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Figure 1: Set evolution starting from a small input set of lamps (left). With the set evolution “fit and diverse”, new generations of shapes are
not only fit to be lamps but also exhibit significant and potentially inspiring variations.

Abstract

We introduce set evolution as a means for creative 3D shape model-
ing, where an initial population of 3D models is evolved to produce
generations of novel shapes. Part of the evolving set is presented
to a user as a shape gallery to offer modeling suggestions. User
preferences define the fitness for the evolution so that over time,
the shape population will mainly consist of individuals with good
fitness. However, to inspire the user’s creativity, we must also keep
the evolving set diverse. Hence the evolution is “fit and diverse”,
drawing motivation from evolution theory. We introduce a novel
part crossover operator which works at the finer-level part structures
of the shapes, leading to significant variations and thus increased di-
versity in the evolved shape structures. Diversity is also achieved
by explicitly compromising the fitness scores on a portion of the
evolving population. We demonstrate the effectiveness of set evo-
lution on man-made shapes. We show that selecting only models
with high fitness leads to an elite population with low diversity. By
keeping the population fit and diverse, the evolution can generate
inspiring, and sometimes unexpected, shapes.
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1 Introduction

In nature, no two creatures are exactly alike. During the evolution
of a species, nature implicitly maintains a genetic diversity as a
means for the species to better adapt to changing environments. In

product design, parallels can be drawn. Products intended to serve
the same function often come in a variety of shapes and structures to
adapt to the ever changing customer needs and tastes, and to inspire
new designs. In computer graphics, 3D content creation remains a
central and difficult problem. The ability to create a diverse set of
3D models allows one to populate virtual worlds with enriched 3D
content and improve user experience.

We view 3D shape modeling as a creative task, whether for prod-
uct design or scene modeling. Creativity has always been a trait
bestowed to humans but not machines. An interesting question is
whether a machine can assist humans in being creative and inspire
a user during 3D modeling. One possible means to achieve this
is through a design gallery which presents a variety of suggestive
designs from which the user can pick the ones he or she likes the
best [Marks et al. 1997]. The ensuing challenge is how to come
up with intriguing suggestions which inspire creativity, rather than
banal suggestions which stall the creative process.

In this paper, we introduce set evolution as a means for creative
3D shape modeling (Figure 1). Our goal is to create generations of
novel 3D shapes starting from an initial population, where the new
models can not only be adopted to populate virtual scenes but also
make potentially inspiring suggestions for future creations.

Fit and diverse. During evolution, part of the evolving set is pre-
sented to a user as a shape gallery. User preferences define the
fitness function [Sims 1994] for the evolution as he or she selects
shapes from the gallery that are deemed to be plausible (a chair
needs to be “chair-like”) and “liked” to breed the next generation.
Through time, the shape population will mainly consist of fit indi-
viduals. However, we would also like our creations to potentially
inspire the user. A key point we advocate, drawing motivation from
the role diversity plays in evolution, is that, to inspire creativity, the
evolving set needs to be kept diverse. We compromise the fitness
scores of a portion of the evolving population as a means to main-
tain diversity. Specifically, we define a diversity measure for the
evolving set and use it to control a trade-off between the counter-
balancing objectives of “being fit” and “being diverse” for the set.
Explicitly maintaining the diversity of the evolving set increases the
potential to create surprising and inspiring suggestions.
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Figure 2: The evolving population (left) consists of a diverse background set (in gray) and a fit foreground set (in gold). The gallery of shapes
that is presented to the user is illustrated on the right, which consists of shapes taken from the foreground set.

Evolution of a set . We evolve an entire population of 3D models
which belong to a certain class (e.g., chairs, teapots), instead of
individual shapes one at a time. Rather than suggesting parts during
shape composition [Chaudhuri and Koltun 2010], we offer a set of
complete shapes as suggestions in each generation of the evolution
(Figure 2). Throughout the process, we focus on the quality of the
set rather than that of the individuals.

Evolution operators. To execute the set evolution, we develop
a genetic algorithm to automatically create generations of shapes.
We assume that the initial set of shapes have been pre-analyzed
to possess part correspondence and built-in structural information
such as inter-part symmetries. Our algorithm is built on a mutation
operator and a crossover operator which correspond to part warping
and part replacement, respectively. Since the fitness function only
selects but does not create, the diversity of the evolving set depends
on the above operators to come up with creative suggestions.

