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Abstract

Conditional Generative Adversarial Networks (GANs)
for cross-domain image-to-image translation have made
much progress recently [7, 8, 21, 12, 4, 18]. Depending
on the task complexity, thousands to millions of labeled im-
age pairs are needed to train a conditional GAN. However,
human labeling is expensive, even impractical, and large
quantities of data may not always be available. Inspired
by dual learning from natural language translation [23],
we develop a novel dual-GAN mechanism, which enables
image translators to be trained from two sets of unlabeled
images from two domains. In our architecture, the primal
GAN learns to translate images from domain U to those in
domain V , while the dual GAN learns to invert the task.
The closed loop made by the primal and dual tasks allows
images from either domain to be translated and then recon-
structed. Hence a loss function that accounts for the recon-
struction error of images can be used to train the transla-
tors. Experiments on multiple image translation tasks with
unlabeled data show considerable performance gain of Du-
alGAN over a single GAN. For some tasks, DualGAN can
even achieve comparable or slightly better results than con-
ditional GAN trained on fully labeled data.

1. Introduction

Many image processing and computer vision tasks, e.g.,
image segmentation, stylization, and abstraction, can be
posed as image-to-image translation problems [4], which
convert one visual representation of an object or scene into
another. Conventionally, these tasks have been tackled sep-
arately due to their intrinsic disparities [7, 8, 21, 12, 4, 18].
It is not until the past two years that general-purpose and
end-to-end deep learning frameworks, most notably those
utilizing fully convolutional networks (FCNs) [11] and con-
ditional generative adversarial nets (cGANs) [4], have been
developed to enable a unified treatment of these tasks.

Up to date, these general-purpose methods have all been
supervised and trained with a large number of labeled and
matching image pairs . In practice however, acquiring such
training data can be time-consuming (e.g., with pixelwise
or patchwise labeling) and even unrealistic. For exam-
ple, while there are plenty of photos or sketches available,
photo-sketch image pairs depicting the same people under
the same pose are scarce. In other image translation set-
tings, e.g., converting daylight scenes to night scenes, even
though labeled and matching image pairs can be obtained
with stationary cameras, moving objects in the scene often
cause varying degrees of content discrepancies.

In this paper, we aim to develop an unsupervised learn-
ing framework for general-purpose image-to-image transla-
tion, which only relies on unlabeled image data, such as two
sets of photos and sketches for the photo-to-sketch conver-
sion task. The obvious technical challenge is how to train
a translator without any data characterizing correct transla-
tions. Our approach is inspired by dual learning from natu-
ral language processing [23]. Dual learning trains two “op-
posite” language translators (e.g., English-to-French and
French-to-English) simultaneously by minimizing the re-
construction loss resulting from a nested application of the
two translators. The two translators represent a primal-dual
pair and the nested application forms a closed loop, allow-
ing the application of reinforcement learning. Specifically,
the reconstruction loss measured over monolingual data (ei-
ther English or French) would generate informative feed-
back to train a bilingual translation model.

Our work develops a dual learning framework for image-
to-image translation for the first time and differs from the
original NLP dual learning method of Xia et al. [23] in two
main aspects. First, the NLP method relied on pre-trained
(English and French) language models to indicate how con-
fident the the translator outputs are natural sentences in their
respective target languages. With general-purpose process-
ing in mind and the realization that such pre-trained models
are difficult to obtain for many image translation tasks, our
work develops GAN discriminators [3] that are trained ad-
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versarially with the translators to capture domain distribu-
tions. Hence, we call our learning architecture DualGAN .
Furthermore, we employ FCNs as translators which natu-
rally accommodate the 2D structure of images, rather than
sequence-to-sequence translation models such as LSTM or
Gated Recurrent Unit (GUT).

Taking two sets of unlabeled images as input, each
characterizing an image domain, DualGAN simultaneously
learns two reliable image translators from one domain to
the other and hence can operate on a wide variety of image-
to-image translation tasks. The effectiveness of DuanGAN
is validated through comparison with both GAN (with an
image-conditional generator and the original discriminator)
and conditional GAN [4]. The comparison results demon-
strate that, for some applications, DualGAN can outperform
supervised methods trained on labeled data.

