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Abstract

We consolidate an unorganized point cloud with noise, outliers,
non-uniformities, and in particular interference between close-by
surface sheets as a preprocess to surface generation, focusing on
reliable normal estimation. Our algorithm includes two new de-
velopments. First, a weighted locally optimal projection operator
produces a set of denoised, outlier-free and evenly distributed par-
ticles over the original dense point cloud, so as to improve the re-
liability of local PCA for initial estimate of normals. Next, an iter-
ative framework for robust normal estimation is introduced, where
a priority-driven normal propagation scheme based on a new prior-
ity measure and an orientation-aware PCA work complementarily
and iteratively to consolidate particle normals. The priority set-
ting is reinforced with front stopping at thin surface features and
normal flipping to enable robust handling of the close-by surface
sheet problem. We demonstrate how a point cloud that is well-
consolidated by our method steers conventional surface generation
schemes towards a proper interpretation of the input data.

1 Introduction

Surface reconstruction from point cloud data has been an exten-
sively studied problem in computer graphics [Turk and Levoy 1994;
Carr et al. 2001; Cazals and Giesen 2006; Ohtake et al. 2003; Kazh-
dan et al. 2006]. Typically acquired by a laser scanner, the raw input
points are often unorganized, lacking inherent structure or orienta-
tion information. Oriented normals at the points play a critical role
in surface reconstruction, as they locally define the reconstructed
surface to first order and identify the inside/outside and hence topol-
ogy of the underlying shape. Although photometric stereo may be
applied to estimate normals from captured images, such estimates
are not always reliable due to less than ideal acquisition conditions
such as specular reflections, material artifacts, and shadowing [Sun
et al. 2007]. Indeed, surface normal acquisition is a delicate pro-
cess [Ma et al. 2007] requiring a well-controlled environment and
careful calibration with the process of point acquisition.

We take as input an unorganized point cloud which may contain
outliers, noise, and non-uniformities in thickness and spacing, due
to acquisition errors or misalignment of multiple scans. Based on
point positions alone, we consolidate [Alexa et al. 2003] the point
cloud. This preprocessing phase for surface reconstruction includes
denoising, outlier removal, thinning, orientation, and redistribution
of the input points. During the process, we defer and avoid any sur-
face generation, a phase that is highly susceptible to various data
artifacts. Decoupling the two phases can effectively avoid prema-
ture and erroneous decisions in surface reconstruction.

Photo. Raw scan. RBF reconstructions.

Figure 1: Data consolidation, especially accurate normal estima-
tion, from a noisy, unorganized, raw point cloud is crucial to ob-
taining a correct surface reconstruction. The right-most result is
produced after applying our point cloud consolidation scheme.

A central task to point consolidation is normal estimation. The
classical scheme for estimating unsigned normal directions is prin-
cipal component analysis (PCA), which can be unreliable due to
thick point cloud, non-uniform distribution, or close-by surfaces, as
shown in Figure 2. The most widely applied approach to consistent
normal orientation [Hoppe et al. 1992] is via normal propagation,
where propagation between close-by points whose unsigned nor-
mal directions make a small angle is given priority. However, under
difficult scenarios such as the presence of close-by surfaces, propa-
gation errors do occur, as shown in Figure 3(a-b). Close-by surface
sheets also challenge sharp feature detection, a problem relevant to
normal propagation. As shown in Figure 3(c), a thin surface fea-
ture, i.e., a sharp feature delimiting close-by surfaces, does not ad-
mit a bi-modal distribution of unsigned normal directions or a good
fit using multiple surfaces. Thus, previous approaches to sharp fea-
ture detection, e.g., [Page et al. 2002; Fleishman et al. 2005], while
generally robust, are not designed to handle such cases.