To this end, we introduce a novel part crossover operator which
acts on fine-scale shape parts without relying on accurate corre-
spondences between them. Throughout the evolution, the coarse-
or meta-level part structure of the shapes across the whole popula-
tion is maintained. The finer-level structures within the meta parts
can vary significantly between different shapes, which contribute to
the diversity of the set. Our part crossover builds upon the notion of
fuzzy part correspondence to carry out many-to-many exchange be-
tween the fine-scale parts. Coupled with part mutation, our shape
reproduction goes beyond part shuffling [Funkhouser et al. 2004;
Kreavoy et al. 2007; Chaudhuri and Koltun 2010] for shape com-
position. The resulting creations can exhibit significant variations
in the overall shape structures, even in topology (Figure 3).

Contributions. Our contributions to creative 3D modeling can be
summarized as follows:

• A set evolution which creates generations of novel 3D shapes.
We focus on the quality of a set, rather than that of the indi-
viduals, and offer complete shapes as creative suggestions.

• A mechanism to keep an evolving set fit to the user’s design
preferences while maintaining diversity of the set in a con-
trolled manner. The key idea of maintaing diversity provides
a source for creative suggestions and it contrasts the intuitive
tendency to produce an elite population.

• A novel crossover operator based on fuzzy part correspon-
dence which creates diverse shape (even topological) varia-
tions, while maintaining the built-in meta part structure.

We demonstrate the effectiveness of our set evolution for creative
modeling of 3D man-made shapes. We show that if the set is
evolved by only selecting individuals with high fitness scores, it
would eventually turn into an elite population, one with a low di-
versity and lack of creative potential. On the contrary, by keeping
the population diverse, the evolution succeeds in creative model-
ing. With our novel part crossover operator, we show that even
when starting with a small but diverse set, the future generations
can grow in size as well as diversity; see Figure 1.

2 Related works
Evolutionary modeling and design. The seminal works of Karl
Sims [1991; 1994] first introduced genetic algorithms to the com-
puter graphics community to synthesize novel creatures with de-
sired physical behavior. In his work, both the shape and function
of a creature are evolved simultaneously. Many follow-up works
have appeared since, e.g., the creature academy of Pilat and Ja-
cob [2008]. As well, Pollack et al. [1998] adopted an evolutionary
framework in the design and generation of assembled objects such
as robots and Jakiela et al. [1997] studied structural topology de-
sign in the context of mechanical design. The application domain
of evolutionary design has spanned visual arts [Draves 2006], even
music [Romero and Machado 2007]. A distinguishing feature of
our problem setup is that we evolve a set simultaneously and the
focus is on the quality, particularly diversity, of the set.

Peter Bentley [1999] introduced evolutionary design and collected
several state-of-the-art works in the field, including evolutionary
design for urban planning [Soddu and Colabella 1995] and architec-
ture [Frazer 1995]. He [Bentley 2000] suggests that the creativity

Figure 3: Our part crossover and mutation produce significant
shape variations, even topology changes. The offsprings are gener-
ated automatically and we trace the evolution paths.



of the evolutionary approach depends on the exploration of a low-
level, knowledge-lean representation of solutions as it offers more
flexibility for the evolution. Our work indeed exploits low-level
genetic representations derived from the finer-level shape parts.

Data-driven object modeling The meta work by Funkhouser et
al. [2004] on “modeling by examples” has pioneered the direction
of data-driven 3D object modeling. The design task is fully con-
trolled by the user, while a content-driven search allows geometry
variations to be added via part substitution and combination. This
search-and-assemble modeling paradigm has been widely received
over the years, e.g., [Shin and Igarashi 2007; Kreavoy et al. 2007;
Lee and Funkhouser 2008; Fisher et al. 2011]. The modeling in-
spirations typically come in the form of relevant part libraries as a
user incrementally composes a new model, where part suggestions
are driven by geometric and contextual similarity among the shape
parts [Funkhouser et al. 2004; Kreavoy et al. 2007; Chaudhuri and
Koltun 2010; Chaudhuri et al. 2011].

Specifically, Chaudhuri et al. [2010] developed an approach for
generating data-driven part suggestions as creativity support, where
they discuss the need for offering unexpected suggestions. The
method is then extended to provide more semantically and stylisti-
cally compatible suggestions with probabilistic reasoning [Chaud-
huri et al. 2011]. Our set evolution evolves an entire population of
3D models, instead of editing one shape at a time. Rather than sug-
gesting parts during shape composition, we offer a set of complete
shapes as suggestions in each generation of the evolution.

Design space exploration. The influential work by Marks et
al. [1997] on design galleries certainly provided an inspiration for
our interactive evolutionary modeling approach, whereby the user
actively participates in the evolution process. Design galleries pro-
vide an interface to assist the user in selecting parameters through
a visual display of random solutions. The critical component of
design galleries is “dispersion”, which finds a set of parameters
mapped to the most diverse representative solutions to maximize
coverage of the explored space. Our creative modeling utilizes a
shape gallery to steer the evolution process, where diversity also
plays a key role, but with a different goal in mind.

