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CS&P’18 preface

Preface

This volume contains the papers presented at CS&P’18, the 27th International Workshop on
Concurrency, Specification and Programming, held on September 24-26 2018 in Berlin.

Since the early seventies Warsaw University and Humboldt University have alternately or-
ganized an annual workshop - since the early nineties known as CS&P. Over time, it has grown
from a bilateral seminar to a well-known meeting attended also by colleagues from many other
countries than Poland and Germany.

During the three-day meeting, there are 8 sessions and a number of short presentations on
current and emerging topics, as well as open discussions. While sessions on Concurrency, Veri-
fication and Programming have always been part of the CS&P, we are delighted to add sessions
on the topics Learning Systems and Reaction Systems to this years program. Furthermore,
there are two invited talks: Prof. Matthias Weidlich will give a presentation on the ”Formal
Analysis of Complex Event Processing” and Prof. Wojciech Penczek will speak on ”Improving
Efficiency of Model Checking for Variants of Alternating-time Temporal Logic”.

This volume contains 21 papers supplementing the presentations and invited talks, selected
from the submissions by the program committee. Following the workshops tradition, we strive
to retain an informal working atmosphere. Therefore, the proceedings includes drafts and
extended abstracts as well as fully elaborated contributions.

The proceedings are published by Humboldt University and CEUR. The editors would like to
thank the university’s printing office, the team at CEUR Workshop Proceedings, and EasyChair
for their help in producing this publication.

September 26, 2018 Holger Schlingloff & Samira Akili
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Formal Analysis of Complex Event Processing -
Potential and Challenges

Matthias Weidlich

Deparment of Computer Science, Humboldt-Universität zu Berlin
matthias.weidlich@hu-berlin.de

Extended Abstract

Complex event processing (CEP) emerged as a paradigm to build systems that
react to situations of interest [1]. By evaluating continuous queries over streams
of events, CEP systems provide the foundation for re-active and pro-active
applications in domains such as healthcare and urban transportation. Models for
CEP are an active area of research and various languages for the definition of
event stream queries have, so far, been proposed. While each of them provides a
different syntax and semantics, they typically adopt point-based event semantics
(i.e., the occurrence of an event is atomic), an attribute-based data model (an
event carries payload, which is structured as key-value pairs), and comprise a set
of common query operators [7], such as sequencing of events in terms of their
temporal order; negation to check for the absence of an event; and windows to
bound the temporal interval in which events are considered relevant to the query.

Common CEP applications face high-velocity event streams, which renders
the evaluation of queries a performance bottleneck. Therefore, various algorithms
and architectures for efficient CEP have been proposed in recent years, including
techniques for parallelisation and distribution of query evaluation [3], semantic
query rewriting [6], or sub-pattern sharing [4]. Moreover, reflecting on the chal-
lenges induced by distributed event sources, techniques to achieve robustness of
CEP against out-of-order arrivals of events have been developed [2].

Despite all these advancements, we argue that most of these techniques adopt
a pragmatic view—they strive for a technical solution of the issues as they emerge
in a specific application. We therefore advocate the design of formal methods
to guide the design and implementation of CEP applications. Specifically, we
suggest to rely on well-established formalisms for concurrent systems to reason
about the following aspects of CEP applications:
– Query verification: Formal analysis may reveal whether a query deployed in

a CEP system can match at all, specifically if event streams satisfy domain-
specific constraints.

– Sound parallelisation: Formal analysis may identify non-determinism in query
evaluation that is introduced through paralelisation schemes for queries that
potentially interact with each other.

– Robustness guarantees: Formal analysis may enable conclusions on the errors
introduced by out-of-order event arrivals at a CEP system, thereby giving
robustness guarantees.
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In the light of the above reasoning tasks, we developed a formal model of
CEP applications that is grounded in Petri-nets [5]. The choice of this formalism
is motivated by their concurrent and local semantics, along with the broad
availability of analysis algorithms and tool support.

Major challenges in this endeavour, however, have been the integration of
the various perspectives of a CEP application in a single model: It requires a
comprehensive formalisation of the semantics of event streams, event queries,
and evaluation architectures, properly capturing their interplay. For instance, it
is not sufficient to simply capture that an event occurred, but several modalities
have to be encoded on the formal level: An event may have occurred, but may
be consumed by a match of an event query and, thus, no longer be available to
construct further matches. In such a case, the interplay with common evaluation
architectures needs to be taken into account. If an event can be consumed only
by a single match of a query, sequential evaluation of various match candidates
of a query may lead to a different result compared to their concurrent evaluation.

Using our formal model, we are able to approach reasoning on the afore-
mentioned aspects of CEP applications through standard reachability analysis.
The question of whether a specific query can match translates into the common
problem of identifying whether a specific state (i.e., a marking in the Petri-net)
can be obtained from the initial state. Based thereon, conclusions can be drawn
on the general possibility of generating matches; on the changes in the sets of
matches obtained under different parallelisation schemes; and on the implications
of out-of-order arrivals of events, whether they potentially lead to false positives
and false negatives in query evaluation.
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Opacity-enforcing for Process Algebras ?

Damas P. Gruska1 and M. Carmen Ruiz2

1 Comenius University, Slovakia
2 Universidad de Castilla-La Mancha, Spain

Abstract. Supervisory control as a way how to guarantee security of
processes is discussed and studied. We work with a security property
called processes opacity and we investigate how it can be enforced. Su-
pervisors can restrict behaviour of the original systems by enabling or
disabling some actions to guarantee its security. We study maximal su-
pervisors as the least restricting supervisory control processes. Moreover,
we study also enhanced supervisory control which can add idling between
system’s action to prevent timing attacks.

Keywords: security, opacity, process algebras, information flow, super-
visory control

1 Introduction

The great revolution brought about by the internet of things involves the emer-
gence of new devices, new protocols and, of course, new security needs to fulfill
the new requirements. New protocols come into operation before they have been
evaluated in depth. This leads to the appearance of new versions of the pro-
tocol that is not always compatible with its predecessors and that companies
will not always incorporate in their devices with sufficient speed. In addition,
these solutions usually require downloading a new code and this itself is open to
security attacks. This lack of security has been detected even in our own works.
For example in [Gar16] we present an architecture for Wireless Sensor and Ac-
tuator Networks (WSAN) using the Bluetooth Low Energy (BLE) and TCP/IP
protocols in conjunction, which make necessary to include bridges that lack ba-
sic security requirements. Another example can be found in [Hor17] where we
propose a new packet format and a new BLE mesh topology, with two different
configurations: Individual Mesh and Collaborative Mesh. All these represent our
motivation to study applicability of formal models and formal methods to define
and enforce system’s security. As regards formalism, we will work with timed
process algebra. Then we exploit information flow based security properties (see
[GM82]) which assume an absence of any information flow between private and
public systems activities. This means that systems are considered to be secure
if from observations of their public activities no information about private ac-
tivities or states can be deduced. This approach has found many reformulations
and among them opacity (see [BKR04,BKMR06]) could be considered as the

? Work supported by the grant VEGA 1/0778/18.
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most general one and many other security properties could be viewed as its spe-
cial cases (see, for example, [Gru15,Gru12,Gru11,Gru10,Gru08,Gru07]). Opacity
properties could be divided into two types: language based opacity, expressing
security (privacy) of system’s actions or traces of actions and state based one,
concentrating on system’s states (see an overview paper [JLF16]). The former
one is much more studied for process algebra’s formalism. But also for the later
one there is some research already done. In [Gru15] we consider an intruder
who wants to discover whether a process reaches a confident state. Resulting
security property is called process opacity. It turned out that in this way some
new security flaws could be expressed. If a process is not secure with respect
to process opacity we can either re-design its behavior, what might be costly,
difficult or even impossible, in the case that it is already part of a hardware
solution, proprietary firmware and so on or we can use supervisory control (see
[RW89]) to restrict system’s behaviour in such a way that the system becomes
secure. A supervisor can see (some) system’s actions and can control (disable or
enable) some set of system’s action. In this way it restricts system’s behaviour to
guarantee its security. This is a trade-off between security and functionality. But
in many cases it is not a fatal problem. Suppose that a communication protocol
can reach (with a low probability) a state which is not secure. In that case the
transmission of a packet is interrupted and it should start from the begging.
Sometimes this restriction has even smaller impact on system’s behavior. Sup-
pose that the system can perform action a and b in an arbitrary order but only
a sequence b.a could leak some classified information about intermediate states.
Restricting this sequence make system secure but could not have influence on
overall system’s functionality. In this paper we do not assume any relation among
a set of actions visible for an intruder, a set of actions visible for a controller
and a set of controllable actions, i.e. sets EI , ES , EC , respectively, similarly to
[TLSG18]. Note that in [DDM10] it is assumed that EI ⊆ ES (or ES ⊆ EI)
and EC ⊆ ES . In [YL10] EI ⊆ ES is assumed and in [TLSG16] EC ⊆ ES is
assumed. As regards the related work, besides already mentioned works there is
a large body of work on controller synthesis in temporal model checking. From
the rest we mention just two papers. In [RS01] the idea of controller to enforce
secure information flow is discussed for language based security in process al-
gebra setting. Opacity-enforcing (called strategic noninterference) was proposed
and investigated for transition systems in [JT15].

Timing attacks, as side channel attacks, represent serious threat for many
systems. They allow intruders “break” “unbreakable” systems, algorithms, pro-
tocols, etc. Even relatively recently discovered possible attacks on most of cur-
rently used processors (Meltdown and Spectre) also belong to timing attacks. To
protect systems against some type of timing attacks we propose to enhance ca-
pabilities of the supervisory control. Such controller can add some idling between
actions to enforce process’s security.

The paper is organized as follows. In Section 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Section 3 we present
supervisory control. The next section contains some basic definition on informa-
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tion flow security and process opacity. Sections 5 and 6 deals with supervisory
and enhanced supervisory control for process opacity, respectively.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action t which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Security
Process Algebra introduced in [FGM00]. We omit an explicit idling operator ι
used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either ”enforced idling” by performing t actions which are
explicitly expressed in their descriptions or ”voluntary idling” (i.e. for example,
the process a.Nil can perform t action since it is not contained the process
specification). But in both cases internal communications have priority to action
t in the parallel composition. Moreover we do not divide actions into private and
public ones as it is in tSPA. TPA differs also from the tCryptoSPA (see [GM04]).
TPA does not use value passing and strictly preserves time determinancy in case
of choice operator + what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols
A not containing symbols τ and t, and such that for every a ∈ A there exists
a ∈ A and a = a. We define Act = A ∪ {τ}, At = A ∪ {t}, Actt = Act ∪ {t}.
We assume that a, b, . . . range over A, u, v, . . . range over Act, and x, y . . . range
over Actt. Assume the signature Σ =

⋃
n∈{0,1,2}Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M |M ⊆ A}
Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt→ Actt are such that S(a) = S(ā) for a ∈ A,S(τ) = τ
and S(t) = t.

The set of TPA terms over the signature Σ is defined by the following BNF
notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms,
µX− is the binding construct, op ∈ Σ.

The set of CCS terms consists of TPA terms without t action. We will use
an usual definition of opened and closed terms where µX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subterm t.A i.e. between any two t actions only finitely many non timed
actions can be performed) are called TPA processes.

5



We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation→ is a subset of TPA×Actt×TPA. We write
P

x→ P ′ instead of (P, x, P ′) ∈ → and P 6 x→ if there is no P ′ such that P
x→ P ′.

The meaning of the expression P
x→ P ′ is that the term P can evolve to P ′ by

performing action x, by P
x→ we will denote that there exists a term P ′ such

that P
x→ P ′. We define the transition relation as the least relation satisfying

the inference rules for CCS plus the following inference rules:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q

t→ Q′, P | Q 6 τ→
P | Q t→ P ′ | Q′

Pa
P

t→ P ′, Q
t→ Q′

P +Q
t→ P ′ +Q′

S

Here we mention the rules that are new with respect to CCS. Axioms A1, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (S) i.e. per-
forming of t action does not lead to the choice between summands of +. In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of τ independent
of derivations of t. For an explanation and details see [Gro90].

