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Abstract

We present an algorithm to compute the silhouette set of a point cloud. Previous methods extract point set sil-
houettes by thresholding point normals, which can lead to simultaneous over- and under-detection of silhouettes.
We argue that additional information such as surface curvature is necessary to resolve these issues. To this end, we
develop a local reconstruction scheme using Gabriel and intrinsic Delaunay criteria and define point set silhouettes
based on the notion of a silhouette generating set. The mesh umbrellas, or local reconstructions of one-ring triangles
surrounding each point sample, generated by our method enable accurate silhouette identification near sharp features
and close-by surface sheets, and provide the information necessary to detect other characteristic curves such as creases
and boundaries. We show that these curves collectively provide a sparse and intuitive visualization of point cloud data.

1. Introduction

Point clouds acquired using laser scanners account
for many of the digital 3D models in common use.
However, despite much research, converting a point
cloud into a quality mesh remains a difficult and costly
process. This difficulty is one of the main motivations
for developing geometry processing techniques which
operate directly on points [20]. In this setting, even
basic tasks such as rendering can be challenging, since
points do not a priori contain normal or orientation in-
formation, and even determining which points are visi-
ble is non-trivial [26, 32]. Even with visibility resolved,
displaying points without normal information can hide
important surface features; see Figure 1 (left column).
Methods that generate high-quality point-cloud render-
ings, such as splatting [40], rely on elaborate filtering
especially near characteristic curves such as silhouettes.

Perception research demonstrates that rendering the
characteristic curves of input models, and specifically
their silhouettes, provides an effective visualization en-
hancement or even alternative to rendering the entire
model [28]. Silhouettes are important visual cues for
shape perception [28] and are very effective at convey-
ing shapes [17, 21]. As such accurate rendering of point
cloud silhouettes can enhance visualization of the cloud
data in a concise yet effective way. In this paper, we
provide a method for accurately and efficiently comput-
ing the silhouette set of a point cloud, i.e. the subset
of points which best approximate the silhouette of the
underlying surface. Such a set can be used to quickly
and intuitively depict a point-based model (Figure 1)

Figure 1: Surface features in raw point clouds are difficult to visu-
alize, even with visibility resolved (left). By rendering the point set
silhouettes (middle), and especially the detected sharp features (right),
geometric details of the underlying shapes are better revealed.

or adapted to other tasks that use silhouettes such as
shadow volumes [9] and object tracking [35].

According to the standard definition of silhouettes for
a smooth surface, a point p is on the silhouette if its nor-
mal is perpendicular to the view vector at p. On a point
cloud where only disconnected points are available, Za-
karia and Seidel [39] proposed using normal threshold-
ing, defining a point p to be on the silhouette if the scalar
product between the point normal at p and the view vec-
tor is sufficiently close to zero. However, as shown in
Figure 2, this method can simultaneously under- and
over-detect silhouettes, introducing thick point patches
instead of narrow silhouettes in low-curvature regions
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Figure 2: Normal thresholding (left) can over- and under-detect point
set silhouettes. Results using our method (middle) based on SGS and
local reconstruction show visible improvement on silhouette accuracy.
An important note is that the camera view which produced (a) and (b)
were chosen to best reveal the silhouette set returned. This view is
different from the view (right) that generated the silhouettes.

and leaving gaps in high-curvature regions, especially
near sharp features. Both errors reduce the utility of the
resulting silhouette sets. In general, it is not possible
to choose a suitable fixed threshold to simultaneously
correct both types of errors.

Our point set silhouette construction algorithm is
driven an alternative characterization of geometric sil-
houettes that allows a unified treatment of silhouettes
for different forms of surface models. In general, we as-
sociate with a point p on a surface model M a silhouette-
generating set or SGS such that p is on the silhouette iff
the viewpoint is contained in its SGS. Given appropriate
selections for the SGS of a point or edge, this definition
is equivalent to the traditional definition for smooth sur-
faces and polygon meshes. For example, on a smooth
surface S, we identify the tangent plane at p as its SGS.
For a mesh surface, the set difference between the union
and the intersection of all the half-spaces defined by the
normals of a vertex’s umbrella (the triangles adjacent to
the vertex) provides a natural SGS, though this is typi-
cally defined only on edges as a double wedge [2].

Inspired by this observation, we seek to approximate
the set of planes tangent to a point p’s intrinsic Voronoi
cell on S (see Figure 4, which we argue describes the
SGS of p. To compute the SGS of a point p in a point
cloud P, we search for an optimal umbrella around it,
performing a local reconstruction of the underlying sur-
face. As shown in Figures 2 and 12, our construction
leads to significantly more accurate silhouette extrac-
tion than normal thresholding. The local reconstruction
also allows us to efficiently extract characteristic model
features such as sharp edges to facilitate visualization of
point clouds; see Figure 1.

Our local reconstruction algorithm is based on the as-
sumption that the underlying surface S is a piecewise
smooth manifold, which is smooth everywhere except at
feature curves such as sharp edges or boundaries. For a
non-feature sample point p we obtain an initial estimate

of the unoriented surface normal using a simple and
novel technique, and show that the error in this estimate
is bounded by the sampling radius. We then construct
an umbrella by performing Delaunay edge flips [14] on
k nearest neighbours. Our algorithm is also able to iden-
tify feature curves in a small local neighbourhood. If p
is at or near a feature, we construct a partial umbrella for
each smooth patch involved. We focus on the construc-
tion of these umbrellas even in the presence of sharp fea-
tures, and do not attempt to robustly estimate oriented
surface normals.

In particular, we exploit the geometric insight we
develop in Section 4 to identify sharp edges between
smooth surface patches, as well as boundaries on the un-
derlying sampled surface, e.g. in an incomplete scan of
a real-world object. Many global surface-reconstruction
algorithms in common use have difficulty with open
manifolds or cannot reconstruct these features with high
fidelity; we hope to provide a simple way to augment
these methods. Our local measure performs well on
samples taken from open manifolds and the produced
results are shown to be comparable to those from more
sophisticated methods such as PEEL [12].

