
Cone Carving for Surface Reconstruction

Shy Shalom
Bar-Ilan University

Ariel Shamir
The Interdisciplinary Center, Herzliya

Hao Zhang
Simon Fraser University

Daniel Cohen-Or
Tel-Aviv University

Figure 1: With a significant amount of missing data in a scanned point cloud (left), conventional surface reconstruction schemes such as
RBF are error-prone (middle). Cone carving, a space carving technique, utilizes global visibility information to more accurately infer the
captured shape. It creates additional off-surface points specifically in areas of sparse input to produce a more faithful reconstruction (right).

Abstract

We present cone carving, a novel space carving technique support-
ing topologically correct surface reconstruction from an incomplete
scanned point cloud. The technique utilizes the point samples not
only for local surface position estimation but also to obtain global
visibility information under the assumption that each acquired point
is visible from a point lying outside the shape. This enables associ-
ating each point with a generalized cone, called the visibility cone,
that carves a portion of the outside ambient space of the shape from
the inside out. These cones collectively provide a means to better
approximate the signed distances to the shape specifically near re-
gions containing large holes in the scan, allowing one to infer the
correct surface topology. Combining the new distance measure with
conventional RBF, we define an implicit function whose zero level
set defines the surface of the shape. We demonstrate the utility of
cone carving in coping with significant missing data and raw scans
from a commercial 3D scanner as well as synthetic input.

1 Introduction

Surface reconstruction from a scanned point cloud is a central prob-
lem in computer graphics that has inspired constant research over
the past years. Given a set of 3D points acquired by a scanning de-
vice, the goal is to construct a 2D watertight surface embedded in
3D which approximates the scanned shape as closely as possible,
from its global topology down to the finer geometric details. Apart
from noise, the most common difficulty with scanned point clouds
is the existence of holes in the data: areas of the shape that were not
properly acquired. In particular, large holes often occur in deep,

hard to reach cavities of the object, or places where object parts are
too close to each other. These impose serious adverse effects on the
quality of the reconstruction, particularly in terms of its topology.

One of the more successful techniques to recover a watertight 2D
surface from point clouds has been to define an implicit function
over the ambient space of the underlying shape and take the zero
level-set of the function. Examples of this technique include Radial
Basis functions [Carr et al. 2001], Partition of unity [Ohtake et al.
2003], and Poisson reconstruction [Kazhdan et al. 2006]. In many
cases, the implicit function is defined using some blending kernel
of local neighborhoods defined over a point set. To better estimate
this function, the set of sample points, which are considered on-
surface points, is augmented by a set of off-surface points that carry
a signed distances to the perceived surface. For instance, in [Carr
et al. 2001] dipole off-surface points are created by offsetting the in-
put points along their estimated normal directions, on either side of
the perceived surface. However, a major problem with using dipole
points for surface reconstruction occurs over areas with sparse or
missing data. Without sufficient point sampling, one cannot define
the dipole points reliably. For similar reasons, previous implicit
surface reconstruction methods can only fill holes smoothly. More
often than not, this leads to topological or geometric reconstruction
errors, e.g., see Figure 1 (middle).

While previous algorithms have effectively used blending of the
positional information of points, in this paper we utilize blending
of global visibility information as well. This information can ef-
fectively define a signed distance function to the surface even in
regions where sample data is missing. We assume that the scan of
the surface is performed in such a way that each acquired sample
is visible from a point outside the shape. In other words, from any
point sample, there exists a ray emanating from the point that lies
completely outside the shape. We call the direction of this ray the
outward direction. This is a rather weak and realistic assumption
since for most optical scanners and under typical acquisition set-
tings, an outward direction is already known for each sample point
— it is the direction from the point to the scanner head position at
the moment of the capture.

Using the outward direction we convert each sample point to a vis-
ibility cone apexed at the point (see Figure 2). These cones are
assumed to be exterior to the underlying shape. The key idea is that

(a) (b) (c)

Figure 2: Visibility cones. (a) A 3D point cloud with a point sample
and an outside direction at the sample. (b) The corresponding ideal
(maximal) visibility cone. (c) In general such 3D visibility cones
can have rather complex boundaries.

such cones extend beyond the direct outward direction, carve out
the outside space and therefore, carry global visibility information
that can be used to define a more reliable distance measure to the
shape near regions with sparse input data.

Let p be a point in the input point cloud P which samples the
scanned shape S. We define the visibility cone of p as the largest
generalized cone apexed at p which contains an outward direction
at p, with no other point from P in its interior. The ideal visibility
cone at p would be one that is extruded from p along the silhouette
of S as viewed from p, as shown in Figure 2. The union of all the
visibility cones fromP provides a virtual carving of the ambient 3D
space around the underlying shape S. The set of visibility cones
collectively carry global information about the shape and offers a
robust indicator of outside relations with respect to S, specifically
near regions of sparse data and cavities.

The interface between the inside and outside space defined by the
visibility cones is given by the boundary of the volume formed by
the union of all cones. We call this boundary surface E the lower
envelope of the set of visibility cones as it is viewed from the inside-
out perspective. In the ideal continuous setting when P = S and
under the visibility assumption, the lower envelope E is simply S.
In our discrete settings, where E 6= S, we still utilize the distance
to E as an approximation to the distance to S. We define a new set
of off-surface points and use E to approximate the signed distances
from these points to the surface. Instead of blending the cones to
construct the lower envelope E, we use statistical blending of in-
dividual distances from the new off-surface points to the cones to
arrive at a reliable and robust distance measure.

The practical challenges of creating the cones in the discrete setting
also include the construction of approximate 3D visibility cones
based on the point cloud P . Towards this end, we adopt an image-
based approach, exploiting the rendering speed and capabilities of
the GPU. Using a point-rendering process with adaptive splat sizes,
we project the point cloud onto a small cube around each p ∈ P and
trace the appropriate silhouette contour on the cube for extruding a
visibility cone from p. In essence, this process can be seen as a
view dependent blending of the input point cloud defining the local
visibility silhouette at each point sample p.

