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Figure 1: Given a closed 2-manifold mesh, we compute a scalar field (a), which accentuates the axes of prominent, partial intrinsic reflectional
symmetries. The top few (closed) Voronoi boundaries (b) between symmetric point pairs, as induced by the scalar field, can be imperfect. We
develop an iterative refinement scheme to extract the final set of intrinsic reflectional symmetry axes or IRSAs (c), which can be open curves.
Incorporating symmetry cues offered by IRSAs into a conventional mesh segmentation scheme leads to highly semantic results (d).

Abstract
While many 3D objects exhibit various forms of global symmetries,
prominent intrinsic symmetries which exist only on parts of an ob-
ject are also well recognized. Such partial symmetries are often
seen as more natural than a global one, even when the symmetric
parts are under complex pose. We introduce an algorithm to ex-
tract partial intrinsic reflectional symmetries (PIRS) of a 3D shape.
Given a closed 2-manifold mesh, we develop a voting scheme to
obtain an intrinsic reflectional symmetry axis (IRSA) transform,
which is a scalar field over the mesh that accentuates prominent IR-
SAs of the shape. We then extract a set of explicit IRSA curves on
the shape based on a refined measure of local reflectional symmetry
support along a curve. The iterative refinement procedure combines
IRSA-induced region growing and region-constrained symmetry
support refinement to improve accuracy and address potential is-
sues arising from rotational symmetries in the shape. We show how
the extracted IRSA curves can be incorporated into a conventional
mesh segmentation scheme so that the implied symmetry cues can
be utilized to obtain more meaningful results. We also demonstrate
the use of IRSA curves for symmetry-driven part repair.

1 Introduction
The ubiquity of symmetry in nature and man-made artifacts has
been well-documented and the study of symmetry, along with its
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implications, has appeared in diverse disciplines including mathe-
matics, arts, biology, astronomy, mechanical design, architecture,
and psychology [Weyl 1983; Stewart and Golubitsky 1992; Leyton
2001]. Symmetry has been shown to play a crucial role in human
cognition [Leyton 1992] and in particular, the Gestalt law of sym-
metry attributes symmetry as one of the fundamental principles of
perception [Köhler 1929]. It then comes as no surprise that sev-
eral algorithms in shape processing have exploited shape symme-
try recently. These include compression [Simari et al. 2006] and
remeshing [Podolak et al. 2007] which utilize symmetry-induced
redundancy, segmentation via grouping by planar-reflective sym-
metry transform [Podolak et al. 2006], shape editing [Martinet et al.
2006], object retrieval [Kazhdan et al. 2004b], as well as model re-
pair [Simari et al. 2006] or beautification [Mitra et al. 2007].

Reflectional symmetry is the most fundamental form of sym-
metry observed. Robust algorithms for detecting reflection lines
or planes which support approximate and partial extrinsic symme-
tries exist [Podolak et al. 2006; Simari et al. 2006]. Symmetries
among shape parts can also be discovered via transform-space vot-
ing [Mitra et al. 2006], assuming that the symmetric parts only
differ by a rigid transformation. A general global intrinsic sym-
metry of a shape is defined to be an isometric (geodesic distance
preserving) homeomorphism between the shape surface and itself
which leaves the shape globally unchanged. So far, methods devel-
oped to detect such symmetries [Martinet et al. 2006; Raviv et al.
2007; Ovsjanikov et al. 2008] do not apply to an intrinsically asym-
metric shape composed of intrinsically symmetric parts since the
symmetry-revealing self-mapping may be necessarily discontinu-
ous, as shown in Figure 2(a). Even when a global intrinsic symme-
try does exist, it may not be a natural one — see Figure 2(b).

The examples from Figure 2 reveal that a complex shape may be
composed of symmetric sub-parts which themselves possess com-
plex structure, such as a human shape, yet these sub-shapes are of-
ten easily identified by a human. Indeed, symmetry seems to play
a fundamental role in cognitive grouping and object identification.
Instead of grouping the two holding arms of the mother and child
together, possibly due to proximity cues or the minima rule [Hoff-
man and Richards 1984], we find it more natural to separate the
two arms and decompose the shape into two symmetric sub-parts.



(a) IRSAs (blue) and matching
point pairs (red and green).

(b) IRSAs and the implied
natural segmentation.

Figure 2: Partial vs. global intrinsic symmetries. (a) An asymmet-
ric 2D shape composed of two symmetric parts. The symmetry-
revealing self-mapping is necessarily discontinuous, as can be ob-
served from the two matching colored dots. (b) A 3D shape ob-
tained from (a) via extrusion has a global symmetry: front and back.
However, the individual symmetries of the mother and child appear
to be more natural and trigger a stronger visual response.

Going one step further, it has been argued that it may be possible to
recover the generation history of a complex shape by modeling the
history as a series of symmetry breakings [Leyton 2001].

In this paper, we consider the problem of detecting intrinsic, re-
flectional symmetries which exist on parts of a 3D shape; we call
this partial intrinsic reflectional symmetry or PIRS. In particular, if
the shape is composed of complex, intrinsically symmetric parts,
we seek to recover such composition so as to reveal the underly-
ing semantics of the composite shape. The notion of parts in this
context is induced by intrinsic shape symmetry, which is drastically
different from low-level geometric notions such as convexity or part
salience [Hoffman and Singh 1997]. Without venturing into human
cognition, we take a purely geometric approach to tackle our prob-
lem and make the following contributions:

• A novel algorithm for computing a scalar field over a closed
manifold mesh which accentuates the prominent intrinsic re-
flectional symmetry axes, or IRSAs, of the represented shape.
We call the scalar field the IRSA transform of the mesh. The
voting scheme of Podolak et al. [2006] for planar reflective
symmetry transform (PRST) has provided the inspiration. It is
adapted to the intrinsic surface setting, with several key chal-
lenges specific to this setting addressed by introducing new
sampling biases into the voting paradigm.