Our umbrella construction does not require an ori-
ented point cloud or extra sampling at feature curves
and boundaries, though we do make lenient assumptions
about the distribution of samples. We produce satisfac-
tory results using a pair of independent parameters to
indicate the density and uniformity of the sampling, us-
ing the same default values for both for all the examples
in this paper. Our method is able to produce plausi-
ble local reconstructions, and thus accurate silhouettes,
on inputs containing sharp features and close-by sur-
face sheets, without resorting to expensive statistical
techniques. Its formulation is based on a small num-
ber of nearest neighbours, making it well-suited to ef-
ficient implementation on architectures such as GPUs
in the same manner as [27], heavily parallelized com-
puters, out-of-core applications, and asymmetric pro-
cessors, where the random global memory access re-
quired by many global reconstruction methods is dif-
ficult, costly, or impractical.

One theoretical limitation of our method is sensitiv-
ity to noise; however, we have successfully computed
silhouettes on numerous noisy examples after denoising
them using standard methods such as WLOP [23].

2. Related work

Silhouette extraction. Silhouette extraction for meshes
is a well studied problem [25]. Image-based silhouette
extraction methods, such as [10], are generally quite fast
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Figure 3: To generate the SGS of a point p (green) based on its k near-
est neighbours, we (a) find a Gabriel triangle on p, discard neighbours
distant from the triangle’s plane (red), and build a Delaunay triangu-
lation from the remainder (blue). If p lies on a sharp feature edge (b),
we build separate umbrellas for each smooth patch on that edge.

at producing a set of silhouette pixels in the projection
plane. Object space silhouettes [21, 33] provide addi-
tional surface information which can be used for styl-
ized rendering and can be naturally combined with ex-
traction and rendering of other features. In particular, by
extracting the full silhouette rather than only its visible
component, object-space algorithms facilitate applica-
tions such as shadow rendering [9] and collision detec-
tion [7]. When operating in object space, Glisse et al.
show in [16] that the expected size of a mesh silhou-
ette set under lenient assumptions is O(

√
n), where n is

the size of the mesh. An empirical study by McGuire
[30] places the average silhouette size of downloaded
meshes closer to O(n0.8). Many object-space algorithms
can extract the silhouette in sublinear time.

For point clouds, Xu et al. [38] develop an image-
based method using Painter’s algorithm, relying on
depth discontinuities to render visible silhouette pix-
els. Zakaria and Seidel [39] present a hybrid approach
which identifies silhouette points using normal thresh-
olding, renders them to a frame buffer, and extracts
curves from the result using a thinning process. As
noted earlier, normal thresholding has difficulty in re-
gions of very high or very low curvature. In contrast to
both, our method operates solely in object space, com-
puting silhouettes as well as other characteristic curves.
While our computation is slower than image-based tech-
niques, the local reconstruction which takes most of the
runtime can be performed as a preprocessing step, with
the actual silhouette extraction done in real-time.

Local neighborhoods in point clouds. Many works
seek to build local characterizations of the underlying
surface, S, represented by a point cloud. A common
technique is to derive curvature and normal information
for a sample point p by principal component analysis
on the covariance matrix of Qk(p), the k Euclidean-
nearest neighbours of p [22, 34]. The method is subject
to artifacts around close-by surfaces and sharp features.

Moreover, the information computed is not sufficient for
our needs. An alternative is to construct a local analytic
representation of S by means of moving least squares [3]
or locally optimal projection (LOP) [29], which provide
a means of projecting points onto a well-defined sur-
face. However, the problem of deciding which sample
points belong to the silhouette remains. For our pur-
pose, these two algorithms can be seen as preprocessing
steps to handle noisy input data.

Many surface reconstruction algorithms characterize
local neighborhoods by finding a partial or complete
umbrella around surface points, e.g. [1, 27]. Producing
a full reconstructed surface is unnecessarily complex for
our purposes. For example, while methods such as Co-
cone [11] and T -coordinates [6] produce umbrellas sim-
ilar to ours, their definition in terms of a global Voronoi
diagram is at odds with our desire to restrict our do-
main to a small set of Qk(p). In Appendix A we show
that the canonical Gabriel triangle, which anchors our
reconstruction, is in fact a Cocone triangle.

Furthermore, the umbrella-construction component
of these methods is designed for smooth surfaces and
tends to break down in the presence of sharp features
or close-by surface components – that is, samples in
Qk(p) that are geodesically distant from p on the un-
derlying surface. Our construction is specifically de-
signed to handle such scenarios correctly. While other
methods exist for detecting close-by surfaces [23], sharp
features [15], and boundaries [12], we integrate these
capabilities into the core of our algorithm rather than
adapting an existing method as a separate step.

One way to characterize the natural neighbours of p
on S is to project Qk(p) onto an estimate of the tangent
plane at p, perform a planar Delaunay triangulation of
the projected points, and project back onto S [19, 5].
Our method uses similar ideas, but introduces a filter-
ing step that enables us to deal with sharp features and
close-by surfaces. We then create an initial triangula-
tion in which all the filtered neighbours share an edge
with p, a technique also employed in [18], but instead
of working with a projected planar triangulation, we
perform Delaunay edge flips directly on the embedded
mesh fragment [14].

3. Silhouettes and silhouette-generating sets

While silhouette sets are well-defined on polygon
meshes and smooth surfaces as structures that separate
front- and back-facing regions, it is difficult to extend
these definitions to point clouds. Instead, we can define
them as the set of points on the model whose tangent
plane contains the view point. On smooth surfaces, this
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Figure 4: Finding point samples on a surface’s silhouette. (a): Point
samples on an underlying smooth surface S and their intrinsic Voronoi
cells. (b): A silhouette curve on S. The points whose Voronoi cells
are crossed by the curve (highlighted) are on the silhouette.

silhouette-generating set or SGS is identical to the stan-
dard definition, and it can readily be extended to both
meshes and point clouds.