We address the above issues by combining two techniques. First,
to make local PCA more robust, we denoise, remove outliers, and
down-sample the otherwise dense input point cloud to obtain a
thinned and evenly distributed set of points, called particles [Pauly
et al. 2002] to distinguish from the input points. In this first step, we
modify and extend the locally optimal projection (LOP) operator of
Lipman et al. [2007] to deal with non-uniform distributions com-
mon in raw data. We then estimate particle normals via an iterative
predictor-corrector scheme (see [Ascher and Petzold 1998] for ori-
gins and analogies for this term). The predictor uses PCA to predict
unsigned normal directions. This is followed by particle orientation
via a priority-driven normal propagation scheme. The obtained par-
ticle orientations are then utilized to correct or consolidate estimates
of normal directions via an orientation-aware PCA, and the nor-
mal propagation scheme is re-applied. A novel contribution in the
orientation scheme is a distance measure which prioritizes normal
propagation and triggers proper normal flipping. The new measure
combines Euclidean and angular distances with propagation direc-
tions to robustly handle the close-by surface sheet problem. The
iterative approach to normal estimation by way of normal correc-
tion is also new and shown to be effective and necessary.

We demonstrate that the result of our algorithm, a clean and uni-
formly distributed point set endowed with reliable normals, leads
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Figure 2: Classical PCA leads to inaccurate estimates of unsigned
normal directions (black lines) near a thick point cloud (a), non-
uniform distribution (b), or close-by surfaces (c-d).

(a) (b) (c)

Figure 3: Close-by surfaces cause erroneous normal propagation
when prioritized only by Euclidean and angular distances: (a) be-
tween particles on opposite surfaces; (b) through a thin surface fea-
ture. (c): A thin surface feature does not admit a bi-modal distribu-
tion of normal directions or a good fit using multiple surfaces.

to quality up-sampling and Delaunay-based surface reconstruction
[Amenta et al. 2001; Dey and Giesen 2001]. Above all, it enables
conventional surface generation schemes which rely on point nor-
mals, such as radial basis function (RBF) [Carr et al. 2001] and
Poisson [Kazhdan et al. 2006] techniques, to obtain a fine interpre-
tation of the input data in various challenging situations. In Fig-
ure 1, the two erroneous RBF reconstructions are obtained from a
raw scan after preprocessing by LOP (30 and 100 iterations, respec-
tively) and normal estimation via classical PCA and normal orien-
tation [Hoppe et al. 1992]. The final image shows RBF result from
the same input after applying 100 iterations of our improved LOP
operator and then our normal estimation scheme.

2 Background and related work

The literature on surface reconstruction is vast. Delaunay tech-
niques [Cazals and Giesen 2006] typically produce a mesh which
interpolates the input points but contains rough geometry when the
points are noisy. These methods often provide provable guaran-
tees under prescribed sampling criteria [Amenta and Bern 1998] or
noise models [Dey and Goswami 2006] that are generally not re-
alizable by real-world data. Additional assumptions, such as even
point distribution, may also be required in other point set process-
ing which claim guarantees [Mitra et al. 2004]. Approximate re-
construction works mostly with implicit surface representations fol-
lowed by iso-surfacing. Most notable are methods which carry out
implicit modeling via tangent plane estimates [Hoppe et al. 1992],
RBF [Carr et al. 2001], or Poisson fields [Kazhdan et al. 2006],
all of which require oriented normals. Accurate normal estimates,
even point distribution, and sufficient sampling density (via proper
up-sampling) can all be achieved by point consolidation.

Deriving a new point set from a given point cloud has been consid-
ered in the context of defining point set surfaces. Well-known defi-
nitions include moving least squares (MLS) [Alexa et al. 2003] and
extremal surfaces [Amenta and Kil 2004]. In practice, these defini-
tions can be applied to smooth or down-sample a raw point cloud.
There are also algorithms for point cloud smoothing [Lange and
Polthier 2005] and simplification [Pauly et al. 2002] guided by lo-
cal geometry analysis, such as curvature estimation. To better deal
with outliers and delicate surface structures, Lipman et al. [2007]
develop a highly effective, parameterization-free projection opera-
tor (LOP). However, we have observed that LOP can fail to con-
verge, oscillating near a solution instead, and it may not work well
when the distribution of the input points is highly non-uniform.