For s = x1.x2. . . . .xn, xi ∈ Actt we write P
s→ instead of P

x1→x2→ . . .
xn→ and

we say that s is a trace of P . The set of all traces of P will be denoted by
Tr(P ). By ε we will denote the empty sequence of actions, by Succ(P ) we will

denote the set of all successors of P i.e. Succ(P ) = {P ′|P s→ P ′, s ∈ Actt∗}.
If the set Succ(P ) is finite we say that P is a finite state process. We define

modified transitions
x⇒M which ”hide” actions from M . Formally, we will write

P
x⇒M P ′ for M ⊆ Actt iff P

s1→ x→ s2→ P ′ for s1, s2 ∈ M? and P
s⇒M instead of

P
x1⇒M

x2⇒M . . .
xn⇒M . We will write P

x⇒M if there exists P ′ such that P
x⇒M P ′.

We will write P
x̂⇒M P ′ instead of P

ε⇒M P ′ if x ∈ M . Note that
x⇒M is

defined for arbitrary action x but in definitions of security properties we will
use it for actions (or sequence of actions) not belonging to M . We can extend

the definition of ⇒M for sequences of actions similarly to
s→. Let s ∈ Actt?.

By |s| we will denote the length of s i.e. a number of action contained in s.
By s|B we will denote the sequence obtained from s by removing all actions
not belonging to B. For example, |s|{t}| denote a number of occurrences of t
in s, i.e. time length of s. By Sort(P ) we will denote the set of actions from
A which can be performed by P . The set of traces of process P is defined as
L(P ) = {s ∈ Actt?|∃P ′.P s⇒ P ′}. The set of weak timed traces of process P is

defined as Lw(P ) = {s ∈ (A∪{t})?|∃P ′.P s⇒{τ} P ′}. Two processes P and Q are
weakly timed trace equivalent (P 'w Q) iff Lw(P ) = Lw(Q). We conclude this
section with definitions of M-bisimulation and weak timed trace equivalence.
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Definition 1. Let (TPA, Actt,→) be a labelled transition system (LTS). A re-
lation < ⊆ TPA × TPA is called a M-bisimulation if it is symmetric and it
satisfies the following condition: if (P,Q) ∈ < and P

x→ P ′, x ∈ Actt then there

exists a process Q′ such that Q
x̂⇒M Q′ and (P ′, Q′) ∈ <. Two processes P,Q

are M-bisimilar, abbreviated P ≈M Q, if there exists a M-bisimulation relating
P and Q.

3 Supervisory control

In this section we introduce some basic concepts of supervisory control the-
ory. For more details see [RW89]. Let us assume deterministic finite automaton
(DFA) G = (X,E, δ, x0), where X is the finite set of states, E is the set of
events, δ : X × E → X is the (partial) transition function, x0 ∈ X is the
initial state. The transition function can be naturally extended to strings of
events. The generated language of G = (X,E, δ, x0) is defined as L(G) = {s, s ∈
E∗ such that δ(x0, s) is defined}.

The goal of supervisory control is to design a control agent (called supervisor)
that restricts the behavior of the system within a specification language K ⊆
L(G). The supervisor observes a set of observable events ES ⊆ E and is able to
control a set of controllable events EC ⊆ E. The supervisor enables or disables
controllable events. When an event is enabled (resp., disabled) by the supervisor,
all transitions labeled by the event are allowed to occur (resp., prevented from
occurring). After the supervisor observes a string generated by the system it tells
the system the set of events that are enabled next to ensure that the system will
not violate the specification.

A supervisor can be represented by Sup = (Y,ES , δs, y0, Ψ),
where (Y,ES , δs, y0) is an automaton and Ψ : Y → {E′ ⊆ E|EUC ⊆ E′} where
EUC = E \EC specifies the set of events enabled by the supervisor in each state.
System G under the control of a suitable supervisor Sup is denoted as Sup/G,
and it satisfies L(Sup/G) ⊆ K.

Definition 2 (Controllability). Given a DFAG, a set of controllable events
EC , and a language K ⊆ L(G), K is said to be controllable (wrt L(G) and EC)
if

K̄EUC ∩ L(G) ⊂ K̄
where K̄ is the prefix closer of K.

The controllability of K requires that for any prefix s, s ∈ K, if s followed
by an uncontrollable event e ∈ EUC is in L(G), then it must also be a prefix of
a string in K.

Definition 3 (Observability). Given a DFAG, a set of controllable events
EC , a set of observable events ES , and a language K ⊆ L(G), K is said to be
observable (wrt L(G), ES and EC) if for all s, s′ ∈ K̄ and all e ∈ EC such that
se ∈ L(G), s =S s

′ (s =S s
′ is means that strings are equal with respect to the

set ES), s.e ∈ K̄.
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Observability requires that supervisors observation of the system (i.e., the
projection of s on ES ) provides sufficient information to decide after the occur-
rence of a controllable event whether the resultant string is still in K̄ .

Proposition 1. Let K ⊆ L(G) be a prefix-closed nonempty language, EC the
set of controllable events and ES the set of observable events. There exists a
supervisor Sup such that L(Sup/G) = K if and only if K is controllable and
observable.

4 Information flow

In this section we will present our working security concept. First we define the
absence-of-information-flow property - Strong Nondeterministic Non-Interference
(SNNI, for short, see [FGM00]). Suppose that all actions are divided into two
groups, namely public (low level) actions L and private (high level) actions H.
It is assumed that L ∪ H = A. SNNI property assumes an intruder who tries
to learn whether a private action was performed by a given process while (s)he
can observe only public ones. If this cannot be done then the process has SNNI
property. Namely, process P has SNNI property (we will write P ∈ SNNI) if
P \H behaves like P for which all high level actions are hidden (namely, replaced
by action τ) for an observer. To express this hiding we introduce the hiding op-

erator P/M,M ⊆ A, for which it holds that if P
a→ P ′ then P/M

a→ P ′/M

whenever a 6∈ M ∪M and P/M
τ→ P ′/M whenever a ∈ M ∪M . Formally, we

say that P has SNNI property, and we write P ∈ SNNI iff P \ H 'w P/H.
A generalization of this concept is given by opacity (this concept was exploited
in [BKR04], [BKMR06] and [Gru07] in a framework of Petri Nets, transition
systems and process algebras, respectively). Actions are not divided into public
and private ones at the system description level but a more general concept of
observations and predicates are exploited. A predicate is opaque if for any trace
of a system for which it holds, there exists another trace for which it does not
hold and the both traces are indistinguishable for an observer (which is expressed
by an observation function). This means that the observer (intruder) cannot say
whether a trace for which the predicate holds has been performed or not. Now
let us assume a different scenario, namely that an intruder is not interested in
traces and their properties but he or she tries to discover whether a given process
always reaches a state with some given property which is expressed by a (total)
predicate. This property might be process deadlock, capability to execute only
traces with time length less then n time unites, capability to perform at the
same time actions form a given set, incapacity to idle (to perform t action ) etc.
We do not put any restriction on such predicates but we only assume that they
are consistent with some suitable behavioral equivalence. The formal definition
follows.

Definition 4. We say that the predicate φ over processes is consistent with
respect to relation ∼= if whenever P ∼= P ′ then φ(P )⇔ φ(P ′).
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As the consistency relation ∼= we could take bisimulation (≈∅), weak bisimu-
lation (≈{τ}) or any other suitable equivalence. A special class of such predicates

are such ones (denoted as φQ∼=) which are defined by a given process Q and equiv-

alence relation ∼= i.e. φQ∼=(P ) holds iff P ∼= Q.
We suppose that the intruder can observe only some activities performed by

the process. Hence we suppose that there is a set of public actions which can be
observed and a set of hidden (not necessarily private) actions. To model such

observations we exploit the relation
s⇒M where actions from M are those ones

which could not be seen by the observer. The formal definition of process opacity
(see [Gru15]) is the following.

Definition 5 (Process Opacity). Given process P , a predicate φ over pro-

cesses is process opaque w.r.t. the set M if whenever P
s⇒M P ′ for

s ∈ (Actt \M)∗ and φ(P ′) holds then there exists P ′′ such that P
s⇒M P ′′ and

¬φ(P ′′) holds. The set of processes for which the predicate φ is process opaque

w.r.t. to the M will be denoted by POpφM .

Note that if P ∼= P ′ then P ∈ POpφM ⇔ P ′ ∈ POpφM whenever φ is consistent
with respect to∼= and∼= is such that it is a subset of the trace equivalence (defined

as 'w but instead of
s⇒{τ} we use

s⇒∅).

P
s

=⇒M φ(P ′)

P
s

=⇒M ¬φ(P ′′)

Fig. 1. Process opacity

5 Supervisory Control of Process Opacity

In this section we will concentrate on enforcing process opacity, namely, how to
guarantee that there is no leakage of information on validity of φ in a current
state, i.e. security with respect to process opacity. Let M ⊆ Actt by M̄ we will
denote the complement of M i.e. M̄ = Actt\M . Let s ∈ Actt∗, by sM̄ we denote
the string obtained form s by removing all elements belonging to M . Formally,
εM̄ = ε, s.xM̄ = s.x iff x 6∈ M and s.xM̄ = s iff x ∈ M . We can extend this
definition to a set of strings. Let T ⊆ Actt∗ then TM̄ = {sM̄ |s ∈ T}.

Now let as suppose that process P is not secure with respect to process
opacity POpφM i.e. P 6∈ POpφM . That means that there exists s ∈ L(P )M̄ such

that P
s⇒M P ′ and φ(P ′) holds then there does not exist P ′′ such that P

s⇒M

P ′′ and ¬φ(P ′′) holds. Hence, by observing s, an intruder knows that a state
satisfying φ has been reached. For security reasons we want to prohibit such
computations what will be the role for the supervisory control. Formally, let
K,K ⊆ L(P )M̄ is a set of safe observations, i.e. for every s ∈ K, P

s⇒M P ′ and

φ(P ′) does not hold or if it holds then there exists P ′′ such that P
s⇒M P ′′ and

9



¬φ(P ′′) holds. Clearly, if P ∈ POpφM then K = L(P )M̄ , otherwise K ⊂ L(P )M̄
but K 6= L(P )M̄ . The aim of the control is to design a supervisor Sup which
will restrict behaviour of the original process P in such a way that for the
resulting process Sup/P we have L(Sup/P ) ⊆ K. Note that we do not assume
any relations among set of actions visible for an intruder, a set of actions visible
for a controller and a set of controllable actions, i.e. sets EI(EI = M̄), ES , EC ,
respectively, similarly to [TLSG18]. Note that in [DDM10] it is assumed that
EI ⊆ ES (or ES ⊆ EI) and EC ⊆ ES . In [YL10] EI ⊆ ES is assumed and in
[TLSG16] EC ⊆ ES is assumed.

Example 1. Let P = c.(a.b.Nil+b.(a.Nil+d.Nil)),M = {c, d} and predicate φ is

defined as follows: φ(Q) holds iff Q
d→. Then it is easy to check that P 6∈ POpφM .

The execution of c.b (visible as b) at the beginning leads to the state satisfying
φ but no execution visible as b can lead to a state not satisfying φ.

Now we will model supervisory control by means a special process Sup. Pro-
cess Sup runs in parallel with P , communicates with environment via actions
Sort(P ) and internally with P by actions renamed by function f which maps
every action a from Sort(P ) to a new ”ghost” action a′ (see Fig. 2). The formal
definition of process supervisor is the following.

Sup-
�

f

P -
�

P

Fig. 2. Supervisory Control

Definition 6 (Process Supervisor). Given process P , a process Sup is called
supervisor if Lw(Sup/P ) ⊆ Lw(P ) where Sup/P = (P [f ]|Sup) \ f(Sort(P ))
where f : Sort(P )→ Sort(P )′ where Sort(P )′ = {x′|x ∈ Sort(P ), x 6= τ}.

We will use a process supervisor to restrict behaviour of the original process
in such a way that the resulting process becomes secure with respect to process
opacity.

Definition 7 (Process Supervisor for Process Opacity). Given process P ,

process Sup is called supervisor for opacity property POpφM iff P 6∈ POpφM but

Sup/P ∈ POpφM . By Sup(P, POpφM ) we will denote the set of all supervisors for

opacity property POpφM for a given process P .