Using this definition on polygon meshes, the SGS of
an edge is described by the set difference between the
union of the positive half-spaces defined by the faces
adjacent to the edge and their intersection [2]. This
region is equivalent to the double-wedge described by
the usual definition of edge silhouettes. Note that if
the mesh in question is not closed, the silhouette sta-
tus of edges on its boundary must be specified explic-
itly under the standard definition; typically they are ei-
ther always considered to be on the silhouette or con-
sidered as silhouette edges when their adjacent face is
front-facing [8]. Both of these options are subsumed
within the SGS definition, either by including an im-
plied back-facing face (“always-on”) or simply by treat-
ing the face’s half-space normally (“front-facing”).

For a mesh vertex the SGS is defined similarly using
the planes of its umbrella triangles. A mesh vertex is
on the silhouette only when at least one of its adjacent
edges is on the silhouette; thus, the SGS of the vertex is
the union of the SGSes of its adjacent edges.

Intuitively, to define the SGS of a point in a cloud
we want to construct a local umbrella around it which
approximates the underlying surface on which it was
sampled. More formally, in order to define the SGS of
p, we consider its relationship to the surface S that it
samples. We assume that all points in P are on S; this
in turn induces an intrinsic Voronoi diagram on S from
the point samples. This gives us an intuition for point-
cloud silhouettes: a point p ∈ P should be on the silhou-
ette when the silhouette curve on S passes through p’s
Voronoi cell; see Figure 4. Therefore, the exact SGS of
p is the union of all planes tangent to points on S within
p’s Voronoi cell. Note here that we do not need the
Voronoi cell itself. As it is impractical to construct the
exact SGS of p based on this definition, we next present
an approximate construction and show that it leads to
high-quality silhouette extraction.

4. Local neighbourhood construction

To approximate the SGS of a point p in a point cloud
P according to the definition presented in Section 3, we
build an intrinsic Delaunay triangulation [14] from a
subset of p’s k-nearest neighbours Qk(p). We need not
compute a full triangulation; any points in Qk(p) not in
p’s Delaunay one-ring will not affect the SGS of p in
the local reconstruction and can be ignored. The sup-
porting planes of these triangles approximate the tan-
gent planes of the intrinsic Voronoi cell on the underly-
ing piecewise-smooth surface S containing p, and thus
describe p’s SGS.

Our local triangulations are constructed in a series
of four steps, each taking advantage of information ob-
tained from the previous steps to produce a more ac-
curate umbrella around p. We perform the following
operations:

1. Normal estimation and neighbour filtering
2. Initial umbrella creation and boundary identifica-

tion
3. Neighbour-based multi-umbrella creation
4. Boundary consistency enforcement

A high-level overview of the algorithm is given in
pseudocode in Figure 5. Next we describe each of these
steps in detail.

4.1. Initial normal estimation and neighbour filtering

In the simplest case, p lies within a smooth region
of S and the intrinsic Delaunay umbrella of Qk(p) will
produce an appropriate local reconstruction. However,
when some members of Qk(p) are not in the same re-
gion of S – if they lie across a sharp feature edge, or on
a close-by surface sheet – we must exclude them from
our triangulation. Our first tool to achieve this is local
normal estimation.

We consider first the simplest case, where p lies on
a smooth region of S, relatively far from any feature
curves. Let t be a triangle on p with normal nt , and let
np be the normal to S at p. The acute angle between the
lines generated by nt and np is bounded byO(rt/ρ f (p)),
where rt is the circumradius of t, and ρ f (p) is the local
feature size at p: that is, the distance to the medial axis
of S [11, Lemma 3.5].

We say that a smooth region U ⊂ S is well sampled if
any point x ∈U is closer than ερ f (x) to the nearest sam-
ple point, where ε is an appropriately small constant.
The function ρ(x) = ερ f (x) is the sampling radius.

To estimate the local normal at p, we find the triangle
with the smallest circumradius amongst those that have
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1: BuildPointUmbrellas(point-cloud P)
2: CreateOnerings(P)
3: FindMultiumbrellas(P)
4: EnforceBoundaries(P)

5: CreateOnerings(point-cloud P)
6: for p ∈ P do
7: if is-untrustworthy(tG(p), ω) then
8: continue
9: end if

10: p.nbrs = good-nbrs(Qk(p), tG(p).norm, ω, ωt )
11: p.nbrs += marginal-nbrs(Qk(p), tG(p).norm, ω, ωt )
12: p.onerings += BuildOnering(p.nbrs, tG(p).norm)
13: end for

14: BuldOnering(point[] nbrs, vec norm)
15: onering = sort-by-angle(nbrs, norm)
16: onering = delaunay-edge-flip(onering, γ)
17: onering.boundary = find-boundary(onering, ϕ)
18: return(onering)

19: FindMultiumbrellas(point-cloud P)
20: for p ∈ P do
21: if has-complete-onering(p) then
22: continue
23: end if
24: while has-open-boundary(p) do
25: t = get-trusted-nbr(Qk(p) p.onerings)
26: p.nbrs = good-nbrs(Qk(p), t.norm)
27: p.nbrs += marginal-nbrs(Qk(p), t.norm)
28: p.onerings += BuildOnering(nbrs, t.norm)
29: end while
30: end for

31: EnforceBoundaries(point-cloud P)
32: for p ∈ P do
33: if incompat-full-onering(p) then
34: p.onering = remove-nonrecip-edges(p)
35: p.onering.boundary = find-recip-boundary(p)
36: else if incompat-bdry-onering(p) then
37: p.onering = add-recip-edges(p)
38: p.onering.boundary = find-recip-boundary(p)
39: end if
40: /* Most points will be ignored */
41: end for

