresponding markers at the closest available
vertices. An example is shown in Figure 2 (right).

There are several rationales for choosing such a mask.
First, the only non-boundary vertex in the mask has va-
lence 6, i.e., the nose tip. In doing so, after subdivision,
our remeshings will all possess regular connectivity in the
interior. Such regularity offers several advantages in com-
puting local geometry features,e.g., curvatures [10]. Sec-

Figure 4. Remeshings. An original face mesh and its remeshings.
From left to right: original mesh with 13709 vertices; level-0, 2
and 5 remeshings, with 7, 61, and 3169 vertices, respectively.

ond, our mask covers the desired facial area with a sub-
stantially small number of markers. Such a small number
of well-defined markers minimize manual work and reduce
the chance of marker misplacements.

Remeshing: Our remeshing scheme is inspired by the
idea of displaced subdivision surfaces proposed by Lee et
al. [15]. We modify, as well as simplify, the original algo-
rithm in several aspects.

In Lee et al. [15], the so-called control mesh is a
geometrically-close approximation to the original surface.
Triangles can be co-planar subdivided for multiple levels
and smoothed by an optimization process to obtain a do-
main mesh. In our case, however, we adopt the face mask
as the control mesh. Such a simple control mesh is only a
coarse approximation to the original face surface. More im-
portantly, vertices in our control mesh are registered mark-
ers, which are not allowed to drift during the subsequent
remeshing process. Therefore, we implement an iterative
two-step process. In the first step, we perform Butterfly sub-
division [27], which is inherently interpolatory, to generate
the domain mesh. In the second step, vertices on the do-
main mesh are displaced onto the original mesh along their
normal directions.

Note that after one iteration, the number of triangles is
quadrupled and the displaced surface is a remeshing at a
resolution one-level higher than that of the previous itera-
tion. We refer to the face mask as level-0 remeshing. The
displaced surface after the first iteration is called the level-1
remeshing, and so on. In Figure 4, we give an example of
an original face mesh and its level-0, 2 and 5 remeshings.

Furthermore, to deal with data defects, such as holes,
gaps and impulse noise, we introduce several additional cri-
teria into the displacement step. First, when multiple in-
tersections occur between an original mesh and the normal
vector of a vertex on the domain mesh, we simply select
the closest one. Second, even with a single intersection de-
tected for a vertex, if the displacement exceeds a pre-defined
threshold, we consider this as possibly missing data or im-
pulse noise. We then use the linear average of the finite dis-
placements for the one-ring neighbors to displace the ver-
tex. Third, if a displacement of a vertex does not intersect
the original mesh, implying the presence of a hole or gap,



the same procedure mentioned above, i.e., one-ring aver-
aging over the neighborhood is applied. Finally, if all the
displacements in a small neighborhood on the domain mesh
do not intersect the original mesh or fail the threshold test,
it is treated as an occluded area. The domain mesh overlaid
with this area is then directly used in the remeshing.

3.2. Feature pooling and ranking

For face images, pixel intensity is the commonly used
low-level feature. In 3D face surfaces, geometry informa-
tion can be captured by varioustypesof low-level features.
Examples include the curvature at each vertex, the area of
each triangle, the length of each edge, and so on. It is dif-
ficult to determine which type of features are more infor-
mative for face recognition. In addition, as described in our
remeshing scheme, we obtain remeshed faces at multiple
resolutions, which further increases the number of available
features. Since features collected at different resolutions
potentially carry complementary information, i.e., features
collected from higher resolution remeshings capture more
local geometric details, while those from lower resolution
ones characterize more global geometry, it is again diffi-
cult to determine which resolution leads to more informa-
tive features.

All these available features form a pool. However, under
the sparse representation framework, adopting all the fea-
tures for recognition is unrealistic. More importantly, the
majority of these features can be distorted to certain extent
by facial expressions. Unlike occlusion, where source-and-
error separation automatically excludes those corrupted fea-
tures [26], distortions caused by expressions usually spread
over all the features. It has been observed that such distor-
tions can damage the sparsity of the representation and thus
degrade recognition performance.