2. Related work
Since the seminal work by Goodfellow et al. [3] in 2014,

a series of GAN-family methods have been proposed for
a wide variety of problems. The original GAN can learn a
generator to capture the distribution of real data by introduc-
ing an adversarial discriminator that evolves to discriminate
between the real data and the fake [3]. Soon after, various
conditional GANs (cGAN) have been proposed to condition
the image generation on class labels [13], attributes [14, 24],
texts [15], and images [7, 8, 21, 12, 4, 18].

Most image-conditional models were developed for spe-
cific applications such as super-resolution [7], texture syn-
thesis [8], style transfer from normal maps to images [21],
and video prediction [12], whereas few others were aim-
ing for general-purpose processing [4, 18]. The general-
purpose solution for image-to-image translation proposed
by Isola et al. [4] requires significant number of labeled im-
age pairs. The unsupervised mechanism for cross-domain
image conversion presented by Taigman et al. [18] can train
an image-conditional generator without paired images, but
relies on a sophisticated pre-trained function that maps im-
ages from either domain to an intermediate representation,
which requires labeled data in other formats.

Dual learning was first proposed by Xia et al. [23] to
reduce the requirement on labeled data in training English-
to-French and French-to-English translators. The French-
to-English translation is the dual task to English-to-French
translation, and they can be trained side-by-side. The key
idea of dual learning is to set up a dual-learning game which
involves two agents, each of whom only understands one
language, and can evaluate how likely the translated are
natural sentences in targeted language and to what extent
the reconstructed are consistent with the original. Such a
mechanism is played alternatively on both sides, allowing
translators to be trained from monolingual data only.

Despite of a lack of parallel bilingual data, two types of

feedback signals can be generated: the membership score
which evaluates the likelihood of the translated texts be-
longing to the targeted language, and the reconstruction er-
ror that measures the disparity between the reconstructed
sentences and the original. Both signals are assessed with
the assistance of application-specific domain knowledge,
i.e., the pre-trained English and French language models.

In our work, we aim for a general-purpose solution for
image-to-image conversion and hence do not utilize any
domain-specific knowledge or pre-trained domain represen-
tations. Instead, we use a domain-adaptive GAN discrimi-
nator to evaluate the membership score of translated sam-
ples, whereas the reconstruction error is measured as the
mean of absolute difference between the reconstructed and
original images within each image domain.

In CycleGAN, a concurrent work by Zhu et al. [26], the
same idea for unpaired image-to-image translation is pro-
posed, where the primal-dual relation in DualGAN is re-
ferred to as a cyclic mapping and their cycle consistency
loss is essentially the same as our reconstruction loss. Su-
periority of CycleGAN has been demonstrated on several
tasks where paired training data hardly exist, e.g., in object
transfiguration and painting style and season transfer.

Recent work by Liu and Tuzel [10], which we refer to
as coupled GAN or CoGAN, also trains two GANs to-
gether to solve image translation problems without paired
training data. Unlike DualGAN or CycleGAN, the two
GANs in CoGAN are not linked to enforce cycle consis-
tency. Instead, CoGAN learns a joint distribution over
images from two domains. By sharing weight parame-
ters corresponding to high level semantics in both gener-
ative and discriminative networks, CoGAN can enforce the
two GANs to interpret these image semantics in the same
way. However, the weight-sharing assumption in CoGAN
and similar approaches, e.g., [2, 9], does not lead to effec-
tive general-purpose solutions as its applicability is task-
dependent, leading to unnatural image translation results,
as shown in comparative studies by CycleGAN [26].

DualGAN and CycleGAN both aim for general-purpose
image-to-image translations without requiring a joint repre-
sentation to bridge the two image domains. In addition, Du-
alGAN trains both primal and dual GANs at the same time,
allowing a reconstruction error term to be used to generate
informative feedback signals.

3. Method
Given two sets of unlabeled and unpaired images sam-

pled from domains U and V , respectively, the primal task
of DualGAN is to learn a generator GA : U → V that maps
an image u ∈ U to an image v ∈ V , while the dual task is
to train an inverse generator GB : V → U . To realize this,
we employ two GANs, the primal GAN and the dual GAN.
The primal GAN learns the generator GA and a discrimi-



Figure 1: Network architecture and data flow chart of DualGAN for image-to-image translation.

nator DA that discriminates between GA’s fake outputs and
real members of domain V . Analogously, the dual GAN
learns the generator GB and a discriminator DB . The over-
all architecture and data flow are illustrated in Fig. 1.