Figure 5: A pseudocode overview of our method.

both the point p and its nearest neighbour as vertices.
This triangle, which we denote tG(p), is necessarily a
Gabriel triangle; its smallest open circumball is empty
of sample points [13, Lemma 4.12]. Since this canoni-
cal Gabriel triangle is the only one of interest to us, we
take the liberty of referring to it as the Gabriel triangle.
If q is the nearest neighbour to p, Mederos et al. [31]
identify tG as the triangle [p,q,u] that has the largest
(necessarily acute) angle at u. Appendix A shows that
this triangle provides a good approximate normal in a

Figure 6: Angle bounds for neighbour filtering. Members of Qk(p)
that fall within the wedge with half-angle ωt are considered marginal,
and must satisfy a distance constraint to be selected in the first pass.

well sampled smooth surface patch.
If p lies in the interior of a well-sampled smooth sur-

face patch, all samples in an umbrella on p should lie
close to the tangent plane of p. The sampling radius en-
sures that ‖p− q‖ = O(ε)ρ f (p) for any neighbour q of
p. The angle between pq and the tangent plane to p is
O(ε), and does not vary with the local feature size [11,
Lemma 3.4]. Similarly, the angle between the tangent
plane and the plane of tG is O(ε). This motivates our
use of a constant angle threshold, ω, to filter the points
in Qk(p) which are candidates for being neighbours on
the same surface patch. This angle threshold reflects the
implicit parameter ε governing the sampling radius.

Given the canonical Gabriel triangle, we discard all
edges that form an angle greater than ω with the trian-
gle’s plane. In smooth areas of the surface this filtering
discards most unrelated samples, such as those coming
from close-by surface sheets.

When Qk(p) lies in a well-sampled region, filtering
by ω produces a high-quality set of neighbours and is
sufficient by itself. However, when Qk(p) does not con-
form to our assumed sampling density, we may inad-
vertently select points which are barely within the cone
described by ω but geodesically distant. Further, if
the surface curvature is high, we may also reject de-
sirable neighbours which are barely outside of the ω

cone. To address these cases, we introduce another pa-
rameter ωt < ω to describe marginal edges where our
confidence in the ω criterion is weaker. If the angle be-
tween an edge pq and the plane of tG(p) falls within
[ω−ωt ,ω + ωt ], we accept q only when |pq| is suffi-
ciently small; we find that the condition |pq| < γrtG(p)
works well in all of our examples, where γ is introduced
in Section 4.3 as a parameter used to bound the circum-
radius of triangles in an umbrella.

Filtering is even more challenging in the presence of
sharp feature edges, as shown in Figure 7; these edges
can be seen as an extreme case of undersampling. First,
even filtering by both ω and ωt may keep points on sur-
faces across sharp (approximately right-angle) edges,
requiring an extra filtering step (Section 4.2). Second,
the Gabriel triangle itself may include samples on both
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Figure 7: Filtering on the Gabriel normal at a point p (green) on a
sharp edge may (a) include points on the opposite surface from the
Gabriel triangle which pass the ω-test; also, (b) the Gabriel triangle
itself may cross the edge.

Figure 8: Boundary detection in the initial triangulation. Most ini-
tial triangulations have no boundaries (a). When the distribution of
Qk(p) is severely biased, fold-overs may occur (b); these create con-
vex boundaries (orange). Even if fold-overs do not occur, concave
boundaries are created (c) when a triangle’s angle on p exceeds ϕ.
Dashed red lines are removed from the umbrella.

sides of the edge. In the latter case, only a small propor-
tion of neighbours will pass the Gabriel normal filter;
such points are dealt with in the second phase of our
algorithm, described in Section 4.4. If we trust tG(p),
we sort the remaining points by angle in its supporting
plane and proceed as below.

4.2. Initial umbrella creation

At this stage we have an estimate of the relevant
neighbours in Qk(p). The process of constructing an
umbrella for p also drives our boundary detection. We
work with the radial edges from p to its neighbours. We
sort them in counterclockwise order according to their
projection on the plane defined by tG, thus defining an
umbrella at p. See Figures 8 and 9(a) for examples.

We must account for the possibility that p itself lies
on a boundary between surface patches. In this case our
initial umbrella will be a partial umbrella on the patch
containing the Gabriel normal. The construction of the
remaining surface patch(es) is described in Section 4.4.
Some boundaries are identified in the initial triangula-
tion; this is described in Section 4.3.

This in turn lets us make a second, more aggressive
pass on the remaining neighbours, as shown in Fig-
ure 9(a): we discard any edges whose adjacent trian-
gles’ normals form an angle greater than ω with the
Gabriel normal. However, we do not remove an edge if
the resulting triangle would also fail this criterion. (Re-
moving an edge is akin to an edge flip, but we only pre-
serve triangles incident to p.) We also avoid removing

Figure 9: Umbrella creation near (left) and at (right) a feature line. We
perform (a) triangle removal, (b) boundary detection, (c) Delaunay
edge flipping, and (d) boundary expansion. See text for details.

boundary edges, as defined in Section 4.3. This pro-
cess eliminates most samples remaining on other sur-
face patches, as well as distant neighbours on smooth
surfaces with relatively high curvature.

Next we apply the extrinsic Delaunay edge-flipping
algorithm from [14], removing edges adjacent to p
which are not locally Delaunay, shown in Figure 9(c).
At each step, we examine p’s one-ring for newly-created
concave boundaries; boundary edges are never flipped.

4.3. Boundary detection

Our boundary detection is based upon an additional
sampling assumption. A local uniformity constraint is
some criterion that limits the number of samples that
can appear in a small region. Any algorithm that at-
tempts to create an umbrella on p using only points from
Qk(p) is at least implicitly assuming some local uni-
formity constraint. Otherwise, all k nearest neighbours
could be confined to a tiny disk close to p such that no
reasonable umbrella could be constructed.