Although facial expressions are complicated, human
faces are not fully elastic, implying that expressions only
distort face geometry in finite categories [8]. An important
observation from [16] is that there exist some low-level geo-
metric features that are relatively insensitive to expressions.
As shown in Figure 5, we observe that from a neutral face
to a “laughing” face, the geodesic distance from the nose tip
to the left eye changes only slightly. However, the geodesic
distance from the nose tip to the chin tip is evidently in-
creased. Another such sample is that the curvatures at the
vertices on the cheeks of the “laughing” face change as fa-
cial muscles contract, yet the areas of most triangles on the
cheeks do not change much due to the limited stretch of fa-
cial skin.

Based on the above observations, we can obtain a set of
low-level features that are relatively insensitive to expres-
sions through a training process. Specifically, for a training
set containingm individuals andk reference faces for each
individual, there are a total ofn = m × k reference faces,

Figure 5. Impact of expression on geodesic distance betweenfa-
cial markers. Left: the distance changes slightly under expression.
Right: the distance changes significantly under expression.

denoted by

{fi,j| i = 1, 2, . . . , m, j = 1, 2, . . . , k}, (1)

wherefi,j represents thejth face of theith individual. After
applying the aforementioned remeshing scheme, we collect
a pool of features for each face, which may be of differ-
ent types or collected at different resolutions. For exam-
ple, the area of a particular triangle collected from a level-2
remeshing can be a feature. The curvature at a particular
vertex from a level-3 remeshing is another feature. Denote
the value of thetth feature onfi,j by vt

i,j , theconfidenceof
thetth feature, a measure of its sensitivity to expressions, is
evaluated as

Ct =
St

B
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W

=

∑m
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(v̄t
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n

m∑

i=1

k∑

j=1

vt
i,j . (3)

v̄t is the mean value of thetth feature over all the references
faces, whilev̄t

i is the mean value over the reference faces
of theith individual. We can see that the confidence defined
in (2) has a form similar to Fisher’s linear discriminant [2],
whereSt

B andSt
W can be viewed as the between-class and

within-class scatters, respectively. The only differenceis
that in our work, the purpose of computing confidence is
to evaluate a feature’s sensitivity to expressions, whereas
in [2], the purpose is to span a subspace by linearly com-
bining all the features.

After ranking the features according to their confidence,
we can stack higher-ranked features to form a descriptor, re-
ferred to as theexpression-insensitive descriptor(EID). We
believe EID’s insensitivity to expressions helps improve the
sparsity of the representation. In Figure 6, we give an ex-
periment to demonstrate the effectiveness of using the EID.
To recognize a “puffed” face, we collect mean curvatures
at all the vertices on the level-3 remeshing to form the fea-
ture pool. In the first experiment, we use a subset of ran-
domly selected features from the pool to form a descriptor.



Figure 6. Effectiveness of feature ranking in recognizing an ex-
pressioned face (left). The bars represent the resulting residuals,
(defined in (7)), between the probe face and each individual after
applying the sparse representation framework. Upper row: using
randomly selected features. Lower row: using the EID. As shown,
the descriptor consisted of randomly-selected features results in
insufficient sparsity and incorrect recognition, while theEID im-
proves the sparsity and provides the correct recognition.

In the second experiment, an EID containing the same num-
ber of features is adopted. From Figure 6, we clearly see
that the descriptor formed by randomly selecting features
results in insufficient sparsity and leads to incorrect recog-
nition, while the EID improves the sparsity and provide the
correct result.

It is important to emphasize that when ranking features,
we do not require reference faces of each individual to cover
all the possible variations caused by expressions. Instead,
we only require that these variations are covered by theen-
tire training set across different individuals. This suggests
that the confidence defined in (2) reflects solely the impact
of expression on each feature, and is independent of the
characteristics of individuals.

