
Learning to Group Discrete Graphical Patterns

ZHAOLIANG LUN*, University of Massachusetts Amherst
CHANGQING ZOU*†, Simon Fraser University, Hengyang Normal University
HAIBIN HUANG, University of Massachusetts Amherst
EVANGELOS KALOGERAKIS, University of Massachusetts Amherst
PING TAN, Simon Fraser University
MARIE-PAULE CANI, LIX, Ecole Polytechnique, CNRS
HAO ZHANG, Simon Fraser University

Fig. 1. We train a deep convolutional neural network which learns to group discrete graphical patterns from a large set of human-annotated
perceptual grouping data. The four grouping results obtained (grouped elements share the same color), while still exhibiting various imperfections,
demonstrate that our learned grouping scheme is able to handle a variety of noise and mixing of element shapes and arrangements.

We introduce a deep learning approach for grouping discrete patterns common
in graphical designs. Our approach is based on a convolutional neural network
architecture that learns a grouping measure defined over a pair of pattern
elements. Motivated by perceptual grouping principles, the key feature of
our network is the encoding of element shape, context, symmetries, and
structural arrangements. These element properties are all jointly considered
and appropriately weighted in our grouping measure. To better align our
measure with human perceptions for grouping, we train our network on a large,
human-annotated dataset of pattern groupings consisting of patterns at varying
granularity levels, with rich element relations and varieties, and tempered
with noise and other data imperfections. Experimental results demonstrate
that our deep-learned measure leads to robust grouping results.

CCS Concepts: • Computing methodologies → Shape analysis;

Additional Key Words and Phrases: discrete pattern analysis, perceptual
grouping, supervised learning, convolutional neural networks

ACM Reference format:
Zhaoliang Lun, Changqing Zou, Haibin Huang, Evangelos Kalogerakis, Ping
Tan, Marie-Paule Cani, and Hao Zhang. 2017. Learning to Group Discrete
Graphical Patterns. ACM Trans. Graph. 0, 0, Article 225 (2017), 11 pages.

*Both authors contributed equally to the paper
†Corresponding author: aaronzou1125@gmail.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0730-0301/2017/0-ART225 $15.00
https://doi.org/0000001.0000001_2

https://doi.org/0000001.0000001_2

1 INTRODUCTION
Graphical patterns such as 2D vector art, facades, textile or packing
designs, are often encountered in our daily lives. They have also
been the subject of study in computer graphics research, i.e., in the
context of pattern editing [Stava et al. 2010; Zhang et al. 2013],
synthesis [AlHalawani et al. 2013; Bao et al. 2013; Yeh et al. 2013],
exploration [Chen et al. 2016; Guerrero et al. 2016], and layout
optimization [Xu et al. 2015], to name a few. Often, the first step
towards any graphical pattern processing task is to algorithmically
understand the underlying structure of the input patterns. And in
turn, an understanding of pattern structures often relies on perceptual
grouping [Köhler 1929; Palmer 1992, 1977].

While humans possess an innate ability to perceive forms and
phenomena in this world as organized patterns, the main challenges
in enabling a machine to group graphical patterns like humans are
two-fold. Firstly, the immensely rich variations and complexities
of the set of discernible graphical patterns as well as the noise and
imperfections which are often associated with them in real-world data
should all be accounted for; see Figure 2 (top). Secondly, and more
subtly, when different perceptual grouping principles [Köhler 1929;
Palmer 1977] such as similarity, proximity, continuity, symmetry,
would lead to conflicting grouping results, there is a need to conjoin
these principles [Kanizsa 1980; Nan et al. 2011]. In such cases, it
remains unclear which grouping principles should take precedence;
see Figure 2 (bottom). Resolving such conflicts is essential to obtain
a high-level understanding of graphical patterns.

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

225:2 • Lun, Z. et al.

(a)

(b) (b1)

(a2)(a1)

Symmetry rule wins (b2) Similarity rule wins

Fig. 2. Challenges in graphical pattern grouping. The top row illus-
trates the rich variations and complexity found in real-world patterns.
(a): Red element deviating from perfect symmetry. (a1) and (a2): Which
grouping is better? Discerning between complex patterns and group-
ings is difficult. The bottom row shows conflicting grouping principles
for pattern (b), leading to different groupings: (b1) and (b2).

In this paper, we develop an algorithm which mimics the human
ability of graphical pattern grouping and apply it to group such pat-
terns formed by one or more atomic (i.e. indivisible) elements; see
Figure 1. While general grouping models or principles have been
known for a long time [Köhler 1929; Palmer 1977], it remains un-
clear how to exactly quantify the various models, how important each
model is relative to the others, and what the best feature representa-
tion for pattern elements to characterize their similarity is, especially
in terms of shape and structural arrangements. In our work, instead of
hand-engineering rules to quantify grouping models and hand-tuning
their relative importance, we resort to a data-driven approach and
develop a deep learning framework.

At the heart of our learning approach is a deep Convolutional Neu-
ral Network (CNN) which is trained to extract a grouping measure
consistent with human perception. Figure 3 provides an illustration of
the CNN architecture. The CNN takes as input graphical pattern im-
ages and produces descriptors encoding element shapes, contexts, and
structural arrangements, which reflect properties related to pattern
similarity, proximity, continuity, and symmetry principles observed
in the perceptual grouping literature. Then our CNN computes an ele-
ment grouping measure as the Euclidean distance between weighted
combinations of the learned descriptors. To allow our CNN-based
grouping scheme to mimic human perception as well as robustly
handle pattern noise and variety, we assembled a large training set
of human-annotated pattern groupings to train our deep architecture.
The training patterns correspond to various granularity levels, with
rich varieties of compositions and variations, and are contaminated
with noise and other data imperfections.

Our main contributions can be summarized as follows:

• The first data-driven method trained via a deep CNN for per-
ceptual grouping of discrete graphical patterns.

• Learned shape-, context-, and structure-aware descriptors en-
coding graphical elements in pattern designs.

• A large, annotated dataset of pattern groupings encompassing
rich pattern varieties and relations, which should benefit future
research on pattern analysis and processing.

We used both standard numerical error measures and a perceptual
user study to compare the grouping results produced by our method
with those produced by humans on test pattern images. The com-
parative studies demonstrate that our method is capable of inferring
groupings often consistent with human perception. We also tested
our method against several competing alternatives, and found that it
consistently produces more meaningful grouping results.

2 RELATED WORK
While our work proposes a data-driven approach to learn perceptual
grouping, it is inspired by previous model-driven approaches, e.g.,
those on Gestalt-based perceptual grouping, symmetry-based group-
ing, and affinity-based grouping of visual patterns. In this section,
we briefly discuss the related approaches.