• An iterative algorithm to extract explicit IRSA curves from an
IRSA transform. The IRSA curves serve as the true axes of
PIRSes of the shape for subsequent processing.

• Introduction of PIRS-induced shape semantics into an exist-
ing mesh segmentation framework. Compared to the use of
local measures by low-level segmentation schemes [Shamir
2006; Chen et al. 2009], intrinsic symmetry operates at a more
global and semantic level for shape analysis.

• An algorithm for semantic, symmetry-driven part repair.

Figure 1 shows the IRSA transform (visualized by a color plot
of the scalar field), IRSA curves, and a symmetry-aware mesh seg-
mentation (compare with results given in Figure 3) computed on the
children model. With the ability to detect PIRSes on 3D shapes, our
algorithm allows any previous symmetry-aware processing scheme,
e.g., [Podolak et al. 2007], to be applied to shape parts.

The use of a voting paradigm for the detection of symmetries or
self-similarities in shapes or images has seen much success in the

Figure 3: Results of a conventional mesh segmentation scheme [Liu
and Zhang 2007] based on the minima rule (use of concavity) are
not so meaningful. Left: 5 parts (compare with Figure 1(d) for an
IRSA-induced segmentation also having 5 parts). Right: 16 parts.

extrinsic setting [Loy and Eklundh 2006; Mitra et al. 2006; Podolak
et al. 2006]. In particular, our voting scheme is inspired by the work
of Podolak et al. [2006]. However the most important difference
between the two schemes is that our symmetry detection, being in-
trinsic, tolerates large pose changes, while the one in the work of
Podolak et al. [2006] does not. Complexity-wise, any intrinsic ap-
proach is naturally expected to be more expensive due to the much
higher degree of freedom the axes of PIRSes of a 3D shape can
assume. This leads to a much larger search space, hence more so-
phisticated search strategies and a more elaborate voting scheme
are needed to obtain a feasible solution.

To handle pose, it is possible to apply eigenanalysis [Ovsjanikov
et al. 2008] or resort to approximately isometric embeddings such
as multi-dimensional scaling [Elad and Kimmel 2001] so that the
intrinsic symmetry detection problem becomes an extrinsic one in
the embedding space. However, metric distortions in the embed-
dings are inevitable and they can exaggerate slight asymmetries in
the original shape. In particular, these approaches do not perform
well for high-genus models such as the children in Figure 1.

2 Related work
Symmetry analysis has been extensively studied in various fields in-
cluding image processing, visual perception, and computational ge-
ometry [Atallah 1985; Wolter et al. 1985; Zabrodsky and Weinshall
1997; Golovinskiy et al. 2007]. It has also been widely considered
in geometry processing including shape matching [Bronstein et al.
2006; Gal and Cohen-Or 2006], retrieval [Rustamov 2008], align-
ment [Bronstein et al. 2007; Chaouch and Verroust-Blondet 2008],
remeshing [Podolak et al. 2007], and segmentation [Podolak et al.
2006; Riklin-Raviv et al. 2006; Simari et al. 2006].

Most existing works have focused on detecting and classifying
extrinsic symmetries. Zabrodsky and Weinshall [1997] detected ap-
proximate symmetry by defining a symmetry measure for a given
transformation as the distance of a shape to the closest symmetric
shape. Kazhdan et al. [2004b] developed a transform that mea-
sures the reflective symmetries of a 2D shape with respect to all
possible lines in the plane. This method was extended to work
on 3D shapes [Podolak et al. 2006] and was augmented to include
spatial distribution of the object’s asymmetry [Riklin-Raviv et al.
2007]. Martinet et al. [2006] proposed a method for recovering
global symmetry of 3D shapes based on generalized moments, an-
alyzing the extrema and spherical harmonic coefficients. The series
of papers of [Kazhdan et al. 2002; Kazhdan et al. 2004a; Kazhdan
et al. 2004b] used global symmetry as a shape descriptor for shape
analysis and matching. Recently, different schemes have been pro-
posed to detect repeated patterns in 3D geometric data [Pauly et al.
2008; Bokeloh et al. 2009] and 2D line art [Yeh and Mech 2009].

Detecting partial or local extrinsic symmetries is also of inter-
est. Thrun and Wegbreit [2005] introduced a technique for finding
local symmetries of objects based on a hierarchical generate-and-
test procedure. Simari et al. [2006] proposed an approach capa-



ble of detecting local approximate planar symmetries, defining a
shape as a hierarchical union of planar symmetric parts. Mitra et
al. [2006] proposed to detect approximate partial symmetries for
shapes based on transform-space voting and clustering, while a sim-
ilar approach [Loy and Eklundh 2006] utilizing Hough transforms
had been applied to symmetry detection in images. With partial
symmetries in a shape detected, Mitra et al. [2007] sought to de-
form the shape into an extrinsically symmetric one.

Intrinsic symmetries are defined as invariant under isometric
transformations of the shape and are more difficult to represent and
compute. All the works to date have been on detecting global intrin-
sic symmetries. Raviv et al. [2007] proposed a bottom-up method
for searching an isometric mapping between a set of sample points
and itself over a manifold surface. Observing that the Global Point
Signatures (GPS) of [Rustamov 2008] can transform intrinsic sym-
metries of a 2D shape into extrinsic ones in a high dimensional
signature space, Ovsjanikov et al. [2008] presented a purely alge-
braic algorithm for detecting global intrinsic symmetries of shapes
and classifying symmetries into discrete classes. Finally, the recent
work of Bronstein et al. [2009] dealt with partial intrinsic similarity
of non-rigid shapes and their technique can also be applied to detect
different types of symmetries. However, it finds the largest part of
a shape that is symmetric and in the case of Figure 2(b), it would
identify the front-and-back symmetry which is unnatural.