3.3. Recognition

Given a training set as (1), we compute a length-l EID
for each reference face, denoted by

vi,j = [v1

i,j , v
2

i,j , . . . , v
l
i,j ]

T , (4)

where(·)T denotes matrix transpose. Similarly, we com-
pute the EIDvp for a given probe facefp. The EIDs of
reference faces in the training set can be organized into a
matrixA ∈ R

l×n, denoted by

A=[v1,1, . . . ,v1,k,v2,1, . . . ,v2,k, . . . ,vm,1, . . . ,vm,k].

With bothvp andA, the task of recognizingfp under the
framework of sparse representation is to solve the following
L0-norm minimization problem

x̂
L0 = arg min||x||0, s.t. Ax = vp, (5)

where

x=[x1,1, . . . ,x1,k,x2,1, . . . ,x2,k, . . . ,xm,1, . . . ,xm,k]T

is a length-n coefficient vector, with ideally at mostk non-
zero entries. That is,vp is k-sparse overA. However, (5)
is well known as an NP-hard problem. Fortunately, in com-
pressed sensing [6, 7], as long as the solution to (5) is known
to be sufficiently sparse, an equivalentL1-norm minimiza-
tion

x̂ = arg min||x||1, s.t. Ax = vp, (6)

can be solved as a good approximation to (5). Favorably, (6)
can be solved by standard linear programming techniques.
In fact, conventional recognition methods relying on Eu-
clidean distances to find the nearest neighbors can be mod-
eled as a minimization problem similar to (5), except that
the objective to be minimized is theL2-norm.

With the solutionx̂ to (6), we can compute the residual
betweenfp and each individual as

ri = ||vp −
k∑

j=1

x̂i,jvi,j ||2. (7)

The identity offp is then determined as the one with the
smallest residual. UsingL2- instead ofL0-norm residuals
has been proposed in [26]. To the best of our knowledge,
this may be attributed to the fact that, due to the source-
and-error separation property,L0-norm minimization leads
to a set of coefficients more robust to noise compared to
L2-norm minimization. With less impact from noise on the
coefficients, it is beneficial to useL2-norm residuals to em-
phasize any small difference among individuals in recogni-
tion, compared to the use ofL0-norm residuals.

4. Experiments and results

In this section, we present experimental results. We first
describe the experimental setup, followed by a description
of several types of low-level features used. Then, we test
our recognition method and discuss the results.

4.1. Database and experimental setup

To the best of our knowledge, GavabDB [18] is the most
expression-rich and noise-prone 3D face database currently
available to the public. We test our method on this database,
which contains 5 frontal face scans for each of the 60 cap-
tured individuals. To further evaluate the robustness of the
sparse representation framework in a larger search space,
we double the number of individuals from 60 to 120, by
randomly selecting another 60 individuals from the well-
known FRGC 2.0 database [9]. Since some individuals in
FRGC 2.0 have less than 5 face scans, we confine our ran-
dom selection to those individuals with at least 5 frontal
scans. The combined dataset is denoted by

{fi,1, fi,2, . . . , fi,5| i = 1, 2, . . . , 120}.



Figure 7. Two sets of faces in our dataset. Upper row: an indi-
vidual from GavabDB. Lower row: an individual from FRGC 2.0.
In both cases, the first two are neutral faces, while the otherthree
carry expressions.

Specifically, the first 60 individuals are from GavabDB. For
each individual,fi,1 andfi,2 are neutral faces,fi,3 has a
“random” expression, whilefi,4 andfi,5 are faces with the
expressions “laughing” and “smile”, respectively. The next
60 individuals are from FRGC 2.0, wherefi,1 andfi,2 are
neutral faces, whilefi,3, fi,4 andfi,5 carry varied expres-
sions. In Figure 7, we show the faces of two individuals
from the two databases, respectively.