Example 2. Let us continue with the Example 1. Let Sup1 = c′.c.Nil Sup2 =
c′.c.a′.aNil and Sup3 = c′.c.a′.a.b′.b.Nil then it is easy to check that all processes
Supi are process supervisors for P and opacity property POpφM . Actually these
process supervisors restrict the execution of action b immediately after c.

Clearly, Sup(P, POpφM ) 6= ∅ since Nil ∈ Sup(P, POpφM ). Note that supervi-
sor Nil restricts all behaviour of P which consequently becomes trivially secure.
We can formulate some properties of the set Sup(P, POpφM ).
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Proposition 2. Let Sup1, Sup2 ∈ Sup(P, POpφM ). Then Sup1 + Sup2 ∈
Sup(P, POpφM ).

Proof. The main idea. The first actions which is performed by (Sup1 +Sup2)/P
is performed either by Sup1 or by Sup2.

Proposition 3. Let Sup1 ∈ Sup(P, POpφM ) and Sup1 ≈∅ Sup2. Then Sup2 ∈
Sup(P, POpφM ).

Proof. Sketch. The proof follows from the the fact that trace equivalence is con-
gruence i.e. for Sup1 ≈∅ Sup2 we have (P [f ]|Sup1)\f(Sort(P )) ≈∅ (P [f ]|Sup1)\
f(Sort(P )) and so L((P [f ]|Sup1) \ f(Sort(P ))) = L((P [f ]|Sup2) \ f(Sort(P )))
i.e.L(Sup1/P ) = L(Sup2/P ).

To guarantee a minimal restriction of process behaviour our aim is to find
a maximal process supervisor in a sense that it minimally restricts behavior of
the original process. The formal definition is the following.

Definition 8 (Maximal Process Supervisor for Process Opacity). Pro-

cess Sup ∈ Sup(P, POpφM ) is called maximal process supervisor for process opac-

ity POpφM iff for every Sup′ ∈ Sup(P, POpφM ) L(Sup′/P ) ⊆ L(Sup/P ).

Example 3. Let us continue with the Examples 1 and 2. It is easy to check that
process Sup3 is a maximal process supervisor for P and opacity property POpφM .
Processes Sup1 and Sup2 are not maximal process supervisors for P and opacity
property POpφM .

Unfortunately it is undecidable to verify whether a process Sup is a process
supervisors for P and opacity property POpφM as it is stated by the following
proposition.

Proposition 4. The property that Sup is a process supervisor for process opac-
ity for process P is undecidable in general.

Proof. The proof is based on an idea that already process opacity is undecidable
(see Proposition 2. in [Gru15]). Suppose that the property is decidable. Let
Sup = µX.

∑
x∈Actt x

′.x.X i.e Sup does not restrict anything. We have that Sup

is a process supervisor for process opacity for process P iff P ∈ POpφM . Hence
we would be able to decide process opacity what contradicts its undecidability.

Corollary. The property that Sup is a maximal process supervisor for process
opacity for process P is undecidable in general.

To obtain a decidable variant of the previous property we put some restric-
tion on process predicates. First we model predicates by special processes called
tests. For now we assume that action τ is not visible for an intruder, i.e. τ ∈M .
The tests communicate with processes and produce

√
action if correspond-

ing predicates hold for the processes. In the subsequent proposition we show
how to exploit this idea to express process opacity by means of appropriate
M-bisimulation.

11



Definition 9. We say that the process Tφ is the test representing predicate φ if
φ(P ) holds iff (P |Tφ)\At ≈t

√
.Nil where

√
is a new action indicating a passing

of the test. If Tφ is the finite state process we say that φ is the finitely definable
predicate.

Suppose that both φ and ¬φ are the finitely definable predicates. Then we
can reduce checking whether Sup is a process supervisor for process opacity
to checking bisimulation (see Proposition 4. in [Gru15]). Since we can reduce
the problem of decidability to finite automata (see [TLSG18]) we obtain the
following result.

Proposition 5. Let φ and ¬φ are finitely definable predicates. The property
that Sup is a process supervisor for process opacity for finite state process P is
decidable. Moreover, we can always find a maximal supervisor for process opacity.

6 Enhanced Supervisory Control

Time attacks belong to powerful tools for attackers who can observe or interfere
with systems in real time. By the presented formalism we can distinguish timing
attacks. Suppose that P 6∈ POpφM but P ∈ POpφM∪{t}. This means that an

attack is possible only for an observer who can see elapsing of time, i.e. there is
a possibility of timing attacks. To prevent them, we can use process supervisor
which restricts process behaviour with respect to actions from A or we introduce
a new type of process supervisor, called enhanced process supervisor which can
add some idling between actions to ensure that the resulting process becomes
secure with respect to timing attacks. In this case the restriction with respect
to atomic actions from A could be smaller as in the case of original supervisory
control.

Definition 10 (Enhanced Process Supervisor). Given process P , a process

ESup is called enhanced supervisor if whenever s ∈ Lw(P ) then ESup/P
s⇒t,τ

where ESup/P = (P [f ]|ESup) \ f(Sort(P )) where f : Sort(P ) → Sort(P )′

where Sort(P )′ = {x′|x ∈ Sort(P ), x 6= τ}.

Definition 11 (Enhanced Process Supervisor for Process Opacity). Given

process P , P ∈ POpφM∪{t}, a process ESup is called enhanced supervisor for

opacity property POpφM iff P 6∈ POpφM , but ESup/P ∈ POpφM . By ESup(P, POpφM )

we will denote the set of all supervisors for opacity property EPOpφM for a given
process P .

Now we can formulate a condition which guarantees existence of an enhanced
supervisory control.

Proposition 6. Let P 6∈ POpφM and there exists P ′, P ≈τ,t P ′ such that P ′ ∈
POpφM . Then there exists nontrivial (not equivalent to Nil with respect to ≈τ )
enhanced supervisory control for P .
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Proof. The main idea. According to the assumption processes P and P ′ behave
essentially in the same way but the later performs more idling between actions
from Act. The enhanced supervisory control adds this idling to behaviour of P
in such a way that the resulting process is process opaque.

Moreover, the previous proposition has the following consequence which guar-
anties that the maximal enhanced supervisory control does not restrict action
from A.

Corollary. Let P ∈ POpφM∪{t} and P 6∈ POpφM . For the maximal enhanced

supervisory control for P we have L(ESup/P )Ā = KĀ.

7 Conclusions

We have presented the new concepts called supervisory and enhanced super-
visory controller for process algebra which enforce the security property called
process opacity. Particularly, we have investigated finite state systems and time
sensitive observations. A supervisor can see (some) system’s actions and can
control (disable or enable) some set of system’s action. In this way it restricts
system’s behaviour to guarantee its security. Sometimes either we simply cannot
redesign original insecure system which could have, for example, hardware im-
plementation or some small restriction of system’s behaviour is not essential for
overall system functionality. In the case of enhanced supervisory controller it can
only add some idling between actions which would have no influence on system
non-timing properties. The presented approach allows us to exploit also process
algebras enriched by operators expressing other ”parameters” (space, distribu-
tion, networking architecture, processor or power consumption and so on). In
this way also other types of attacks, which exploit information flow through
various covert channels, can be described and enforced. Hence we could obtain
security properties which have not only theoretical but also practical value, since
many protocols, particularly low level protocols for IoT, could be described by
means of some process algebra formalism.
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Abstract. In a following article problem of a information sharing in distributed system is described.
Ways of solving that problem with emphasize on Gossip protocol are as well presented. The main
goal of the article is to examine and analyze the operation of the Gossip algorithm, taking into
consideration chosen mode and values of parameters. At the beginning, problem of exchanging
information in distributed system is presented and different algorithms solving it were shown. Af-
terward, the Gossip algorithm is presented. The principle of its operation, its working modes and
models in which the Gossip algorithm can work are described. The pseudo code of the Gossip
algorithm in the both SI and SIR model is shown. As well the problem of getting known by the
nodes, the topology of the system in which the message is sent, is described. The limitations of
the Gossip algorithm are also presented. As part of the article, an application in C# language was
made, allowing to examine the Gossip protocol in a laboratory environment. This protocol is highly
parametrized and can operate in several modes. The laboratory environment contained minimum six
and a maximum ten nodes. The number of iterations needed to achieve consistency for six, eight and
ten connected computers was examined. The nodes were connected to each other in topologies of a
binary tree or complete graph. At the same time, between one and three pieces of information were
sent out. The Gossip algorithm was working in the SI model. Efficiency of push, pull and hybrid
Gossip algorithms has been compared. For the SIR model, hybrid mode and five nodes connected in
the complete graph topology, the research was made to measure number of sent Gossip algorithm’s
packages, depending on the chosen method of selecting the node which is to set information in the
Removed state.

To present the operation and scalability of the Gossip algorithm, mathematical model of the algo-
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rithm and graph presenting percentage of infected nodes in individual iterations, is shown. In order
to describe the Gossip algorithm using a mathematical formula, a model known from epidemiology
was used.

At the end the analysis of research’s results was done. As well the problems related to the Gossip
algorithm and the method for solving them were described. The application of the Gossip algorithm
in commercial solutions was also presented.

1. The problem of information distribution in a distributed systems

1.1. Distributed systems

Nowadays, more and more IT systems are distributed systems or systems that are using cloud solutions.
We are calling distributed system the set of computers containing the cohesive software and connected
with each other by the network. It contains of few up to few thousands of connected computers called
nodes.

Applying distributed systems allows to increase the speed of executing complex algorithms. It is tak-
ing place through the division of calculations into a lot of computational processes. These processes, in a
concurrent way perform, calculations and exchange information between themselves or only synchronize
the results.

Such a kind of systems allow to significantly increase computing power and capitalize the resources
of each of the nodes in more efficient way. One should not forget that applying distributed architecture
increases systems reliability.

Distributed systems are characterized by several features. One of most important of them is trans-
parency. This feature guarantee that the user of a system is not aware of such a system’s parameters like
geographical location of each of the nodes or system’s size. The breakdown of nodes should as well be
not perfectible by the user. Distributed system should guarantee as well the transparency of the methods
of access to it. In that case end user has the impression that system is consisting of a single node not
many thousands of them. Other feature is the transparency of the transfer, that allows to change position
of some resources without the knowledge of the end user. We can deal also with transparency in terms
of redoubling. In this case the user is not aware of redoubling certain resources.

Distributed system should be open for cooperation with other systems. It is pretty important that
functionality of the distributed systems must be described using very precise interfaces. Another crucial
feature of distributed systems is its’ scalability taking into consideration both amount of nodes and their
geographical location. Other point is the concurrency of the systems that allows to perform many tasks
at one time. Easy way to configure and reconfigure is as well important feature of distribution system.
One of the most important feature of distributed systems is their ability to share the same resources by
all of the users. Their diversity in terms of the hardware is a next essential feature. Ensuring all features
mentioned above is not an easy or trivial topic.

Main feature that guarantees the transparency is the ability to share and distribute information inside
of a system. One of a most common solutions allowing to distribute information in a smooth way is
Gossip algorithm (know as well as Gossip protocol).
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1.2. One-to-One Algorithm

While working with huge distributed systems containing of hundred thousands of nodes, we need to
deal with a problem of distributing information in a efficient and quick way. It is crucial that data, that
was received by one of the nodes, will be send to others in a fast way and without too much usage of
network resources. There are several algorithms that help us to deal with that problem. The simplest,
however also less efficient, algorithm of spreading information in a distributed systems is algorithm one-
to-one. Mentioned algorithm is just sending information node by node. In a first iteration node receiving
new piece of information sends it to his neighbor. In the flowing iterations information is distributed
node by node. In case of the one-to-one algorithm the path of information flow is created. It leads to
the decreasing of algorithms reliability. In case of a crash of network connection between two of the
following nodes information is not farther sent. Due to the fact that one node sends information just
to the one neighbor full procedure is very time consuming and not efficient. Function of information’s
propagation time according to number of nodes is lineal and can be described as tp = ti ∗ n where tp is
time of propagation, ti is time of one iteration and n is number of nodes. Assuming that the iteration time
is 1 second and number of nodes is 1000 propagation time is 1000 seconds what is about 16 minutes. I
would like to admit that the one-to-one algorithm is not scalable, that means that the results will be even
worse when the number of nodes increase.