3 IRSA: intrinsic reflectional symmetry axis
Given a closed 2-manifold M embedded in !3, we first compute a
scalar field, the IRSA transform, over M, which reveals the promi-
nent PIRS axes of the shape. In theory, the IRSA transform should
be a continuous scalar field. However to obtain a practical algo-
rithm, we resort to a sampling-based voting approach (Section 3.3),
which discretizes and approximates the problem. From the scalar
field, we extract a set of explicit IRSA curves (Section 3.4) which
capture the prominent PIRSes of the shape represented by M.

We start our coverage on this core section of the paper with some
background (Section 3.1) and a review (Section 3.2) of the PRST
work of Podolak et al. [2006], which has inspired the voting algo-
rithm developed in our work. However, we point out several key
challenges associated with PIRS analyses in the manifold setting.

3.1 Background
Let M be a closed compact 2-manifold embedded in !3, the 3D
Euclidean space. Following Raviv et al. [2007], we say that M
possesses a global intrinsic symmetry if there is a homeomorphism
T : M →M which is an isometry. That is, T preserves all
the geodesic distances, denoted by dM. Thus for all p, q ∈ M,
dM(p, q) = dM(T (p), T (q)). Since we are interested in partial
intrinsic symmetries, the homeomorphism T should be applied to
a subset of M. In our current work, we insist that the subset con-
sidered is connected. Furthermore, we are not interested in symme-
tries that are too local, thus we wish to find maximal partial intrin-
sic symmetries over M. Specifically, a connected subset M̃ of M
possess a maximal (partial) intrinsic symmetry if there is an isomet-
ric homeomorphism T̃ : M̃ → M̃ and no connected subset of M
containing M̃ possesses an intrinsic symmetry.

Intrinsic reflectional symmetry and reflection axis Formally,
a reflection R is an involute isometry of an Euclidean space whose
set of fixed points is an affine subspace of codimension 1. More-
over, the set of fixed points form the reflection axis. For R to be
an involute, we require R(R(p)) = p for all p in the domain of R.
Generalizing the above concepts to the intrinsic setting only neces-
sitates replacing the Euclidean distance by geodesic distance. On
the 2-manifold M, an intrinsic reflection axis should be a curve,
which can generally assume an arbitrary shape; the curve may even
be disconnected, e.g., consider the case where the shape is a torus.









Figure 4: The symmetry generating set of the blue curve c is shown
as the cyan region in (a), a subset of the whole shape. The local
“thickness” of the generating set at an IRSA point (red dot) is given
by the length of the orange geodesic segment (b) orthogonal to c at
the point. Note that these figures are for illustration only.

Symmetry axes and generating sets For any given curve c ⊂
M, we can define an intrinsic reflectional symmetry generating set
G(c) of c as a subset of M with the following properties:

• G(c) is connected and c ⊆ G(c);

• there is an intrinsic reflectional symmetry R over G(c) whose
fixed point set is precisely c.

The maximal such G(c) is denoted by G∗(c). Obviously, not all
curves have non-empty symmetry generating sets. If G(c) is non-
empty, then c is an IRSA of G(c); see Figure 4(a).

Local reflectional symmetry support We can view the set G(c)
as formed by the union of an infinite set of geodesic segments that
are perpendicular to its IRSA c; see Figure 4(b). For the maximal
generating set G∗(c), each such geodesic segment would reach its
maximal length without breaking the isometry constraint. These
maximal segment lengths provide the “thickness” values for the
generating set along the IRSA. One may also view these thick-
ness values as indicating the support of local reflectional symme-
tries along the IRSA curve c.

IRSA transform To reveal the prominent IRSAs over M, it is
reasonable to accumulate over M the “prominence” of each curve
as an IRSA. In this paper, we simply model the prominence of a
partial reflectional symmetry by the area of its defining domain.
Specifically, given a curve c ⊂ M, we can designate the area of
G∗(c), the maximal reflectional symmetry generating set of c, as
the IRSA score at c. Integrating the IRSA scores over all possible
curves on M, we obtain the continuous IRSA transform of M.

Voting An algorithmic realization of the above integration would
resort to sampling, letting a sample set of curves “vote” for their
IRSA scores. However, the space of all possible curves over M is
too large. A more efficient alternative is to sample pairs of points
from M and let these pairs vote for their respective IRSA curves.
Note that our thought process and analysis so far have resembled
those from the PRST work of Podolak et al. [2006], which was
developed in the planar extrinsic setting.

3.2 Review of planar reflective symmetry transform
The idea of planar reflective symmetry transform, or PRST, is in-
tuitive and its computation via the voting paradigm is simple and
elegant [Podolak et al. 2006]. Roughly speaking, given a shape
f and a plane γ, a measure of f ’s extrinsic reflectional symmetry
with respect to γ is the extent of overlap between f and its reflec-
tion about γ. Given a 2D shape whose boundary is specified by a
closed contour, with a voting analogy, a plane γ having more point
pairs on or near the boundary that are symmetric with respect to γ
gets more votes and is a more prominent symmetry axis.



To practically compute PRST via voting, each pair of points p
and q, with higher probability of choosing points on the boundary,
vote for their reflection line, which is the bi-infinite boundary be-
tween the Voronoi cells of p and q in the plane. This implies a
transform from the 2D shape to the space of lines, accounting for
votes from all the pairs. The local maxima in the transform do-
main reveal reflection lines which correspond to prominent partial
reflectional symmetries. In the original domain of the 2D shape,
a scalar field which represents the accumulation of voted lines can
be visualized and the prominent reflectional symmetry axes mani-
fest themselves as darkened ridges. Our IRSA transform seeks to
compute a similar scalar field, but over a manifold for PIRS.