To summarize, our algorithm relies on blending at three levels.
First, the local position of sample points are blended similar to pre-
vious algorithms. Second, view-dependent positional information
is blended to define visibility cones for all sample points. Third,
distances to the cones from new off-surface points, which we term
cone-based off-surface points, are blended to arrive at a robust
distance-to-surface measure. These blendings combine local po-
sitional and global visibility information for more effective surface
reconstruction as shown in Figures 1 and 11.

Figure 3: For objects containing cavities (left), space carving from
the outside (e.g. silhouette carving) can fail to reconstruct the cor-
rect shape (right). In contrast, cone carving can exploit the full
potential of visibility information (see Figure 11)

2 Related works

[Curless and Levoy 1996] were the first to combine positional and
visibility information for surface reconstruction using space carving
in VRIP. However, they use the conservative line-of-sight from the
sampled points to the scanner to clear out “empty” voxels. We carve
larger parts of the outside space using continuous cones based on
adaptive sampling of the distance between the sample points. Our
technique does not depend on the voxel resolution and does not
need explicit knowledge of the scanner head’s location. Moreover,
in cases similar to Figure 1, the VRIP algorithm would need to place
a “backdrop” surface while scanning to recover the inner part of the
cylinder. In contrast, our cones carry global visibility information
that successfully handles such cases.

Space carving is also used for reconstructing a 3D shape using im-
ages taken from multiple views [Kutulakos and Seitz 2000; Mon-
tenegro et al. 2004; Nitschke et al. 2007]. These methods create a
rough volumetric estimation of the shape and do not aim at surface
reconstruction from point clouds (see Figure 3). Furthermore, the
outside space is defined by carving out space using rays emanating
from the camera position towards the object and through its silhou-
ette (Figure 3), while we use the inverse direction and carve out
cones originating at each sample of a point cloud. One exception to
this is the work by Laurentini [1994], where the underlying concept
of cone carving, has been explored from a theoretical stand point.
Bounds on the types of surfaces that may be reconstructed with this
technique are given with anO(n6) theoretical algorithm. However,
an implementation of this algorithm in a real world setting using
point clouds was not explored.

In general, reconstructing a surface from a scanned, unstructured
point cloud is widely regarded as a difficult and ill-posed problem.
The pioneering work of Hoppe et al. [1992] computes a signed dis-
tance field to the underlying surface using local tangent plane con-
struction, and extracts an isosurface from the distance field using
the marching cubes algorithm. Over the years, other implicit for-
mulations have been proposed, including RBF [Carr et al. 2001],
Partition of unity [Ohtake et al. 2003], and Poisson reconstruc-
tion [Kazhdan et al. 2006]. These methods all rely on acquired [Ne-
hab et al. 2005] or estimated [Alexa et al. 2003; Hoppe et al. 1992]
point normals. However, with the presence of a variety of data
artifacts due to measurement noise, scan mis-registration, or self-
occlusions, obtaining reliable normals everywhere is not an easy
task and is a subject of intensive research in its own right [Huang
et al. 2009].

Voronoi-based approaches typically do not require normals. They
attempt to reconstruct the surface using Voronoi diagrams or De-
launay triangulations and provide proper sampling conditions under
which the reconstructed surface has provable theoretical guarantees
[Amenta and Bern 1998; Amenta et al. 2001; Dey and Goswami
2003; Cazals and Giesen 2006]. These methods, however, are lim-

ited when faced with severe under-sampling or non-uniform sam-
pling. A particular Delaunay-based technique, which uses the con-
cept of α-shapes [Edelsbrunner and Mücke 1994], is worth men-
tioning, as the closely related concept of α-hulls can be presented
using a “carving” analogy. Using empty balls of radius α to carve
the ambient space around a mesh, the α-hull technique can be
used for topological simplification [El-Sana and Varshney 1998].
Surface reconstruction using α-shapes extracts a surface from the
Delaunay tetrahedralization of the input point cloud using empty
α-balls as a means of filtering. Giesen et al. [2006] use α-balls
with adaptive radii to deal with non-uniform sampling. However,
this class of methods still only return sub-complexes of the Delau-
nay tetrahedralization. With significant missing data, the Delaunay
tetrahedralization may not contain any sub-complex that is a proper
surface reconstruction; see Figure 4(b).

When data is missing in the input scans, some existing surface re-
construction techniques, e.g., Voronoi-based Power Crust [Amenta
et al. 2001], tight Cocone [Dey and Goswami 2003], or implicit
schemes using radial basis functions (RBF) [Carr et al. 2001], can
still guarantee an output that is a water-tight 2-manifold. However,
in the presence of large holes or close-by surface sheets, these ap-
proaches typically produce topological or geometric errors. These
are complicated scenarios where purely local considerations, such
as point normals or Voronoi constructions, are insufficient to infer
the shape correctly and additional information or assumptions are
needed. One can try and identify these as surface boundaries [Dey
et al. 2009], or utilize hole-filling. Several existing algorithms for
hole filling rely on additional data or assumptions, such as multi-
ple data scans [Turk and Levoy 1994], templates [Pauly et al. 2005]
or specialized shape prior [Gal et al. 2007; Schnabel et al. 2009;
Tagliasacchi et al. 2009]. Visibility information can also be uti-
lized by volumetric diffusion [Davis et al. 2002]. When the holes
are easy to detect or are specified as part of the input, several ap-
proaches can be applied to achieve high-quality surface completion;
these include the use of smooth interpolants [Sorkine and Cohen-Or
2004] or self similarities in shapes [Sharf et al. 2004].