1.3. All-to-All Algorithm

Other algorithm of spreading the information in distributed systems is algorithm all-to-all. In this algo-
rithm each of the node, sends the newly received information to all system’s nodes, as soon as he get
it. Such a solution allows to increase the reliability of the distributing of information. Compare to one-
to-one algorithm crash of connection between two of the nodes does not have such a negative effects.
In case of problems with the connection between two of the nodes, information can be sent by different
path from other node. The problem with propagation time of the information known from one-to-one
algorithm has been solved as well. Full system receive the information almost immediately after it ap-
pearance. Unfortunately all-to-all algorithm is not free from flaws and limits. The major flaw is the
amount of information sent in the system in each iteration which is N2 where N is number of nodes.
The limit of the nodes in the system derives directly from this flaw. In case of the systems containing
tens of thousands of nodes, in each iteration even thousands of millions of information can be send. For
both computer network and a single node it is impossible to handle such a network traffic.

1.4. Gossip algorithm

Xerox company at the end of 1980’s struggled with a problem of replicating data on few thousands
instances of distributed data base. Crucial aspects for Xerox were both time of spreading big amount of
information and the reliability of full replication process. One of the propositions was Gossip algorithm
called as well Epidemic algorithm. The rule of operation of this algorithm is very similar to spreading
either gossip or the disease in some population [1]. Nodes of the system having information sends it to
chosen neighbor in a iterative way. The way of selecting the neighbor might be random but it does not
need to be such. Each of the nodes might calculate dynamic parameters of connection (like transmission
time or quality parameters of transport medium). Based on that parameters for each of nodes there will be
assigned a factor. Nodes with higher factor will be prioritized while selecting neighbor for information
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sending. For nodes in a system, based on possessing of information, one of three following statuses
(states) can be assigned [4]:

1. Infected by the information (I)

2. Susceptible (S). This status is assigned to the nodes not having information.

3. Removed (R). Nodes can be in state R when the information he has is old and is not distributed
any more.

There exists two main models of changing of statuses - Model SI and Model SIR. In Model SI there
is possibility only for changing state from S to state I, while in SIR Model change from I to R is also
allowed. The Gossip algorithm can work in three different modes: push, pull and hybrid push-pull. In
case of SI push implementation, nodes being in S state only are passively listening, waiting for new
information. In the pull version, nodes with status S assigned as well sends requests for a new piece of
information. The hybrid model is combination of Push and Pull. Pseudo code of the Gossip algorithm in
SI model is presented in listing 1.

1 public void Gossip()

2 {

3 while (true)

4 {

5 Thread.Sleep(timePeriod);

6 Node selectedNode = GetRandomNode();

7 if (this.push)

8 {

9 if (this.state == NodeState.Infected)

10 {

11 SendUpdate(selectedNode, info);

12 }

13

14 }

15 if (this.pull)

16 {

17 SendUpdateRequest(selectedNode);

18 }

19 }

20 }

21

22 private void OnGetUpdate(UpdateArgs args)

23 {

24 args.reciver.informations.Add(args.info);

25 args.reciver.state = NodeState.Infected;

26 }

27

28 private void OnGetUpdateRequest(UpdateArgs args)

29 {

30 if (this.state == NodeState.Infected)

31 {

32 SendUpdate(args.sender,args.info);
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33 }

34 }

Listing 1. Gossip Algorithm in SI model

It is wealth mentioning that in SI model for both push and hybrid implementation data spreading
will not be stopped even when all the nodes have received information. In case of pull implementation
this problem do not occur, as long as all the nodes has information about amount of data that need to
be redistributed. If all the nodes receives required number of information, they will stop sanding update
requests. Supposing that nodes do not have knowledge about amount of information in a system, pull
requests will be as well sent even when system is in consistent state. Constant sending requests and
information may lead to overloading of a network. One of the solutions for described problem is SIR
model. In SIR model for each piece of information the aging factor is added. After reaching this value
information is set into state R and is not sent any more. Specifying aging factor is not an easy task.
While doing that we need to take into consideration many aspects, like for example number of nodes
and delays in computer network. Underestimation of the factor may lead to not sending information to
some of the nodes. Overestimation however cause too big number of information and overloading the
network. There are several methods of estimating the aging factor and most of them requires sending the
return message after receiving already known information. In first implementation information can be
set into status R after being sent redundantly defined number of times. Next one allows to stop sending
information, with probability P, after sending every duplicated message. In last implementation one of
the nodes having obsolete data is chosen to set the information in status R [3]. Pseudo code of Gossip
protocol in a SIR model is presented in Listing 2. The differences in implementation between SI and SIR
model were made in lines from 21 to 50.

1 public void Gossip()

2 {

3 while (true)

4 {

5 Thread.Sleep(timePeriod);

6 Node selectedNode = GetRandomNode();

7 if (this.push)

8 {

9 if (this.state == NodeState.Infected)

10 {

11 SendUpdate(selectedNode, info);

12 }

13

14 }

15 if (this.pull)

16 {

17 SendUpdateRequest(selectedNode);

18 }

19 }

20 }

21 private void OnGetUpdate(UpdateArgs args)

22 {

23 args.reciver.informations.Add(args.info);
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24 args.reciver.state = NodeState.Infected;

25 SendResponse(args.sender, informationStatus);

26 }

27 private void OnGetResponse()

28 {

29 if (RemovalImplementation.Number == remImplementation && resendedMessages ==

obsolescence)

30 {

31 this.state = NodeState.Removed;

32 }

33 else if (remImplementation == RemovalImplementation.Probability)

34 {

35 if (GetProbablity())

36 {

37 this.state =NodeState.Removed;

38 }

39 else

40 {

41 resendedMessages++;

42 }

43 }

44 }

45 private bool GetProbablity()

46 {

47 var rand = new Random();

48 var p = rand.Next(1, obsolescence);

49 return p < obsolescence;

50 }

51 private void OnGetUpdateRequest(UpdateArgs args)

52 {

53 if (this.state == NodeState.Infected)

54 {

55 SendUpdate(args.sender, args.info);

56 }

57 }

Listing 2. Gossip Algorithm in SIR model

Other crucial problem, existing in Gossip algorithm, is gathering knowledge about system topology
by each of a nodes. In case of huge systems it requires establishing very big list of connections on every
node, what might have negative influence on scalability of the Gossip algorithm. Finding out newly
joined nodes is as well problematic issue. It requires from nodes sharing information about the topol-
ogy. Such a procedure generates additional big network traffic. Another solution states that one central
managing node, that will have full knowledge about system structure, should be created. It is as well not
perfect resolution cause the reliability of a system is much lower. In most efficient implementation every
node has just partial information about a system. Assuming that combination of information from all the
nodes allows to send information between every nodes it is best solution. More than that information
about system topology can be as well sent with Gossip messages.
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It is wealth mentioning that Gossip algorithm allows to spread more than one information in a sys-
tem in the same time. Taking it into consideration it is possible that not all nodes will have the same
information, opposite to all-to-all algorithm, full knowledge and coherence will be achieved after few
iterations. Gossip algorithm is an algorithm of final coherence, that not guarantee strong coherence of a
system. That is why it cannot be used in systems requiring very strict coherence like transactional bank
systems or internet stores. Some of the implementation of Gossip algorithm allows to send information
to more the one neighbor in the same iteration. It for sure reduce number of iterations and speeds up the
process of information sharing, however we need to remember that choosing to big number of neighbors
to sent information will lead to creating almost every-to-every algorithm and overloading network.

1.5. The description of a application and lab environment

Algorithm Gossip has been implement using .NET Remoting technology in C# programming language.
Application allows to spread more than one information at one time and for changing the Gossip model
(SI and SIR) . As well it is possible to specify number of neighbors for which information will be sent in
one iteration and the aging factor. In case of SIR model, user is able to select method of choosing nodes
that should be assigned to R status. Algorithm Mode can be parametrized as well. Application shows
number of sent network packages corresponding with Gossip protocol. As well the state of each node
(number of information it has) can be shown. Base on the shown number of information in each iterations
the efficiency of a Gossip algorithm is presented. The lab environment contains of ten, connected with
network, physical servers (nodes), on which the test application is running. The nodes were connected in
two different configurations. In first one the notes are connected into a complete graph while in second
one into binary tree.

1.6. Analysis of Gossip Algorithm

The way Gossip algorithm in SI model is working, has been examined for six, eight and ten nodes. For
six nodes binary tree topology presented on Fig. 1 was used.

Figure 1. Network topology for six nodes

One or two pieces of information were sent. They were propagated from nodes number one, six
or both. When the information was sent from first node, the most efficient occurred to be algorithm
Gossip in a hybrid mode. The system was coherent in third iteration. Using push and pull modes,
nodes needed five iteration to spread the information. While studying the distribution of messages from
node number six, we will also see the highest effectiveness using the hybrid mode. All nodes received
information in the fifth iteration. In the push mode information was distributed in sixth iteration, while
in pull mode not until eighth. We can observe similar results, when the information’s packages were sent
from both node one and six at ones. Using hybrid mode algorithm was able to spread information in
three iterations. For push and pull six iterations were needed to achieve such a result. For six nodes, as
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well examination of spreading information in system of complete graph topology was done. One or two
pieces of information were sent. In both cases most efficient occurred to be hybrid mode. For both one
and two pieces of information system get coherent in second iteration. In pull mode it took place in third
iteration for one information and forth for two pieces of information. In both cases push mode needed
four iteration to spread information over the system. Analogous tests were made for a system containing
eight nodes. Binary tree topology of connections between servers is presented on Fig. 2.

Figure 2. Network topology for eight nodes

For hybrid and pull modes, when infected node was that with number one, information was dis-
tributed in second iteration. Algorithm Gossip in push mode needed six iteration to achieve it. For
information distributed from node number eight, in hybrid mode, system get coherent in sixth iteration.
Using pull method, algorithm was able to spread information in seven iterations, while using push in
twelfth. Distributing two information’s packages (one from node seven and one from node eight) lead to
worse results. Gossip protocol in a push mode needed up to twenty seven iteration to spread information.
Pull method was able to redistribute information in eleven iteration and hybrid in nine. For hybrid mode
sending three pieces of information was tested. They were distributed from nodes number eight, seven
and six. Coherence was achieved in eighth iteration. Next measurements for nodes connected into com-
plete graph were done. Spreading one information took four iterations for push, six for pull and three for
hybrid. When number of data packages was extended to two, the most efficient occurred to be hybrid
and push modes. In both cases system was coherent in forth iteration. Pull mode needed one iteration
more to achieve that. For hybrid mode the number of selected neighbors, for information distribution in
one iteration, was extended to two. It effected in spreading one information in two iterations. Similar
experiments were made for system containing ten nodes. The topology of network connections between
servers is presented on Fig. 3.