As shown in Fig. 1, image u ∈ U is translated to domain
V using GA. How well the translation GA(u, z) fits in V is
evaluated by DA, where z is random noise, and so is z′ that
appears below. GA(u, z) is then translated back to domain
U usingGB , which outputsGB(GA(u, z), z

′) as the recon-
structed version of u. Similarly, v ∈ V is translated to U
as GB(v, z

′) and then reconstructed as GA(GB(v, z
′), z).

The discriminator DA is trained with v as positive samples
and GA(u, z) as negative examples, whereas DB takes u as
positive and GB(v, z

′) as negative. Generators GA and GB

are optimized to emulate “fake” outputs to blind the corre-
sponding discriminators DA and DB , as well as to mini-
mize the two reconstruction losses ‖GA(GB(v, z

′), z)−v‖
and ‖GB(GA(u, z), z

′)− u‖.

3.1. Objective

As in the traditional GAN, the objective of discrimina-
tors is to discriminate the generated fake samples from the
real ones. Nevertheless, here we use the loss format ad-
vocated by Wasserstein GAN (WGAN) [1] rather than the
sigmoid cross-entropy loss used in the original GAN [3]. It
is proven that the former performs better in terms of genera-
tor convergence and sample quality, as well as in improving
the stability of the optimization [1]. The corresponding loss
functions used in DA and DB are defined as:

ldA(u, v) = DA(GA(u, z))−DA(v), (1)
ldB(u, v) = DB(GB(v, z

′))−DB(u), (2)

where u ∈ U and v ∈ V .
The same loss function is used for both generators GA

and GB as they share the same objective. Previous works

on conditional image synthesis found it beneficial to replace
L2 distance with L1, since the former often leads to blurri-
ness [6, 23]. Hence, we adopt L1 distance to measure the
recovery error, which is added to the GAN objective to force
the translated samples to obey the domain distribution:

lg(u, v) = λU‖u−GB(GA(u, z), z
′)‖+

λV ‖v −GA(GB(v, z
′), z)‖

−DA(GB(v, z
′))−DB(GA(u, z)),

(3)

where u ∈ U , v ∈ V , and λU , λV are two constant parame-
ters. Depending on the application, λU and λV are typically
set to a value within [100.0, 1, 000.0]. If U contains natural
images and V does not (e.g., aerial photo-maps), we find it
more effective to use smaller λU than λV .

3.2. Network configuration

DualGAN is constructed with identical network archi-
tecture for GA and GB . The generator is configured with
equal number of downsampling (pooling) and upsampling
layers. In addition, we configure the generator with skip
connections between mirrored downsampling and upsam-
pling layers as in [16, 4], making it a U-shaped net. Such a
design enables low-level information to be shared between
input and output, which is beneficial since many image
translation problems implicitly assume alignment between
image structures in the input and output (e.g., object shapes,
textures, clutter, etc.). Without the skip layers, information
from all levels has to pass through the bottleneck, typically
causing significant loss of high-frequency information. Fur-
thermore, similar to [4], we did not explicitly provide the
noise vectors z, z′. Instead, they are provided only in the
form of dropout and applied to several layers of our gener-
ators at both training and test phases.

For discriminators, we employ the Markovian Patch-
GAN architecture as explored in [8], which assumes inde-
pendence between pixels distanced beyond a specific patch



size and models images only at the patch level rather than
over the full image. Such a configuration is effective in
capturing local high-frequency features such as texture and
style, but less so in modeling global distributions. It fulfills
our needs well, since the recovery loss encourages preser-
vation of global and low-frequency information and the dis-
criminators are designated to capture local high-frequency
information. The effectiveness of this configuration has
been verified on various translation tasks [23]. Similar
to [23], we run this discriminator convolutionally across the
image, averaging all responses to provide the ultimate out-
put. An extra advantage of such a scheme is that it requires
fewer parameters, runs faster, and has no constraints over
the size of the input image. The patch size at which the
discriminator operates is fixed at 70 × 70, and the image
resolutions were mostly 256× 256, same as pix2pix [4].