We express our local uniformity assumption as a
bound on the minimum distance between sample points.
We assume ‖eG‖ > δερ f (p), where 0 < δ < 1, and ε

governs the sampling radius, as above.
A good triangle, t on p has its circumradius bounded

by O(ερ f (p)), and by a straight-forward geometric ar-
gument (as shown by Kil and Amenta [27], for exam-
ple), the largest angle in t is bounded above by α =
π−O(δ) Thus the largest angle in any triangle is gov-
erned by a constant parameter that is independent of the
local feature size. This is our parameter ϕ.
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Before performing Delaunay edge flipping, we first
check for boundaries (Figure 8). Concave boundaries
are identified with triangles whose angles on p exceed
ϕ. Convex boundaries are defined by triangles whose
angle in the counter clockwise ordering around p ex-
ceeds π. We mark these explicitly here to ensure correct
behaviour from the edge-flipping algorithm.

We also use excessively large triangle circumradii as
indicators of the presence of a boundary. We should
have rt < O( 1

δ
)‖eG‖, where ‖eG‖ is the distance to the

nearest neighbour of p. However we have found this
particular method of detecting boundaries to be too sen-
sitive to variations in the sampling uniformity. Instead,
we have had better success requiring rt < γrtG . Where
γ is another constant parameter whose value reflects an
expectation on the local uniformity of the sampling.

Finally, if any boundary edges have been detected,
we attempt to enlarge them by examining the circum-
radii of the associated triangles, as in Figure 9(d). If a
triangle t on a boundary edge has rt > γrtG , we disregard
the sample on that edge, and make the other edge of t
incident to p a boundary edge.

4.4. Alternate normals and supplemental umbrellas

We now have an estimate of the local surface around
each point with a trustworthy Gabriel triangle. If that
point is on a smooth surface patch, we expect it to have
a triangulation without boundary. However, if p is on a
boundary between smooth surface patches, the umbrella
we have just constructed will only inform us about a
single patch, and we must build umbrellas on its other
adjacent patches using information from neighbouring
points. Furthermore, if the Gabriel triangle, tG(p) is un-
trustworthy, we must obtain an estimate of p’s normal
from one of its neighbours. We decide that tG(p) is un-
trustworthy if less than half of the points in Qk(p) make
an angle smaller than ω with the plane of tG.

We address both problems in a second pass over
the input, this time considering both points whose um-
brellas have a boundary and points with untrustworthy
Gabriel triangles. In either case we proceed as before,
with the following modifications.

Rather than obtain a normal estimate from tG(p), we
instead choose the computed normal from a trustwor-
thy neighbour of p. This is a point in Qk(p) that has a
single umbrella without boundary. The closest trustwor-
thy neighbour to p gives us a trusted normal even when
tG(p) is not reliable.

Filtering Qk(p) on this normal is more restrictive
when p already has a partial umbrella. We reject points
that would be admissible in an already-constructed um-

brella, unless they lie on that umbrella’s boundary (in-
dicating that they too lie on feature edges). However, if
a point lies on the boundaries of two partial umbrellas,
it cannot lie on a third if S is manifold, and therefore it
must be rejected.

We build partial umbrellas using the algorithm of
Section 4.2 with these additional criteria until all bound-
ary points have been included in a partial umbrella or
no more trusted neighbours remain in Qk(p). In some
cases, one of the new umbrellas will not have a bound-
ary; this occasionally happens in areas of high curvature
and sparse sampling, where tG(p) might be misleading
because the sampling assumptions do not hold. In these
cases, we simply discard the complete umbrella when
it contains the fewest vertices of all p’s umbrellas, and
accept it (discarding the others) otherwise.

4.5. Enforcing boundary consistency

We have now constructed a local umbrella around
each point p which is consistent with our characteriza-
tion of the underlying surface (based on ω and γ) and in-
corporates our estimates of boundary and feature curves
passing through p. However, aside from normal infor-
mation in the cases of boundary points and untrustwor-
thy Gabriel triangles, we have not incorporated any in-
formation contained in p’s neighbours into its triangu-
lation. For a well-sampled smooth surface this is gener-
ally sufficient; however, when the actual structure of our
input point cloud does not satisfy our local uniformity
assumptions this may lead to visual artifacts such as in-
consistent or even spurious boundary detection where
the input sampling breaks down.

Rather than attempting to enforce umbrella consis-
tency across the whole point set as in the work of Kil
and Amenta [27], we instead perform a third high-level
pass over the input, identifying and correcting obvious
inconsistencies near detected boundaries. This simple
step significantly increases quality with minimal perfor-
mance cost. Again, we are able to ignore most points
in the input, instead focusing on points with bound-
aries that are incompatible with their neighbours’ um-
brellas. This may occur when a point’s neighbour across
a boundary edge does not itself have a boundary, as in
Figure 10(b-c), or when two neighbours have boundary
edges but do not agree on which edges those should be,
as in Figure 10(d).

The first case may not indicate a problem at all; when
a crease joins a smooth surface as in Figure 10(a), a
sharp edge will terminate rather than meet another fea-
ture curve. Thus, if p has multiple partial umbrellas
with consistent boundary edges, we simply accept it.
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Figure 10: Not all disappearing sharp features indicate errors (a, taken
from [36]. When a point p has an inconsistent boundary (b), we search
Qk(p) for points that lie in the indicated area and contain reciprocal
edges. Sparse sampling of boundaries may lead to point umbrellas
with non-reciprocal edges on geodesically-distant sheets (c), or adja-
cent boundary vertices which are inconsistent (d). Our method ad-
dresses both problems by enforcing boundary edge reciprocity.

Otherwise, we identify points in Qk(p) whose um-
brellas contain p, and consider those edges when re-
building p’s umbrella. We call these reciprocal edges,
and our general strategy in the third pass is to add miss-
ing reciprocal edges and remove spurious reciprocal
edges when necessary to ensure consistency between
adjacent boundary points.