Point normals are essential for surface reconstruction as they pro-
vide local first-order surface approximations and inside/outside di-
rections. Most normal estimation schemes rely on PCA in some
form [Hoppe et al. 1992; Pauly et al. 2002; Alexa et al. 2003; Mitra
et al. 2004; Lange and Polthier 2005]. Classical PCA relies on Eu-
clidean distances between points. More recently, directional infor-
mation has been taken into account when computing an improved
centroid of a set of points in a local neighborhood [Amenta and Kil
2004; Lehtinen et al. 2008], replacing Euclidean distances by Ma-
halanobis distances. Nehab et al. [2005] combine positional and
normal measurements via photometric stereo to produce a surface
which conforms to both. As PCA normals are un-oriented, comput-
ing a consistent normal orientation requires additional work. This
problem turns out to be surprisingly difficult [Hoppe et al. 1992;
Mello et al. 2003], and challenges due to close-by surfaces (Fig-
ure 3) have not been specifically addressed in previous works.

Aside from estimating point normals via purely geometric means,
acquisition mechanisms such as photometric stereo [Woodham
1980; Nehab et al. 2005] are also possible but they are often subject
to error caused by surface or illumination artifacts. If a scanner can
return the “outward direction” at each point, a vector from the point
to the scanner “head”, such a direction may be used to orient the
normal towards the “outside” by insisting that the two directions
make an acute angle. However, inaccurately estimated normal di-
rections via classical PCA or near orthogonality between the nor-
mal and outside directions can be sources for error, where the latter
is likely to occur near close-by surface sheets. We believe that the
normal orientation problem is one which requires a global consis-
tency evaluation and is not entirely solvable only through purely
local considerations. In practice, the outward directions are still
not widely available from current acquisition devices and they can
be a source of significant noise, especially for hand-held or other
scanners which continually change head positions.

3 Improved weighted LOP (WLOP)

The LOP operator [Lipman et al. 2007] takes as input a noisy point
cloud, possibly with outliers, and outputs a new point set which
more faithfully adheres to the underlying shape. LOP operates well
on raw data without relying on a local parameterization of the points
or on their local orientation. Given an unorganized set of points
P = {pj}j∈J ⊂ R3, LOP defines a set of projected points X =
{xi}i∈I ⊂ R3 by a fixed point iteration where, given the current
iterate Xk, k = 0, 1, . . . , the next iterate Xk+1 is to minimizeX
i∈I

X
j∈J

‖xi − pj‖θ(‖ξkij‖) + λi
X

i′∈I\{i}

η(‖xi − xki′‖)θ(‖δkii′‖),

with ξkij = xki −pj and δkii′ = xki −xki′ . In practice, n = |I| is often
significantly smaller than m = |J |. Intuitively, LOP distributes the
points by approximating their l1 medians to achieve robustness to
outliers and data noise. Here ‖·‖ is the 2-norm, θ(r) = e−r

2/(h/4)2

is a rapidly decreasing smooth weight function with support radius
h defining the size of the influence neighborhood, and η(r), the
repulsion term, is another decreasing function penalizing points xi
that get too close to other points inX . The balancing terms {λi}i∈I
vary at each point but depend on just one parameter, 0 ≤ µ < .5,
controlling the repulsion force. Throughout our experiments, we
set µ = 0.45 and h may be adjusted, but the default value of h =

4
p
dbb/m, where dbb is the diagonal length of the bounding box of

the input model, generally works very well.

New repulsion term LOP often works well, but we have found
that the original repulsion function η(r) = 1/(3r3) may drop too
quickly to guarantee sufficient penalty when r is large. This could



(a) η(r) = 1
3r3

: σ = 0.05. (b) η(r) = −r: σ = 0.03.

Figure 4: Particle distributions after LOP with different repulsions.
For this illustration, all particles are properly oriented with back-
face culling. Visually and from the σ measure, we see that the new
repulsion term η(r) = −r produces a more regular distribution.
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(b) For “Lena” in Figure 6.