3.3. Training procedure

To optimize the DualGAN networks, we follow the train-
ing procedure proposed in WGAN [1]; see Alg. 1. We train
the discriminators ncritic steps, then one step on genera-
tors. We employ mini-batch Stochastic Gradient Descent
and apply the RMSProp solver, as momentum based meth-
ods such as Adam would occasionally cause instability [1],
and RMSProp is known to perform well even on highly non-
stationary problems [19, 1]. We typically set the number
of critic iterations per generator iteration ncritic to 2-4 and
assign batch size to 1-4, without noticeable differences on
effectiveness in the experiments. The clipping parameter c
is normally set in [0.01, 0.1], varying by application.

Algorithm 1 DualGAN training procedure

Require: Image set U , image set V , GAN A with gener-
ator parameters θA and discriminator parameters ωA,
GAN B with generator parameters θB and discrimina-
tor parameters ωB , clipping parameter c, batch size m,
and ncritic

1: Randomly initialize ωi, θi, i ∈ {A,B}
2: repeat
3: for t = 1, . . . , ncritic do
4: sample images {u(k)}mk=1 ⊆ U , {v(k)}mk=1 ⊆ V
5: update ωA to minimize 1

m

∑m
k=1 l

d
A(u

(k), v(k))

6: update ωB to minimize 1
m

∑m
k=1 l

d
B(u

(k), v(k))
7: clip(ωA,−c, c), clip(ωB ,−c, c)
8: end for
9: sample images {u(k)}mk=1 ⊆ U , {v(k)}mk=1 ⊆ V

10: update θA, θB to minimize 1
m

∑m
k=1 l

g(u(k), v(k))
11: until convergence

Training for traditional GANs needs to carefully balance
between the generator and the discriminator, since, as the
discriminator improves, the sigmoid cross-entropy loss is

Input GT DualGAN GAN cGAN [4]

Figure 2: Results of day→night translation. cGAN [4] is
trained with labeled data, whereas DualGAN and GAN are
trained in an unsupervised manner. DualGAN successfully
emulates the night scenes while preserving textures in the
inputs, e.g., see differences over the cloud regions between
our results and the ground truth (GT). In comparison, results
of cGAN and GAN contain much less details.

locally saturated and may lead to vanishing gradients. Un-
like in traditional GANs, the Wasserstein loss is differen-
tiable almost everywhere, resulting in a better discrimina-
tor. At each iteration, the generators are not trained until
the discriminators have been trained for ncritic steps. Such
a procedure enables the discriminators to provide more re-
liable gradient information [1].

4. Experimental results and evaluation
To assess the capability of DualGAN in general-purpose

image-to-image translation, we conduct experiments on a
variety of tasks, including photo-sketch conversion, label-
image translation, and artistic stylization.

To compare DualGAN with GAN and cGAN [4], four
labeled datasets are used: PHOTO-SKETCH [22, 25],
DAY-NIGHT [5], LABEL-FACADES [20], and AERIAL-
MAPS, which was directly captured from Google Map [4].
These datasets consist of corresponding images between
two domains; they serve as ground truth (GT) and can also
be used for supervised learning. However, none of these
datasets could guarantee accurate feature alignment at the
pixel level. For example, the sketches in SKETCH-PHOTO
dataset were drawn by artists and do not accurately align
with the corresponding photos, moving objects and cloud
pattern changes often show up in the DAY-NIGHT dataset,
and the labels in LABEL-FACADES dataset are not always
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Figure 3: Results of label→facade translation. DualGAN
faithfully preserves the structures in the label images, even
though some labels do not match well with the correspond-
ing photos in finer details. In contrast, results from GAN
and cGAN contain many artifacts. Over regions with label-
photo misalignment, cGAN often yields blurry output (e.g.,
the roof in second row and the entrance in third row).

precise. This highlights, in part, the difficulty in obtaining
high quality matching image pairs.

DualGAN enables us to utilize abundant unlabeled im-
age sources from the Web. Two unlabeled and unpaired
datasets are also tested in our experiments. The MATE-
RIAL dataset includes images of objects made of differ-
ent materials, e.g., stone, metal, plastic, fabric, and wood.
These images were manually selected from Flickr and cover
a variety of illumination conditions, compositions, color,
texture, and material sub-types [17]. This dataset was ini-
tially used for material recognition, but is applied here for
material transfer. The OIL-CHINESE painting dataset in-
cludes artistic paintings of two disparate styles: oil and Chi-
nese. All images were crawled from search engines and
they contain images with varying quality, format, and size.
We reformat, crop, and resize the images for training and
evaluation. In both of these datasets, no correspondence is
available between images from different domains.