Also falling into the category of data-driven modeling, the work
by Shapira et al. [2009] allows a user to actively navigate a space
of design galleries. The user does not necessarily have a mental
target of what is sought. While exploring the space of solutions, the
user is inspired by what he/she sees. Yang et al. [2011] present a
method for exploring a space of polygonal meshes possessing the
same combinatorics, where the space is characterized by non-linear
constraints associated with mesh elements. Talton et al. [2009]
present a collaborative design space, where a community of users
define and explore a wide variety of models. This work offers a
unique tool for casual users to easily create high-quality 3D models
in their entireties just by navigating the design space. Over time, the
space of models can grow and be re-organized for efficient reuse.

3 Set evolution

We present a set evolution technique which adopts the principles
of “survival of the fittest” and “population diversity” from evolu-
tion theory. Nevertheless, our technique is not aimed to explain or
mimic nature, but merely to serve as a driving mechanism that con-
tinuously develops galleries to offer the user inspiring 3D shapes.
Our technique evolves an entire population of 3D models of some
semantic class. In each generation, the system generates sets of new
shapes from the current generation through crossovers and muta-
tions (Section 4). A selected subset is presented via a gallery to the
user who provides feedback to the system by rating them according

to his/her preference, which defines the fitness function for the evo-
lution. Through the evolution, the set is personalized and populated
with shapes that better fit to the user. At the same time, the system
explicitly maintains the diversity of the population so as to prevent
it from converging into an elite set; see Algorithm 1.

3.1 Interactive set evolution

We classify the evolving population of shapes into two disjoint sub-
sets. The foreground or breeding set G and background set B (Fig-
ure 2). The breeding set is the set whose elements breed to produce
new generations. The rest of the population is kept for the sake of
diversity. In each generation a controlled portion of the background
set is upgraded and included in the breeding set.

Starting from an initial population G0, our system repeatedly gen-
erates new models for generation Gi+1 from generation Gi. During
the shape reproduction for Gi+1, the system generates Md descen-
dants or offsprings, denoted by the set D, using evolutionary op-
erations. Among the offsprings, our system automatically selects
Mf fit ones to be presented in a gallery and lets the user rate them
according to his/her preference. For each model in D, we either
increase its fitness score if the user likes it, or remove it from the
population if the user dislikes it, or otherwise simply add it to the
rest of the population B. The reproduction is repeated until the
number of accepted new models reaches Mg , at which point we
move to produce the next generation. Algorithm 1 describes the
flow of our interactive set evolution. In all our experiments, we set
Md = 16,Mf = 9, and Mg = 40.

The initial population is a set of pre-analyzed 3D models. We de-
scribe it in detail when we present part mutation and crossover in
Section 4. The set should be reasonably rich and diverse and the
shapes therein sufficiently developed. Our set evolution does not
explain the evolution of low level creatures into a high-level species.
That said, the kind of sets we deal with are common everyday ob-
jects such as lamps, teapots, chairs, and candelabra.

3.2 Fit and diverse

Fitness function. For each individual, the fitness score is deter-
mined by two factors: (i) an objective fit score and a subjective or

Algorithm 1: Interactive set evolution
Input : Initial population G0 = {m0

i }Ni=1; Background set B
B ← G0;
i = 0;
while the user is not satisfied do
Gi+1 = ∅;
while size of Gi+1 is less than Mg do
D ← Reproduce (Gi,Md);
D ← SelectFit (D, Mf );
foreach model ms ∈ D do

if ms is liked by the user then
Increase the fitness of ms;

else if ms is disliked by the user then
D = D − {ms};

Gi+1 = Gi+1 ∪ D;

Gi+1← SelectDiverse (Gi+1 ∪ Gi ∪ B, Mn);
B ← SelectDiverse (B ∪ Gi+1, Mb);
Gi← Gi+1;
i = i+ 1;



Figure 4: Part crossover showing many-to-many exchanges at the
sub-part level. Parts involved in crossover are marked in red.

personalized score. The objective score is meant to quickly reject
unsuccessful offsprings, avoiding presenting them to the user in the
first place. Identifying unsuccessful offsprings is a non-trivial task.
In our implementation, we simply estimate how likely the object is
able to stand upright. Specifically, we compute the projection of
the model’s center of mass and test whether it is within the convex
hull of its supporting points, based on upright orientation [Fu et al.
2008]. That measure, denoted by fs, is a binary value where 1 im-
plies that the object can stand well and 0 otherwise. The rejection
mechanism is rather conservative and the user can always come in
and reject any shape when it is presented in the gallery.