Our cone carving technique deals with significant missing data in
surface reconstruction while relying on a weaker and more practical
assumption: the existence of an outward direction at each point
sample. Typically, the outward directions can be returned by the
scanner head positions, which are available from some brands of
laser scanners. Some commercial products, such as the software
bundled with the Polhemus FastSCAN scanner [Aranz 2009], are
known to use this information to some extent – but usually only for
coarse tasks such as determining the correct sign of normal vectors.
We are not aware of previous works that utilize such information
for surface reconstruction.

3 Visibility cone carving

To illustrate the idea behind cone carving, we first describe a sim-
plified version of the algorithm in 2D. Our input is a 2D point set
with missing data such as the one shown in Figure 4(a), which is
similar to a typical output of a range scan for a “π” shape. Bound-
ary lines that are closely parallel to the scanning direction are likely
to suffer from sparse sampling and result in large holes since the
grazing angle in which the scanner beam hits the shape boundary is
too shallow and does not reflect light properly.

Dipole distance and distance to lower envelope With an input
point set given in Figure 4(a), standard reconstruction algorithms
such as RBF [Carr et al. 2001] would produce undesirable results.
Regular RBF uses dipole off-surface points, which are created at a
constant distance +c and −c from an input point p along the direc-

tion of the estimated normal; see 4(c). As a convention, the signed
distance takes on positive values when inside the shape and negative
values when outside. Based on the dipole points, RBF interpola-
tion implies a signed distance field, which we refer to as the dipole
distances or DP, over the ambient space, as shown in Figure 4(d).
We can observe that in areas where there are large gaps between
samples, no off-surface points are created. Consequently, the inter-
polation produces smooth curves as part of the zero level-set of the
DP distance field, which may not give a correct representation of
the underlying shape. One the other hand, the cone carving algo-
rithm uses the additional global visibility information, resulting in
a better implicit distance function to infer the shape boundary.

For an input point p, the visibility cone at p in 2D is the largest
sector that can be stretched from an outward direction without con-
taining any other input points, as shown in 4(e). The assumption at
the base of cone carving is that the area inside the visibility cone is
completely outside the shape. To take advantage of the global vis-
ibility information we construct a visibility cone for each point of
the input set. The union of all the cones serves as an approximation
of the exterior ambient space around the shape, as shown in 4(f).

In 2D, the visibility cone sector is delimited by two rays emanating
from p. Each of these rays must pass through some other point of
the input point set. If the position of the scanning head is known for
point p, an outward direction is known. Hence, we calculate a ray
from p to the scanner head and sweep it radially as much as possible
until hitting other cloud points. When this direction is unknown, we
assume that the cone sector with the largest opening angle is the
one which contains the outward direction. Hence, we can search
for the largest empty opening between two points as viewed from p
to construct the visibility cone for p. Note that this assumption may
not always hold and erroneous cones may be created. However,
in practice these situations are rare and do not effect the algorithm
in general. This is because, as will be seen later in the 3D case,
the individual visibility cones are essentially blended statistically
to achieve robustness against the potential errors.

Recall that the boundary of the union of the visibility cones has
been defined as the lower envelope. In the 2D case, each visibility
cone assumes a particularly simple structure and therefore we can
explicitly construct the lower envelope E. Next, we define the DTE
or Distance-to-Envelope as the shortest distance to E. Figure 4(g)
shows, for the 2D example, a plot of the DTE distance field. As a
convention, the signed distances take on positive values when out-
side the union of the visibility cones, and negative values when in-
side. Note that this choice of signs is consistent with the choice of
distance signs with respect to the underlying shape.

Choosing between distances Using a quadtree subdivision of
the ambient space (octree in 3D), we sample the DTE field to create
cone-based off-surface points. The tree is initialized with a uni-
form grid of points and subsequently subdivided into cells contain-
ing sign transitions in the DTE measure. This creates an adaptive
sampling of points that concentrate near the surface, but does not
rely on the distribution of the input points. This allows one to sam-
ple the distance field in areas of sparse or missing data. On the other
hand, areas with sufficiently dense input data are well covered by
the dipole points and the implied DP distance field. The decision on
which distances, DP or DTE, to choose in each region dictates how
the off-surface points are generated for the final RBF process.

Let us recall that the collection of visibility cones serve to carve out
the exterior or outside space with respect to the underlying shape.
As such, these cones are only reliable as outside indicators. Indeed,
while any point inside a visibility cone should be assumed to be
outside the underlying shape, a point outside all visibility cones
should not be assumed to be inside. In our discrete setting, gaps

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Cone carving illustrated in 2D. (a) Input point set. (b) The Delaunay triangulation - with significant missing data, no sub-complex
of the triangulation (e.g. using α-balls) is a proper surface reconstruction. (c) Dipole off-surface points for RBF reconstruction. (d) DP:
implicit distance field created by RBF (blue: positive and inside the shape; orange: negative and outside), also does not provide proper
reconstruction due to missing pieces. (e) A single visibility cone. (f) Outside carved space using all cones. (g) DTE: implicit distance field
derived from the lower envelope of the visibility cones (blue: positive and outside the union of cones; orange: negative and inside). (h)
Combined set of off-surface points, dipole points and cone-based points generated from an octree using DTE. (i) Difference between the two
implicit distance functions ∆ = DP − DTE. (j) Final RBF reconstruction from (h) using (i).

IN

OUT

DP
DTE

IN

OUT

DP
DTE

Figure 5: The difference ∆ between the DP and DTE distances dic-
tates the conjectured position of the boundary of the underlying
shape, either purple or green. ∆(si) is the same in both situations,
i = 1, 2, 3. When ∆(si) > λ > 0 (right), where λ is a threshold,
the DTE measure carves into the interior (positive sign) space indi-
cated by the DP measure. As DTE is a reliable indicator of outside
(negative sign) relation to the shape, the purple boundary is as-
sumed and the sign of s2 is inverted. In contrast, when ∆(si) < 0
(left), DP takes precedence over DTE.

between the lower envelop and the actual boundary of the shape
may appear; see top of the cavity in the “π” in Figure 4(f). Thus the
key situation where the DTE distance should be chosen over the DP
distance is at a region which the DP distance incorrectly indicates
to be inside the shape – this is illustrated at the right of Figure 5.