Figure 3. Network topology for ten nodes

When information was sent from node number one in push mode, the system achieved coherency
in the fourteenth iteration. In the pull mode, this took place in the ninth iteration, while in the hybrid
mode in the fifth. Considering the first node infected was node number ten, the Gossip algorithm, in
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both push and pull mode, spread the data in eleven iterations. In hybrid mode, each server received
information after six iterations. For two pieces of information sent from nodes nine and ten in push
mode, the broadcast occurred in seven passes. For the pull mode this was done in the fifteenth iteration
and for the hybrid mode in the fifth. After connecting all ten nodes in a complete graph topology, the
results are much better. For one piece of information sent in the push mode, the system was coherent
after the fourth iteration. In the pull mode it took three more iterations, while in the hybrid mode the
message was sent within two iterations. In the case of sending two messages in the push mode, the
information was disseminated during six iterations, in the pull mode during seven, while in the hybrid
mode during three. In the SIR model, for five nodes connected in topology of complete graph, hybrid
mode and one message, tests of various model configurations were made. In the SI model, every node
within forty-five iterations sends ninety-two packages related to the exchange of information (requests
to send a message and the messages themselves). With a larger number of nodes, it can be a significant
load for the network. In order to minimize the number of requests and information sent, an SIR model
was introduced, allowing to stop broadcasting information under certain conditions. The behavior of
the Gossip algorithm in three variants of the SIR mode was investigated. The first was to stop sending
messages with a set probability P / the probability of changing the status of information from the state
I to R / at the moment when the neighboring node sends information that it already received particular
message before. The tests began with a P value of 0.05. For this configuration, nodes sent from seventy-
seven to one hundred and five packages during forty-five iterations. Considering that this value also
contains the amount of feedback messages and that number of network packages is smaller than in the SI
model, the effect is satisfying. Then the value of P was increased to 0.1. The result of the increase was
visible and resulted in a reduction in the number of packages from individual nodes to a number between
sixty and seventy. After another increase in the value of P to 0.2, the number of packages sent from one
node was reduced to a value between fifty and fifty-seven. A further increase in the value of P did not
bring such large changes. For P equal to 0.3, nodes send out fifty to fifty-five packages, while for a P of
0.5, the result is between forty five and fifty packages. For the higher probability values, it was already
possible to observe the lack of final system coherency, cause the information was set in R status on all
nodes before it was sent out over the entire system. Another implementation of the Gossip algorithm
in the SIR model assumes switching to the R state after sending n redundant messages. Assuming n
equal three, each node sent fifty to fifty three packages. The results for n equal to five are identical. At
n of six, this number increased to fifty four - fifty-seven packages. Assuming n equal to eight, we can
observe another increase in the number of packages to a value between fifty-five and sixty. The next
implementation allowed sending by a predetermined management node to a randomly selected neighbor
containg a message, request to change the information’s state to R. In this implementation, each node
sent within seventy messages. A summary of the test results for the number of packages sent is presented
in Tab. 1.

The researches were made on a relatively small number of nodes, so the question arises about the
efficiency of the algorithm for much larger systems. In the case of a complete graph topology, it can
be assumed that the probability p of choosing each of the n neighbors is equal to 1/n. The Gossip
algorithm of the SI model and in the push mode can be described using a mathematical model known
from epidemiology, showing the number of infected people (in our case nodes) depending on the time.
The formula for the number of infected nodes is shown below [6]:

U(t) =
n+ 1

1 + n ∗ e−(n+1)∗p∗t
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Table 1. Number of sent packages in Gossip algorithm

Minimal number of packages Maximal number of packages
SI

92 92

SIR
With
Probability P
0.05 77 105

0.1 60 70

0.2 50 57

0.3 50 55

0.5 45 50

After n
redundant messages
3 50 53

5 50 53

6 54 57

8 55 60

Random 68 73
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where: n is the number of nodes, and t is the number of iterations. Assuming that the number of nodes
is one hundred thousand, we need only twenty-four iterations to achieve coherency. For a million nodes,
the number of iterations only increases to twenty-eight. For the pull and hybrid models the results should
be even better. Fig. 4 shows the percentage share of infected nodes in iterations for ten, one hundred, one
thousand, ten thousand one hundred thousand and million nodes.

Figure 4. Percentage of infected nodes In each of the iterations

The chart shows that after the seventeenth iteration system coherence for the number of nodes less
than a million is more than ninety percent, and from the nineteenth iteration more than ninety-nine
percent.

2. Summary

Based on the results of the tests carried out and the calculations made, it can not be argued that the Gossip
algorithm is perfectly suited for the spreading of information in distributed systems. However, it should
be taken into account that the effectiveness of the algorithm depends on many factors. The topology
of connections between nodes has a fundamental influence on the operation of the gossip algorithm. In
hierarchical structures, which is examined tree topology, information needs more iteration to reach all
the nodes than in topology of complete graph. In the tree structure, the node from which the information
will be sent is not without significance. The deeper the infected server is in the network structure,
the more iterations are needed to bring about system integrity. The choice of algorithm’s operating
modes also affect on the efficiency of its work. The fastest mode is hybrid mode. Slightly worse results
can be observed for the pull mode. The weakest effects gives the use of the push mode. The hybrid
mode, unfortunately, is not free of drawbacks. The main one consists in sending a large number of
network packages. Each of the nodes operating in this mode, during each iteration, sends out one to two
packages. The first package is responsible for sending a request message. The second is sent if the table
of the information is not empty.The amount of packages sent can be significantly reduced using the SIR
algorithm of the Gossip algorithm. It allows not to broadcast information that has already been sent to
many nodes. There are several implementations that allow to set R status for the information, causing
the information not to be distributed. The most effective implementation was the transition to the status
of R with a constant probability P , in the case of obtaining message about redundant information. For
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the probability P from 0.2-0.5, the number of packages sent has been halved. Implementation allowing
to determine the status R after sending redundant message n times gives slightly worse results. Random
selection of nodes to set the R status for information is the least effective and seems to be the most risky
of all described approaches. In specific situations incorrect selection of the node may cause the system
will not achieve the final coherence. This happens when the node being drawn is the only one that has
a connection to a part of the system and will not be able to send information there. I think that the
interesting aspect of the Gossip algorithm is its scalability. In the hybrid mode and the complete graph
topology, I did not notice a significant difference in the number of needed iterations while sending one
message for six nodes and sending two messages to ten nodes. During the study of the Gossip protocol
in the push mode, in particular in the hierarchical network topology, one could notice a large dependence
of the protocol’s effectiveness on the selection of neighboring nodes when sending a message. In the
case of two neighbors, the probability of drawing each of them is equal to 0.5. It may happen that in
the course of several iterations, the same neighbor will be drawn. This will result in the information not
reaching the other of the adjacent nodes and extending the information transfer process. The solution to
this problem is to create a local dictionary to determine for which nodes the information was sent. This
would eliminate, from the drawing, the nodes that received the message. The described problem does
not occur when we have many adjacent nodes, because the probability of drawing each of them becomes
smaller as the number of connected nodes increases. It is obvious that during the implementation of
the Gossip algorithm special attention should be paid to the problems of mutual distributed exclusion.
Exclusion can occur when multiple nodes at the same time try to send a message to the same node. The
solution may be to use an algorithm that solves this problem, such as the Ricard Agrawal’s algorithm
based on requests. It should be mentioned that the Gossip algorithm is highly scalable, as shown by
mathematical methods. This favors the popularity of solutions based on the this algorithm. It is used,
among others, in the Apache Cassandra software, which is a free tool for managing no-SQL distributed
databases. Another system using the epidemiological algorithm is SERF [2], used to manage server
farms. The Gossip protocol has also been applied to Amazon Web Services [5].
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Before formulation of some extensions of elementary cause-effect (c-e) struc-
tures (see References), let us outline their concept by examples. A c-e struc-
ture (both elementary - a counterpart of 1-safe Petri nets - and extended)
is a directed graph with predecessors and successors of every vertex (node)
grouped into families of sets, as shows left graph in Fig.1: predecessors of e:
{{a, b}, {b, c}, {d}}, successors: {{f, g}, {h}}. In the right graph, the node sym-

Fig. 1. left: graph with encircled families of predecessors and successors of e; right:
graph with subscripted and superscripted symbols of nodes.

bols are subscripted and superscripted with expressions called formal polyno-
mials, that determine the grouping, so that the ”operator of multiplication •”
collects the arguments into a group, whereas ”operator of addition +” sepa-
rates the groups. Symbol θ denotes the empty family. Thus, this graph is the
set {aθe, bθe, cθe, dθe, ea•b+b•c+df•g+h , feθ , g

e
θ , h

e
θ}. Each c-e structure can be represented

by a set of such annotated nodes. The arrows, though helpful to understand its
dynamics, are a superfluous information. Informally, the dynamics is a ”token
game”: node e can receive signals (represented by tokens) simultaneously from
a and b or simultaneously from b and c or only from d, and send signals simul-
taneously to f and g or only to h. Thus, the operator ”•” means simultaneity,
while ”+” - exclusive choice. As a realistic example, consider the c-e structure
ROAD in Fig.2, describing a traffic through the bridge B on the two-lane road,
each lane for vehicles heading in the opposite directions. The bridge can hold
only one vehicle at a time.
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Fig. 2. c-e structure ROAD. Traffic from the East: E′ → E → B → e → e′ and
from the West: W ′ → W → B → w → w′. Nodes r and l prevent the U-turn on the
bridge: a token in r makes impossible move E → B → w, while in l - impossible move
W → B → e.

Thus, in the set-like notation,
ROAD = {E′θE , EE

′

B , BE•r+W•le•r+w•l , r
B
B , e

B
e′ , e

′e
θ , W

′θ
W , W

W ′

B , lBB , w
B
w′ , w′wθ }.

Anticipating the formal definitions, notice that this is a combination ROAD =
EW •R+WE • L, where EW = {E′θE , EE

′

B , BEe , e
B
e′ , e

′e
θ },

WE = {W ′θW ,WW ′

B , BWw , wBw′ , w′wθ }, r = {rBB ,Brr}, l = {lBB ,Bll}, or pictorially,
a combination of the c-e structures in Fig.3. So, the ”multiplication” and ”ad-

Fig. 3. traffic East → West and West → East, and no-U-turn control.

dition” are now extended from the formal polynomials onto c-e structures, so
that ”•” and ”+” mean making union of sets being their arguments, with formal
product and sum of subscripts/superscripts of nodes identically named in both
sets. Now, the formal definitions.

Definition 1 (set F [X], quasi semiring of formal polynomials)

Let X be a non-empty enumerable set. Their elements, called nodes, are coun-
terparts of places in Petri nets [Rei 85]. Let θ /∈ X be a symbol called neutral.
It will play a role of neutral element for operations on expressions, called formal
polynomials over X. The names of nodes, symbol θ, operators +, • and paren-
theses are symbols out of which formal polynomials are formed in the usual
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(infix) way. Their set is denoted by F [X]. Stronger binding of • than +, allows
for dropping some parentheses. Addition and multiplication of K,L ∈F [X] is
defined as follows: K ⊕ L = (K + L), K � L = (K • L). Let us use + and •
instead of ⊕ and �. It is required that the system 〈F [X],+, •, θ〉 obeys the
following equality axioms for all K,L,M ∈ F [X], x ∈ X:

(+) θ +K = K + θ = K (•) θ •K = K • θ = K
(++) K +K = K (••) x • x = x
(+++) K + L = L+K (• • •) K • L = L •K
(++++) K + (L+M) = (K + L) +M (• • ••) K • (L •M) = (K • L) •M
(+•) If L 6= θ ⇔M 6= θ then K • (L+M) = K • L+K •M
Algebraic system which obeys these axioms will be referred to as a quasi-semiring
of formal polynomials.3 �

The system 〈F [X],+, •, θ〉 has a ”family of sets” model shown above, thus is
consistent. Its peculiarity, in contrast to the ordinary semiring, is axiom (+•) -
the conditional distributivity of multiplication over addition, and the neutral θ
for both operations. These assumptions make c-e structures behaviourally equiv-
alent to Petri nets.

Definition 2 (cause-effect structure, carrier, set CE)

A cause-effect structure (c-e structure) over X is a pair U = (C,E) of total and
injective functions:

C: X→ F [X] (cause function; nodes occuring in C(x) are causes of x)
E: X→ F [X] (effect function; nodes occuring in E(x) are effects of x)

such that x occurs in the formal polynomial C(y) iff y occurs in E(x). Carrier
of U is the set car(U) = {x ∈ X : C(x) 6= θ∨ E(x) 6= θ}. U is of finite carrier
iff |car(U)| <∞ (| ... | denotes cardinality). The set of all c-e structures over X
is denoted by CE [X]. Since X is fixed, we write CE - wherever this makes no
confusion. �

Since functions C and E are total, each c-e structure comprises all nodes from X,
also the isolated ones - those from outside of its carrier. Presenting c-e structures
graphically, only their carriers are pictured.

Definition 3 (addition and multiplication, monomial c-e structure)

For c-e structures U = (CU , EU ), V = (CV , EV ) define:
U + V = (CU+V , EU+V ) = (CU + CV , EU + EV ) where
(CU + CV )(x) = CU (x) + CV (x)
U • V = (CU•V , EU•V ) = (CU • CV , EU • EV ) where
(CU • CV )(x) = CU (x) • CV (x)

3 In the early papers on cause-effect structures, the term ”near-semiring” has been
used. But in the meantime some authors used it in different meaning, so, we use
term ”quasi-semiring” for this axiomatic system.
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(The same symbol is used for multiplication of c-e structures, functions and
polynomials)

U is a monomial c-e structure iff each polynomial CU (x) and EU (x) is a mono-
mial, i.e. does not comprise non-reducible “+“. �

Evidently U + V ∈ CE and U • V ∈CE that is, in the resulting structures,
x occurs in CU+V (y) iff y occurs in EU+V (x) and the same for U • V . Thus,
addition and multiplication of c-e structures yield correct c-e structures.