We identify and address two cases: points with full
onerings but at least two incoming boundary edges, and
points with non-reciprocal boundary edges. The first
case often occurs when a surface boundary approaches
another sheet of the surface: points on the boundary
may erroneously include points on the sheet in their
onerings. In this case, we mark incoming boundary
edges and search between them for onering neighbours
without reciprocal edges. We remove these neighbours
and construct a boundary consistent with the incoming
boundary edges. See Figure 10(c).

The second case, where one or more of a point’s open
boundary edges connect to neighbours without recipro-
cal boundary edges, often occurs at a sparsely sampled
boundary. Here we wish to correct the boundary, tak-
ing neighbour information into account. If the point has
incoming boundary edges, we update its boundary to
contain those edges, adding reciprocal edges as needed,
as shown in Figure 10(d).

However, most of these points occur in regions of
high curvature and low sample density, where our ϕ

assumption does not hold, and spurious and isolated
boundaries are often detected. For these points, we find
reciprocal edges in Qk(p) to fill the boundary, as shown
in Figure 10(b).

5. Point set silhouette and feature extraction

We first describe our method for calculating the sil-
houette set of a point cloud and constructing local sil-
houette arcs. Then we present our preliminary attempt
at point set feature extraction from the local umbrellas.

Silhouette extraction and silhouette arcs. We slightly
modify the Hough-space silhouette algorithm in [33]
to handle the SGS-approximating umbrellas created in
Section 4. We refer the reader to [33] for details and
only focus on the necessary modifications. To take ad-
vantage of the spatially and temporally coherent nature
of Hough-space silhouette extraction and update, we
store the Hough transforms of each SGS face in an aug-
mented octree as described in [33]. Rather than consider
every edge in p’s umbrella, we store all faces associated
with p together and test them as a group. This increases
the complexity of testing the octree’s edge bounding
volumes against the v-sphere in initial silhouette extrac-
tion, but only by a constant factor.

Once we have identified a set of silhouette points,
drawing silhouette edges between them is straightfor-
ward. Silhouette edges in each one-ring are easily iden-
tified but form a superset of the silhouette we wish to
draw. Borrowing language from [27], we cull these
edges into a more conservative set by drawing only con-
sensus silhouette edges: We render a silhouette edge pq
if and only if it exists and is a silhouette edge in the
umbrellas of both p and q.

Note that we draw only local silhouette arcs, not full
silhouette loops. The latter depend on global properties
of point connectivity and must meet certain topological
criteria[2] which we cannot guarantee from purely local
constructions. It may be possible to augment our SGS
construction with extra information and build consistent
silhouette loops; we address this in our discussion of
future work. For now we consider our silhouette arcs to
be a first step towards a geometric solution.

Feature detection and emphasis. To aid visualization of
point clouds, we adapt the feature classification method
of Hubeli and Gross [24] to our local reconstruction.
While the original method is used to classify the feature
strength of edges, we instead apply their ESOD opera-
tor to point samples. For each edge pq in p’s umbrella,
we use the umbrellas of q’s neighbours in p to evalu-
ate cos

(
|〈ni,n j〉|

)−1, then divide by π/2. The absolute
value term is required as our computed normals are not
oriented, and thus not guaranteed to be consistent be-
tween neighbouring umbrellas. To determine the weight
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of each point we simply take the maximum computed
weight among its edges.

Rather than implement hysteresis and patch skele-
tonization, we find it sufficient for visualization simply
to treat the normalized weight of each point as its alpha
value during rendering. This conveys curvature infor-
mation in a view-independent way without competing
with the silhouette for emphasis; see Figures 1 and 12.

6. Results

Some results of our point set silhouette and feature
extraction algorithm for quick point cloud visualization
are shown in Figures 1, 2, and 12. In all the cases, we
chose Qk(p) to be the 16 nearest neighbours, our sam-
pling density parameter ω = π/6, and our local unifor-
mity parameters ϕ = π−ω and γ = 2. Small changes
to these parameters tend to produce small changes in
the results, and the values chosen here reflect the fact
that all of our raw point cloud data were processed with
WLOP [23]. Inputs with different sampling character-
istics will require changes to the parameters that reflect
those differences in sampling.

Our SGS-building algorithm is a preprocessing step
while silhouette and feature extractions are interactive.
We performed our experiments on a workstation run-
ning Linux 2.6.18 with two Intel Xeon 3.2GHz pro-
cessors, 4.0GB of RAM, and an NVidia GeForce 9800
GX2 card. The preprocessing step took between 5 sec-
onds (hand model, 6,191 points) and 40 seconds (oil
pump model, 54,220 points). Framerates for incremen-
tal silhouette updates varied with silhouette size, but
never dropped below 190 frames per second.

Qualitatively, comparisons to the display of only vis-
ible points [26], as shown in Figure 1, reveal the ability
of silhouettes and detected feature points to emphasize
underlying shapes especially near surface features and
fine-scale details. It is also worth pointing out that as the
point cloud becomes more sparse, pure point rendering
(left of Figure 1) becomes less effective in revealing ge-
ometric details while the usefulness of the characteristic
curves is increased.

While normal estimation is not a key contribution of
our work, our method’s ability to reconstruct correct
umbrellas in the presence of close-by surface sheets is
demonstrated by Figure 11. Here, we show the robust-
ness of normal estimation using our local umbrella con-
struction and patch filtering algorithm (Appendix A),
in comparison to PCA. While our umbrella construc-
tion starts with kNN, as in PCA, the optimization can
identify the correct local neighborhood which does not

Figure 11: Point rendering using oriented splats on the hand mesh
(left) to compare normal estimation: (centre) using our local recon-
struction and (right) using PCA, where the same k for initial kNN is
used. The PCA-estimated normals between adjacent fingers are in-
consistent with their neighbours, while ours are coherent.

straddle between the nearby sheets; this results in more
accurate normal estimates.