Let DP(s) and DTE(s) denote the scalar values at a point s in the
ambient space as given by the DP and DTE distance fields, respec-
tively. We denote the difference between DP(s) and DTE(s) as
∆(s) = DP(s) − DTE(s) and examine the scalar field ∆(s), as
shown in Figure 4(i). We differentiate between three possible cases
of ∆(s) with regards to a threshold value λ > 0:

• |∆(s)| < λ : When the two distances are similar, we choose
the DP distance since it tends to be more accurate. Indeed, the
DP distances are derived from dipole points, which in turn

are obtained from local on-surface point samples. On the
other hand, the DTE distances use global visibility informa-
tion which can be less accurate.

• ∆(s) > λ : This occurs when the DTE distance “places” point
s significantly (more than a threshold) towards the outside of
the shape than the DP distance. We choose DTE since it is
a reliable outside indicator. In this case, the visibility cones
carve out a region which the DP distance indicates to be inside
the shape, as shown in the right of Figure 5. This is precisely
the situation where the global visibility information serves to
correct potential reconstruction errors.

• ∆(s) < −λ : This occurs when the DTE distance “places” the
point s significantly towards the inside of the shape; see left
of Figure 5. We choose DP over DTE since the latter is not a
reliable indicator of the inside relation.

To summarize, we use the DTE distance only where the difference
∆ is positive, indicated by color blue in Figure 4(i), and above the
threshold λ. Over these areas, the DTE distance is most likely to
provide a better estimation for the distance from the underlying
shape. In practice, such scenario typically occurs over regions with
sparse or missing input data and cavities. We have used the value
λ = davg, where davg is the average for all points in the data-set of
the distance to their nearest neighbor (see Section 6.2). Combining
the two distances we obtain a hybrid set of off-surface point values,
as shown in Figure 4(h). These points together steer the final RBF
reconstruction, combining the merits of traditional local position
blending and global visibility information as shown in Figure 4(j).

4 Visibility cones in 3D

The 3D visibility cone of a point p is an empty generalized cone
apexed at p. It is a cone-like volume of rays, originating from p and
extending towards the outside of the shape. The generalized cone
is empty in the sense that it contains no other input points. If the
exact continuous boundary surface of the shape is known, the 3D
visibility cone of a point p can be defined by projecting the silhou-

ette of the shape from p’s viewpoint towards the outside direction.
In practice, the construction of visibility cones from a point cloud
in 3D is an ill-posed problem since there is no trivial way to delimit
a generalized 3D sector as we did in 2D using two rays. It seems
that to construct the visibility cone one must first reconstruct the
smooth surface. Instead, we employ a view-dependent blending of
the point cloud using splatting [Westover 1990; Pfister et al. 2000]
from the perspective of each point p.

View dependent blending We extend the definition of a 3D cone
to exclude not just points from the data-set, but neighborhoods of
size σ around each point. The value of σ is key to producing useful
visibility cones that conform accurately to the shape of the point set.
A small σ may produce cones that protrude considerably into the
shape, leading to “cracks” between adjacent points, while a large σ
can produce cones that are too far removed from the point set, los-
ing vital information regarding the original scanned shape. We use
an adaptive neighborhood size σ as the splat size of each rendered
point, depending on its distance to the center of projection p.

To construct the approximation of an ideal visibility cone of a point
p, we perform two passes of rendering with a similar setup. Such
a two pass approach is often used in kernel density estimations as
well. Both rendering passes create a projection of the point set onto
an axis-aligned six sided cube, centered around p, which is regarded
as the camera position. In the first rendering pass, we estimate the
adaptive neighborhood size σ for each rendered point. In the second
rendering pass, we use this size as the splat size for each point and
trace the cone silhouette on the view-dependent point-splat image
of the point set. A single rendering pass results in six square images,
each created by a perspective projection with a 90◦ field of view,
pointed in the directions of a major axis and centered at p. This
rendering setup is similar to the radiosity hemi-cube method [Cohen
and Greenberg 1985] commonly used for calculating form-factors,
with the difference that we render a full 6-sided cube instead of a
5-sided Hemi-cube; see Figure 6.

Figure 6: Rendering the point set as circular splats on a cube
around a center point reveals the visibility direction. The silhou-
ette of the outside region is traced to define the visibility cone.

Splat size The purpose of the first rendering pass is to determine
the adaptive splat size for every rendered point. This can be seen as
reconstructing a complete surface in image space using a k-nearest
neighbor kernel function around each point.

Our camera is positioned at point p and all other points in the point
set are rendered on the cube as a single pixel with a unique color
and hence can be uniquely identified. The algorithm then sweeps
over the six resulting hemi-cube images, calculating for each vis-
ible point q the splat radius rq

p that produces a sufficient cover of
the area around q when viewed from p. The immediate vicinity of
the pixel representing q is scanned in growing concentric squares
in search for other near-by non-background pixels. This scan is
terminated either when one pixel is detected on Nnear = 3 dif-
ferent sides of the growing squares, or Nfar pixels are observed in
total (see Figure 7). We use Nfar = 3 × Nnear. The splat size is
then set to the distance to the last pixel but not more than half the
hemi-cube size. These values work well for all data-sets we have
experimented with (see Section 6.2 for discussion). Note that some
points may not receive any splat radii since they were occluded by
other pixels in the rendered images. These points are excluded from
the second rendering step since they do not contribute to the desired
shape silhouette.