Key challenges To adapt the voting paradigm for PRST to closed
manifolds, we are met with several key challenges:

• In contrast to Euclidean lines or planes, the space of potential
IRSAs consists of arbitrary curves on a manifold and does not
admit a low-dimensional parameterization for binning.

• In the extrinsic view, a 2D or 3D shape is defined by its bound-
ary which plays a key role in symmetry analysis. In particular,
the boundary is heavily biased during Monte Carlo sampling
when voting for PRST. The intrinsic view, on the other hand,
while holding the key to achieving pose invariance in symme-
try analysis, has no boundary to work with on the manifold
surface. Thus a new bias or weighting scheme needs to be
introduced into the voting strategy.

• Any reflection in the Euclidean space can be easily con-
structed, but the same cannot be said about an isometric “fold-
ing” within a closed manifold along a curved boundary. Dis-
tances, paths, and angles are all more expensive and less ro-
bust to deal with in the intrinsic setting.

3.3 Voting-based IRSA transform on manifold
The basic premise of the voting approach is that the weight of a vote
from a point pair should correspond to the extent of PIRS possessed
by that pair. A pair of points are highly symmetric if they have sim-
ilar local geometry as well as large support from other symmetric
point pairs, where two point pairs support each other if they share
the same PIRS or IRSA. Such support is a more global criterion for
symmetry analysis based on the isometry constraint.

Let us give a coarse-to-fine description of our voting algorithm.
At a high level, for each sampled, eligible pair of points a, b ∈M,
we let them vote for their reflectional symmetry boundary; see Al-
gorithm 1. Unless otherwise specified, all the samplings are uni-
form. Here, eligibility is first provided by the local shape similarity
between a and b. The reflectional symmetry boundary between a
and b is the boundary βM(a, b) between the intrinsic Voronoi cell
of a and b: β(a, b) = {r ∈ M : dM(a, r) = dM(b, r)}, where
we ignore the reference to M as it is clear from the context.

A key difference to PRST is that the symmetry boundary β(a, b)
must have spatially varying weights, as the filtering of point pairs
using local shape similarity alone is insufficient to capture intrin-
sic reflectional symmetries over M. These weights should indi-
cate the strength or support of local intrinsic reflectional symmetry
along β(a, b), and as discussed in Section 3.1, they are precisely the
thicknesses of the maximal symmetry generating set G∗(β(a, b)).

One straightforward way to measure the local symmetry sup-
port is to trace geodesic segments from points along the boundary
β(a, b), orthogonally to β(a, b), while ensuring isometry. However,
such an approach is difficult to realize, expensive, and sensitive to
geometric noise. We thus resort to a statistical approach relying
on voting again. Essentially, we allow all the eligible sample point
pairs (with eligibility determined by additional filters) to vote for
the symmetry support at each point m′ ∈ β(a, b). We localize the










 










Figure 5: The distance filter test (color-matched curve segments are
to have the same geodesic length) for {a, b} and {p, q} is passed
(a), and at the same time, p, q are symmetric about β(a, b), shown
in red. However in (b), passing the test does not imply an agreed
PIRS — p, q are not reflectionally symmetric about β(a, b).

vote by considering the distance from m′ to the voting points —
larger distances imply weaker voting strengths. The weighted votes
are determined by a Gaussian.

Pseudocode for the outer and inner voting procedures are given
in Algorithms 1 and 2, respectively. We denote the IRSA trans-
form by τ and the local symmetry support by µ. During voting
for symmetry support, each pair {p, q} must pass a series of filters.
The obvious ones are related to local shape similarity and geodesic
distances. However, these can be insufficient as we explain in our
discussion on filtering. The four filters we implement are executed
in order. The way we order them is based on their computational
cost. Naturally, expensive checks are to be performed on a more
selective set, i.e., they are applied in the later stages.

Similarity filter This filter ensures that the points a and b vot-
ing for a boundary should have sufficiently similar local neighbor-
hoods geometrically. Any reasonable local shape descriptor can
be applied to compare the neighborhoods. We use SDF map, an
adaptation of the curvature map signature of Gatzke et al. [2005],
replacing curvature measures by the shape diameter function (SDF)
of Shapira et al. [2008]. Specifically, for a point p, we construct b
equally spaced geodesic rings around it — two adjacent rings bound
a geodesic bin. We compute SDF averages in each bin, resulting in

Algorithm 1 Voting for IRSA transform τ .
Given a set S of sample points on M.

τ(x) = 0 for all x ∈M
for a, b ∈ S do

if Similarity-Filter(a, b) passed then
for m′ ∈ β(a, b) do

τ(m′) = τ(m′) + SymmetrySupport(a, b, m′, S).
end for

end if
end for

Algorithm 2 Voting for local reflectional symmetry support µ.
µ(m′) = SymmetrySupport(a, b, m′, S)

h = 0.
for p, q ∈ S do

/* filters below executed sequentially */
if Similarity-Filter(p, q) passed and

Distance-Filter(p, q, a, b, m′) passed and
Locality-Filter(p, q, a, b) passed and
Axial-Sym-Filter(p, q, a, b) passed then
h = h + e−dM(p,m′)2/σ2

/* Gaussian width σ = maxx,y∈S dM(x, y) */
end if

end for
return h.
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Figure 6: Effect of locality filtering on symmetry support voting.
Without such filtering, the region spanned by the point pairs having
passed previous filters can be disconnected (a). Here, the red dots
and red curve are the voting point pairs {a, b} and their Voronoi
boundary β(a, b), respectively. The symmetry support from vot-
ing (b) is erroneously large (red=large; blue=small). After density-
based clustering, remaining eligible point pairs (c) have voted for
the more proper symmetry support (d) for β(a, b).

a b-dimensional signature, where we set b = 6 in all the examples.
We choose SDF over conventional curvature estimates since SDF
is more robust to noise and captures more global geometric infor-
mation. The dissimilarity between two signatures is given by their
L2 distance. The similarity filter test is passed if the dissimilar-
ity is less than εSIM of the maximum norm of the two compared
signatures, where εSIM is a user-specified threshold parameter.