In Figures 2 and 12, we compare to the use of normal
thresholding for point set silhouette extraction, where
features are included for a better depiction of the shapes.
Focusing on just the silhouettes, it is quite evident that
using our local reconstruction and the SGS-based ex-
traction scheme effectively avoids both under- and over-
detection of silhouettes, which occur simultaneously
under normal thresholding even on models derived from
triangle meshes. Specifically, in regions with low cur-
vature (either due to dense sampling or the geometry
of the underlying surface), we produce a set of sil-
houette points with far more consistent thickness than
the thresholding method. This is particularly evident
on the fandisk and oil-pump models. In regions with
high curvature, we are able to identify silhouette points
where thresholding fails, both on sharp edges such as
on the fandisk and over smooth regions of high curva-
ture such as the fingers of the hand. Even on the fertility
model, which is best suited to normal thresholding, we
are able to identify more silhouette points on the higher-
curvature arms and avoid overselection on the flat base.

Finally, in Table 1 and Figure 13 we show the results
of our boundary estimation on a number of datasets with
boundaries. In order to evaluate our results we chose
input data from triangle meshes with connectivity re-
moved, and used the mesh boundaries as ground truth
for the statistics in Table 1; while this may not be an
ideal metric, it is at least an objective external standard.
Each input surface contains one or more boundaries and
includes sampling features that make boundary estima-
tion nontrivial. Note that our method identifies more
spurious boundary vertices than it fails to detect. Mesh
connectivity is not restricted by vertex position or den-
sity, and in areas with extremely acute or obtuse trian-
gles our method is likely to find small boundary loops.

We also compare our results to those of the excel-
lent PEEL algorithm described in [12] by Dey et al..
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Figure 12: Comparison between normal thresholding (left figure of each pair) and our method (right). Insets show the models from the silhouette
viewpoint. Red boxes highlight details discussed in the text.

Model Bdry Vertices Percentage
Missed Extra Missed Extra

Saddle 256 0 0 0 0
Pig 544 16 38 2.9 6.9
Face-HY 338 13 23 3.8 6.8

Table 1: Quantitative comparison of our method base mesh as ground
truth. For each model in Figure 13, we show the number of boundary
vertices on the mesh, and the number and percentage of missed and
extra (spurious) boundary vertices.

This sophisticated method produces a provably-isotopic
and globally consistent Delaunay mesh, even on non-
orientable point clouds with boundaries. Note that only
default parameters were used with PEEL. All three
models generally satisfy PEEL’s assumption of suffi-
ciently uniform sampling, but its output mesh organi-
zation makes quantitative comparison difficult.

The saddle model is a simple synthetic rendering of
the neighbourhood of a saddle point. Of note is the fact
that this model was computed as a single octant and
stitched together with significant point overlap at octant
boundaries; our method finds spurious features on some
of these boundaries, while PEEL detects spurious po-
tential boundaries. The inset shows our local umbrellas
along an octant boundary near the centre of the model;
note the abrupt changes in sample density.

Similarly, the pig model exhibits sharp linear fea-
tures, particularly at the ears (shown in the inset). These
features are inherently undersampled, and neither our
local reconstruction nor PEEL’s more global method can
perfectly reconstruct them. Note also that our method
finds boundaries at the eyes, while PEEL triangulates
them; this is due to our assumption that the local sur-
face can be characterized by the Gabriel triangle radius.

Finally, the face-HY model is constructed from a
single raw point scan, and exhibits typical scanner er-
rors near the eyelashes, nostril, and lips. Both our
method and PEEL misidentify internal points as bound-
aries where this occurs, but our ability to construct mul-
tiple partial umbrellas where sharp features occur pro-
duces fewer spurious boundaries at the eyes and mouth.

7. Conclusion

We present a silhouette computation scheme for point
clouds based on the notion of silhouette-generating sets,
which allows us to extract point set silhouettes with
higher accuracy than normal thresholding. The method
utilizes a local umbrella reconstruction algorithm that
efficiently captures shape geometry and is able to recon-
struct neighbourhoods near sharp features, boundaries,
and close-by surface sheets. The locally-reconstructed
geometry also allows for feature extraction, leading
to intuitive depiction of complex models. Our local
method is suitable for partial or incremental applica-
tion to a data set, is well-suited to GPU-based or out-
of-core implementation, and produces results approach-
ing those of mesh silhouette algorithms, supporting our
argument that fully-consistent surface reconstruction is
overkill for silhouette extraction on point clouds.

Limitations. The primary theoretical limitation of our
method is the lack of an intrinsic scheme to handle noise
or highly non-uniform point sampling. For practical
purposes a denoising step [23] applied as pre-processing
is sufficient to produce satisfactory results. While our
method is able to recover sharp features well in general,
it may fail to reconstruct sharp corners with negative
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Figure 13: Comparison of our boundary detection results (white/brown) with those of PEEL (grey/green) on the saddle, pig, and face-HY models.
Insets show features described in the text. Despite its purely local support, our method produces results comparable to Peel.

curvature since such a configuration does not respect
well our Gaussian curvature criterion. Expanding our
method for propagating plane estimates between points
may provide a remedy.