The subjective term is a continuous value recording the model’s
history of being liked by the user. Whenever a user likes the model,
its subjective term, denoted by fl, is doubled. During reproduction,
the subjective term is propagated to the offsprings by:

fl(md) = max{fl(md), fl(m1)p1 + fl(m2)p2}, (1)

where pi, i = 1, 2, is the percentage of parts selected from parent
mi during the reproduction of md. The initial value for fl is set to
be 1. The final fitness function is defined as: f = fsfl.

Diversity control. To control the diversity of generation Gi+1,
we refine its content as follows. The refined set consists of Mn

models selected from Gi+1, Gi, and B, with relative portions 80%,
15% and 5%, respectively, in the descending order of fitness scores
for each of the three sets. To control the storage space while keeping
diversity, we also perform diversity control for the background set
by selecting the top Mb most diverse models from B ∪ Gi+1 and
remove the rest. In all experiments, Mb = 120 and Mn = 30.

As a means to measure diversity between shapes, we resort to the
Light Field Descriptor (LFD) [Chen et al. 2003] as a similarity mea-
sure. First, we embed the LFD descriptors of all models in the
evolved set into 3D Euclidean space using Multidimensional Scal-
ing (MDS). To select the most diverse models, we rely on farthest
point sampling in MDS space. Specifically, we first select the point
which is farthest from the center and then repeatedly select points
which have the farthest average distance from the selected set, until
the desired number of diverse models have been selected.

4 Part mutation and crossover

A basic consideration for set evolution is to ensure meaningful
offsprings while avoiding as much as possible invalid ones, so as
to alleviate the user’s effort when making selections in the shape
gallery. This is achieved in our approach by storing pre-analyzed

shape structures in the initial set and preserving the stored structures
throughout the evolution. More importantly, the “fit and diverse”
characteristic of our evolution requires the reproduction operators,
mutation and crossover, to also generate significant variations. This
is achieved by allowing random mutation and crossover of shape
parts and enabling crossover of a finer granularity of parts.

4.1 Shape representation

Each shape in the initial set is pre-segmented with each part en-
closed by a controller, either a cuboid or a generalized cylinder
(GC) [Zheng et al. 2011]. Symmetry and proximity relations be-
tween the parts per shape are pre-analyzed and stored as part of the
controller representation. The set of shapes have pre-established
correspondence at their coarse-level components, which we refer to
as the meta parts, e.g., a leg or back of a chair. Each meta part may
have a finer level of parts, the sub-parts, e.g., the back of a chair
may be formed by several smaller components (Figure 4). From
now on, parts refer to sub-parts unless otherwise noted.

The evolutionary operations, mutation and crossover, are performed
directly on the controllers. When a new shape is created, it inherits
the controllers from its parents, as well as the meta part correspon-
dence and structural constraints, when appropriate. Our structure-
preserving reproduction scheme builds on the component-wise con-
troller framework of Zheng et al. [2011]. However, to allow more
degrees of freedom in part mutation and crossover, we ignore con-
troller constraints related to orthogonality and coplanarity.

Two additional types of controller constraints are added to accom-
modate the more drastic shape variations our reproduction opera-
tions allow. In some cases, part replacements and significant defor-
mations of the controllers may compromise the geometric coher-
ence of a new model, e.g., connected parts are detached or ground
touching parts are off-ground. We detect physical connectivity be-
tween parts in the input set and propagate the connectivity to sub-
sequent generations. Enforcing the connectivity constraint leads
to a “snapping” between two detached parts. Important to man-
made shapes is ground support. The second constraint ensures that
ground touching parts remain so during evolution. Specifically, the
contact regions with the ground are identified in the input set. If in
an offspring model, such regions are off-ground, they are snapped
to the ground. Certainly, additional consideration of appropriate
physical or geometric constraints is also possible.

4.2 Part crossover

Crossover happens between two (parent) shapes and they produce
two new shapes (the offsprings). With a given probability, cur-
rently set at 5%, an offspring goes through a mutation right af-
ter crossover. A crossover involves exchange of parts between the
parents and it shares the same goal as shape modeling via part re-
composition [Funkhouser et al. 2004; Kreavoy et al. 2007; Chaud-
huri and Koltun 2010]. However, there are two significant differ-
ences. First, our crossover does not occur only between correspond-
ing parts; in fact, the finer-level sub-parts may not possess accurate
correspondence — only the meta parts do. To this end, we intro-
duce fuzzy part replacement based on fuzzy part correspondence.
Second, our part exchange is many-to-many instead of one-to-one,
which explains the use of the term “fuzzy”; see Figure 4.

Overview. Given two parent shapes S and T , we only describe
how to produce a crossover from S into T ; crossover in the other
direction is similar. First, we select subsets of parts RS in S and
RT in T to perform part exchange or replacement. The choices are
randomized but aim to ensure a high likelihood that the offspring



(a) chairs.