Gestalt-based pattern grouping. Gestalt psychologists have tried
to identify principles, or laws, related to perceptual grouping of orga-
nized patterns or objects in general [Palmer 1977; Wertheimer 1938].
For example, patterns tend to be grouped together when they are
similar or proximal to each other, form closed figures, are continu-
ous or symmetric. Early approaches attempted to quantify Gestalt
laws; see [Desolneux et al. 2002] for a survey. For example, one
could account for the degree of proximity or similarity [Kubovy
and van den Berg 2008], then apply these numerical measures to a
probabilistic model for perceptual grouping. A complication with
Gestalt-based approaches is that different laws may interact and con-
flict with each other on the same stimuli [Kanizsa 1980]. A common
approach to resolve such conflicts is to select a grouping mechanism
based on the “simplest interpretation” [Feldman 2003]. In the context
of discrete graphical patterns, Nan et al. [2011] present an energy
minimization method using graph cuts for conjoining Gestalt laws
of similarity, proximity, and regularity, where the quantification of
these laws and the optimization objective are heuristically defined.
The grouping method with conjoining Gestalt rules is then applied to
the progressive simplification of architectural drawings.

In contrast to Gestalt-based approaches, which are largely model-
driven and hand-engineered, we follow a data-driven, learning ap-
proach towards discrete pattern grouping. We loosely consider the
Gestalt principles of proximity, continuity, symmetry, closure in the
design of our learning architecture, yet we do not explicitly attempt
to quantify them or hand-engineer their conflict resolutions.

Symmetry-based pattern grouping. Symmetry-based grouping has
been a dominant analysis tool for pattern understanding in computer
graphics. Many techniques have been developed for exact and ap-
proximate symmetry detection of patterns found in natural images
and shapes, e.g., [Barnes et al. 2010; Graham et al. 2010; Lukac et al.
2017; Podolak et al. 2006]; see also surveys by [Liu et al. 2010; Mitra
et al. 2012]. Several techniques have also investigated hierarchical
pattern grouping in images or shapes by building symmetry hierar-
chies [Simari et al. 2006; van Kaick et al. 2013; Wang et al. 2011;
Zhang et al. 2013]. Related to structural hierarchy analysis methods
are also inverse procedural modeling techniques that use grammars
to parse symmetric arrangements of graphical elements [Bokeloh
et al. 2010; Stava et al. 2010; Wu et al. 2014].

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

Learning to Group Discrete Graphical Patterns • 225:3

800

4096

4096

32

32

8

5

800 X 800

800

16 32 64
128 128 128 256

800

16

128 128 128 64
32

400 400
200 200100100 5013

Concatenation

50 25 25

800 X 800 X 8

4096 * 4

4096 * 4

8

5

 LocationStructure Encoder

C
ontrastive Loss

 Size&

Pattern

6

384 256
13

384

1327

256

96

55
Feature Fusion

Fig. 3. Given an input image of discrete graphical patterns (left), our method processes the image and its elements through a deep CNN to extract
shape-, context-, and symmetry-aware pattern element descriptors. The network is trained to produce a grouping measure that compares pattern
elements such that the produced comparisons agree as much as possible with human-annotated ones, yielding meaningful pattern groupings.

In general, these techniques are largely model- or rule-driven, often
with handcrafted precedence rules. Furthermore, while symmetries
can be classified into a limited number of categories [Conway et al.
2008; Weyl 1952] and can all be well-defined mathematically, fluctu-
ating symmetries [Graham et al. 2010], along with other grouping
criteria such as continuity and proximity, are imprecise and can result
in a much wider variety of pattern variations.

The recent work of Guerrero et al. [2016] on pattern exploration
could account for a rich set of discrete patterns but opted for manual
pattern analysis. It is unlikely that existing model-driven methods
or their variants can cover a close-to-full spectrum of pattern vari-
ations. This has motivated us to develop a data-driven framework
to learn discrete pattern grouping. Instead of hand-crafting rules for
detecting symmetries and determining their precedence, we use a
deep learning architecture that identifies and prioritizes symmetries
for discrete pattern grouping, combining them with other percep-
tual grouping principles into a grouping measure to be learned from
human-annotated data. The basic premise is that deep learning with
rich sets of annotated pattern grouping data can lead to significant
boost in discrete pattern grouping performance.

Affinity-based pattern grouping. The preeminent approach to vi-
sual pattern grouping or segmentation is to define a metric, or in other
words an affinity measure, to compare patterns in the form of edges,
patches, parts, or objects in natural images, then use this affinity
to guide clustering algorithms (e.g., [Arbelaez et al. 2011; Shi and
Malik 2000; Zitnick and Dollár 2014]). These methods typically rely
on hand-engineered grouping cues, and as a result, lack robustness
and generality. They have largely been superseded by data-driven
and machine learning techniques by now.

Learning measures for grouping. Instead of hand-engineering
grouping cues, recent analysis methods have employed deep learning
architectures to group visual patterns appearing in natural images, in
the context of image clustering [Xie et al. 2016; Yang et al. 2016],
image classification [Greff et al. 2016], figure-ground segmentation

[Maire et al. 2016], and contour detection [Maninis et al. 2016]. Our
approach is more related to methods that learn affinities for compar-
ing image patches, since graphical patterns can be represented as 2D
rasterized image patches (alternatively to vector art). Several recent
methods propose Siamese CNN architectures to learn patch-based
affinities in natural images by training them in a supervised man-
ner on patch correspondence datasets [Han et al. 2015; Simo-Serra
et al. 2015; Yi et al. 2016; Zagoruyko and Komodakis 2015]. Isola
et al. [2016] instead trains a CNN architecture for patch similarity
in an unsupervised manner by making the CNN predict whether two
visual primitives occur in the same spatial or temporal context.

These patch-based learning methods compare natural image pat-
terns only based on their local appearance, since their CNNs exclu-
sively operate on local patches around these patterns. Our method
instead groups pre-segmented graphical elements based on their local
appearance, context, and most importantly, global structures (e.g.,
symmetries, layouts) that are often present in graphical designs. For
example, similar elements placed on four corners of the image are
less likely to form a group in image segmentation tasks, while in our
case they will be grouped due to the pattern regularity. As we discuss
in our experiment section, existing CNNs for grouping patches in
natural images do not generalize well to discrete graphical patterns.