Figure 5: Plots of distances ‖Xk+1 − Xk‖/n between consecu-
tive iterates to illustrate convergence behavior. (a) Without density
weights, the old repulsion term leads to oscillation near a solution
and the new term results in smooth convergence. (b) With density
weights, WLOP apparently retains such convergence property.

lead to a lack of clear-cut convergence and an undesirably irregular
point distribution, especially when n � m. To this end, we pro-
pose to use the new repulsion η(r) = −r, which decreases more
gently and penalizes more at larger r, yielding both better conver-
gence and a more locally regular point distribution, as shown in
Figures 4(b) and 5(a). As a rough quantitative regularity measure
for point distributions, we use the variance of distances to nearest
neighbors at the points, which we denote by σ throughout.

Density weights The first term in the optimization criteria above
for LOP is closely related to the multivariate median, also referred
to as the `1 median, which leads to projection points moving to-
ward the local distribution center. If the given point cloud is highly
non-uniform, as in the example given by Figure 6(a), projection by
LOP tends to follow the trend of such non-uniformity, no matter
what initial set X0 we choose. This may be desirable in certain
cases, e.g., to allow higher point densities near shape features. In
other cases, e.g., normal estimation, one may prefer uniform point
distribution everywhere. To achieve this, we propose to incorporate
locally adaptive density weights into LOP, resulting in WLOP.

Let us define the weighted local densities for each point pj in P and
xi in X during the kth iteration by vj = 1 +

P
j′∈J\{j} θ(‖pj −

pj′‖) and wki = 1 +
P
i′∈I\{i} θ(‖δ

k
ii′‖), k = 0, 1, 2 . . . . Then

the projection for point xk+1
i finally becomes

x
k+1
i =

X
j∈J

pj

αk
ij/vjP

j∈J (αk
ij/vj)

+ µ
X

i′∈I\{i}

δ
k
ii′

wk
i′β

k
ii′P

i′∈I\{i}(w
k
i′β

k
ii′ )

,

where αkij =
θ(‖ξk

ij‖)
‖ξk

ij‖
and βkii′ =

θ(‖δk
ii′‖)|η

′(‖δk
ii′‖)|

‖δk
ii′‖

. Thus, the

attraction of point clusters in the given set P is relaxed by the

(a) Original. (b) LOP: σ = 0.11. (c) WLOP: σ = 0.03.

Figure 6: WLOP vs. LOP: (a) The “Lena” image is mapped onto
a curved surface with three holes to produce a point set with point
densities proportional to image intensities. Then, randomly taking
1/20 of the points in (a) as initial set, the results of LOP and WLOP
projections are shown in (b) and (c), respectively. Non-uniformity
of the LOP result is manifested by traces of “Lena” in (b).

(a) Raw scan. (b) LOP (old η). (c) LOP (new η). (d) WLOP.

Figure 7: WLOP vs. LOP on the raw scan of a Japanese lady (a).
The quantitative measure of point regularity takes on values: (b)
σ = 0.24; (c) σ = 0.18; (d) σ = 0.09, indicative of improvement.

weighted local density v in the first term, and the repulsion force
from points in dense areas is strengthened by the weighted local
density w in the second term.

LOP vs. WLOP Note that LOP with the new repulsion term is a
special case of WLOP by setting all density weights to 1. In this
case, it is possible to show contraction of the fixed point iteration
near an assumed solution. For the more general WLOP with adap-
tive weights, empirically, we have consistently obtained error plots
that are indicative of convergence; see Figure 5(b) for an exam-
ple. In addition to the synthetic ”Lena” example, we also show im-
proved point regularity provided by the new repulsion and density
weights on a raw scan example in Figure 7.