(b) lamps.

Figure 5: Color-coded visualization of fuzzy part correspondence
(red color: larger FPC value; yellow: small).

contains at least some sub-parts in each meta part to have a suffi-
cient coverage of the major, i.e., coarse-level, components of each
shape. Next, RT is removed from shape T and parts in RS are
placed into T . Part placement is dictated by fuzzy part correspon-
dence, essentially a confidence measure for replacement between
any two parts. We progressively place parts from RS into T in de-
creasing order of confidence. The confidence of placing a part is not
defined based on the part alone, but also based on the confidence in
the part’s neighbors, which form the context.

Fuzzy part correspondence. We wish to judge sub-part re-
placeability by functionality and not shape alone. With a focus on
man-made shapes, we rely on the spatial position of a part in the
context of the whole shape as a rough way of modeling the part’s
functionality. For example, the legs, seats, arm rests, and backs
of chairs are all spatially arranged in a predictable manner. To de-
fine fuzzy part correspondence, or FPC for short, we first globally
align all the shapes in the set. To account for varying part scales,
we rely on the method of Xu et al. [2010] to factor out part pro-
portion variations in the set. After aligning the shapes, we char-
acterize each part by its tightest oriented bounding box (OBB). Fi-
nally, the FPC measure between two parts p and q is defined as
θ(p, q) = 1.0 − d(p, q)/`, where d(p, q) is the Hausdorf distance
between the OBB’s of p and q and ` is the average diagonal length
of the OBB’s of all the (whole) input shapes. Figure 5 visualizes
FPC values between some parts taken from a chair set and a lamp
set. In a concurrent work, Kim et al. [2012] propose a method for
computing fuzzy correspondences between feature points over a set
of shapes via diffusion maps.

Context-based part substitution. Given the subset of parts RS

from source shape S and the target shape T , we place one part from
RS into T at a time based on FPC of the parts. Let p ∈ RS be a
part to be placed in. Due to structural discrepancies, pmay not have
a sufficiently confident target in T based on FPC. Thus, instead of

Figure 6: Illustration of context-based part placement. The (ver-
tical) red part can be placed in the other shape since the contexts,
matching parts in (a), are sufficiently replaceable based on fuzzy
part correspondence. A topology change is introduced (b).

accounting for FPC between a source and target part alone, we also
resort to a context-based approach. That is, p can be placed into
T as long as the neighbors of p in RS have sufficiently confident
counterparts in T . This is illustrated in Figure 6, where we see that
a topological variation is possible.

To execute context-based part placement, first, the set of boundary
parts for RS is substituted into shape T . A part p is substituted in
this step if it is adjacent to some part inRS and there is a part q ∈ T
that is sufficiently replaceable, i.e., θ(p, q) > θb. The placement
of the boundary parts forms the initial context. Then we place a
part p ∈ RS if p has a counterpart q ∈ T where the FPC θ(p, q)
between p and q is sufficiently high, θ(p, q) > θr . Throughout
our experiments, the threshold values are set as θb = 0.8 and θr =
0.96. Finally, we consider contexts. Each unprocessed part p ∈ RS

is assigned a confidence value, which is the sum of FPC values
of p’s neighbors in the updated shape T . The neighbors include
boundary parts as well as parts already substituted in. We form a
priority queue in decreasing confidence for the remaining parts in
RS and update it after a part goes into T . Figure 7 shows a short
sequence demonstrating this.

Finding crossover subsets. We consider three criteria when se-
lecting the subsets RS and RT for crossover: 1) to avoid spatially
large overlap among the parts in the offspring, a part in RS should
not have large overlap with any part in T \ RT ; 2) to preserve
symmetry constraints, parts belonging to the same symmetry group
should be selected (or not selected) simultaneously; 3) the key con-
sideration is that the parts in the offspring as a whole should sample
all the semantic parts of the shapes. The first two criteria are fairly

Figure 7: Step-by-step illustration of context-based part crossover.
The crossover (part) subsets of both shapes S and T are marked
in red (left). Our method first places the boundary parts (marked
yellow) of S into T (Step 1). Then parts in the crossover subset of
S which have sufficiently replaceable counterparts in T are placed
(Step 2). Under the constraint of all the placed parts, each unpro-
cessed part is placed in T in decreasing confidence (Step 3).



Figure 8: Importance values for two shape sets. Higher impor-
tance is assigned to parts performing more major functionality.

straightforward to fulfill. For the last, we adopt a stochastic sam-
pling approach inspired by [Merrell et al. 2011] which randomly
selects parts for RS and RT so that their combined importance ex-
ceeds a threshold Iimp.