(a) (b) (c) (d)

Figure 7: Determining the splat size. (a) Every point is rendered
as a single pixel. (b),(c) Scanning in concentric squares until 3
widely spread pixels are seen. (d) The splat is sized according to
the distance to the third neighbor.

Visible silhouette tracing In the second pass of rendering, the
point set is again rendered on a cube around p, where each rendered
point q is a circular splat with radius rq

p and with a unique color.
Next, we trace the silhouette edge between background and non-
background pixels on the rendered image. The tracing begins at a
point that is known to be on such an edge, and proceeds in a clock-
wise path along the silhouette. The trace is guaranteed to eventually
reach the starting point since the edge between background and non
background pixels is closed and continuous. The complete path will
define the silhouette of the visibility cone from p.

Finding a starting edge point to initiate the tracing can be achieved
in several ways. If the scanner position is known for point p, it
is mapped to a pixel on the rendered cube. From this pixel, the
silhouette edge can be reached by shooting a ray in any direction.
If the scanner position is unknown, we randomly sample pixels on
the cube and search for a silhouette edge in random directions. If
there is more than one visible opening to the outside from p, more
than one silhouette can be found. We select the silhouette with the
longest traced path as the visibility silhouette. Four to five such ran-
dom points are usually sufficient for finding the major silhouettes
which define the maximal visibility cones.

During its pass on the cube, the tracing process stores the sequence
of points it touches on the silhouette according to their splat colors.
This sequence creates a closed 3D polyline. We create the boundary
surface of the generalized cone C as a closed triangle fan C =
{f1, . . . , fk}, with p as the apex and triangles fi extending between
every two adjacent points of this polyline and p. The definition of
a generalized cone has infinite boundary rays, hence, ideally, the
triangle fans should be extended to infinity. In practice, we use
finite triangle fans to represent the cones since that is where the
cones touch the surface and beyond it they are irrelevant for the
purpose of calculating the DTE distances.

The polyline produced by silhouette tracing can often be jagged,
containing short sequences of repeating edges or even local self
intersections. These aberrations can be attributed to the discrete na-
ture of the point set and its rendering and may hinder the following
steps. Therefore, after the silhouette polyline is created, we use a
simple smoothing step to ensure that the cone conforms better to the
shape of the point set. We discard repeated points as well as high
curvature points and repair self-intersections by reordering points.
Furthermore, due to discretization, the obtained visibility cone may
deviate from the ideal one which would have been produced with
a continuous surface. These inaccuracies can cause a wrong indi-
cator both inside and outside the shape: small penetration of cones
into the shape, and outside regions which remain outside the cones.
Still, the robust blending of the DTE distances alleviates such inac-
curacies, as we will explain in the next section.

5 3D reconstruction by cone carving

The surface constructed by cone carving is the result of an RBF
fitting which requires as an input a set of off-surface points, each
coupled with a signed distance value. The distance value is positive
for points inside the shape and negative for points outside, and its
magnitude can be perceived as the shortest distance from the off-
surface point to the surface to be reconstructed. Using these off-
surface points, we compute a set of radial basis functions whose
combination produces an implicit scalar function in 3D. The zero
iso-surface of this implicit function interpolates the shape. The final
surface mesh is produced by a triangulation of the iso-surface using
a variant of the marching tetrahedra algorithm [Carr et al. 2001].

Similar to the 2D case, the distance field to be sampled combines
the DP and DTE distances. The DTE distances are created by using
an octree to sample cone-based off-surface points as described in
Section 3. However, in contrast to the 2D case, the collection of
3D visibility cones do not provided a guaranteed outside indicator.
In other words, a point q inside the union of the visibility cones
is not guaranteed to be outside the underlying shape. This is due
to the approximative nature of the 3D visibility cones. Hence the
computation of the DTE distance needs to be more elaborate.

Recall that DTE is intended to represent the distance from a point in
the ambient space to the surface of the underlying shape. Without
knowing the actual shape, we approximate its surface by the lower
envelop E, which is the boundary of the union of the 3D visibil-
ity cones. Due to the imprecisions of the 3D visibility cones, the
approximation quality of the lower envelope is degraded. One so-
lution would be to blend the cones to represent a more robust lower
envelope E. However, the geometric complexity of the lower en-
velope in 3D prohibits constructing it explicitly. Moreover, we are
mainly interested in computing the DTE distances and not E itself.
Hence instead of blending the visibility cones to create a surface,
we resort to robustly blending the distances to the cones to define
DTE.

DTC: Distance-to-Cone A 3D visibility cone C divides the am-
bient space into two regions: the region inside or on C and the
region outside C. Let s be a point in the ambient space, we define
the scalar function DTC(s, C), where DTC stands for Distance-To-
Cone, to be the signed distance from s to the cone boundary:

DTC(s, C) =

(
−mini d(s, fi), if s is inside or on C,
mini d(s, fi), if s is outside C,

where d(s, fi) is the Euclidean distance from s to a boundary (tri-
angle) face fi of the visibility cone. The DTC can be obtained by
iteratively searching over all the triangle faces of the cone. Whether

Figure 8: Examples of three visibility cones of a points set (left).
The distance DTC(s, Ci) from a point s (yellow) to the cone Ci is
the distance between s and its projection on the cone (right, green
points). Note that although the distance values may be similar, they
can be along totally different directions from s.

s is inside or outside the cone is determined by observing the orien-
tation of the closest face and by using an appropriate normal com-
puted at the apex of the cone [Baerentzen and Aanaes 2005].