5. Qualitative evaluation
Using the four labeled datasets, we first compare Du-

alGAN with GAN and cGAN [4] on the following trans-
lation tasks: day→night (Figure 2), labels↔facade (Fig-
ures 3 and 10), face photo↔sketch (Figures 4 and 5), and
map↔aerial photo (Figures 8 and 9). In all these tasks,
cGAN was trained with labeled (i.e., paired) data, where we

ran the model and code provided in [4] and chose the opti-
mal loss function for each task: L1 loss for facade→label
and L1 + cGAN loss for the other tasks (see [4] for more
details). In contrast, DualGAN and GAN were trained in
an unsupervised way, i.e., we decouple the image pairs and
then reshuffle the data. The results of GAN were generated
using our approach by setting λU = λV = 0.0 in eq. (3),
noting that this GAN is different from the original GAN
model [3] as it employs a conditional generator.

All three models were trained on the same training
datasets and tested on novel data that does not overlap those
for training. All the training were carried out on a single
GeForce GTX Titan X GPU. At test time, all models ran in
well under a second on this GPU.

Compared to GAN, in almost all cases, DualGAN pro-
duces results that are less blurry, contain fewer artifacts, and
better preserve content structures in the inputs and capture
features (e.g., texture, color, and/or style) of the target do-
main. We attribute the improvements to the reconstruction
loss, which forces the inputs to be reconstructable from out-
puts through the dual generator and strengthens feedback
signals that encodes the targeted distribution.

In many cases, DualGAN also compares favorably over
the supervised cGAN in terms of sharpness of the outputs
and faithfulness to the input images; see Figures 2, 3, 4, 5,
and 8. This is encouraging since the supervision in
cGAN does utilize additional image and pixel correspon-
dences. On the other hand, when translating between pho-
tos and semantic-based labels, such as map↔aerial and
label↔facades, it is often impossible to infer the correspon-
dences between pixel colors and labels based on targeted
distribution alone. As a result, DualGAN may map pixels
to wrong labels (see Figures 9 and 10) or labels to wrong
colors/textures (see Figures 3 and 8).

Figures 6 and 7 show image translation results obtained
using the two unlabeled datasets, including oil↔Chinese,
plastic→metal, metal→stone, leather→fabric, as well as
wood↔plastic. The results demonstrate that visually con-
vincing images can be generated by DualGAN when no cor-
responding images can be found in the target domains. As
well, the DualGAN results generally contain less artifacts
than those from GAN.

5.1. Quantitative evaluation

To quantitatively evaluate DualGAN, we set up two
user studies through Amazon Mechanical Turk (AMT). The
“material perceptual” test evaluates the material transfer re-
sults, in which we mix the outputs from all material trans-
fer tasks and let the Turkers choose the best match based
on which material they believe the objects in the image are
made of. For a total of 176 output images, each was evalu-
ated by ten Turkers. An output image is rated as a success if
at least three Turkers selected the target material type. Suc-
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Figure 4: Photo→sketch translation for faces. Results of
DualGAN are generally sharper than those from cGAN,
even though the former was trained using unpaired data,
whereas the latter makes use of image correspondence.

Input GT DualGAN GAN cGAN [4]

Figure 5: Results for sketch→photo translation of faces.
More artifacts and blurriness are showing up in results gen-
erated by GAN and cGAN than DualGAN.

cess rates of various material transfer results using different
approaches are summarized in Table 1, showing that Dual-
GAN outperforms GAN by a large margin.

In addition, we run the AMT “realness score” evalua-
tion for sketch→photo, label map→facades, maps→aerial
photo, and day→night translations. To eliminate potential
bias, for each of the four evaluations, we randomly shuf-

Input DualGAN GAN

Figure 6: Experimental results for translating Chinese
paintings to oil paintings (without GT available). The back-
ground grids shown in the GAN results imply that the out-
puts of GAN are not as stable as those of DualGAN.

fle real photos and outputs from all three approaches before
showing them to Turkers. Each image is shown to 20 Turk-
ers, who were asked to score the image based on to what ex-
tent the synthesized photo looks real. The “realness” score
ranges from 0 (totally missing), 1 (bad), 2 (acceptable), 3
(good), to 4 (compelling). The average score of different ap-
proaches on various tasks are then computed and shown in
Table. 2. The AMT study results show that DualGAN out-
performs GAN on all tasks and outperforms cGAN on two
tasks as well. This indicates that cGAN has little tolerance
to misalignment and inconsistency between image pairs, but
the additional pixel-level correspondence does help cGAN
correctly map labels to colors and textures.