In our experiments, we use the leave-one-out scheme to
construct the training and the testing sets. Specifically, each
experiment consists of 5 sets of tests. For the first set of
tests, the testing set is given by{fi,1| i = 1, 2, . . . , 120}
and the training set is given by{fi,2, fi,3, fi,4, fi,5| i =
1, 2, . . . , 120}. The training sets and the testing sets in the
other 4 sets of tests are constructed similarly. In doing so,
each face in the dataset is used as the probe face for once.
As a result, there are 600 probe faces being recognized in
each experiment, for which the recognition rate using a ran-
dom guess is as low as1/120 = 0.83%.

4.2. Features

In our experiment, we collect four types of low-level fea-
tures from the level-0 up to level-3 remeshings.

Angle: two registered inner angles of each triangle on a
remeshing. In addition, all the dihedral angles between ad-
jacent triangles are included. This type of feature is scale-
invariant.

Triangle area: triangle areas of all the triangles on a
remeshing. This type of feature is not invariant to scaling,
and thus requires normalization.

Graph Distance between vertices: pair-wise graph dis-
tance between vertices. In particular, we compute graph
distances from the vertex at the noise tip to all other ver-
tices. This type of feature requires normalization.

Mean curvature: mean curvatures at all the vertices on a
remeshing. It is computed as the average of the two prin-
cipal curvatures [11]. This type of feature is again scale-
invariant.

4.3. Recognition performance

Using these low-level features, we first compute the EID
for each face. Then, using the EID, we apply the sparse
representation framework as given in (6). We choose to use
L1-magic[5] to solve (6). As for compressed sensing [6],
to obtain thek-sparse coefficient, therestricted isometric
property (RIP) needs to be satisfied. Assuming measure-
ments are random Gaussian, one way to ensure the RIP is
to impose the following inequality,

l ≥ c k log (
n

k
) ≪ n, (8)

wherec is a small constant. In our experiments,n = 4 ×
120 = 480, which is the number of reference faces in the
training set, andk = 4, i.e., 4 reference faces for the same
individual as a given probe face. Essentially, the recognition
task is to find a 4-sparse representation of a probe face on
the basis of 480 reference faces. In addition, we setl = 160,
which is the number of features to be stacked into an EID.
As can be seen, this setting satisfies (8).

4.3.1 Recognition using single feature type

To demonstrate the efficacy of our feature ranking scheme,
we first recognize faces using a single feature type. For
each type of feature, namely, angle, triangle area, graph dis-
tance, or mean curvature, we compare the recognition per-
formances under two schemes. The first scheme uses a set
of randomly selected (RS) features to form a descriptor. The
second one uses the EID.

The recognition rates using different types of features
under the two schemes are presented in Table 1 for neutral
faces, expressioned faces and all faces, respectively. Based
on these results, we have several important observations.

Table 1. Recognition rates using single feature type.

Feature Type Descriptor Neutral Expression Overall

Angle RS 92.50% 86.67% 89.00%
EID 93.33% 92.78% 93.00%

Triangle RS 90.00% 80.50% 84.17%
area EID 88.75% 86.39% 87.33%

Graph RS 91.25% 81.94% 85.67%
distance EID 92.50% 89.44% 90.67%

Mean RS 91.67% 85.83% 86.50%
curvature EID 92.83% 87.78% 89.50%

First, under the EID scheme, the overall recognition rate
obtained using any of the four types of features is already
satisfactory. The best overall recognition rate, using angle,
is 93%. It is worth noting that the recognition rate for ex-
pressioned faces differs from that of neutral faces by at most
5.05% using mean curvature, and as small as0.55% for an-
gle. Considering the severe expressions in the dataset, this
difference is strikingly small.
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Figure 8. ROC of recognition rates for expressioned faces.

Secondly, under both RS and EID schemes, the recog-
nition rates using different types of features do not vary
greatly, where angle leads to recognition rates slightly better
than the others. For example, using the EID, the best overall
recognition rate is93%, obtained using angle, which is only
5.67% higher than the worse rate of87.33%, obtained using
triangle area. This observation agrees with the claim in [26]
that as long as the sparsity of the representation is properly
preserved, the exact choice of which type of feature to use
is no longer critical.