Future work. In our current implementation, we only
produce local arcs from the point umbrellas to approx-
imate the characteristic curves of a shape. We may
be able to exploit the fact that boundaries and sil-
houettes form closed loops and utilize existing edge
linking and thinning algorithms [24] to produce much
cleaner curves. However, producing topologically-
correct silhouette loops on a point cloud is challeng-
ing, particularly without globally consistent connectiv-
ity. We would like to either extract such silhouette
loops or show that finding them is as hard as construct-
ing a globally-consistent triangulation. Also, our local
method’s reliance on a small neighbour set and ability
to cope gracefully with missing data opens the door to
a number of specialized and efficient implementations;
we would like to explore these possibilities. Finally,
many point processing tasks, such as computing the
Laplace operator [5] and photon mapping [37], rely on
accurate local neighbourhood computations. We would
like to evaluate the benefits offered to those algorithms
by our local umbrella construction.
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Appendix A. The canonical Gabriel triangle is a co-
cone triangle

As noted in Section 4.1, the normal error of a trian-
gle with vertices on a smooth surface is bounded by the
circumradius. The Cocone surface reconstruction algo-
rithm [4, 11] exploits this observation by filtering tri-
angles with small circumradii from the Delaunay tetra-
hedralization of the samples. The cocone of p consists
of those points y ∈ V (p) for which the acute angle be-
tween py and the line generated by (an estimate of) np
is greater than 3π

8 . Given a sampling radius ρ, a point in
the cocone of p is O(ρ(p)) from p [11].

A cocone triangle is a triangle t in the Delaunay tetra-
hedralization for which the dual Voronoi edge intersects
the cocones of each of its vertices. For such a triangle, rt
is bounded by O(ρ(p)). Thus cocone triangles lie close
to the tangent plane at p. We demonstrate that tG, the
Gabriel triangle constructed in Section 4.1, is a cocone
triangle. The idea is to show that the diametric ball for
tG is small. This is done by considering a sphere with
this radius centred at p, and examining how it intersects
the Voronoi face closest to p.

ctG ceG

?eG

?tG

C

zγ

Let ctG be the circumcentre of tG,
and consider the sphere Σ of radius rtG
centered at p. Referring to the figure,
let ?eG be the Voronoi face dual to eG,
and ?tG be the Voronoi edge dual to
tG. Then ceG and ctG lie on ?eG and
?tG respectively [13, Lemma 4.3]. The
sphere Σ intersects ?eG in a circle C,
centered at ceG and tangent to ?tG at
ctG . C cannot intersect any other of the
edges bounding ?eG: this would imply
the existence of a Delaunay triangle on
eG with circumradius smaller than rtG .

Since eG is the shortest edge inci-
dent to p, ceG must lie in the cocone

of p [11, Lemma 3.4]. Consider the right circular cone
with apex p and axis np, containing [p,ceG ] as a gen-
etrix. The lateral surface of this cone is contained in
the cocone of p. The extension of this surface intersects
?eG in a curve γ, which contains ceG and must intersect
C in some point z. Since this curve is also contained in
the cocone of p, it follows that z also lies in the cocone
of p. Since the distance between z and p is exactly rtG ,
if follows that rtG is bounded by O(ρ(p)). Thus tG pro-
vides a good estimate of the tangent plane at p. Since
the dual Voronoi edge of a Gabriel triangle intersects the
affine hull of the triangle, the bound on rtG also ensures
that ctG will lie in the cocones of each of the vertices of
tG: it is a cocone triangle.
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Appendix B. Responses to Reviewer 4’s request for
minor revisions

The method described is mainly dedicated to lo-
cal (multi) umbrellas generation and the authors have
greatly improved their description of the construction is
section 4, except for 4.5 which should also be rewritten
more clearly (as for figure 9a which is supposed to il-
lustrate triangle removal... The authors probably mean
the transition from 9a to 9b?)

We have revised Section 4.5 for improved clarity. In
particular, we have revised Figure 9 to better illustrate
the operations performed in the boundary-consistency
pass and updated the text to make better use of the fig-
ure. It is likely that much of the confusion in Section 4.5
came from an error in its last paragraph, which referred
to Figure 9(d) rather than 9(b) as it should have. This
has been corrected.

Suggestions for adding references were not taken into
account in the revised paper. In fact, the paper bibliog-
raphy is only dealing with silhouette generation and lo-
cal neighborhood in point clouds but not with umbrella
generation, which is the real topic of this paper. The au-
thors also do not mention the papers that have already
dealt with filtering of k nearest neighbors near close-by
surface sheets, nor the existing work on boundary de-
tection.

More generally, the authors did not highlight why
their local reconstructions should be better than the ex-
isting local umbrella reconstructions methods. They
have not made the connection or comparison with sim-
ilar or alternative elements that have proven to be effi-
cient in overall reconstruction approaches but can easily
be reused in local approaches.

We regret this omission and have expanded Section
2 to broaden its coverage of local reconstruction. We
feel that our contribution in this area is that of a unified
method, capable of boundary and sharp-edge detection
in the presence of close surfaces and based on a small
set of nearest neighbors, rather than an improvement in
quality on these specific applications over the existing
state of the art. Therefore, while existing techniques
might be adapted to a local approach, we prefer to work
within the framework of the Gabriel triangle and local
Delaunay triangulation. Section 2 has been revised to
make this more clear.

Additional remarks :
In the pseudocode of figure 5, the authors should

make the tuning parameters appear in the list of the ar-
guments of the functions which use them.

We have added these parameters.

The authors should be careful when they argue that
a global reconstruction would be overkill. I agree with
the idea, but in their local framework the adjacencies
between points are recomputed several times (which
should not be the case in a more global setting). More-
over, their algorithm seems not to be very efficient at
that time.

We feel that the previous revisions qualified our claim
appropriately at the end of the Introduction, where we
stress that local reconstructions have significant po-
tential when global memory access is difficult and/or
costly, such as on a GPU or in an out-of-core imple-
mentation. We have revised the conclusion to further
emphasize this qualification.

p1, column 2, line 53, replace angle by scalar prod-
uct? p3, column2, line 45 : "the the"

We regret and have corrected these errors.
p4, column2, line 36 : what is the meaning of "lines

generated by nt and np"?
This is intended to cover the case in which the orien-

tations of nt and np are not consistent with each other;
hence, we discuss a specific angle between unoriented
lines rather than between vectors.
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