3 GROUPING MEASURE
Overview. Given an input image of discrete graphical patterns, our

method applies a learned CNN-based measure that compares atomic
elements in the image, then clusters them into pattern groups. Our
CNN architecture is visualized in Figure 3. It is composed of two
“sub-networks”. The top sub-network, which we call atomic element
encoder (in orange color), takes as input a pair of atomic elements and
for each element, it extracts a learned descriptor encoding its overall
shape and local context. We refer to this descriptor as shape- and
context-aware element descriptor. The bottom sub-network, which
we call structure encoder (in green color) takes as input the whole

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

225:4 • Lun, Z. et al.

image, and attempts to detect structural arrangements in it, such as
the presence of symmetries or figures. It then outputs a per-pixel
descriptor that encodes where extracted structural arrangements are
located in the input image. We refer to this descriptor as structure-
aware descriptor.

To compare a pair of atomic elements, we consider (a) their shape-
and context-aware descriptors extracted by the atomic element en-
coder (orange-colored vectors in Figure 3), (b) the structure-aware
descriptors encoding the presence of structural arrangements within
their area, as extracted by the structure encoder (green-colored vec-
tors), and finally (c) their location in the image and size, which we ex-
plicitly provide as additional inputs to our architecture (grey-colored
vectors). From our experiments, we found that all the descriptors,
and in turn, both sub-networks are important so as to compute an
accurate similarity measure between atomic elements. In addition,
we found that the relative importance of the descriptors in our mea-
sure should not be the same, instead, they should be learned from
training data. This is not surprising based on the perceptual pattern
grouping literature [Palmer 1977], which indicates that different
grouping principles do not necessarily share the same priority. Thus,
our CNN architecture incorporates a linear transformation layer that
re-weights the above descriptors before computing the final measure.
Mathematically, given a pair of atomic elements (E,E ′), our mea-
sure is evaluated as the Euclidean distance between their weighted
descriptors f(E), f(E ′):

D(E,E ′) = | |W
(
f(E) − f(E ′)

)
| | (1)

where W represents a learned diagonal weight matrix used in our
transformation layer. The element descriptor f(E) is produced by fus-
ing its shape- and context-aware descriptor fa (E) (32-D), its structure-
aware descriptor fs (E) (8-D), and its location and size descriptor fl (E)
(5-D) into a single column vector (45-D); f(E ′) is similarly defined.
In the rest of this section, we describe how these different descriptors
are computed through our architecture, then the learning method is
discussed in Section 4.

Atomic element encoder. The element encoder aims to extract a
shape- and context-aware representation capturing an atomic element
along with its context at multiple scales. The architecture of this
encoder is a modified version of the widely popular image-based
CNN, known as AlexNet [Krizhevsky et al. 2012] (see also Figure 3,
in orange color). The original AlexNet consists of two convolutional
layers, followed by two pooling layers, then three additional convo-
lutional layers and three fully connected layers. The convolutional
layers apply a set of learned convolution filters to produce “feature
maps” that are further non-linearly transformed through rectified
linear units (ReLUs). The pooling layers employ max-pooling units
that summarize the feature maps through subsampling, while the
fully connected layers apply non-linear transformations operating on
the whole feature maps produced in the previous layer. The last fully
connected layer (called “fc8”) outputs image classification probabili-
ties related to categorization in ImageNet, thus we exclude it from
our architecture.

We further modified AlexNet to process individual elements and
local multi-scale context around them. Specifically, we first compute
the oriented bounding box around the element, then crop the input

image at 100%, 200%, 300%, and 400% of its box size. The result-
ing crops are resized to images of size 227x227 pixels, which is the
input image resolution used in AlexNet. The four images are pro-
cessed through four identical branches of AlexNet (without “fc8”),
which in turn produce four 4, 096-dimensional features. These feature
representations are concatenated into a single, multi-scale 16, 384-
dimensional pattern representation. The representation is extremely
high-dimensional, which can lead to unreliable distances when com-
paring elements [Zimek et al. 2012]. In addition, individual features
encoded in this representation can have varying importance in eval-
uating atomic element and context similarity. Thus, we reduce the
dimensionality and re-weight these features through a linear transfor-
mation, implemented as an additional layer after AlexNet.

Given the above-mentioned 16, 384-dimensional feature represen-
tation g(E) for an element E, our architecture outputs a compact
32-dimensional representation fa (E) by applying the transformation
fa (E) = P · g(E), where P is a weight matrix learned during the CNN
training. We experimented with different dimensionalities for the
output representation (4, 8, 16, 32, 64) - we found that 32 dimensions
yielded highest agreement with ground-truth groupings in a hold-out
validation set in our experiments. The output representation fa (E) is
the shape- and context-aware element descriptor used in the fused
descriptor of Equation (1). In Section 5, we discuss results when
this descriptor is omitted from our measure, and we also provide
visualizations that indicate that the atomic element encoder captures
useful shape information about pattern elements.

Structure encoder. In contrast to the atomic element encoder that
focuses on representing individual elements and their local neighbor-
hood, the structure encoder attempts to capture large-scale structures
in the pattern. For example, if a set of elements form a heart-shaped
figure, or are related under a global rotational symmetry, then these
non-local structures provide strong cues to aggregate these elements
into a single group, rather than splitting them into smaller groups. To
capture a structure-aware element representation, one option would
be to provide the atomic element encoder with very large input neigh-
borhoods, e.g., including the whole pattern image (global context)
around each element. However, such strategy would result in a highly
redundant representation, since all elements would share the same
global context. Instead, our structure encoder takes as input the whole
image, and yields a single intermediate representation encoding the
presence of large-scale structures in the input image.

The architecture of the structure encoder is shown in Figure 3 (in
green color). It receives the whole input pattern image at 800x800 res-
olution and processes it through a series of convolution and pooling
layers. Specifically, the structure encoder consists of two convolu-
tional layers, followed by ReLU transformations and two pooling
layers, which provide invariance to small perturbations of elements
in the input image (similarly to AlexNet). Then the structure encoder
includes five more convolutional layers followed by ReLUs. Each
convolutional layer applies a set of local filters in the feature map
produced at the previous layer, resulting in feature maps of increas-
ingly smaller size, yet encoding increasingly larger-scale structures
in the input image. The output of the last convolutional layer is a set
of 256 feature maps with size 13 × 13. Once the filters are trained on
our dataset, we observed that the resulting feature map values are
correlated with the presence of global symmetries or forms in the

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

Learning to Group Discrete Graphical Patterns • 225:5

image (see Section 5 for related visualizations). Yet, these feature
maps do not readily provide information on where exactly in the
input image these large-scale structures exist, or which elements
participate in these large-scale structures. As a result, we cannot use
these maps as-is to extract element-level structure descriptors.