Representative cone We are interested in the DTE distance
DTE(s) yet we do not explicitly construct the lower envelope; what
we have been able to compute are the DTC distances to all the visi-
bility cones. To make a connection between the two distances, we
note that there is a simple relationship between them:

DTE(s) ≤ min
j

DTC(s, Cj), (1)

where the Cj’s are all the visibility cones. To prove this result, we
note that DTE(s) is the shortest distance from s to some point v on
the lower envelope. By definition, v must lie on or outside each
visibility cone. Let Cj be any visibility cone and we consider two
possible cases:

1. s lies inside or onCj : Then DTC(s, Cj) ≤ 0 and DTE(s) ≤ 0.
Since v is on or outside Cj , we must have

|DTC(s, Cj)| ≤ ||s− v|| = |DTE(s)|.

Hence, DTE(s) ≤ DTC(s, Cj).

2. s lies outside Cj : Then DTC(s, Cj) > 0. If s lies on the
lower envelope or inside the union of all visibility cones, then
DTE(s) ≤ 0. It follows that DTE(s) ≤ DTC(s, Cj). In the
final scenario, we have s lying outside the union of visibility
cones. Let u be on the boundary of Cj such that ||s − u|| =
DTC(s, Cj). Then clearly u is either on the lower envelope
or it lies inside the union of cones. Therefore, we must have
DTE(s) ≤ ||s− u|| = DTC(s, Cj).

Since DTE(s) ≤ DTC(s, Cj) for all Cj , we get equation (1).

Hence, we see that the best approximation of DTE(s) using the set
of all DTC distances is given by the DTC distance from point s to
the representative cone C∗j , and we define:

DTE(s) = DTC(s, Cj∗), j∗ = arg min
j

DTC(s, Cj)

To compute distance to the representative cone C∗j , we can find the
projection Proj(s, C∗j) of s onto the surface of C∗j (see Figure 8).
Note that such a projection can reside on the interior of a cone face,
in which case it would be a perpendicular projection onto that face.
In other cases, the projection may be along an edge of the cone or
may be the apex of the cone.

Distance from s

N
um

be
r

of

pr
oj

ec
tio

n
po

in
ts

Figure 9: Example of distance blending: the yellow point has sev-
eral significant clusters of distances to various areas (see histogram
on the right). DTE(s) is chosen as the median of the minimal sig-
nificant cluster (red). The cluster is found using a sliding kernel
window on the histogram starting from the lowest value. Note that
this selected cluster actually lies on a missing face (left) exemplify-
ing the strength of cone carving to fill in missing pieces based on
visibility information.

In practice, we can not rely on any single representative cone since
such a cone may be erroneous due to the discrete way the 3D vis-
ibility cones were constructed. Instead, we blend the distances to
several cones robustly to provide a better estimator for the ideal
DTE distance (free from erroneous visibility cones), which in turn
approximates well the distance to the underlying shape.

Cone distances blending There are two main reasons to com-
bine several values of cone distances: first, to remove outliers, and
second, to create a larger support for a specific distance measure.
A naı̈ve approach to blend cone distances would be to create the
histogram of distances from a point s to all cones, use a blending
kernel function, and take the minimal significant value according to
equation (1). A significant value would be a value whose support
(i.e. frequency) is larger than a threshold. Nevertheless, the same
distance value from s may originate from cones in a totally differ-
ent regions of the shape (see Figure 8), only one of which gives the
correct minimum. Therefore, we employ a two-stage approach by
using the histogram to search for the minimum, while blending 3D
positions instead of distances using clustering (see Figure 9).

Starting from the minimal DTC value d0 at s, we use a sliding win-
dow of size 2r. For each value d, we examine all the cone pro-
jections v from s whose distance to point s falls inside the bin
[d, d + 2r]. Denote the set of cones corresponding to these pro-
jected points by Vd(s). Since these points can come from various
regions in 3D space, we cluster them using a simple hierarchical
scheme [Everitt et al. 2001] in 3D space with a threshold of r. We
use the cones of the first cluster found that contains more than k
points to define DTE(s). Denote these cones by L(s) ⊂ Vd(s),
we take the median of the distances from s to all cones in L(s) as
DTE(s): DTE(s) = median{DTC(s, C)|C ∈ L(s)}. To adequately
filter out outliers but still blend several cones we used the values
k = 5, r = 0.8 · davg for all examples in this paper, where davg
is the average for all points in the data-set of the distance to their
nearest neighbor.

6 Results

We have tested our algorithm on several challenging examples in
terms of missing parts and self occlusions, where the tested data
were either scanned, taken from the AIM@SHAPE shape reposi-
tory or artificial. The point clouds used typically contain 5,000-
14,000 points. The algorithm is implemented in C++ and the GPU
part using GLSL and CUDA. We used Intel Core2 Quad T9550
with an Nvidia GeForce 275 GTX video card. Table 1 shows the
timing results for the models shown in the paper.

Model # Points Cones
time

DTE
time

Total
time

Open L shape 5,124 1:52 m 0:31 m 2:30 m
Inukshuk 11,808 5:10 m 1:11 m 6:35 m
12-point star 11,710 5:02 m 0:30 m 5:57 m
Mannequin 12,220 4:55 m 1:50 m 7:04 m
Hand 13,162 5:19 m 1:23 m 6:58 m
elephant 14,295 6:30 m 2:05 m 9:05 m

Table 1: Running times for the different results models in minutes.
The total time includes all stages of the algorithm, including the
final points merge and surfacing.

In Figures 11 we show several examples of our results. We first
show the point set using splats to give a sense of the overall shape
and data. Note that these objects present a challenge to previous
reconstruction algorithms, since they contain parts that are inacces-
sible from the outside for sampling. We compare our results to three
other algorithms: Radial Basis functions [Carr et al. 2001], Partition
of unity [Ohtake et al. 2003], and Poisson reconstruction [Kazhdan
et al. 2006]. All these methods encounter problems with misinter-
preting the outside as inside and thus connecting close parts to form
wrong topology. Using our global visibility prior these ambiguities
are solved, and a correct topological interpretation is given to the
shape.