The set CE with addition, multiplication and a distinguished element de-
noted also by θ and understood as the empty c-e structure (θ, θ), where θ is a
constant function θ(x) = θ for all x ∈ X, makes an algebraic system similar to
that in Definition 1.

Proposition 1 (quasi semiring of c-e structures)

The system 〈CE [X],+, •, θ〉 obeys the following equations for all
U, V,W ∈ CE [X], x, y ∈ X:

(+) θ + U = U + θ = U (•) θ • U = U • θ = U
(++) U+U = U (••) (x→ y)•(x→ y) = x→ y
(+++) U + V = U + V (• • •) U • V = V • U
(++++) U+(V +W ) = (U+V )+W (••••) U • (V •W ) = (U •V )•W
(+•) If CV (x) 6= θ ⇔ CW (x) 6= θ and EV (x) 6= θ ⇔ EW (x) 6= θ then

U • (V +W ) = U • V + U •W �

This follows directly from definition of c-e structures and definitions of adding
and multiplying c-e structures. The operations on c-e structures make possible
to combine small c-e structures into large ones.

Definition 4 (partial order ≤; substructure, set SUB [V ])

For U, V ∈ CE let U ≤ V ⇔ V = U + V ; obviously, ≤ is a partial order in
CE. If U ≤ V then U is a substructure of V ; SUB [V ]= {U : U ≤ V } is the
set of all substructures of V . For A ⊆CE : V ∈ A is minimal (w.r.t. ≤) in A iff
∀W ∈ A: (W ≤ V ⇒W = V ) �

The crucial notion for behaviour of c-e structures is firing component, a coun-
terpart of transition in Petri nets, i.e. a state transformer. It is, however, not a
primitive notion but derived from the definition of c-e structures, and is intro-
duced regardless of any particular c-e structure:

Definition 5 (firing component, set FC, pre-set and post-set)

A minimal in CE\{θ} c-e structure Q = (CQ, EQ) is a firing component iff Q
is a monomial c-e structure and CQ(x) = θ ⇔ EQ(x) 6= θ for any x ∈ car(Q).
The set of all firing components is denoted by FC, thus the set of all firing
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components of U ∈CE is FC [U ] = SUB [U ] ∩ FC. Following the standard
Petri net notation, let for Q ∈ FC and G ⊆ FC :
•Q = {x ∈ car(Q) : CQ(x) = θ} (pre-set of Q)
Q• = {x ∈ car(Q) : EQ(x) = θ} (post-set of Q)
•Q• = •Q ∪Q• �

So, the firing component is a connected graph, due to the required minimality.
Elements of the pre-set are its causes and elements of the post-set are its effects.
Of many conclusions from above definitions, some are worth to point out:

Proposition 2

(a) U1 ≤ V1 ∧ U2 ≤ V2 ⇒ U1 + U2 ≤ V1 + V2 (monotonicity of +)
(b) U • (V +W ) ≤ U • V + U •W but equality not always holds
(c) U ≤ V ⇒FC [U ] ⊆ FC [V ] but converse implication not always holds
(d) FC [U ]∪FC [V ] ⊆ FC [U + V ] but converse inclusion not always holds

Point (d) states that new firing components may appear when summing up c-e
structures. For instance, let U = {ax+y, bx•y, xa•b, ya•b}, V = {ax•y, xa, ya},
thus FC[U ] = ∅, FC[V ] = {V },
FC[U + V ] = {{ax, xa}, {ay, ya}, V, {ax•y, bx•y, xa•b, ya•b}}, thus
FC[U ]∪FC [V ] 6=FC[U + V ]. The phenomenon of creation new firing compo-
nents when assembling c-e structures from smaller parts, reflects a general ob-
servation: compound systems may sometimes reveal behaviours absent in their
parts.

Definition 6 (state of c-e structure)

A state of c-e structure U is a total injective function s : car(U)→ Nω, thus a
multiset over car(U) (Nω = N ∪ {ω}, where ω symbolises infinity, that is ω > n
for each n ∈ N; N is the set of natural numbers, with 0). The set of all states of
U is denoted by S. �

Definition 7 (weights of monomials and capacity of nodes)

Given a c-e structure U = (C,E) and its firing component Q ∈FC [U ], let along
with the pre-set •Q and post-set Q• of Q, some multisets •Q: •Q → Nω\{0}
and Q•: Q• → Nω\{0} be given as additional information. The value •Q(x) is
called a weight (or multiplicity) of monomial EQ(x) and the value Q•(x) - a
weight (or multiplicity) of monomial CQ(x). Let cap be a total injective function
cap : car(U) → Nω, assigning a capacity to each node in the set car(U). A c-e
structure with such enhanced firing components is called a c-e structure-with-
weights of monomials and capacity of nodes. �

Definition 8 (firing components enabled and with inhibitors)

For a firing component Q ∈FC [U ], the set inh[Q] = {x ∈ •Q : •Q(x) = ω} is
the collection of nodes in the pre-set of Q, whose effect monomials EQ(x) are of
weight ω. The nodes in inh[Q] will play role of inhibiting nodes of firing compo-

nent Q, as follows. For Q and state s let us define the formula: enabled[Q](s)
def⇔

31



∀x ∈ inh[Q] : s(x) = 0∧
∀x ∈ •Q\inh[Q] : •Q(x) ≤ s(x) ≤ cap(x)∧
∀x ∈ Q• : Q•(x) + s(x) ≤ cap(x) �

So, Q is enabled at the state s iff none of inhibiting nodes x ∈ •Q contains
a token and each remaining node in •Q does, with no fewer tokens than is
the weight of its effect monomial EQ(x) and no more than capacity of each
x ∈ •Q. Moreover, none of x ∈ Q• holds more tokens than their number, when
increased by the weight of its cause monomial CQ(x), exceedes capacity of x.
The inhibiting nodes of a firing components will be called its inhibitors.

Fig.4(a) shows a firing component Q with weighted (multiplied) effect monomials
EQ(a) = 5 ⊗ x, EQ(b) = ω ⊗ (x • y), EQ(c) = 3 ⊗ y and weighted cause
monomials CQ(x) = 2⊗ (a • b), CQ(y) = 4⊗ (b • c). The inhibitor of Q is node
b. Fig.4(b) shows the behaviourally equivalent single transition in Petri net with
weights and inhibitor arrow.

Fig. 4. (a) Firing component Q with weights; 2 ⊗ (a • b), ω ⊗ (x • y), etc. denote
multiplicity of the product a • b by the factor 2 = Q•(x) and product x • y by factor
ω =•Q(b). (b) Behaviourally equivalent Petri net transition.

Definition 9 (semantics [[ ]] of c-e structures with inhibitors)

For Q ∈FC [U ] , let [[Q]] ⊆ S× S be a binary relation defined as:

(s, t) ∈ [[Q]] iff enabled[Q](s) ∧ t = (s− •Q) +Q• ≤ cap (Q transforms state
s into t). Semantics [[U ]] of U ∈CE is [[U ]] =

⋃
Q∈FC [U ]

[[Q]]. Closure,

reachability and computation: (s, t) ∈ [[U ]]∗ iff s = t or there is a sequence
of states s0, s1, ..., sn with s = s0, t = sn and (sj , sj+1) ∈ [[U ]] for
j = 0, 1, ..., n−1. State t is reachable from s in semantics [[ ]] and the sequenece
s0, s1, ..., sn is a computation in U . �

In the c-e structure which presents a ride throught the bridge B, the priority
ride from the East can be enforced using inhibitor, i.e. node E in the pre-set of
firing component {W θ

B , E
θ
ω⊗B , l

θ
B , B

W•E•l
θ }, as shown in Fig.5.

Firing components {EθB , rθB , BE•rθ } and {W θ
B , E

θ
ω⊗B , l

θ
B , B

W•E•l
θ } of the c-

e structure in Fig.5 have Petri nets (with inhibitor arcs) counterparts as two
transitions shown in Fig.6.
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Fig. 5. If at E and W are vehicles (tokens) and none at B, then only the one in E
will get entry permit at B, since only firing component {Eθ

B , r
θ
B , B

E•r
θ } can fire in

such state, not this one: {W θ
B , E

θ
ω⊗B , l

θ
B , B

W•E•l
θ } - due to its inhibiting node E if it

contains a token.

Fig. 6. Petri net counterpart of two firing components with place B of c-e structure
shown in Fig.3.2. Inhibitor arc leads from place E to the left transition.

Example (the Readers/Writers problem)

A set of n sequential agents run concurrently under constraint: writing to a
common file by the j th (j = 1, 2, ..., n) agent prevents all remaining from reading
and writing, but not from their private (internal) activity. Reading may proceed
in parallel. Fig.7 shows three agents with the following meaning of nodes: Aj -
agent of number j = 1, 2, 3 is active (holds a token) if it is neither reading nor
writing; Rj - is active if the j th agent is reading; Wj - is active if the j th agent
is writing. Wj and Rj play both roles: of the ordinary nodes or of the inhibitors,
dependently which firing component they belong to.

A few semantic properties of c-e structures are in:

Proposition 3

For any c-e structures U, V ∈CE :

(a) U ≤ V ⇒FC [U ] ⊆FC [V ]⇒ [[U ]] ⊆ [[V ]]⇒ [[U ]]∗ ⊆ [[V ]]∗

(b) [[U ]] ∪ [[V ]] ⊆ [[U + V ]], but the reverse inclusion not always holds

(c) FC [U ]∪FC [V ] =FC [U + V ]⇒ [[U ]]∪ [[V ]] = [[U + V ]] but not conversely.

(d) FC [U ]∪FC [V ] =FC [U + V ] and [[U ]]∗ ∪ [[V ]]∗ = [[U + V ]]∗

are unrelated by implication. �
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Fig. 7. Three agents’ Readers/Writers system as a c-e structure RW with inhibitors;
the dashed arrows denote usage of inhibitors. Initially, the agents are neither reading
nor writing (tokens in A1, A2, A3).

Another extension: c-e structures with time.

Time models are different from those in Petri nets with time, where time is
usually treated as necessary or admissible period of activity of a node (site or
action). Here, the minimal time model is considered, where capacity of nodes
equal 1, and with each node a time period of mandatory stay of a token is
associated. This is the shortest time during which the node must hold the
token. On expiry of this period, the token can leave the node (if other necessary
conditions for this ”move” are met). Lapse of time may be related either to
individual firing components or to the whole c-e structure. The period of a
token stay at a node is set up on entering this token into it and decreases by one
time unit (”tick”) of the timer referred to by the node, until permission to leave
this node. On expiry of the mandatory residing time at this node, the token can
leave it if all other conditions for this action are met. Any c-e structure with
the minimal time model can be simulated (”implemented”) by a c-e structure
without time but with some additional nodes associated with every original node.
A number of these supplementing and linearly ordered nodes represent duration
of mandatory stay of a token in the original node.

Definition 10 (min-time c-e structure, set TminCE)

U = 〈C,E, Tmin〉 is a minimal-time c-e structure iff 〈C,E〉 c-e structure with
capacity of nodes equal 1, and Tmin: car(U) → N\{0} is a minimal time
function of the meaning: Tmin(x) is the least number of time units indicated
by a timer referred to by the node x, during which a token must stay at x since
its appearance. The timer is associated to a particular node. The set of all the
min-time c-e structures over is denoted by TminCE �
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Definition 11 (state of min-time c-e structure)

State is a function s : X → N with the informal meaning: s(x) = 0 if there
is no token at the node x and s(x) > 1 is a remaining time (a number of
ticks of the timer referred to by x) during which the token must remain at
x; s(x) = 1 indicates that the time of compulsory residence of a token at
the node x, prescribed by Tmin(x) has elapsed, thus, the token can be moved
further - if other conditions for this are satisfied. The set of all states is S = NX

(state-space). �

So, now, the s(x) is not a number of tokens residing at the node, but a current
time lapse.