To extract these descriptors, our architecture employs seven “de-
convolutional” layers consisting of convolution filters and ReLus
that progressively transform and upscale the feature maps towards
the original image resolution. As in the case of other deep archi-
tectures for image-to-image translation tasks [Isola et al. 2017], the
configuration of the deconvolution layers, i.e., the size and number of
their filters, is symmetric with the configuration of the corresponding
convolutional layers. For example, the first deconvolutional layer
produces feature maps of the same size and number as the sixth con-
volutional layer, the second deconvolutional layer produces feature
maps of the same size and number as the fifth convolutional layer,
etc. In addition, similarly to image-to-image translation architectures
[Isola et al. 2017], we observed that better performance is achieved
when each deconvolution layer receives as input the feature maps pro-
duced by the immediately previous layer in the architecture as well
as the feature maps produced in its corresponding symmetric con-
volutional layer (see Figure 3, grey connections). This is due to the
potential loss of fine-grained structure information in the produced
13 × 13 × 256 feature map of the the last convolutional layer.

The output of our structure encoder is a set of 8 feature maps of size
800x800 that provide information on which and where large-scale
structures are present in the input pattern image at the pixel level (see
Section 5 for related visualizations). To compute the structure-aware
descriptor fs (E) for an element E in the input image, we find each
pixel p ∈ E covered by the element, and average the pixel feature
values hm (p) per each output mapm (m = 1...8):

fs,m (E) = avд
p∈E

hm (p) (2)

The resulting 8-dimensional descriptor is incorporated into the fused
descriptor used in Equation (1). We employed an aggregate function
(averaging) here since each element has a different number of pixels
and pixel ordering. A general learnable function cannot be readily
applied to such unordered input. Instead of using the average feature
values, we also tried using the maximum, but yielded slightly poorer
performance. We also experimented with different number of output
feature maps (4, 8, 16, 32, 64) as well as different number of layers
and filters in the structure encoder, at the end, the architecture of
Figure 3 offered the best performance in a hold-out validation set.
Note also that producing 8 feature maps does not mean that up to
8 layouts are encoded; the features are continuous and can jointly
encode a larger number of layouts. Finally, one might argue that
the structure encoder may also capture information relevant to the
shape or context of each element. Based on the visualizations of the
output feature maps (Section 5), we found that structure encoder
mainly captures large-scale structures and arrangements of elements
rather than element shape or contexts. Using the structure encoder
alone without the atomic element encoder significantly degraded the
grouping performance (and vice versa).

Element location and size descriptors. Motivated by the “prox-
imity” principle that states that nearby elements tend to be grouped

together, we incorporated the location (x ,y) of each element in the in-
put pattern image as an additional 2-dimensional element descriptor.
Computing this descriptor is straightforward and does not require any
particular “hand-engineering”; we simply compute the centroid coor-
dinates of each element in the image and normalize them between
[0, 1]. Also motivated by observations in the perceptual pattern group-
ing literature stating that size influences the perception of pattern
similarity [Palmer 1977], we incorporate the radius of the element
bounding sphere with the width w and height h of the element’s
axis-aligned bounding box (relative to image size) into an additional
descriptor, which is also straightforward to compute. Concatenating
location and size yields the 5-dimensional descriptor fl (E) used in
the fused descriptor of Equation (1).

It is worth noting that the atomic element encoder is agnostic to
element location or size, since the input elements are re-scaled and
centered in the pattern image crops fed into it. Similarly, the struc-
ture encoder focuses on capturing large-scale structures rather than
fine-grained location and size information. We found that explicitly
incorporating location and size in our measure improved the grouping
performance, as discussed in Section 5.

Clustering. The last step in our analysis pipeline is to apply a
clustering technique to group patterns based on the measure of Equa-
tion (1). In general, given our distance measure between element
pairs, one can apply any clustering technique which relies on element
distances or similarities based on transformations of these distances,
as input. We experimented with several clustering techniques includ-
ing k-means, Gaussian Mixture Models, normalized cuts [Shi and
Malik 2000], affinity propagation [Frey and Dueck 2007], as well as
agglomerative clustering variants [Hastie et al. 2001] (see Section 5
for comparisons and parameter discussion). We found that affinity
propagation offered the best grouping results.

4 LEARNING
Our learning procedure aims to produce a grouping measure that is
consistent with human perception. To this end, all the parameters of
our grouping measure, including the diagonal entries w = diaд(W)
of the descriptor weight matrix W, as well as all the CNN parameters
v (including the convolution/deconvolution filter parameters and the
dimensionality reduction parameters) are learned from a training
set of procedurally generated pattern images with human-annotated
groupings. Below we explain our objective function used to train our
network, the optimization procedure, and finally the training set.

Objective function. Our network parameters are learned by mini-
mizing an objective function defined over a training set of element
pairs. We use a function, known as contrastive loss [Hadsell et al.
2006], commonly used for learning distance functions. The loss func-
tion is composed of the following terms. The first term penalizes large
distance values for elements that should be aggregated according to
the training data, i.e., they belong to the same (human-annotated)
group. We call these “positive” pairs. The second term penalizes
small distance values for conflicting elements, i.e., ones that should
not belong to the same group according to the training dataset. These
are called “negative” pairs. Finally, we include a regularization term
that prevents the parameter values from becoming arbitrarily large,
which often happens when the learned function overfits the train-
ing dataset, thus has less chance to generalize to new inputs. The

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

225:6 • Lun, Z. et al.

Fig. 4. An example of a layout template (left) and the pattern (right,
in black) instantiated from it. The template is drawn using shape or
curve primitives and annotated with desired element, orientation, size,
spacing, symmetries, and stochastic parameters. The pattern is proce-
durally generated based on the layout and given specifications. Each
colored primitive in the template corresponds to a different group.

objective function is formulated as follows:

C(w, v)=
∑

P,P ′∈P
D2(P , P ′) +

∑
P,P ′∈N

max(marдin − D (P , P ′), 0)2 (3)

+λ1 | |w| |2 + λ2 | |v| |2,
where P,N are sets containing positive and negative pairs of ele-
ments or groups, respectively. The regularization parameters λ1, λ2
are set to 10−2 and 10−3 respectively through cross-validation. The
marдin value is set to 1 — its absolute value does not affect the
learned parameters, but only scales distances such that negative pairs
tend to have a margin of at least one unit distance.

Initialization and optimization. We initialize the feature weights
w and structural encoder parameters to small random values. The
parameters of the atomic element encoder are initialized based on
the AlexNet parameters pre-trained on ImageNet [Russakovsky et al.
2015]. The convolution filters trained on ImageNet already partially
capture useful shape information [Su et al. 2015], thus starting our
optimization based on this initialization helps it converge to a better
local minimum resulting in improved grouping performance. To
minimize the cost function, we use batch gradient descent based on
the Adam update rule [Kingma and Ba 2014] to iteratively optimize
the parameters. To compute the required analytic gradients with
respect to all the parameters, we use standard backpropagation.