The importance value of a part represents the extent of spatial over-
lap the part shares with other shape parts in the set. The overlaps
are estimated after all the shapes are globally aligned as in the case
for computing FPC. The intuition is that parts that are estimated
as important according to this measure are more likely to be im-
portant semantically. For example, for the set of chairs, we would
expect a leg part to possess higher importance than an auxiliary bar
between two adjacent legs, since all chairs must have legs but not
necessarily the auxiliary bars. Figure 8 shows a few models with
the importance of their parts visualized. In our experiments, we set
the threshold Iimp to be 1.2 times the averaged total part impor-
tance of all models in the set. It is worth noting that the threshold
can be set conservatively, resulting in more parts than necessary to
be selected. However, the FPC-driven replacement step would still
produce an adequate filter to obtain a proper part crossover.

Constraint inheritance. After placing RS into the target shape
T , we rebuild the controller constraints in the offspring model.
Ground support constraints are carried over by individual parts.
Symmetry groups are inherited from parent shapes only when all
controllers sharing the same symmetry group are inherited during
crossover. Both proximity and connectivity constraints are inher-
ited in the same way. If two parts in the offspring come from the
same parent, the constraint is simply maintained. For two parts
originated from different parents, the constraint is inherited based
on FPC. Specifically, let p be a new part placed in T , a proximity
or connectivity relation between p and q ∈ T is established if q has
a neighboring part r ∈ T that is sufficiently replaceable by p, that
is θ(p, r) > θn. In our experiments, we set θn = 0.8.

4.3 Part mutation

Part mutation happens to an individual shape. It is achieved by ran-
domly selecting and deforming a small number of, typically one to
three, controllers and then performing structure optimization on the
whole shape with the mutated controllers as constraints. In order
to obtain random yet meaningful mutations, we exploit the avail-
ability of a set of shapes. Specifically, we rely on fuzzy part cor-
respondence to collect a set of similar controllers and construct a
deformation space from them. Mutation of any controller in the set
is carried out by random sampling in that space.

Given a controller c, we collect all controllers ĉ satisfying the FPC
threshold θ(c, ĉ) > θm into a set Ψc; we set θm = 0.8 in our ex-
periments. From Ψc, we construct a deformation space for c in a
similar way to [Ovsjanikov et al. 2011]. First, we define a shape de-
scriptor for each controller in Ψc. We then perform PCA on the set
of shape descriptors. In the 2D PCA space, we compute a deforma-

Figure 9: Six mutations on the chair model on the left. Controllers
undergone mutations are highlighted in red. Structure optimization
of the controllers ensures coherence of the resulting models.

tion vector for a controller ĉ ∈ Ψc as the displacement vector of ĉ’s
shape descriptor from the center of the space. Then we project all
the deformation vectors using 2D PCA again and compute the min-
imum and maximum projected values along each dimension, form-
ing a bounding box of allowed deformations. A random mutation
of controller c then corresponds to a deformation vector randomly
sampled within the bounding box. See Figure 9 for an example.

5 Results

We present results of our set evolution. Reports from preliminary
user studies are also provided to evaluate our method both qualita-
tively and quantitatively. All results were obtained from real inter-
active sessions with graduate student participants.

Set evolution. The evolution of four sets of man-made shapes,
lamps, chairs, candelabra, and TV-shaped aliens, are shown. For
each set, we invited a participant to run our program and govern
the evolution in a “fit and diverse” manner. Figures 1, 10, and 15
show randomly selected subsets of the foreground/breeding sets at
several generations. Shapes that are marked out were those picked
by the user as unexpected or interesting. We observe that even with
a fairly small input set (ranging in size from 11 to 24), our tool
is able to generate populations of diverse yet meaningful shapes,
thanks to the part crossover and mutation operators we designed, as
well as to diversity control throughout the set evolution.

Diversity control. Figure 11 shows that a lack of diversity con-
trol would lead to the generation of an elite set. For the perfume
bottle set, our participant preferred heart- or diamond-shaped bot-
tles, which directed the evolution into an elite set of bottles with
heart and diamond shapes. The same happened to the aliens where
the user preferred cat-like creatures. Contrast Figure 11(b), an elite
set, to a “fit and diverse” one shown in Figure 15.

To quantitatively evaluate the effect of diversity control, we mea-
sure the diversity of a set of models by the standard deviation of
LFD. We record the diversity values throughout the interactive set
evolution carried out by a participant. In Figure 12, we plot the
diversity of the breeding set over all the generations for both with
and without diversity control. Evidently, “fit and diverse” leads to
higher degrees of set diversity than just “fit”.