4 Normal estimation and consolidation

After WLOP, we obtain a thinned, outlier-free, and uniformly dis-
tributed set of particles, denoted by x1, . . . , xn. For the next step,
normal estimation, we start with the predictor step based on ini-
tial unsigned normal directions estimated via classical weighted
PCA [Pauly et al. 2002]. The neighborhood size h and weight
function θ for PCA are the same as those for WLOP. For subse-
quent corrector iterations, we employ an orientation-aware PCA
(Section 4.2) to consolidate the normals, where particle orientations
are obtained via normal propagation (Section 4.1).



4.1 Normal propagation

We wish to find an optimal assignment of particle orientations to
maximize a certain consistency criterion. Hoppe et al. [1992] use
the sum of 1 − |〈vi,vj〉| over all pairs of particles that are suffi-
ciently close to model consistency, where vi and vj are the par-
ticle normal directions. We refer to it as the traditional propaga-
tion scheme and adopt the same priority-driven propagation strat-
egy while introducing a new priority measure for reliable propaga-
tion under problems such as those arising from close-by surfaces.

Overall scheme First, a source particle is selected, where a re-
liable normal direction can be obtained. Then we perform a con-
servative check to identify certain particles at thin surface features,
where the advancing front of normal propagation is forced to stop.
Then the orientation, starting from the source, is propagated, as per-
mitted, via a priority-driven traversal of the particles. Specifically,
once a particle is oriented, its k-nearest neighbors (kNNs), where
k = 6 by default, are added into a priority queue. Potential ori-
entation errors may happen possibly due to the greedy approach or
erroneous propagation near undetected thin surface features. Thus
an additional error check is performed which may trigger one or
more normal flips. This is followed by another propagation pass,
and these may be iterated until no more orientation changes.

Source selection Typically, an extremal particle, e.g., one with
the maximum x coordinate, is chosen [Hoppe et al. 1992]. How-
ever, it is not unusual for such an extremal particle to be at a sharp
feature and cause erroneous results, e.g., see Figure 3(b). We pro-
pose to pick a source over a flat region — a particle whose unsigned
direction has the least angular variation from those of its kNNs. As
the particles have been denoised and evenly distributed by WLOP,
a desirable source can be reliably found. The orientation chosen
at the source is less important, as a flipping of all the consistent
normals, if deemed necessary, is simple to carry out at the end.

Distance measure Previous considerations for the distance or
priority measure which drives normal propagation include both Eu-
clidean and angular distances but could still lead to error, e.g., see
Figure 3(a). What has been missing is the direction of propaga-
tion. The intuition here is that a correct normal propagation should
less likely be along the local normal direction — it should be along
the local tangential direction, which, for two close-by particles, we
approximate simply by the vector connecting the particles.

Let xi and xj be two particles with associated directions vi and vj
(their orientations do not play a role in the following analysis), re-
spectively. Consider four points x1

i , x2
i , x1

j and x2
j that are unit

distance away from xi and xj along these directions, as shown
in Figure 8. Let mrs be the midpoint of the line segment xrix

s
j ,

r, s ∈ {1, 2}, and ors the perpendicular projection of mrs onto the
estimated tangent line xixj or its extensions. Note that if xi and xj
coincides (xixj is undefined), we simply let ors = xi. We define
the normalized distance to prioritize normal propagation by

Dij = 1− |〈vi,vj〉| ·
maxr,s∈{1,2} ‖mrs − ors‖

1 + ‖xi − xj‖
. (1)

Note that Dij ∈ [0, 1]; it combines Euclidean distance (the de-
nominator), angular distance |〈vi,vj〉|, and a third term dij =
maxr,s∈{1,2} ‖mrs − ors‖, which is designed to weigh in prop-
agation direction. See Figure 8 for an analysis of dij and Dij and
Figure 9 for a comparison to the traditional scheme.