Definition 12 (min-time semantics: a firing rule)

For Q ∈FC [U ], let [[Q]] ⊆ S×S be a binary relation defined as: (s, t) ∈ [[Q]]
if and only if:

∀x ∈ •Q : [s(x) = 1 ∧ t(x) = 0 ∧ ∀y ∈ Q• : [s(y) = 0 ∧ t(y) = Tmin(y)]∨
∃x ∈ •Q• : [s(x) > 1 ∧ t(x) = s(x)− 1]

Semantics [[U ]] of U ∈ TminCE is the union of relations [[U ]] =
⋃

Q∈FC [U ]

[[Q]].

[[U ]]∗ is the reflexive and transitive closure of [[U ]] �

The formula ∃x ∈ •Q• : [s(x) > 1 ∧ t(x) = s(x) − 1] expresses decrease by
one time unit of token’s stay at a certain node x of Q, if the minimal time of
this token has not expired in the state s. The minimal time can be simulated
by c-e structures without time constraints. An exemplary simulation of the c-e
structure in Fig.8 (firing component) depicts Fig.9.

Fig. 8. c-e structure (a firing component) with min-time assigned to nodes.

If the time is taken from a timer common to all nodes (violation of distributed
systems’ principles!), the semantics is re-interpreted: the decreasing elapse of
time now concerns all nodes in car(U), not only a given firing component. Thus,
the formula ∃x ∈ •Q• : [s(x) > 1 ∧ t(x) = s(x) − 1] would be replaced with
∃x ∈ car(Q) : [s(x) > 1∧ t(x) = s(x)− 1]. An example of this case, taken from
music, is in Fig.10.
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Fig. 9. A possible simulation of the c-e structure in Fig.8 with the minimal time of
nodes, by means of no-time c-e structure. The separate timer (each with perhaps diverse
progress rate of time) is associated with every node. The counterclockwise direction of
a token’s motion inside the timers, simulates elapse of time controlled by the timers
associated with nodes a, b, x, y.

Fig. 10. First bar of the score of Prelude c-minor by Chopin, in the form of the min-
time c-e-structure. The notes are represented as nodes with assigned duration periods,
implemented by the control mechanism above the music text. The chords are accom-
plished by synchronization vertical notes, using multiplication “•”
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The graphic examples have been tested by a computer program comprising
editor and simulator of the cause-effect structures [Chm 2003].

A number of problems and properties of extended c-e structures, not pre-
sented in this short note, can be transferred from elementary c-e structures (see
References). For instance such issues as:

– Decomposition of c-e structures
– Relation to Petri nets and to other models of concurrency
– C-e structures as lattices - their lattice properties
– Processes generated by c-e structures, monoid of processes
– Formal languages of c-e structure processes: the analysis and synthesis prob-

lems

Summarizing: the main motivation to develop the algebra (the quasi semir-
ing) of c-e structures, was to combine structuring mechanism and transformation
rules it provides, with appeal of simple pictorial and animated presentation of
modelled real life systems. This algebra is a formal background for combining
small c-e structures of easy to understand behaviour, into large system mod-
els, whose behavioral properties might be inferred from behaviour of their small
parts. Such feature is called a compositionality (here conditional) - a counter-
part of the extensionality in formal logic. Also, absence of explicit appearance
of transitions and adjacent arrows - as is the case of Petri nets - provides more
monitor space for graphic presentation.

References

[Chm 2003] Chmielewski R. Symulacja struktur przyczynowo-skutkowych z wyko-
rzystaniem platformy .NET (in Polish), MSc thesis, Warsaw University 2003
(Simulation of Cause-Effect Structures Using the .NET platform)

[Cza 88a] Czaja L. Cause-effect structures, Information Processing Letters, 26,
Jan.1988

[Cza 98a] Czaja L. Cause-Effect Structures - Structural and Semantic Properties
Revisited, FUNDAMENTA INFORMATICAE 33 (1998) pp. 17-42, IOS Press,
Amsterdam

[Cza 99] Czaja L. Representing Hand-Shake Channel Communication in the
Calculus of Cause-Effect Structures, FUNDAMENTA INFORMATICAE, vol.

37, n. 4, March 1999, pp. 343-368

[Cza 2002] Czaja L. Elementary Cause-Effect Structures, Warsaw University,
2002

[Hol-Sza 88] Holenderski L., Szalas A. Propositional Description of Finite Cause-
Effect Structures, Information Proc. Letters 27 (1988), pp. 111-117

[Mag-Mat 97] Maggiolo-Schettini A., Matteuci G. Processes in Cause/Effect
Systems, FUNDAMENTA INFORMATICAE 31 (1997) pp. 305-335, IOS Press,

37



[Rac 93] Raczunas M. Remarks on the equivalence of c-e structures and Petri
nets, Information Proc. Letters, 45 (1993) pp. 165-169

[Rei 85] Reisig W., Petri Nets. An Introduction, Number 4 in EATCS Mono-
graphs on Theoretical Computer Science, Springer, Berlin-Heidelberg-New York,
Tokyo, 1985

[Ust 96] Ustimenko A.P. Algebra of Two-level Cause-Effect Structures (revised
version), Information Processing Letters, 59 (1996) 325-330

[Ust 98] Ustimenko A.P. Coloured cause-effect structures, Information Process-
ing Letters, vol.68, No.5, December 1998, pp.219-225

[Wei-Gry 92] Weiss Z., Grygiel K., Stochastic Cause-Effect Structures: A Simple
Model, Proc. of the Workshop “Concurrency, Specification and Programming“,
Berlin, Nov.1992

38



Automated Comparative Study of Some
Generalized Rough Approximations

(Extended Abstract)

Adam Grabowski

Institute of Informatics, University of Bia lystok
Konstantego Cio lkowskiego 1M, 15-245 Bia lystok, Poland

adam@math.uwb.edu.pl

Abstract. The paper contains some remarks on building automated
counterpart of the research presented during one of the previous CS&P
workshops by A. Gomolińska. My main objective was the formal (and
machine-checked) proof of Theorem 4.1 from her paper “A Comparative
Study of Some Generalized Rough Approximations”, hence the title of
the present paper is by no means accidental.

Keywords: rough approximation, formalization of mathematics, Mizar
Mathematical Library

1 Motivation

During Concurrency Specification & Programming International Workshop in
2001 Anna Gomolińska presented a draft of her paper on the generalization of
rough approximation operators. Essentially, the idea behind the research was to
collect some standard properties of rough approximations and to cut off some
ordinary properties of binary relations to get – a little bit in the spirit of reverse
mathematics – a catalogue of equivalences between relations’ properties and cor-
responding formulas for rough sets. The final – revised and updated – version
of the research appeared eventually in Fundamenta Informaticae under the ti-
tle A Comparative Study of Some Generalized Rough Approximations [2] and
contained also a brief review of various rough approximations, not necessarily
classical ones.

During that time, I was also interested in computer-supported formalization
of rough sets and I claimed that the paper could be a quite interesting testbed
for my studies on the use of proof-assistants to support mathematicians in their
work. Just to be a little more explicit, the system which was considered by me
was Mizar, equipped with first order logic language and Tarski-Grothendieck set
theory as a underlying set theory.

After a deeper study at that time, I decided to abandon the formalization
work as it looked too much different from the one I followed as described in
[5]. In the aproach chosen by Gomolińska, rough inclusion function κ and two
uncertainty mappings – I and τ were quite fundamental at the very first first
sight.
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2 Approximations according to Gomolińska

Gomolińska started with – quite general – uncertainty map I from non-empty
universe U into its powerset. Potentially, no additional assumptions at the be-
ginning are made, with the exception of a kind of reflexivity – that any object
u from the universe is an element of I(u).

Theorem 4.1 is the core of the first part. We aimed at the full formalization
of this item, so we quote it here using original notation from [2].

Theorem 4.1 For any sets x, y ⊆ U , objects u,w ∈ U , and i = 0, 1, it
holds that:
a) fd0 ≤ id ≤ f0.
b) fd1 ≤ id ≤ f1.
c) f0(x) is definable.
d) ∀u ∈ f1(x).κ(I(u), x) > 0.
e) ∀u ∈ fd1 (x).κ(I(u), x) = 1.
f) If τ(u) = τ(w), then u ∈ f0(x) iff w ∈ f0(x); and similarly for fd0 .
g) If I(u) = I(w), then u ∈ f1(x) iff w ∈ f1(x); and similarly for fd1 .
h) fi(∅) = ∅ and fi(U) = U ; and similarly for fdi .
i) fi and fdi are monotone.
j) fi(x ∪ y) = fi(x) ∪ fi(y).
k) fdi (x ∪ y) ⊇ fdi (x) ∪ fdi (y).
l) fi(x ∩ y) ⊆ fi(x) ∩ fi(y).

m) fdi (x ∩ y) = fdi (x) ∩ fdi (y).

The approach is significantly different than those of W. Zhu [11] (but Zhu’s
paper was published later), where the starting point is – at least in my opinion
– more natural. Moreover, in the second part of the paper under discussion the
catalogue of various rough approximation operators is given (which is outside
Zhu’s research area).

3 Mizar State of the Art

In our formal approach to rough approximations, our choice was to have indis-
cernibility relation ρ defined as a binary relation on a non-empty universe U .
Essentially then, this corresponds to an abstract relational structure

R = 〈U, ρ〉

with all properties credited to the internal relation of R.
At the very beginning, we do not assume any of standard properties of ap-

proximations (or tolerances) added to the type of ρ, although we introduce two
basic Mizar types, called Approximation_Space and Tolerance_Space, to have
them available in the Mizar Mathematical Library. More thorough discussion on
this development is given in [4].

Faithfully following Gomolińska, we should be aware of the fact that we have
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A = 〈U, I, κ〉

as a formal approximation space. I had some doubts if I should mention κ at all
– rough inclusion function as in the classical approach the membership function
was considered. Also ρ as indiscernibility relation was rather preferred over the
uncertainty mapping. My convincement was stronger after the formalization of
Zhu’s paper on correspondence between properties of binary relations and of
rough sets.

In the literature [11] the authors skip over the theory of less known properties
of binary relations (or at least treat them as widely known), and I was also in a
dead point as the – contrary to the notion of serial or mediate which could be
claimed as mathematical folklore – positive or negative alliance relations were
really unknown for me.

Even if in considered paper standard lower approximation operator is defined
as (10)

LOW (x) = {u ∈ U : κ(I(u), x) = 1},

happily its immediate consequence is available as (12):

LOW (x) = {u ∈ U : I(u) ⊆ x}.

Then we could be sure the function κ will not be needed at the moment.

4 Generalizing Functions

Gomolińska claimed the following name space for approximations operators (18):

f0(x) = {u ∈ U : τ(u) ∩ x 6= ∅}

f1(x) = {u ∈ U : I(u) ∩ x 6= ∅}

with corresponding fd0 and fd1 .
Then we can think on the following definition for τ

definition

let R be non empty RelStr;

let tau be Function of the carrier of R, bool the carrier of R;

func f_0 R -> map of R means

for x being Subset of R holds

it.x = { u where u is Element of R : tau.u meets x };

end;

and similar, for uncertainty mapping I. Hence, it is quite straightforward to see
that the common variable in both definitions is just arbitrary function (with
proper domain and codomain), let us call it f , and then it is quite natural to
use instead of the above formulation something like
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definition

let R be non empty RelStr;

let f be Function of the carrier of R, bool the carrier of R;

func ff_0 f -> map of R means

for x being Subset of R holds

it.x = { u where u is Element of R : f.u meets x };

end;

and then to use

definition

let R be non empty RelStr;

func f_0 R -> map of R equals

ff_0 tau R;

func f_1 R -> map of R equals

ff_0 UncertaintyMap R;

end;

For a reader not very much acquainted with the Mizar system it is not very
cryptic, but the use of a keyword equals turns automatic treatment of equalities
on and then more reasonings can be justified automatically.