Finally, we compute the segmentation accuracies for
facades→label and aerial→map tasks, as reported in Ta-
bles 3 and 4. The comparison shows that DualGAN is out-
performed by cGAN, which is expected as it is difficult to
infer proper labeling without image correspondence infor-
mation from the training data.
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metal (input) stone (DualGAN) stone (GAN) metal (input) stone (DualGAN) stone (GAN)
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Figure 7: Experimental results for various material transfer tasks. From top to bottom, plastic→metal, metal→stone,
leather→fabric, and plastic↔wood.

Task DualGAN GAN
plastic→wood 2/11 0/11
wood→plastic 1/11 0/11
metal→stone 2/11 0/11
stone→metal 2/11 0/11

leather→fabric 3/11 2/11
fabric→leather 2/11 1/11
plastic→metal 7/11 3/11
metal→plastic 1/11 0/11

Table 1: Success rates of various material transfer tasks
based on the AMT “material perceptual” test. There are
11 images in each set of transfer result, with noticeable im-
provements of DualGAN over GAN.

6. Conclusion
We propose DualGAN, a novel unsupervised dual learn-

ing framework for general-purpose image-to-image trans-

Avg. “realness” score
Task DualGAN cGAN[4] GAN GT

sketch→photo 1.87 1.69 1.04 3.56
day→night 2.42 1.89 0.13 3.05

label→facades 1.89 2.59 1.43 3.33
map→aerial 2.52 2.92 1.88 3.21

Table 2: Average AMT “realness” scores of outputs from
various tasks. The results show that DualGAN outper-
forms GAN in all tasks. It also outperforms cGAN for
sketch→photo and day→night tasks, but still lag behind for
label→facade and map→aerial tasks. In the latter two tasks,
the additional image correspondence in training data would
help cGAN map labels to the proper colors/textures.

lation. The unsupervised characteristic of DualGAN en-
ables many real world applications, as demonstrated in this
work, as well as in the concurrent work CycleGAN [26].
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Figure 8: Map→aerial photo translation. Without im-
age correspondences for training, DualGAN may map the
orange-colored interstate highways to building roofs with
bright colors. Nevertheless, the DualGAN results are
sharper than those from GAN and cGAN.

Input GT DualGAN GAN) cGAN [4]

Figure 9: Results for aerial photo→map translation. Dual-
GAN performs better than GAN, but not as good as cGAN.
With additional pixel correspondence information, cGAN
performs well in terms of labeling local roads, but still can-
not detect interstate highways.

Experimental results suggest that the DualGAN mechanism
can significantly improve the outputs of GAN for various
image-to-image translation tasks. With unlabeled data only,
DualGAN can generate comparable or even better outputs
than conditional GAN [4] which is trained with labeled data
providing image and pixel-level correspondences.

On the other hand, our method is outperformed by con-
ditional GAN or cGAN [4] for certain tasks which involve
semantics-based labels. This is due to the lack of pixel and
label correspondence information, which cannot be inferred
from the target distribution alone. In the future, we intend

Input GT DualGAN GAN) cGAN [4]

Figure 10: Facades→label translation. While cGAN cor-
rectly labels various bulding components such as windows,
doors, and balconies, the overall label images are not as de-
tailed and structured as DualGAN’s outputs.

Per-pixel acc. Per-class acc. Class IOU
DualGAN 0.27 0.13 0.06
cGAN [4] 0.54 0.33 0.19

GAN 0.22 0.10 0.05

Table 3: Segmentation accuracy for the facades→label
task. DualGAN outperforms GAN, but is not as accurate as
cGAN. Without image correspondence (for cGAN), even if
DualGAN segments a region properly, it may not assign the
region with a correct label.

Per-pixel acc. Per-class acc. Class IOU
DualGAN 0.42 0.22 0.09
cGAN [4] 0.70 0.46 0.26

GAN 0.41 0.23 0.09

Table 4: Segmentation accuracy for the aerial→map task,
for which DualGAN performs less than satisfactorily.

to investigate whether this limitation can be lifted with the
use of a small number of labeled data as a warm start.
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