Training dataset. To train our network, we produced an image
dataset containing a variety of 2D discrete graphical pattern arrange-
ments. To create this dataset, we first collected 820 pattern layout
templates drawn by 11 designers we hired. An example of such a
template is shown in Figure 4. Each layout template consists of a set
of primitives such as hexagons, rectangles, circles, and parametric
curves. Each primitive is filled with atomic elements, randomly se-
lected from a collection of icons containing various shapes (Figure
5). The atomic elements are placed following a stochastic proce-
dure, which takes as input element placement attributes specified
by the users, including element size, spacing, and orientation. For
additional variety, in our procedural generation step we introduce

1 2

3

4

Fig. 5. We collected 86 atomic elements (some of them shown on
the left) for pattern generation. During generation, the elements can
undergo various affine deformations or symmetry transformations
(right: 1○ → 2○ shows deformation; 1○ → 3○ and 3○ → 4○ show
different reflectional symmetry transformations), among others.

noise on element placement including stochastic perturbations on
input attributes, random occlusions between elements, and random
affine transformations on the element shapes.

The ground-truth groups are specified by users through a simple
UI where users simply assign different colors to primitives to indicate
grouping. Each unique color corresponds to a different pattern group.
Each time the stochastic procedure is executed, different pattern im-
ages with annotated groups are generated arising from the randomly
selected element types, deformations, and perturbed orientation, size,
and spacing attributes. Given the initial 820 pattern layouts, our
procedure yielded 7, 891 pattern images, which are provided in the
supplementary material. We believe that the 820 templates contain
interesting varieties and that our method was able to generalize well
from those to different patterns, including real designs (see Section
5). From each of these images, we sampled 500 positive and 500
negative pairs of elements, which in total yielded a dataset of ∼8M
training pairs used to train our network.

5 RESULTS AND VALIDATION
We validated our method on a test dataset of graphical patterns
mined from the web, through both a perceptual user study and stan-
dard numerical error measures. In what follows, we discuss the test
dataset, show pattern grouping results obtained by our method, pro-
vide comparisons with alternative methods, present an analysis of
the representations learned by the network, and report timings.

Test dataset. Graphical patterns are commonly encountered in col-
oring books for kids. Thus, we mined graphical pattern designs from
the web using google and bing image search based on the phrase
“coloring page”. We note that we skipped coloring page images con-
taining only organic shapes without any regularity. Each contiguous
region in these images often corresponds to a discrete graphical ele-
ment. We then hired 8 human subjects (adults) to provide groupings
for the downloaded images by using a “paint bucket” tool to flood
image regions over elements belonging to the same perceived group
with the same color. The resulting test set contains 214 images of
annotated graphical pattern groups, which is provided in our sup-
plementary material. The images in this test set frequently contain
noise, such as occasional text on elements (e.g. “ENT” in Fig 1, left),
element occlusions, or missing elements in a conjoining group.

Grouping results. Figure 6(a-h) displays groupings produced by
our method for a variety of procedurally generated pattern images
(not included in our training dataset), while Figure 6(i-p) displays

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

Learning to Group Discrete Graphical Patterns • 225:7

(a) (d)

(g)

(j)

(b)

(e) (h)

(k)

(c)

(f)

(i) (l)

(m) (n) (o) (p)

(m0) (n0) (o0) (p0)

Fig. 6. Gallery of grouping results obtained by our method on procedurally generated patterns (a-h) and downloaded images (i-p). Results obtained
with preset group counts include (m), (n), and (o); the rest was automatic. Some human-annotated groupings are shown (m0-p0).

produced groupings for downloaded pattern images belonging to our
test set (see also Figure 1 for more test cases). In the last row, we

show corresponding human-annotated groupings for several chal-
lenging cases (m-p). Plausible groupings are achieved under various

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

225:8 • Lun, Z. et al.

preset #group auto #group
Rand index purity Rand index purity

geometry distance 77.62% 73.13% 76.47% 76.64%
AlexNet 76.60% 70.96% 74.41% 71.16%

fine-tuned AlexNet 77.72% 73.12% 77.59% 80.21%
element encoder 78.34% 74.59% 77.72% 78.82%
structure encoder 78.79% 73.24% 77.35% 74.68%

element+structure enc. 80.28% 75.75% 80.03% 81.84%
our full measure 83.05% 80.24% 83.58% 85.76%
Table 1. Purity and Rand index values for different measures.

scenarios: elements under rotational symmetries (a-b, f-g, i-j, l, etc.),
translational symmetries (a, c-e, g-h, n, etc.), reflectional symmetries
(a, d, e-f, h, k, m, etc.), elements laid out along various continuous
curves (b-c, g-h, etc.) or geometric primitives (a, d-e), element oc-
clusions (d, f, l, o, etc.), and graphical element designs depicting
organic (i, m, p, etc.) or man-made objects (m-n). There are also
imperfections in our groupings especially for organic objects (e.g.,
bears), which are challenging for our method since it was trained
on non-organic-like shapes. Imperfections also exist when graphical
elements do not strictly form contiguous regions (church entablature)
or incur significant occlusion (e.g., ferris wheel, bear).

Clustering evaluation measures. Pattern grouping is an instance of
clustering, i.e., each group of patterns corresponds to a distinct cluster.
Thus, to numerically evaluate our method and alternatives against
human-annotated groupings on our test set, we used two standard
numerical error measures commonly used in clustering analysis:
purity and Rand index. To compute clustering purity, each cluster
produced by a grouping method under evaluation is assigned to the
human-annotated cluster with the largest number of common atomic
elements. Then we count the number of common atomic elements
across all produced clusters divided by the total number of elements.
The Rand index is an alternative measure of clustering similarity. We
count the number of element pairs that are either in the same group
or in different groups in both the produced and human-annotated
groupings, divided by the total number of pairs.

Comparisons with alternative grouping measures. We compared
our method with the following grouping measures based on prior
work and “weaker” versions of our architecture:

• geometric distance: a first simple baseline is to define a geometric-
based distance between two elements by first aligning them through
the best rigid transformation, then measure the average Euclidean
distance between nearest corresponding element silhouette points.
Elements that are identical under translational, rotational, or reflec-
tive translation symmetry (isometries) have zero distance.

• AlexNet distance: a CNN-based baseline is to compute Euclidean
distances between raw AlexNet features of two elements. To do
this, we extract the image patch containing each element, resize
these patches to 227 × 227 resolution, pass them through AlexNet
trained on ImageNet (i.e., natural images), then extract the 4,096-
dimensional feature vector per element based on its penultimate
layer “fc7”; this layer offered best performance.