We remark that our distance D is not a metric and neither should
it be. From Figure 3(b), we see that propagation from the black

xi
xj

xj
1

xi
1

xj
2

x2i

11m

o11

dij

(a)

xi

xj

xj1

xi
1

xj2

x2i(b)

xi
xj

xj1xi
1

xj2
x2i

xi
1 xj1

xi xj

x2i xj
2

dij dij

(c)

Figure 8: Propagation distance Dij (1) between particles xi and xj
with unsigned normal directions. (a) Maximal projected distance
dij from midpoint mrs, r, s ∈ {1, 2}, to xixj captures propaga-
tion direction information. (b) When normal directions x1

ix
2
i and

x1
jx

2
j coincide with xixj , signifying a propagation along normal

direction, we have dij = 0 and Dij = 1 at its maximum. (c) As
normal directions become more aligned and perpendicular to xixj ,
dij increases. It attains maximum value 1 when these conditions
hold exactly, signifying a propagation along tangential direction.
Further, if xi and xj are coincident then Dij is minimized at 0.

Figure 9: Steps of our normal propagation scheme. (a) Raw data
with thin features. (b) Result of traditional scheme. (c) With
new distance measure and awareness of thin features (green), bet-
ter results but errors still remain. (d) Adding normal flipping fixes
some errors (under the pivot). (e) Three corrective iterations with
orientation-aware PCA lead to final successful orientation.

particle to each blue particle is encouraged (small D), but not be-
tween the blue particles (large D) as they belong to opposite sur-
faces; such a distance configuration violates the triangle inequality.
Finally, taking direction information into account when measuring
distances is not new. The Mahalanobis distance is defined between
a point and an oriented point with a stretch factor characterizing
the elliptical field around the oriented point. Our distance avoids
such a free parameter and is an integrated measure defined on two
unsigned directions associated with particles.

Thin surface features and normal flipping Although D can by
and large avoid propagation between particles residing on close-by
and opposite surfaces, it does not prevent propagation through a thin
surface feature, one which separates two such surfaces, as shown
in Figure 3(b). We design a simple and conservative method to
detect such features. The kNNs of particle xi are projected onto its
tangent plane, which is determined by the current unsigned normal
at xi. If the projection of xi lies outside the convex hull of its
kNN projections, then xi is deemed to be at a thin feature; see
Figure 10(a). Particles at a thin surface feature can be oriented, but
are not allowed to propagate their orientations.

Note that the above detection mechanism is only specialized to
handle thin surface features: it is not a generic sharp feature de-
tector. Moreover, it cannot distinguish between a flat neighbor-
hood and a thin feature whose crease is a concave curve; see Fig-



(a) (b) (c)

Figure 10: Particle projection (red) lying outside the convex hull of
projection of kNNs implies a thin surface feature (a). This test does
not distinguish between a flat neighborhood (c) and a case where
the particle lies on a concave crease curve (b). Triangles are used
only to aid visualization; they are not part of the data.

ure 10(b-c). As a remedy, we execute a check during the nor-
mal propagation to detect and reverse orientation between close-by
surface sheets. Specifically, for a propagated particle pair xi and
xj , if both | cos(∠(ni,

−→
xixj))| and | cos(∠(nj ,

−→
xixj))| exceed a

threshold (set to 0.8 throughout), signifying a potential propagation
along normal direction, we flip the normal orientation at particle xj .
Then, the priority-driven propagation continues.

4.2 Orientation-aware PCA

The normal propagation scheme described above works on a fixed
set of unsigned normal directions. Despite all the care taken so
far, orientation errors may occasionally persist due to error in the
normal directions computed by the classical, orientation-oblivious
PCA. By making PCA orientation-aware, unsigned normal direc-
tions and orientation estimations can complement each other and
fix errors within a corrector loop.

In our implementation, when performing local weighted PCA at
a particle xi, we exclude from a Euclidean h-ball centered at xi
those particles whose oriented normals are opposite (negative dot
product) to the normal at xi. In other words, the considered neigh-
bors are now all those facing the same way as xi. The unsigned
normals recomputed in this way would not be expected to change
much on flat, correctly oriented regions, but they may well vary
and become more accurate near thin structures or areas of surface
interference. Thus, the errors in subsequent orientation sweeps via
normal propagation may be reduced. We apply such corrector iter-
ations until normal orientations no longer change. Figures 9 and 15
show orientation errors corrected via orientation-aware PCA.