6.1 Noise Handling

Due to the blending characteristics in all stages of cone carving, the
assumptions at the base of using visibility cones remain robust to a
certain degree even when noise is present. However, unlike Poisson
reconstruction, cone carving is not designed to smooth or filter out
noise. In a sense, the effort to filter out noise is orthogonal to the
problem of dealing with missing data, and any point-based noise
filtering algorithm could be used prior to reconstruction using cone
carving. Figure 10 presents some reconstruction results under noise
and compares the behavior of cone carving based RBF with that of
Poisson reconstruction. Note that although the output surface from
the former is indeed noisy, the topology of the object is still correct
(in contrast to Poisson) and remains correct even under more severe
level of noise.

(a) (b) (c)

Figure 10: (a) Poisson reconstruction of a point cloud with 10%
random noise on 10% of the points is smooth but contains topolog-
ical errors. (b) Cone carving for the same point cloud. (c) Result of
cone carving on a point cloud with 10% random noise on all points
still maintains the correct topology.

6.2 Limitations

The main disadvantage of cone-carving is that the current naive
implementation is quadratic, and therefore slow. To find the cone
boundary for each point sample, splatting of all other points in the
dataset is used. This means it is impractical for the larger data sets

Input

Cone Carving

Dipole RBF

MPU

Poisson

Figure 11: Reconstruction results. The output of the cone carving algorithm is compared to reconstruction results of the dipole RBF recon-
struction, Multi-level Partition of Unity, and Poisson reconstruction. Cone carving interprets the topology and approximates the geometry of
the shape better than existing techniques.

currently being produced. Advanced spatial search structures as
well as random sampling on larger datasets can alleviate this prob-
lem. However, converting it to linear time (e.g. using fixed size
neighborhoods) will still be difficult as the main point of cone carv-
ing is utilizing additional global information: the visibility of the

scanned data. In general, quality is more important than speed in
surface reconstruction, as it is part of a long process of data collec-
tion, which is rarely interactive.

The success of cone carving also relies on some tuning of param-

eters. There are three main stages that were defined by parame-
ters: the cone creation stage, the cone distance blending stage and
choosing between DTE and DP. In the cone creation stage we de-
termine the splat size of each point based on Nnear. This number
defines the k-nearest neighbor search for pixels (Section 4). Fig-
ure 12 shows an example of the cube rendering for one point for
varying values of Nnear. It is clear that a small value for Nnear
creates holes in the surface, but a large value is time consuming and
redundant creating large overlaps between splats. In practice, we
foundNnear = 3 strikes the best balance, correctly interpreting the
shape for all points in all data-sets.

Figure 12: Effects of varying the parameter Nnear on point splat-
ting: too small a value (1) creates holes, while too large a value (6)
results in redundant overlapping splats. We use Nnear = 3

At the cone distance blending stage (Section 5), two parameters
govern the blending: r, the blending kernel neighborhood size, and
k the threshold defining the support for a significant cluster size.
These can be seen as defining the size and cardinality of the clus-
ter that defines DTE. Figure 13 illustrates the effect of changing
these values on the reconstruction. For choosing between the DTE
and DP distance measures we use a parameter λ. Figure 14 shows
how changing λ can effect the reconstruction. In summary, there
is a small set of parameters control cone carving results. However,
we have shown that in all but one example in this paper (for the
Mannequin figure we used k = 2 as it is more sparsely sampled)
the same set of parameter values was used. These are governed by
one characteristic value of the point set, namely, what we defined
as davg.

7 Conclusion and future work

We have presented cone carving, enhancing surface reconstruction
techniques from scanned point clouds by combining local posi-
tional and global visibility information. Cone carving utilizes the
visibility of the existing points to infer new points that complete the
missing parts of the captured model. Unlike previous attempts to
exploit visibility to assist surface reconstruction, here the visibil-
ity is taken from an inside-out perspective, creating visibility cones
from points on the surface outward. These cones are effective ex-
actly where they are needed the most: away from existing points,
where data is missing. We have demonstrated the effectiveness of
cone carving in several reconstructions of both synthetic input and
raw scans from a commercial 3D scanner.

With speed as the major limitation, we plan to investigate a few
options to accelerate cone carving:

• Creating generalized cones only for a subset of points, but
utilizing the entire point-set for tracing their silhouettes.

• Creating cones and off-surface points only near missing parts
rather than across the whole shape and focus only on the parts
where they make a positive difference.

• Using a pre-computed spatial data structures to accelerate
various geometric computations such as the computation of
DTC.

Figure 13: The size and cardinality of the cluster defining DTE have
opposite effects. Too large r can insert outliers to the cluster while
too small r does not blend enough information and may determine
a wrong distance. Large k can reject the correct distance cluster
with too few counts, while small k will use outlier cones clusters.
We have used k = 5, r = 0.8 · davg in all but one of the examples
in the paper.

• Fully exploiting the highly parallel nature of the algorithm
using a GPU implementation.

Visibility cones may also prove to be useful for problems other than
surface reconstruction. For instance, the shape and distribution of
the cones can assist in line and point feature detection. Another
interesting research direction would be to study the potential of the
visibility cones to assist in planning the positioning of the scanning
device in order to improve its coverage.

References

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2003. Computing and rendering point set
surfaces. IEEE Trans. Vis. & Comp. Graphics 9, 1, 3–15.

AMENTA, N., AND BERN, M. W. 1998. Surface reconstruction by
Voronoi filtering. In Proc. of Symp. on Comp. Geom., 39–48.

AMENTA, N., CHOI, S., AND KOLLURI, R. 2001. The power
crust, unions of balls, and the medial axis transform. Computa-
tional Geometry: Theory and Applications 19, 2-3, 127–153.