Distance filter This filter serves as the base-line test of isometry
based on pairwise geodesic distances between the sample points in-
volved. Given the two pairs {a, b} and {p, q} as specified above
and in Algorithms 1 and 2, as well as the point m′ along the tested
boundary, we require that each pair of points lie on different sides of
the boundary being voted on. Further, let m be the (geodesic) mid-
point between a and b, we require via thresholding that dM(a, p) =
dM(b, q), dM(a, q) = dM(b, p), dM(p, m) = dM(q, m), and
dM(p, m′) = dM(q, m′); see Figure 5(a) for the configuration.
The distance filter test is passed if each distance difference is less
than εDIS of the maximum of the two compared distances, where
εDIS is a user-specified threshold parameter.

Unfortunately, fulfilling the above distance checks does not guar-
antee that {a, b} and {p, q} will share the same PIRS, as illustrated
in Figure 5(b). This problem is addressed by the final filter. An-
other problem to resolve is that point pairs which do not belong to
the symmetry generating set of β(a, b) may still participate in the
voting so far. The locality filter described next tackles this issue.

Locality filter As the example in Figure 6(a) illustrates, given
points a, b and their Voronoi boundary β(a, b), the set of point pairs
which could pass the distance filter may result in a disconnected
set over M. This indicates that the maximal symmetry generating
set of β(a, b) cannot be extended to include the whole point set,
since over a region empty of detected point pairs, there cannot be
an intrinsic reflectional symmetry. Thus we should enforce a lo-
cality criterion in pair selection: only point pairs local to β(a, b)
should vote. We implement this filter by finding the single clus-
ter of points which contain β(a, b). Only a point pair entirely be-
longing to this cluster is allowed to proceed to the next filter. We
use an implementation of DBSCAN [Ester et al. 1996], which is
a density-based clustering scheme, to identify the dense cluster of
eligible point pairs close to β(a, b); see Figure 6 for some results.

Axial-Sym filter Having identified the appropriate cluster of el-
igible voters and performed the similarity and distance tests, we
wish now to filter out remaining point pairs {p, q} that are not re-

(a) Similarity. (b) Distance. (c) Locality. (d) Axial-Sym.

Figure 7: Effects of progressively applying more filters on the IRSA
transform computed. (a)-(d): filters are added one at a time.

flectionally symmetric about β(a, b). The existence of such point
pairs can be seen from Figure 5(b), where we observe that the points
a, b, p, and q roughly form a (geodesic) parallelogram. Such a con-
figuration reveals an approximate isometry about a point — a point
symmetry, as the set of fixed points of the implied isometric trans-
formation contains a single point — the center of the parallelogram.

To evaluate the degree to which the pair {p, q} support the reflec-
tional symmetry, which is axial, about the boundary β(a, b), we re-
sort to a statistical approach again and call the filter the Axial-Sym
filter. The idea is that if {p, q} were reflectionally symmetric about
β(a, b) instead of having a point symmetry, then there would be
more eligible point pairs (those having passed the previous filters)
that agree to the symmetry {p, q} induces. For efficiency consider-
ations, we only apply a distance check. One could also utilize crite-
ria involving geodesic angles. However, we have found that tracing
geodesic paths to measure angles is expensive and noise-prone.

For the distance check within the Axial-Sym filter, we count the
number of eligible point pairs {s, t} which satisfy: dM(s, p) =
dM(t, q) and dM(s, q) = dM(t, p); the same equality threshold
εDIS as in the distance filter is used. All those pairs receiving a
count below a user-specified percentage threshold εAXS are pre-
vented from voting. The percentage is measured against the total
number of eligible point pairs having passed the first three filters.

In Figure 7, we show the effects of the different filters on the ob-
tained IRSA transform. However, it is important to note that despite
the carefully designed filtering process, there is no theoretical guar-
antee that each remaining eligible voting pair {p, q} share the same
maximal PIRS over M as the pair {a, b}. The robustness of our
approach owes to the statistical nature of the voting scheme and the
power of the data ensemble. More results demonstrating the quality
of our voting scheme are given in Section 4.

3.4 IRSA curve extraction
Although the IRSA transform τ , the scalar field computed over
M via voting, reveals and accentuates the prominent IRSAs of
the shape, the transform itself is not directly usable for subsequent
shape analysis. What we desire is an explicit set of IRSA curves
over M which capture the prominent PIRSes. In particular, each
IRSA curve should induce a PIRS region (a symmetry generating
set) and these PIRS regions constitute a non-overlapping partition
of the shape into reflectionally symmetric patches. In this section,
we describe an iterative scheme to obtain the set of IRSA curves.

To initialize, we select a top few Voronoi boundaries, based only
on the current IRSA transform τ and symmetry support measures µ
(estimated by Algorithm 2) along these boundaries. Potential issues
with the initial set include: they may contain erroneous segments
and they are unnecessarily constrained to be closed. These can be
fixed by a process we call IRSA pruning, where we cut off or short-
circuit segments of an IRSA curve with low symmetry support µ.
To do so robustly however, we need more accurate µ values.