5 Results and applications

Point cloud consolidation cleans up raw input, removes a variety
of data artifacts, and provides essential geometric attributes, in our
case point normals, to facilitate subsequent processing. In this sec-
tion, we demonstrate how a well consolidated point set via WLOP
and normal estimation using our iterative framework can benefit
such processing tasks as up-sampling and surface reconstruction.

Visualization of point sets is best achieved using splatting, based on
points with normals or surfels. A frequently encountered operation
during splatting is point cloud up-sampling, e.g., for a zoomed-in
view or when the given point cloud was under-sampled during data
acquisition or subsampled for efficient processing. We employ the
fast dynamic algorithm of Guenebaud et al. [2004] for real-time
point cloud refinement in our experiment. Accurate normals and
regular point distributions are typical requirements to achieve qual-
ity for such up-sampling, and Figure 11 shows the kind of positive
difference point consolidation can make.

Let us now show the necessity of a disciplined point consolidation
step for quality surface reconstruction. Noisy input must first be

Figure 11: Effect of point consolidation on up-sampling. (a) Noisy
input data with 84,398 points. (b) Result of up-sampling, to 95,863
points, from a down-sampled (2,814 points or 3.3%) point set ob-
tained from (a), after data cleaning by LOP and normal estimation
via classical PCA. (c) Up-sampling to 91,438 points after the same
down-sampled point set is consolidated using our algorithm.

Figure 12: Effect of WLOP on RBF surface reconstruction. Raw
scan (a) of an Inukshuk is cleaned by the original LOP (b) with
the point regularity measure taking on value σ = 0.2953 and our
WLOP (d) with σ = 0.0987. Observe the uniformity of the re-
sulting particle distributions. After normal consolidation and up-
sampling, RBF constructions, (c) from (b) and (e) from (d), show
qualitative difference in hole filling, e.g., around the neck.

cleaned before surface generation, since imperfect point distribu-
tion or orientation, which occurs with existing schemes, can result
in visible reconstruction error, as first shown in Figure 1.

We mainly draw comparisons with the use of classical PCA and the
traditional normal propagation scheme due to Hoppe et al. [1992].
In addition, we also provide an example comparing our consoli-
dation framework with a Delaunay-based one: NormFet+AMLS.
These steps, combined with the well-known Cocone mesh genera-
tion [Dey and Giesen 2001], are a series of techniques developed
by Dey and co-authors. In particular, NormFet [Dey and Giesen
2005] performs normal estimation in the presence of noise using the
Delaunay ball technique and AMLS [Dey and Sun 2005] employs
adaptive MLS for smoothing noisy point clouds based on normals
and detected features from NormFet. In other cases, we choose
RBF [Carr et al. 2001] and Poisson [Kazhdan et al. 2006] surface
reconstruction for demonstration. The implementations are due to
FarField Technology (FastRBF) and M. Kazhdan, respectively.

First, we show the effect of WLOP in Figure 12. The input is a
raw scan with missing data. After WLOP, up-sampling and robust
normal consolidation, RBF is able to successfully close holes and
construct a quality surface. In contrast, with the original LOP oper-
ator, although noise and outliers are removed as well, the resulting
irregular particle distribution (quantified by σ) may cause some de-
fects on hole closure during surface generation.

Next, we show the effect of normal orientation, where all the input
point clouds were first cleaned via WLOP and then subsequently
up-sampled. For a Delaunay-based approach, we consider the
(NormFet, AMLS, Cocone) combination. Our experiments show
that errors arising from the traditional scheme or Delaunay-based



Original. RBF. RBF. Original. Poisson. Poisson.

Figure 13: Effect of normal consolidation on surface reconstruction
for models with thin structures. In each series, following the origi-
nal, we show reconstruction results after normals are computed via
the traditional scheme, and then results after our normal estimation
algorithm. Highlighted areas show differences made by the latter.