• fine-tuned AlexNet distance: as confirmed from our experiments,
using raw AlexNet features trained on natural images does not
generalize well to comparing discrete graphical patterns. A better
CNN-based baseline is to instead compute Euclidean distances

Rand index purity
affinity propagation 83.05% 80.24%

agglomerative (average linkage) 75.93% 71.13%
agglomerative (single linkage) 71.11% 68.38%

agglomerative (complete linkage) 76.76% 71.79%
k-means 80.85% 75.58%

Gaussian Mixture Models 80.92% 74.91%
normalized cuts 77.48% 71.72%

Tagger [Greff et al. 2016] 66.54% 55.21%
Table 2. Purity and Rand index for different clustering techniques.

between their AlexNet “fc7” features fine-tuned on our training
dataset under the same siamese configuration and objective.

• element encoder distance: a “weaker” version of our architecture
is to use the atomic element encoder alone (i.e., AlexNet branches
operating on multi-scale patches together including the dimension-
ality reduction layer). We compute Euclidean distances between
the element 32-dimensional descriptors, as extracted by our atomic
element encoder trained alone on our dataset.

• structure encoder distance: an alternative “weaker” version of our
architecture is to use the structure encoder only. We compute Eu-
clidean distances between the 8-dimensional element descriptors,
as extracted by the structure encoder trained alone on our dataset.

• structure+element encoder distance: another “weaker” version of
our architecture is to compute distances between the 40-dimensional
element descriptors extracted by using both the structure and ele-
ment encoder trained on our dataset. The difference from our full
method is that we do not use here the element size and location.

The above competing measures are used by the affinity propaga-
tion clustering technique [Frey and Dueck 2007] to produce element
groupings under two modes: (a) “preset #group” mode: we provide
the affinity propagation technique with the desired (ground-truth)
number of groups and force it to produce the same number of clus-
ters per test case (using the implementation from [Wang 2010]), (b)
“auto #group” mode: the default mode of affinity propagation works
without specifying the target number of clusters, but uses instead an
internal “preference” parameter, which controls the granularity of
clustering and affects the resulting number of clusters. We greedily
select the preference value that yields the highest Rand index on our
hold-out validation set using grid search. The same preference value
is used for clustering in our entire test set. We also tried other clus-
tering techniques (see next paragraph) - we similarly provided them
with the target number of groups, or tuned their internal parameters
on our validation set. Affinity propagation yielded the best perfor-
mance. Table 1 reports purity and Rand index for our measure and
alternatives under both “preset #group” and “auto #group” modes.
Our full measure yielded better grouping performance compared to
alternatives under both modes according to Rand index and purity.
The performance differences between the “preset #group” and “auto
#group” mode are subtle indicating that providing the desired number
of clusters as additional input is not crucial.

Different clustering techniques. Table 2 reports purity and Rand
index for alternative clustering techniques using our full measure,
including k-means, Gaussian Mixture Models (initialized with k-
means), normalized cuts [Shi and Malik 2000], and agglomerative
clustering variants [Hastie et al. 2001]. We report performance under
the “preset #group” mode, where we provide all techniques access

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

Learning to Group Discrete Graphical Patterns • 225:9

A B

(i) A - 40%

(ii) B - 0%

(iii) Both - 60%

(iv) Neither - 0%

Fig. 7. Query layout shown to participants of our user study.

ground truth both our result

preset #groups

auto #groups

49% 26% 24%

52% 22% 25%

Fig. 8. Distribution of participant answers comparing human-annotated
grouping versus different algorithmic choices.

to the target number of clusters. We also tried to tune the internal
parameters (stopping criteria) of agglomerative clustering and nor-
malized cuts using grid search on our validation set (“auto #group”
mode), yet this resulted in slightly lower grouping performance for
these techniques. Thus, we report results for these methods under the
“preset #group” mode only.

In addition, we compared to Tagger [Greff et al. 2016], a deep
neural network that jointly learns image representations and performs
perceptual grouping. Tagger does not use our measure; it learns to
group patterns based on its own internal representation. We trained
it on the same training data as our method using their publically
available implementation. The training and test images were down-
sampled into the largest possible size 120 × 120 (6 times larger than
the size of images used in the original implementation) so that we
can fit their network in our GPU (12GB memory). We also tuned
Tagger’s hyper-parameters in our hold-out validation set. Tagger
infers pixel-level probabilities for group assignments, thus for the test
images, pixel-level probabilities were up-sampled to 800 × 800, and
element-level group assignments were computed through averaging
the probabilities of pixels they contained, then selecting the most
likely group assignment. Table 2 shows that affinity propagation
using our measure yielded the best performance in terms of purity
and Rand index compared to other techniques, including Tagger.

User study. We also validated our method through a perceptual
user study executed using the Amazon MTurk service. Each ques-
tionnaire included 50 queries, each showing three images originating
from our test set: an image with the patterns on top, an image with
the human-annotated groups (image A), an image produced using
our measure based on affinity propagation under either the “preset
#group” or “auto #group” mode (image B). The images were laid out
as shown in Figure 7. Queries were shown at a random order, while
each page was repeated twice (i.e., 25 unique queries), with A and
B randomly flipped, to detect unreliable users giving inconsistent
answers. Each query included the following question: “Which of the
two groupings (A or B) seems more plausible to you?”. Participants
were asked to pick one of the following answers: “(i) A, (ii) B, (iii)
can’t tell - Both A and B are equally plausible, (iv) can’t tell - Neither
A nor B is plausible”. To avoid any individual bias, we allowed each
participant to complete only one questionnaire per category. Each

query was answered by 5 different, reliable MTurk participants. We
filtered out unreliable MTurk participants who gave two different an-
swers to more than 8 out of the 25 unique queries in the questionnaire,
or took less than 3 minutes to complete it.

Figure 8 demonstrates how frequently participants selected the
human-annotated grouping versus our method in either of the two
modes, and vice versa, on average. We also demonstrate how fre-
quently they found both displayed groupings to be equally plausible
(we do not show the option “none is plausible” since it represented
less than 1% of the answers). For 26% of the comparisons, participants
found that the human-annotated groupings were as plausible as the
groupings produced by our measure in the “preset #group” mode.
For 24% of the pattern comparisons, the produced groupings were
found to be better than the human-annotated ones in this mode. In
contrast, for 49% of the pattern comparisons, the human-annotated
groupings were found to be better than the groupings of our method.
Participants found the groupings produced by the automatic stopping
mode of our method (“auto #groups”) a bit worse than groupings pro-
duced when the desired number of groups is given (“preset #groups).
In the ideal scenario, an algorithm should produce groupings that
are exactly as plausible as human groupings. The results of our user
study indicate that there is still room for improvement.