Parameters and statistics. All the experiments on set evolution
were conducted with the same parameter setting as described in the
preceding sections. Table 1 shows some statistics and timing for
set evolution. Preprocessing of the initial input set includes meta
part correspondence, upright orientation, global alignment which



Figure 10: Evolutions of a chair set (left) and a candelabrum set (right). The entire input sets are shown. We show randomly selected shapes
from the gallery in three generations. Shapes marked are those identified as unexpected/interesting by the participants.

factors out part proportions, and controllers fitting and preanaly-
sis. The preprocessing time of the aliens set is not reported since
the meta part correspondence was difficult to produce automatically
and hence was manually specified. The percentages of valid shapes
demonstrate the ability of our mutation and crossover operators in
creating mostly valid shapes, as judged by human users. The low
percentage for the alien set can possibly be attributed to the users’
unfamiliarity of what makes a valid TV-like alien.

Preliminary user study. We conducted an informal user study to
evaluate the effectiveness of our set evolution in generating unex-
pected 3D shapes. Sixteen graduate students from the graphics labs
at SIAT and NUDT were invited to run the evolution of two sets:
chairs and lamps. For each set and in each generation, 18 shapes
were generated and presented to the user (9 at a time) and he or she
was asked to vote on each shape as either unexpected or not. We
assumed that the users have sufficient familiarity with the input set.
We then computed the average percentage of unexpected shapes in
each generation over all the users. In Figure 13, we plot the aver-



Set #input #part prep t repr t %valid

Perfumes 16 4 25m 0.1s 92%
Teapots 15 4 20m 0.24s 86%
Chairs 24 17 40m 0.4s 75%
Lamps 11 10 15m 0.17s 81%
Candelabra 15 5 20m 0.16s 90%
Aliens 12 10 N/A 0.12s 47%

Table 1: Various statistics from our set evolution experiments.
#input denotes size of the input set. #part denotes the aver-
age number of (sub-)parts per shape in the set. prep t denotes
the time (in minutes) spent on preprocessing. repr t denotes the
time (in seconds) needed, on average, to reproduce an offspring.
%valid denotes the percentage of valid models for the shapes pre-
sented in the gallery over 30 generations; validity was evaluated
through voting by a number of participants.

age percentage of unexpected shapes collected over the generations
for both “fit and diverse” and “fit” only. The trends show that with
only “fit”, the set may become an elite group which then contains
less number of unexpected shapes (blue curves dipping down after
15 generations or so). On the other hand, the degree of unexpected-
ness of the evolving set is well-maintained under diversity control.

In Figure 14, we plot the average percentage of “dislike” votes col-
lected from five participants, with both “fit and diverse” and “fit”
only. The plots show that shape classes with more complex struc-
tures (e.g. chairs and aliens) have higher rates of dislikes, compared
to simpler shapes such as perfume bottles. Moreover, the dislike
rate for “fit and diverse” usually increases with more generations,
due to the fact that the interactive user selection cannot reject all
implausible or disliked shapes in the background set. Obviously,
evolutions with only “fit” have slower growth of the dislike rates.
To prevent the dislike rate from increasing too fast, we clean up the
background set in every 30 generations by randomly removing half
of its members which are disliked or unmarked.

(a) perfume bottle set.

(b) TV-alien set.

Figure 11: Elite sets generated due to a lack of diversity control.
(a) Preferences given to heart- or diamond-shaped bottles. (b) Pref-
erences given to cat-like creatures.

(a) chair set. (b) lamp set.

Figure 12: Plots of set diversity, measured as the standard devia-
tion of LFD, over number of generations. “Fit and diverse” (red)
leads to more diversity than just “fit” (blue).

(a) chair set. (b) lamp set.

Figure 13: Plot of percentage of unexpected shapes, as judged by
humans, over the generations. Unexpectedness decreases without
diversity control (blue) but is maintained by “fit and diverse”.

(a) fit and diverse. (b) fit.

Figure 14: Plot of percentage of disliked shapes over the genera-
tions. The number of dislike models in each generation is obtained
by averaging votes from five participants.

6 Discussion, limitations, and future work

We present a set evolution method designed to generate sets of 3D
novel shapes to inspire the user and to assist in the creative mod-
eling process. The focus of this work is on the set, rather than
the individuals. The evolution keeps the population of shapes di-
verse, with a distinguishing foreground subset fit to the user tastes
or preferences, and portions of the background models, not as fit,
but ensuring that some unexpected models would emerge in future
generations. The high-level notions of fitness and diversity are both
biologically motivated, as are the low-level reproduction mecha-
nisms we use, namely, part mutation and crossover.