(a) (b) (c) (d)

Figure 14: Effect of normal consolidation on surface reconstruction
for a raw point cloud (a) with close-by surfaces and missing data.
(b) Result from (NormFet, AMLS, Cocone). (c) RBF result after
normal estimation via the traditional scheme. (d) RBF result after
our normal estimation scheme.

approach may lead to various topological artifacts in the recon-
structions. Such errors typically occur near thin surface structures
(Figure 13) or close-by surface sheets (Figures 14 and 15), where
our point cloud consolidation method succeeds. In particular, Fig-
ures 14 and 1 show that accurate normals can effectively compen-
sate for missing data in a point cloud, allowing reconstructions,
such as RBF, to infer the underlying shape correctly. Finally, we
provide timing results for our algorithm in Table 1.

Limitations Although the strengths of our method lie in its han-
dling of thin surface structures, failure cases can still occur in cases
under extreme conditions such as severe noise or undersampling.
For example, in Figure 16, we see that the ears of the horse are
thin structures having extremely low sampling rate. Our algorithm
treats each ear as a single sheet and the resulting reconstruction
has obvious defects. Another such example leading to topologi-
cal error can be observed between the feet of the mannequin in
Figure 15. Ideally, we would like to obtain a theoretical guaran-
tee for the correctness of our normal estimates under appropriate

Figure 15: Effect of normal consolidation, in particular, the cor-
rector iteration and orientation-aware PCA. (a) Raw scan. (b) RBF
result after normal estimation via the traditional scheme. (c) RBF
result based on normals oriented by one pass of our propagation
scheme. (d) RBF result after further correction of orientation errors
via iteration and orientation-aware PCA.

Table 1: CPU runtime for consolidation of several raw datasets.
O-No: number of original points; P-No: number of projected parti-
cles; W-T: time for WLOP; N-T: time for normal estimation; U-T:
time for up-sampling. Only the Face model in Figure 11 is up-
sampled twice. All examples were run on an Intel Pentium 4, 3.2
GHz CPU with 1GB RAM and times are reported in seconds.

O-No P-No W-T N-T U-T
Figure 1 634,386 21,147 443 28 166
Figure 11 84,398 8,440 47 7 492
Figure 12 206,002 10,301 112 8 73
Figure 14 204,068 20,407 69 35 138
Figure 15 261,011 13,051 50 46 111

Figure 16: A failure case in the presence of extreme undersampling.
(a) A horse point set consolidated using our algorithm; note severe
undersampling near the ears. (b) Back face culling view. (c) Front
face culling view. (d) Poisson surface reconstruction.

sampling conditions. Also on the theory front, we do not have a
convergence proof for the iterative predictor-corrector scheme for
normal estimation. In practice, we have not encountered a case
of oscillation either. Like LOP, our point consolidation framework
does not address the missing data problem. However, numerous
examples highlight the importance of having accurate normals for
surface completion schemes such as RBF and Poisson to succeed.

6 Conclusion and future work

Accurate estimation of normals is crucial to obtaining a correct
interpretation of the input data. We show that the incorporation
of propagation direction information into priority setting, as well
as a coupled and iterative approach on normal orientation and
orientation-aware PCA, provides consolidation of the data points



in various difficult settings. The prelude to all these is a necessary
step for data clean-up, for which we develop WLOP, an improved
locally optimal projector with weighting option for denoising and
outlier removal from imperfect point data and producing an evenly
distributed set of particles which faithfully adheres to the captured
shape. With our point cloud consolidation, conventional surface re-
construction schemes can better infer the topology and geometry of
the shape from raw input data in challenging situations. We believe
that such consolidation of points should be a routine procedure ap-
plied to raw data similarly to common denoising procedures.

While our current consolidation algorithm has been shown to per-
form robustly and efficiently through numerous experiments, we
next would like to seek a rigorous theoretical analysis of the
predictor-corrector iteration. Also possible as future work is bet-
ter handling of missing data, taking advantage of the reliable ori-
entation information we can extract from the raw input. Finally,
we would like to incorporate recovery and enhancement of sharp
features into our point consolidation framework.
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