Figure 8: A few iterations of grass-fire region growing (regions col-
ored purple in the bottom-right insert) and the resulting color plot
of the local symmetry support measure µ (red=large, blue=small)
along the IRSA curves, focusing on one particular IRSA curve. The
extraneous segment has gradually lower support (blue) as iterations
proceed and can be subsequently cut from the IRSA curve by IRSA
pruning; see the final set of IRSA curves in Figure 1(c).

The key improvement offered by the symmetry support refine-
ment algorithm in this section is to ensure that voting point pairs are
not shared between different IRSAs. The locality filter presented in
the previous section attempted to achieve a similar effect, but the
above requirement was not enforced. We accomplish our goal by
explicitly constructing regions associated with the IRSAs and by
requiring that the voting pairs must come from the same region.

Initial IRSA curve extraction Among all Voronoi boundaries de-
fined by the sample point pairs that passed the similarity filter, we
select the top few serving as the initial IRSAs. Specifically, for each
considered pair {a, b}, we compute the line integral

ν(a, b) =

Z

β(a,b)

τ(x) · µ(x)dx

and use it to rank the pair’s (closed) Voronoi boundary. The first
boundary chosen is the one having the largest ν value. After having
selected a Voronoi boundary, we set the IRSA transform value in
the vicinity of that boundary to zero and then repeat. For a stopping
criterion, we examine and look for a significant drop in the average
ν values from one selected boundary to the next. If a drop is larger
than the sum of the previous two or it exceeds a certain ratio r of the
previous drop, then we stop. Here r is a user-specified parameter
having a default value of r = 0.8.

Iterative symmetry support refinement During iterative refine-
ment, we combine a symmetry-support-controlled region growing
step (starting from IRSA curves) and symmetry support voting,
where for the latter, the point pairs are confined by the obtained
regions. Specifically, at each iteration, we perform a standard (si-
multaneous, isotropic) grass-fire region growing from each IRSA
curve, with speed of growth determined by the symmetry support
along the IRSA curves and the direction of growth orthogonal to
the IRSA curves; see Figure 8 for a few results.

When the growth fronts all come to a stop, for each obtained re-
gion, we select only point pairs that lie within that region and also
have passed all the four filters discussed in Section 3.3 to vote, as
done in Algorithm 2, so as to recompute the symmetry support µ
of the IRSA contained in the region. The iteration refinement stops
when the symmetry support of all the IRSA curves have stabilized.

Figure 9: Region constraints on pair selection alleviate issues with
rotational symmetry. (a) IRSA transform on the Momento model;
observe a peak (red spot) due to approximate rotational symmetry
among the three characters. (b) Original set of eligible (symmetric)
pairs which voted for the IRSA transform are shared among dif-
ferent characters. (c) Color plot of initial symmetry support along
an IRSA curve. (d) Regions obtained after grass-fire growing. (e)
Eligible pairs grouped by regions eliminate point sharing. (f) Color
plot of the new symmetry support along the IRSA curve.

Figure 8 shows an illustration of the evolution of the symmetry sup-
port values and the obtained regions.

An important advantage of our iterative approach lies in its han-
dling of rotational symmetries in the shape. A rotational symme-
try generally induces reflectional symmetries, where the different
PIRS regions can overlap significantly. In other words, points from
different PIRS regions can participate in the voting of different IR-
SAs. The region-constrained pair selection mechanism we follow
addresses this issue, leading to symmetry support measures that
more accurately capture the exclusive PRIS’s in the shape. See Fig-
ure 9 for an illustrative example.

IRSA pruning Up to now, all the obtained IRSA curves are still
closed: they start as closed Voronoi boundaries and do not change
spatially during refinement. However, as shown in Figure 9(f), this
constraint is unnecessarily restrictive for an IRSA curve to derive
the appropriate PIRS. Through IRSA pruning, we eliminate seg-
ments along an IRSA curve that have low symmetry support, e.g.,
the segment around the base of the Momento from Figure 9(f). In
Figure 1(b-c), we see that the IRSA curve in yellow was partially
removed. In our experiments, after linearly scaling the symmetry
support values µ along an IRSA curve to [0, 1], we remove any seg-
ment whose µ values fall below 0.25.

Removal of the low-support segments allows the remaining
IRSA curve to produce a more meaningful PIRS region via region
growing. However, under circumstances where one might want
closed IRSA curves, we can simply replace the removed segment
by a geodesic to close the gap. This is illustrated in Figure 1(c),
where we see that one segment of the yellow IRSA curve (near the
skirt) has been “short-circuited” by a geodesic segment. In the case
of Figure 9(f) however, the geodesic connecting two ends of the
blue segment does not have sufficient support, thus the gap left by
removal of the blue segment remains open; the final set of IRSA
curves for the Momento can be found in Figure 12.

3.5 Implementation

Our presentation so far has used a language applicable to the con-
tinuous setting. In reality, the input to our algorithm is a closed 2-
manifold triangle mesh. Sample points are taken at mesh vertices,
uniformly distributed, where we assume that the input mesh pos-
sesses a regular tessellation. If this were not the case, then a remesh-
ing scheme could be applied. In Algorithms 1 and 2 and throughout
Section 3.3, points p, q, a, and b are always sample points, while the



Figure 10: IRSA transform under synthetic Gaussian noise. The
noise level is given as the average vertex displacement over the av-
erage edge length in the original mesh. The top-left image shows
the noisy model at level 0.42. Discrepancy between IRSA trans-
forms is given by the relative error: ||τ̂ − τ0||2/||τ0||2, where τ0

and τ̂ are the IRSA transform vectors for the original and noisy
mesh models, respectively, and || · ||2 is the L2 norm.

voted boundaries β(a, b) contain only mesh vertices; in particular,
both m and m′ are mesh vertices, but not necessarily in the sample
set S. In all of our experiments, the mesh models have between
10K to 15K vertices (the original dense models were decimated)
and the number of samples chosen range between 2K and 5K. Our
geodesic computation uses Danil Kirsanov’s implementation of the
algorithm of Surazhsky et al. [2005].