ARANZ. 2009. FastSCAN, Cobra and Scorpion, Hand-
held Laser Scanner User Manual. Aranz Scanning Ltd,
http://www.fastscan3d.com/.

BAERENTZEN, J. A., AND AANAES, H. 2005. Signed distance
computation using the angle weighted pseudonormal. IEEE
Transactions on Visualization and Computer Graphics 11, 3,
243–253.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,
T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3D objects with ra-
dial basis functions. In Proc. of ACM SIGGRAPH, 67–76.

CAZALS, F., AND GIESEN, J. 2006. Delaunay triangulation based
surface reconstruction. In Effective Computational Geometry for

Figure 14: Varying values of λ, for choosing between DTE and
DP distances. When λ = 0, DTE is used whenever it is larger than
DP. This creates correct topology but can result in some noise at
well sampled parts, since in those areas and close to the surface
DP distance is more reliable. When λ is large (2 · davg), the DTE
distance is not utilized, and wrong topology based on DP distances
returns. The value used throughout the paper is λ = davg.

Curves and Surfaces, J.-D. Boissonnat and M. Teillaud, Eds.
Springer, 231–276.

COHEN, M. F., AND GREENBERG, D. P. 1985. The hemi-cube:
a radiosity solution for complex environments. In Proc. of ACM
SIGGRAPH, 31–40.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. In Proc. of ACM
SIGGRAPH, 303–312.

DAVIS, J., MARSCHNER, S. R., GARR, M., , AND LEVOY, M.
2002. Filling holes in complex surfaces using volumetric diffu-
sion. In Proceedings of the first International Symposium on 3D
Data Processing Visualization and Transmission, 354–369.

DEY, T., AND GOSWAMI, S. 2003. Tight cocone: A water tight
surface reconstructor. In Proc. of ACM Sympos. on Solid Model-
ing & Appl., 127–134.

DEY, T. K., LI, K., RAMOS, E. A., AND WENGER, R. 2009.
Isotopic reconstruction of surfaces with boundaries. Computer
Graphics Forum, special issue SGP ’09: Proceedings of the
Symposium on Geometry Processing 28, 5, 1371–1382.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1994. Three-
dimensional alpha shapes. ACM Trans. on Graphics 13, 1, 43–
72.

EL-SANA, J., AND VARSHNEY, A. 1998. Topology simplification
for polygonal virtual environments. IEEE Trans. Vis. & Comp.
Graphics 4, 2, 133–144.

EVERITT, B. S., LANDAU, S., AND LEESE, M. 2001. Cluster
Analysis. Oxford University Press.

GAL, R., SHAMIR, A., HASSNER, T., PAULY, M., AND COHEN-
OR, D. 2007. Surface reconstruction using local shape priors. In
Proc. Eurographics Symp. on Geometry Processing, 253–262.

GIESEN, J., CAZALS, F., PAULY, M., AND ZOMORODIAN, A.
2006. The conformal alpha shape filtration. The Visual Computer
22, 8, 531–540.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface reconstruction from unorganized
points. In Proc. of ACM SIGGRAPH, 71–78.

HUANG, H., LI, D., ZHANG, H., ASCHER, U., AND COHEN-OR,
D. 2009. Consolidation of unorganized point clouds for surface
reconstruction. ACM Trans. on Graphics (Proc. of SIGGRAPH
Asia) 28, 5, Article 176.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proc. Eurographics Symp. on Geome-
try Processing, 61–70.

KUTULAKOS, K. N., AND SEITZ, S. M. 2000. A theory of shape
by space carving. Proc. Int. J. Comp. Vis. 38, 3, 199–218. Marr
Prize Special Issue.

LAURENTINI, A. 1994. The visual hull concept for silhouette-
based image understanding. IEEE Trans. Pat. Ana. & Mach. Int.
16, 2, 150–162.

MONTENEGRO, A. A., CARVALHO, P. C. P., GATTASS, M., AND
VELHO, L. C. P. R. 2004. Adaptive space carving. In Proc. of
3D Data Processing, Visualization, and Transmission, 199–206.

NEHAB, D., RUSINKIEWICZ, S., DAVIS, J., AND RAMAMOOR-
THI, R. 2005. Efficiently combining positions and normals for
precise 3D geometry. ACM Trans. on Graphics 24, 3, 536–543.

NITSCHKE, C., NAKAZAWA, A., AND TAKEMURA, H. 2007.
Real-time space carving using graphics hardware. IEICE Trans.
Inf. Syst. E90-D, 8, 1175–1184.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition of unity implicits. ACM
Trans. on Graphics 22, 3, 463–470.

PAULY, M., MITRA, N. J., GIESEN, J., GROSS, M., AND
GUIBAS, L. J. 2005. Example-based 3D scan completion. In
Proc. Eurographics Symp. on Geometry Processing, 23–32.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. Surfels: surface elements as rendering primitives. In Proc.
of ACM SIGGRAPH, 335–342.

SCHNABEL, R., DEGENER, P., AND KLEIN, R. 2009. Completion
and reconstruction with primitive shapes. Computer Graphics
Forum (Proc. of Eurographics) 28, 2, 503–512.

SHARF, A., ALEXA, M., AND COHEN-OR, D. 2004. Context-
based surface completion. ACM Trans. on Graphics 23, 3, 878–
887.

SORKINE, O., AND COHEN-OR, D. 2004. Least-squares meshes.
In Proc. IEEE Conf. on Shape Modeling and Applications, 191–
199.

TAGLIASACCHI, A., ZHANG, H., AND COHEN-OR, D. 2009.
Curve skeleton extraction from incomplete point cloud. ACM
Trans. on Graphics 28, 3, Article 71, 9 pages.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes from
range images. In Proc. of ACM SIGGRAPH, 311–318.

WESTOVER, L. 1990. Footprint evaluation for volume rendering.
In Proc. of ACM SIGGRAPH, 367–376.