Fig. 9. Elements giv-
ing strongest feature
responses at differ-
ent descriptor entries
of the learned CNN
representation. Each
column corresponds
to a different descrip-
tor dimension.

Learned representations. Finally, we
looked more closely on the feature rep-
resentations learned by our CNN. We
found that after training, the element en-
coder network becomes sensitive to par-
ticular element styles or types. For exam-
ple, the columns of Figure 9 show the
top-5 elements that cause highest feature
responses for particular entries (dimen-
sions) of its learned 32-dimensional repre-
sentation. For example, we found that the
5th feature is sensitive to triangle-based
element inputs (first column), the 8th fea-
ture is sensitive to star- or cross-like el-
ements (second column), and the 15th
feature is more sensitive to spider-like
elements (third column). Interestingly, the elements that strongly acti-
vate these feature responses lie in various orientations, indicating that
the learned CNN representation is likely to be invariant to rotations
of the pattern elements.

Figure 10 visualizes output feature maps produced by the structure
encoder network for various input pattern images. We noticed that
the feature maps have similar values in areas where certain structural
arrangements of elements exist. Elements with similar values in these
areas will be favored to be grouped together by our measure. More
specifically, the feature map shown in Figure 10(a) reveals which
elements are related under a certain rotational symmetry, the one in
Figure 10(b) reveals which elements are related under a reflectional
symmetry, and the one in Figure 10(c) reveals which elements are
layout according to a closed form (e.g., heart).

Running times. CNN training on our dataset took 30 hours using a
TitanX GPU and a Xeon E5-2620 CPU. Once trained, at test time,
our method computes the descriptors for all elements within an image
in ∼3 seconds. Computing distances for all pairs of elements and

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

225:10 • Lun, Z. et al.

applying affinity propagation clustering needed about a second to
produce the grouping per test image.

6 DISCUSSION AND LIMITATIONS
The ability to discern patterns of varying forms and complexity is
one of the most fundamental human capabilities. We have developed
what we believe to be the first data-driven, deep learning based
approach to discrete graphical pattern grouping, enabling us to better
understand the way such patterns are perceived. In particular, we learn
a grouping measure from human-annotated pattern data, which allows
us to produce meaningful graphical pattern groupings. Extensive
experiments and validation demonstrate that within the realm of
reasonable expectation of a data-driven approach, our method is able
to produce robust grouping results.

Figure 6 also shows various grouping imperfections produced by
our method, such as in the tree and bears images. These input images
mainly consists of many organic patterns, which are stylistically
quite different from the ones in our training data. Our CNN was
trained on a synthetic dataset of 8K images with 86 unique elements,
most of which represent non-organic-like patterns. Thus, it is not
expected to generalize well to organic-like patterns or natural image
patches. We expect that enriching our training dataset with organic-
like patterns can help learn descriptors more suited for such elements,
thus improving the generality of our algorithm. Another limitation is
that our method assumes that elements are pre-segmented or form
contiguous regions in the input images. Jointly segmenting an image
into pattern elements and grouping them deserves future investigation,
which may also be useful for natural image segmentation tasks.

In addition, our method does not incorporate explicit part labels,
or “semantic” knowledge, which could help disambiguate such cases.
It is also not designed to produce hierarchical groupings. Collecting
hierarchical grouping data to train our network is significantly more
involved than collecting “flat” grouping results. The downside is
that our grouping measure leads to a single grouping, without any
assurance of it being the most reasonable one. A true hierarchical
grouping measure would require a global foresight when organizing
a set of patterns in a top-down fashion. How to collect the appropriate

(a) (b) (c)

Fig. 10. Feature maps produced by the structure encoder network
revealing (a) rotational symmetry, (b) reflectional symmetry, (c) closed
form (heart shape).

data and learn such a measure is an intriguing question. Finally, our
grouping measure is formulated as a weighted linear combination of
shape-, context- and structure-aware descriptors, yet linearity is only
a simplifying assumption. It would be interesting to enforce inherent
non-linearity in the weighting mechanism through additional fully
connected layers and non-linearities in our network.

7 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their comments. Zou acknowl-
edges support from the Science and Technology Plan Project of Hu-
nan Province (2016TP1020) and the Program of Key Disciplines
in Hunan Province. Kalogerakis acknowledges support from NSF
(CHS-1422441, CHS-1617333), and the Massachusetts Technology
Collaborative grant for funding the UMass GPU cluster. Tan acknowl-
edges support from NSERC Canada (31-611663,31-611664). Zhang
acknowledges support from NSERC Canada (611370,611649), and
gift funds from Adobe Research.

REFERENCES
Sawsan AlHalawani, Yongliang Yang, Han Liu, and Niloy J. Mitra. 2013. Interactive

Facades: Analysis and Synthesis of Semi-Regular Facades. Computer Graphics
Forum (Eurographics) (2013), to appear.

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. 2011. Contour
detection and hierarchical image segmentation. IEEE transactions on pattern analysis
and machine intelligence 33, 5 (2011), 898–916.

Fan Bao, Michael Schwarz, and Peter Wonka. 2013. Procedural facade variations from a
single layout. ACM Trans. on Graph 32, 1 (2013).

Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. 2010. The
Generalized Patchmatch Correspondence Algorithm. In Proc. of ECCV.

M. Bokeloh, M. Wand, and H.-P. Seidel. 2010. A Connection between Partial Symmetry
and Inverse Procedural Modeling. ACM Trans. on Graph 29, 4 (2010), 104:1–104:10.

Yilan Chen, Hongbo Fu, and Kin Chung Au. 2016. A Multi-level Sketch-based Interface
for Decorative Pattern Exploration. In SIGGRAPH ASIA 2016 Technical Briefs (SA

’16). Article 26, 4 pages.
John H. Conway, Heidi Burgiel, and Chaim Goodman-Strauss. 2008. The Symmetries of

Things. A K Peters/CRC Press.
Agné Desolneux, Lionel Moisan, and Jean-Michel Morel. 2002. Gestalt theory and

computer vision. Springer.
Jacob Feldman. 2003. Perceptual grouping by selection of a logically minimal model.

Proc. of ICCV 55 (2003), 5–25.
Brendan J. Frey and Delbert Dueck. 2007. Clustering by passing messages between data

points. Science 315 (2007), 2007.
John H. Graham, Shmuel Raz, Hagit Hel-Or, and Eviatar Nevo. 2010. Fluctuating

Asymmetry: Methods, Theory, and Applications. Symmetry 2, 2 (2010), 466–540.
Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Juergen

Schmidhuber. 2016. Tagger: Deep Unsupervised Perceptual Grouping. In Advances
in Neural Information Processing Systems. 4484–4492.

Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra. 2016. PATEX: Exploring
Pattern Variations. ACM Trans. on Graph 35, 4, Article 48 (July 2016), 48:1–
48:13 pages.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction by
Learning an Invariant Mapping. In Proc. CVPR.

Xufeng Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. 2015. MatchNet: Unifying
feature and metric learning for patch-based matching. In Proc. of CVPR.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical
Learning. Springer New York Inc., New York, NY, USA.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. CVPR (2017).

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H Adelson. 2016. Learning
visual groups from co-occurrences in space and time. International Conference on
Learning Representations, Workshop paper (2016).

Gaetano Kanizsa. 1980. Grammatica del Vedere. Il Mulino.
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

CoRR abs/1412.6980 (2014).
W. Köhler. 1929. Gestalt Psychology. Liveright, New York.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification

with deep convolutional neural networks. In Proc. NIPS.
Michael Kubovy and Martin van den Berg. 2008. The whole is equal to the sum of

its parts: A probabilistic model of grouping by proximity and similarity in regular
patterns. Psychological Review 115, 1 (2008), 131–154.

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

Learning to Group Discrete Graphical Patterns • 225:11

Yanxi Liu, Hagit Hel-Or, Craig S. Kaplan, and Luc J. Van Gool. 2010. Computational
Symmetry in Computer Vision and Computer Graphics. Foundations and Trends in
Computer Graphics and Vision, Vol. 5. 1–195.

Michal Lukac, Daniel Sykora, Kalyan Sunkavalli, Eli Shechtman, Ondrej Jamriska,
Nathan Carr, and Tomas Pajdla. 2017. Nautilus: Recovering Regional Symmetry
Transformations for Image Editing. ACM Trans. on Graph to appear (2017).

Michael Maire, Takuya Narihira, and Stella X Yu. 2016. Affinity CNN: Learning pixel-
centric pairwise relations for figure/ground embedding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 174–182.

Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, and Luc Van Gool. 2016.
Convolutional oriented boundaries. In European Conference on Computer Vision.
580–596.

Niloy J. Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. 2012. Symmetry in 3D
Geometry: Extraction and Applications. In Proc. of Eurographics STAR Report.

Liangliang Nan, Andrei Sharf, Ke Xie, Tien-Tsin Wong, Oliver Deussen, Daniel Cohen-
Or, and Baoquan Chen. 2011. Conjoining Gestalt Rules for Abstraction of Architec-
tural Drawings. ACM Trans. on Graph 30, 6 (2011). 185:1-185:10.

S. Palmer. 1992. Common region: a new principle of perceptual grouping. Cognitive
Psychology 24 (1992), 436–447.

Stephen E. Palmer. 1977. Hierarchical structure in perceptual representation. Cognitive
Psychology 9, 4 (1977), 441–474.

Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szymon Rusinkiewicz, and
Thomas Funkhouser. 2006. A Planar-reflective Symmetry Transform for 3D Shapes.
ACM Trans. on Graph 25, 3 (2006).

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image Segmentation. IEEE
Trans. Pat. Ana. & Mach. Int. (2000).

Patricio Simari, Evangelos Kalogerakis, and Karan Singh. 2006. Folding meshes:
hierarchical mesh segmentation based on planar symmetry. Symp. on Geom. Proc.
(2006), 111–119.

Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and
Francesc Moreno-Noguer. 2015. Discriminative Learning of Deep Convolutional
Feature Point Descriptors. In Proc. of ICCV.

O. Stava, B. Benes, R. Mech, D. Aliga, and P. Kristof. 2010. Inverse Procedural Modeling
by Automatic Generation of L-systems. Computer Graphics Forum 29, 2 (2010),
665–674.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. 2015.
Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Proc.
ICCV.

Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir, and
Daniel Cohen-Or. 2013. Co-Hierarchical Analysis of Shape Structures. ACM Trans.
on Graph 32, 4 (2013), Article 69.

Kaijun Wang. 2010. Fast Affinity Propagation Clustering under Given Number
of Clusters. (2010). https://www.mathworks.com/matlabcentral/fileexchange/
25722-fast-affinity-propagation-clustering-under-given-number-of-clusters

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,
and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects. Computer
Graphics Forum (Eurographics) 30, 2 (2011), 287–296.

M. Wertheimer. 1938. Laws of organization in perceptual forms. 71–88.
H. Weyl. 1952. Symmetry. Princeton University Press.
Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka.

2014. Inverse procedural modeling of facade layouts. ACM Trans. on Graph 33, 4
(2014), 121:1–121:10.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised Deep Embedding for
Clustering Analysis. In Proc. of ICML.

Pengfei Xu, Hongbo Fu, Chiew-Lan Tai, and Takeo Igarashi. 2015. GACA: Group-
Aware Command-based Arrangement of Graphic Elements. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015,
Seoul, Republic of Korea, April 18-23, 2015. 2787–2795.

Jianwei Yang, Devi Parikh, and Dhruv Batra. 2016. Joint Unsupervised Learning of
Deep Representations and Image Clusters. In Proc. CVPR.

Yi-Ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew Fisher, and Pat Hanrahan.
2013. Synthesis of Tiled Patterns Using Factor Graphs. ACM Trans. on Graph 32, 1,
Article 3 (Feb. 2013), 3:1–3:13 pages.

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. 2016. LIFT: Learned
Invariant Feature Transform. In IEEE ECCV.

S. Zagoruyko and N. Komodakis. 2015. Learning to compare image patches via convo-
lutional neural networks. In Proc. of CVPR. 4353–4361.

Hao Zhang, Kai Xu, Wei Jiang, Jinjie Lin, Daniel Cohen-Or, and Baoquan Chen. 2013.
Layered Analysis of Irregular Facades via Symmetry Maximization. ACM Trans. on
Graph 32, 4 (2013), Article 121.

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A Survey on Unsupervised
Outlier Detection in High-dimensional Numerical Data. Stat. Anal. Data Min. 5, 5

(2012).
C. Lawrence Zitnick and Piotr Dollár. 2014. Edge Boxes: Locating Object Proposals

from Edges. In Proc. of ECCV.

ACM Transactions on Graphics, Vol. 0, No. 0, Article 225. Publication date: 2017.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://www.mathworks.com/matlabcentral/fileexchange/25722-fast-affinity-propagation-clustering-under-given-number-of-clusters
https://www.mathworks.com/matlabcentral/fileexchange/25722-fast-affinity-propagation-clustering-under-given-number-of-clusters

	Abstract
	1 Introduction
	2 Related work
	3 grouping measure
	4 Learning
	5 Results and validation
	6 Discussion and limitations
	7 Acknowledgements
	References