Note also that our description of the algorithm and the pseu-
docode given are presented in a way for better conceptual clarity.
The actual implementations have considered standard optimization
for efficiency. As a simple example, the density-based clustering al-
gorithm is executed only once per point pair {a, b} in Algorithm 2
instead of within every call to clustering-based thresholding, as it
would appear in the pseudocode of Algorithm 2.

We rely on four filters to select point pairs during voting for
the IRSA transform, where the user needs to select the appro-
priate thresholds. These selections have been carried out experi-
mentally and once an appropriate parameter set have been chosen,
we adhere to them. All the IRSA transforms shown in the paper
have been produced using the same threshold settings. Specifically,
εSIM = 0.025, εDIS = 0.02, and εAXS = 80%.

4 Results and applications
In this section, we first demonstrate the robustness of our voting
scheme in the presence of moderate noise and moderate amount of
missing data such as small holes. In the first test, we progressively
add synthetic Gaussian noise to perturb the mesh vertex positions
and then apply the voting scheme to compute the IRSA transform τ ,
using exactly the same parameter settings. However the set of sam-
ple points may vary due to random uniform sampling. Figure 10
is representative and it shows both visually (by comparing with the
result in Figure 12) and quantitatively (by looking at the relative er-
ror) that our voting scheme is quite robust against the added noise.

Figure 11 shows several IRSA transforms computed on models
with artificially inserted small holes. Locations and sizes of the
holes were randomly selected but under some control. Indeed, due
to its reliance on geodesic distances, our algorithm is not designed
to handle significant missing data such as those arising from raw
scans. Appropriate preprocessing steps for data cleaning and repair
should be applied under those circumstances. However, by compar-
ing with results given in Figures 1 and 12 on the same set of models,
the results in Figure 11 demonstrate that our voting scheme can well
tolerate small amount of missing data.

Figure 11: IRSA transform in the presence of small holes: Neptune
(7 holes, with 2.32% triangles missing), Momento (13, 2.93%); the
sculpture woman (9, 2.25%), and the children model (27, 3.87%).
Two views per example are provided to show the inserted holes.
The relative errors (defined in the same way as for Figure 10)
measured against the original complete models are: 3.6 × 10−4,
6.3× 10−4, 2.7× 10−4 and 9.6× 10−4, in that order.

Figure 12 shows more results for IRSA transform and IRSA
curve extraction. Next, we investigate how the IRSA curves can
be used for two applications which benefit from PIRS analysis.

4.1 Symmetry-aware mesh segmentation
Symmetry-aware mesh segmentation builds upon the premise that
a shape part is typically symmetric. It is an attractive and power-
ful cue which captures shape semantics. Yet it requires no prior
knowledge to detect — purely geometric schemes suffice.

With the ability to extract prominent PIRSes of 3D shapes, we
are able to identify highly complex, intrinsically reflectionally sym-
metric parts from a shape; see the gallery in Figure 12. From Sec-
tion 3.4, we already have a symmetry-aware segmentation scheme
via grass-fire region growing from the final set of IRSA curves. This
approach would be the intrinsic analogue of an extrinsic symmetry-
aware segmentation scheme, e.g., [Podolak et al. 2006; Simari et al.
2006]. A result using this approach is shown in the top-left corner of
the gallery, the “snowmen”, demonstrating that this scheme is capa-
ble of finding cut boundaries over entirely smooth surface regions.
Such a result is purely induced by symmetry and not attainable us-
ing existing algorithms which searches for concavity. However, this
toy example is too perfect. Most models do not possess perfect
PIRSes, thus purely relying on region growing based on symmetry
support measured along a set of given IRSAs will inevitably intro-
duce less than meaningful segmentation boundaries.

A variety of options are possible, including post-processing of
boundaries and incorporating feature weights into region growing.
We have experimented with the idea of using IRSA-induced PIRS
regions to perform merging of segments produced by a black-box
mesh segmentation algorithm, e.g., anyone of those which utilizes
the minima rule [Shamir 2006]. The key is to over-segment the
model using the black-box algorithm. Then we assign each seg-
ment to the PIRS region which provides the largest coverage (in
area) among all PIRS regions from the symmetry-induced grass-
fire region growing. Figure 12 shows five results obtained and they
demonstrate the robustness of our voting and IRSA curve extrac-
tion schemes, as well as our ability to obtain highly semantic mesh
segmentations compared to conventional approaches.



Figure 12: A gallery of results for IRSA transform, IRSA curve extraction, and symmetry-aware mesh segmentation. For each model, the
first three images show the above results, in that order. The last image shows the result of using the segmentation algorithm of Liu and
Zhang [2007], with the same number of parts as for its symmetry-aware counterpart. For the snowmen model, purely symmetry-driven region
growing was used. For the rest, symmetry-based merging was performed on an over-segmented set of parts from [Liu and Zhang 2007].

We experimented with several state-of-the-art mesh segmenta-
tion schemes. For each, we over-segment an input model into 20
parts. Choosing the proper number of IRSA curves, which becomes
the target number of parts for merging, is carried out via threshold-
ing as described in Section 3.4. With the exception of the children
model in Figure 1, all the examples shown in the paper were pro-
duced using the default parameter setting. Although segmentation
results from different choices of the black-box algorithms vary, the
symmetry-aware results have been consistent throughout.