For any feature type, the EID scheme outperforms the
RS scheme in almost all cases, and the improvement is more
significant when recognizing expressioned faces. Note that
the recognition of neutral faces is also improved by using
the EID, since it mitigates the adverse effect of including
expressioned faces into the set of reference faces. An excep-
tion is the case for recognizing neutral faces using triangle
area, which we believe is caused by certain random factors
in the experiments. In Figure 8, we present the ROC curves
for recognizing expressioned faces under the two schemes,
using all four types of features. They clearly demonstrate
the improvements by adopting EIDs. This result shows that
our feature ranking scheme indeed improves the sparsity of
the representation in the presence of expressions.

In addition, we should mention that the good recogni-
tion performance is mainly attributed to the adoption of
the sparse representation framework. In fact, we recog-
nized the faces using the four feature types based on PCA,
and the best overall recognition rate, obtained using angle,
is only 58.5%. This indicates that our low-level features
are not sufficient to recognize faces using the conventional
L2-norm minimization method. Another point worth men-
tioning is that features collected from remeshing at multi-
ple resolutions in fact facilitate the recognition. We con-
ducted similar experiments using the EID scheme, where
the feature pool is formed by only collecting features from
the level-3 remeshing. Except for the case using triangle
area, the recognition rate is lower than those reported in Ta-
ble 1. Finally, our recognition rates demonstrate that severe
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data defects, as shown in Figure 3, have little impact on the
performance of our method. We believe that this can be
attributed to the robustness of the sparse representation to
occlusion and data corruption.

4.3.2 Recognition using all feature types

We conducted another experiment by collecting all the four
types of features to form a combined feature pool. All the
features in the pool are ranked together, where the top 160
features are used to form the EID. The ROC curves of the
recognition rates using these EIDs, for neutral faces, ex-
pressioned faces and all faces, are shown in Figure 9. The
marginal differences between these curves demonstrate the
robustness of our proposed method to expressions.

Table 2. Comparison of recognition rates of one-best-matching us-
ing different methods.

methods search space accuracy

120 96.67% neutral
Our method (reported rates are only 93.33% expressioned

for faces from GavabDB) 94.68% overall

Moreno et al. [19] 60 90.16% neutral
77.9% expressioned

Mahoor et al. [17] 61 95% neutral
72.0% expressioned

Berretti et al. [3] 61 94% neutral
81% expression

Mousavi et al. [20] 61 91% overall

In Table 2, we compare the recognition rates of our
method to several state-of-the-art results based on the Gav-
abDB database. For a fair comparison, we only compare
the rates of recognizing the GavabDB portion of our dataset,
whereas our search space is 120 individuals, larger than oth-
ers. Note that in [19] and [20], the dataset includes the two
faces “looking up” and “looking down”, which are not in-
cluded in our test. Compared with existing methods, our
proposed method has better performance in handling ex-
pressions. This improvement is due mainly to the efficacy
of the sparse representation and is further enhanced by our
feature ranking scheme. Note that similar high recognition
rates have been obtained for the FRGC 2.0 database [14].
Since we only used part of this database, the performance
of our method on the complete FRGC 2.0 is currently un-



available. Finally, we should point out that for the methods
compared in Table 2, different data pre-processings are in-
volved, whose purposes are similar to our marker selection
procedure.

5. Conclusion and future work

We present a 3D face recognition method based on
sparse representation. We demonstrate the necessity of
establishing a uniform sampling pattern among 3D face
meshes and develop a remeshing scheme to enable the col-
lection of registered low-level feature and the subsequent
application of the sparse representation framework. We fur-
ther design a feature pooling and ranking scheme to achieve
robustness to severe expressions. The satisfactory recogni-
tion rates using our proposed method demonstrate the effi-
cacy of the sparse representation framework on 3D faces, as
well as the effectiveness of our feature pooling and ranking
scheme, which eliminates the need of an extensive set of
reference faces for each individual in the training set. Pos-
sible future work includes incorporating high-level features
into the descriptors and investigating their effectiveness.
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