Part crossover and mutation. We have devised a part exchange
mechanism, the crossover, that goes beyond simple shuffling of the
major components of a set of shapes. The major components are
typically associated with meanings or functionalities that are to be
preserved throughout the evolution. The smaller-scale parts within
the major components are more stylistic in nature, but they are the
main reason for the perceived shape complexity and variability in
a set. Our technique operates at a finer granularity of part struc-



Figure 15: Evolution of a set of TV-like alien creatures. The in-
put set can be located in Figure 11(b), where we find an elite set
produced with a lack of diversity control to contrast with the more
diverse sets shown in this figure. Since the whole set of creatures are
rather unfamiliar themselves, voting from the participants did not
reveal particularly unexpected individuals. Nevertheless, signifi-
cant shape variations enabled by our part crossover and mutation
operators are not difficult to spot.

tures via fuzzy correspondence applied at the sub-part level, where
meaningful correspondence is not always clear. Part mutation also
adds a great deal to the variability of shape forms. The two repro-
duction operators together contribute to significant shape variations
which leads to the diversity of the population.

Initialization. Our current shape reproduction mechanism is still
rather limited compared to what happens during biological evolu-
tion; it cannot start from a set consisting of highly primitive models
and progressively evolve it into a richly diverse set consisting of
complex and advanced shapes. We require that the evolution be
initialized with a sufficiently “developed” set, i.e., a set of shapes
possessing high-level structural information and correspondence at
the meta part level. In our setting, any evolving shape is regarded
as a combination and interpolation/extrapolation of the initial set of
shape parts. Although we consider this as a limitation, it is intrigu-
ing to ask whether an algorithm can ever create a novel shape, not
from the geometry latent in the initial set. The genetic similarity and
apparent dissimilarity in appearance, say between a peacock and an
elephant, suggest that this is possible through a long and complex

process. It would likely require at first a shape representation with
much finer granularity, like a true “shape DNA” that can evolve. We
would like to explore along this direction in future work.

Generative scheme. Our method evolves a set to fit, and we
coined the term “fit and diverse”. It is interesting to note that if
one ignores the fitness and is content with just remaining “diverse”,
the evolution is reduced to a generative scheme, which creates vari-
ations from a given set of examples, e.g., [Lin et al. 2011; Jain et al.
2012]. Moreover, when the user does not have a clear fitness func-
tion in mind, he or she can explore a shape space [Shapira et al.
2009; Talton et al. 2009; Yang et al. 2011; Kim et al. 2012]. In
our setting, the space does not only provide a set of control points
for interpolated or extrapolated exploration, but it is dynamic and
reproduces new generations along the evolutionary path designed
by the user. We plan to develop our current evolution framework
further into the shape exploration setting as future work.

Collaborative set evolution. In our current implementation, the
foreground subset is evolved to fit the preferences of a particular
user. This can be extended to accommodate a community of users
by evolving a number of foreground sets. If the users express rather
similar taste, it can be considered as a trend. Our system has the
potential to evolve a trendy collection, without losing the capability
to diverge again over time into a new trend. This multi-user fitness
is related to the collaborative design space framework in [Talton
et al. 2009]. We leave that for future work as well.

To inspire or not. The ultimate and difficult question of whether
our set evolution produces suggestions that truly inspire user cre-
ativity is yet to be answered. Our preliminary user study only asks
for the identification of unexpected shapes and it only points to the
potential to inspire. Indeed, uncommon segments of the diverse
set contribute to evolution along unexpected paths to generate sur-
prises, which form an essential source for creativity [Chaudhuri and
Koltun 2010]. However, a formal evaluation requires a carefully de-
signed used study and we leave that for future work.

Limitations. In addition to the limitations mentioned above, there
is still plenty of room to improve our current approach. First, the
capability of our reproduction operators is limited by the underly-
ing structure representation. We adopted the component-wise con-
trollers [Zheng et al. 2011] which only handle cuboid and gener-
alized cylinder types of shape parts. Second, due to the stochastic
nature of the crossover operator, highly implausible shapes can still
be produced but they are typically filtered out by the user as unfit. In
terms of low-level geometry, parts still may not be stitched well to
form a watertight shape and structure modification at the sub-part
level may result in unnatural looking shapes. Third, our measure
of diversity is limited to the shape signature and similarity metric
employed. More advanced choices would likely yield improved re-
sults. Finally, user feedback in the evolution is only limited to liking
or disliking of individual shapes. While there is the gain at simplic-
ity, more fine-grained user feedback, e.g., at the sub-part level, will
lead to better control of the set evolution.

Future work. In addition to the possible future works mentioned
above, we would like to pay more attention to the quality of the
evolved individuals — higher-quality shapes lead to higher-quality
descendants. Also of interest is to allow evolution over sets that
belong to different but relevant semantic classes to generate inter-
esting hybrids. Finally, a more ambitious attempt would be to go
beyond functionality preservation via geometry evolution and en-
able the evolution to discover new functionalities. This may simply
be a natural consequence of more aggressive part mutations and
crossovers when a quantitative leap becomes a qualitative one.
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