4.2 Symmetry-driven part repair

Our second application is symmetry-driven part repair. Given an
intrinsically reflectionally symmetric shape with certain parts miss-
ing, we wish to repair it by performing PIRS analysis on the incom-
plete shape, which may be asymmetric or whose global intrinsic
symmetry is an unnatural one, and recovering the missing parts and
restoring the shape’s symmetry. Our investigation into this problem
is still preliminary and we aim to demonstrate its potential.

The basic idea is to first perform the grass-fire region growing
from an IRSA curve to obtain an intrinsically reflectionally sym-
metric region. Over the region, the symmetric point pairs induce a
point correspondence. Discrepancies at the region boundaries allow
us to detect the missing parts. See Figure 13(a-b) for an illustration
on the David model, where the right arm is regarded as an asym-
metric part of this model and the region boundary symmetric to the
base of that arm is where the missing part will be inserted.

Owing to symmetry recovery, the above correspondence implies
the part instance to use for the repair. We make a copy of the part
instance and position it by performing a rigid alignment between
the corresponding region boundaries. For the David model in Fig-
ure 13, these are the bases of the two arms. However, it is difficult
to determine the initial positioning of the part instance that would
lead to the most natural part repair. Here we resort to a heuristic
which generally works well for human-like shapes. Namely, we re-
flect the part copy with respect to the best-fitting plane of the IRSA
curve, and then perform rigid alignment using the standard iterated
closest point (ICP) algorithm. A few ICP iterations produce a con-
forming overlap region between the two boundaries. We then use
Poisson interpolation [Yu et al. 2004] to stitch the parts and obtain
a single manifold surface; see Figure 13(d). Figure 14 shows two
more examples of symmetry-driven part repair.

It is worth pointing out the importance of our PIRS analysis dur-
ing the process, which detects the proper symmetry axis for a shape
part. With an arm missing, a human-like shape still possesses an
approximate global intrinsic symmetry, the one between the front
and the back of the body. It is conceivable that such a symmetry
would be detected by a method designed to recover a global intrin-
sic symmetry, but it would not have led to a proper part repair.

5 Conclusion and future work
While there have been algorithms designed to detect a variety of
global or partial extrinsic symmetries and global intrinsic symme-



Figure 13: Part repair on the David model. (a) Initial model with
the left arm missing. (b) Detected PIRS region (green) and point
correspondences (red lines). (c) Initial point correspondence be-
tween the symmetric region boundaries. (d) Rigid alignment of the
left arm with the body and stitching using Poisson interpolation.

tries in 2D or 3D shapes, we are not aware of any work capable of
detecting partial intrinsic reflectional symmetries over a closed 2-
manifold. The detection of structures in subsets, implying a much
larger search space (e.g., comparing partial matching to full corre-
spondence), and the common challenges one must face when work-
ing in the intrinsic surface setting, make the problem at hand dif-
ficult. Inspired by early works on symmetry detection, in particu-
lar [Podolak et al. 2006], we develop a voting scheme to compute
an intrinsic reflectional symmetry axis (IRSA) transform of a 3D
shape. Our scheme is robust due to its statistical nature and with
the aid of a grass-fire region growing method and an iterative re-
finement procedure, we obtain quality IRSA curves which can be
subsequently utilized in symmetry-aware mesh segmentation and
symmetry-driven part repair. The use of symmetry in these appli-
cations adds useful semantic information to the mix.

Limitations Our current algorithm and implementation still leave
much room for improvement. First, our work is constrained to de-
tecting reflectional symmetries only. The study of partial intrinsic
rotational or translational symmetries may call for a different ap-
proach. Secondly, the voting approach developed dictates that only
PIRSes having sufficiently large support can be reliably detected.
In cases where semantically meaningful PIRSes are present on rel-
atively small parts of a complex model, our current voting scheme
may fail. Third, the reliance on geodesic distances could render our
approach incapable of handling large amount of noise, missing data,
and certain high-genus models, though we have demonstrated cer-
tain level of robustness and shown positive results on several high-
genus models — see Figures 10-12. Finally, a major limitation of
our current method is speed. The worst-case time complexity of our
method is O(n4), where n is the number of sample points — for
each point pair that votes for a Voronoi boundary, we examine the
set of all point pairs to compute the local symmetry support values.
The series of filters alleviate the complexity, however, currently, on
a mesh with 10K vertices and with 3K samples, the voting process
takes about 2 hours on an Intel Core 2 Duo 6300, 1.86 GHz ma-
chine with 1GB memory. The time taken for IRSA curve extraction
and for the two applications are comparatively negligible, as we
typically work only on a small number of IRSA curves.

Future work In addition to finding more efficient filtering mecha-
nisms and resorting to multi-resolution or parallelization techniques
(e.g., using the GPU) to improve the speed of the voting algorithm,
we would also like to explore new extensions and applications of

Figure 14: More examples of symmetry-driven part repair. Left:
with two missing parts. Right: over a shape with imperfect symme-
try. The original models are shown at the upper-right corners.

PIRS analysis. We believe that its potential has not been fully re-
alized. One possible extension is to construct a hierarchical shape
decomposition based on PIRSes. Symmetry-induced shape corre-
spondence analysis also seems to be a direction worth exploring.
Finally, while the use of IRSA curves in the mesh segmentation
framework has led to semantically meaningful results compared to
state-of-the-art algorithms, we have only utilized information pro-
vided by the IRSA curves in a simplistic manner. It is desirable
to more intelligently combine the symmetry criterion with conven-
tional measures applied to solve the mesh segmentation problem,
where an optimization-based framework may be appropriate.
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