Furthermore, we have just a single – more general – theorem expressing (f)
and (g) at the same time, instead of two:

theorem :: ROUGHS_5:31 :: 4.1 f) Flip

for u,w being Element of R,

x being Subset of R st

f.u = f.w holds

u in (Flip ff_0 f).x iff w in (Flip ff_0 f).x;

It can be noted at the first sight, that there is nothing on approximation
operators there – we can think on quite general property of mappings as R is
only non-empty relational structure.

The Mizar functor Flip f, which is the formal counterpart of fd is defined
accordingly as

definition let X be set;

let f be Function of bool X, bool X;

func Flip f -> Function of bool X, bool X means

for x being Subset of X holds

it.x = (f.x‘)‘;

end;

Obviously, no approximations are needed here, either.
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5 Attributes

In our Mizar approach, UPP and LOW operators from [2] are classical upper
and lower approximation operators, respectively. Theorem 3.1 from [2] lists them
all, but it could be mentioned in this point, that all these – more or less standard –
properties were already formulated and proved formally in Mizar script available
in MML under identifier ROUGHS_1 as a direct reflection of Pawlak’s paper [7].

In our study of fuzzy implications, we developed some techniques (Mizar
schemes) which could decrease the number of technical steps in defining func-
tions.

It should be pointed out that if we start with the uncertainty mapping rather
than with indiscernibility relation, the core property is

∀u∈U u ∈ f(u),

which is essentially the formula (1) in [2].
To have faithful formal representation is the above, we introduced the new

Mizar attribute

definition :: property (1) p. 105

let R be non empty set;

let I be Function of R, bool R;

attr I is map-reflexive means

:: ROUGHS_5:def 1

for u being Element of R holds u in I.u;

end;

As we already mentioned before, our core idea was to start with an approxi-
mation space 〈U, ρ〉, where U is non-empty universe and ρ is an indiscernibility
relation defined on U . All rough operators, membership and uncertainty func-
tions, and also rough inclusions, could be defined based within this framework.
The proper choice of the formal background is especially important, because
in the Mizar Mathematical Library, all statements should be proven based on
classical logic and/or already proven lemmas.

In this paper, as a rule we do not quote correctness conditions (as they are
needed also for definitions), although definitions should also obey the rule of the
necessary justification. Even if sometimes of quite technical character, the proof
is needed and the example of that is given below. We formulate a bunch of handy
Mizar schemes which make this activity a little bit less painful for the user.

definition

let R be non empty set;

func singleton R -> Function of R, bool R means

:: ROUGHS_5:def 2

for x being Element of R holds it.x = {x};

existence

proof
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deffunc U(object) = {$1};

A1: now

let x be Element of R;

{x} c= R;

hence U(x) in bool R;

end;

thus ex f being Function of R, bool R st

for x being Element of R holds f.x = U(x)

from FUNCT_2:sch 8(A1);

end;

uniqueness; ::: here the proof is not quoted

end;

Why this definition was really needed? Essentially, to use the Mizar type
(and adjectives are important constructors for types) one should prove its non-
emptiness, i.e., to construct at least one example of an object possessing this
property, to show the usefulness of the attribute.

registration

let R be non empty set;

cluster singleton R -> map-reflexive;

end;

Another handy use of adjectives is given below:

registration

let R, f;

cluster ff_0 f -> c=-monotone;

end;

This allows to obtain automatically the proof of Theorem 4.1(i) as follows:

registration

let R be non empty RelStr; :: i)

cluster f_0 R -> c=-monotone;

cluster f_1 R -> c=-monotone;

end;

6 Conclusions and Further Work

Obviously, building proper formal framework for further work is crucial. Having
said that, we can build the rest of functions defined in [2]: f2, . . . , f9, having
ten mappings altogether. This allows for the possibility of automated reasoning
on these operators, which could be made in the nearest future, as well as the
reasoning on the – temporarily abandoned – rough inclusion function κ.

Even is this extended abstract is only a draft of the formal work done, the
complete formalization (just accepted for inclusion into the Mizar Mathematical
Library) is available at
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http://mizar.uwb.edu.pl/library/roughsets/

Using 1386 lines of Mizar code (44 kilobytes) and formulating 7 definitions
and proving 53 theorems we completed the first part of formalization work of
Gomolińska’s paper [2]. The roughs_5.abs file contains the abstract for the
development while roughs_5.miz is the complete source file.
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Abstract. In order to extend the formalism of the Bayes theorem to
rough mereological universes, we endow the latter with a notion of a
mass assigned to elements of the universe. We establish a counterpart
of the Bayes theorem for mass endowed mereological universes in which
rough inclusions are mass induced. We also establish an abstract form of
the betweenness relation which has proved itself important in problems
of data analysis and behavioral robotics. We point to applications in
clustering and evidence theory.
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1 Introduction

In our investigations into problems of data analysis and behavioral robotics as
a model for intelligent agents, we have come at the theory of rough mereology
as a useful milieu for these investigations. Rough mereology (or, as Achille Varzi
has called it in Varzi [18] the fuzzified mereology) rests on the notion of a rough
inclusion µ(x, y, r), a relation of being a part to a degree. In our study, we
have applied some forms of rough inclusions, see, e.g., Polkowski [9],[12]. Basic
forms of applied by us rough inclusions are linked to well-known idea of Pascal-
Galileo of the relation of the number of favourable outcomes to the number of all
outcomes of a random trial, the idea which in modern times was exploited, e.g.,
by  Lukasiewicz [5] in assigning fractional truth values to indefinite formulae. We
apply this idea of a fractional value towards a definition of an abstract class of
rough inclusions based on a notion of a mass assigned to things in a considered
universe. This idea allows us to relate for each pair x, y of things, degrees of
partial containment of x in y and of y in x, a fortiori leading to a mass-based
form of the Bayes theorem. The Bayes theorem known well from Probability
Calculus, was investigated in the framework of rough set theory, cf. Pawlak [8],
due to its ability of relating two-sided dependencies between pairs of things.
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2 An outline of basics of mereology

We accept here the standard version of mereology as proposed in Lesniewski [4]
in his pioneering work. The interested reader may as well consult, e.g., Casati
and Varzi [2] or Polkowski [10]. Given some collection U of things regarded as
individuals in ontological sense, a relation of a part is a binary relation π on U
which is required to be

M1 Irreflexive: For each thing x, it is not true that π(x, x).
M2 Transitive: For each triple x, y, z of things, if π(x, y) and π(y, z), then

π(x, z).
The relation of a part does induce the relation of an ingredient ingr, defined

as
ingr(x, y)⇔ π(x, y) ∨ x = y, (1)

which is clearly a partial order on things in U . The basic relation involving the
notion of an ingredient is the relation of overlapping, Ov(x, y) in symbols, defined
as follows.

Ov(x, y)⇔ ∃z.ingr(z, x) ∧ ingr(z, y). (2)

The notion of overlapping in turn is instrumental in definition of the class opera-
tor in the sense of Leśniewski. This operator assigns to each non-empty collection
of things F in the universe (U, π) its class, ClsF which is a thing satisfying the
two conditions:

(1) If x ∈ F then ingr(x,ClsF ).
(2) If ingr(x,ClsF ) then for each y with ingr(y, x) there exists z ∈ F such

that Ov(y, z).
We are now in a position to recall here two fusion operators due to Tarski [16].

These operators are the sum x+y and the product x·y defined by means of x+y =
Cls(z : ingr(z, x) or ingr(z, y) and x · y = Cls(z : ingr(z, x) and ingr(z, y).

The things x, y are disjoint, dis(x, y) in symbols, whenever there is no thing
z such that ingr(z, x) and ingr(z, y) (a fortiori, the product of x and y is not
defined).

The difference x− y is defined, when non-empty, as follows

x− y = Cls{z ∈ U : ingr(z, x) ∧ ¬ingr(z, y)}. (3)

Rough (fuzzified) mereology is a theory of rough inclusions. Rough inclu-
sions on a mereological universe U endowed with a part relation π are relations
µ(x, y, r) on the product U × U × [0, 1] cf. Polkowski and Skowron [15] and
Polkowski [9],[10], [12].

They satisfy the following postulates, relative to a given part relation π and
the induced by π relation ingr of an ingredient, on U :

RINC1 µ(x, y, 1)⇔ ingr(x, y).
This postulate asserts that parts to degree of 1 are ingredients.

RINC2 µ(x, y, 1)⇒ ∀z[µ(z, x, r)⇒ µ(z, y, r)].
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This postulate does express a feature of partial containment that a ‘bigger’
thing contains a given thing ‘more’ than a ‘smaller’ thing. It can be called a
monotonicity condition for rough inclusions.

RINC3 µ(x, y, r) ∧ s < r ⇒ µ(x, y, s).

This postulate specifies the meaning of the phrase ‘a part to a degree at least of
r’. From postulates RINC1-RINC3, and known properties of ingredients some
consequences follow

1. µ(x, x, 1).

2. µ(x, y, 1) ∧ µ(y, z, 1)⇒ µ(x, z, 1).

3. µ(x, y, 1) ∧ µ(y, x, 1)⇔ x = y.

4. x 6= y ⇒ ¬µ(x, y, 1) ∨ ¬µ(y, x, 1).

5. ∀z∀r[µ(z, x, r)⇔ µ(z, y, r)]⇒ x = y.

Property 5 may be regarded as an extensionality postulate in Rough Mereology.

3 Mass on a mereological universe

We introduce a new type of rough inclusions derived from a basic notion of a
mass m(x) assigned to each thing x in the mereological universe U endowed with
a part relation π and the derived relation ingr of an ingredient. The notion of
mass in science is most often attributed to physical objects or linguistic category
of mass expressions in dealing with which mereological tools are involved by some
authors, cf. Nicolas [6]. Here, we introduce mass as an attribute of things which
may admit various interpretations depending on the specific context of usage.

The notion of a mass m in what follows should satisfy the following demands:

MS1 m(x) is positive real valued for each thing x in U .

MS2 If ingr(x, y) then m(x) ≤ m(y).

MS3 If dis(x, y) then m(x+ y) = m(x) +m(y).

Under those provisos, we define a rough inclusion candidate µ by letting

µ(x, y, r)⇔ m(x · y)

m(x)
≥ r. (4)

Proposition 1. The relation µ defined in (4) is a rough inclusion.

Proof. Consider RINC1; assume ingr(x, y) holds. Then x ·y =x, hence, m(x·y)
m(x) =

1 and µ(x, y, 1). For the converse, assume that µ(x, y, 1) holds true. Was π(x ·
y, x), we would have m(x − y) > 0 and m(x) = m(x · y) + m(x − y), hence,
m(x·y)
m(x) < 1, a contradiction. It follows that x · y = x and thus ingr(x, y). For

RNC2, assume that µ(x, y, 1) and µ(z, x, r). Hence, ingr(x, y) which implies that
ingr(z · x, z · y) thus m(z · y) ≥ m(z · x) and finally µ(z, y, r). RNC3 is obviously
satisfied.
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We notice that the rough inclusion µ is transitive:

µ+(x, y,
m(x · y)

m(x)
) ∧ µ+(y, z,

m(y · z)
m(y)

)⇒ µ(x, z,
m(x · y · z)
m(x)

). (5)

Indeed, m(x · y · z) ≤ m(x · z).
We now state an abstract mass-based form of the Bayes theorem.

Proposition 2. (the Bayes theorem, simple form) (i)For any pair of things x, y
we have: m(x) · µ(x, y, r) = m(x · y) = m(y) · µ(y, x, s) for appropriate values of

r ≤ m(x·y)
m(x) and s ≤ m(x·y)

m(y) , i.e., r
s
∼= m(x)

m(y) .

(ii) µ(x, y, r) = m(y)·µ(y,x,s)
m(x) .

Remark 1. The form (i) as well as (ii) can be made more precise at the cost
of introducing the modification of µ, denoted µ+ which stands for the greatest

value of the containment degree, i.e., m(x·y)
m(x) .

µ+(x, y,
m(x · y)

m(x)
). (6)

Proposition 2 would then take the following form.

Proposition 3. (a precisiated form of the Bayes theorem) For each pair x, y of
things in the universe U , it holds that

µ+(x, y, m(x·y)
m(x) ) =

m(y)·µ+(y,x,
m(x·y)
m(y)

)

m(x) .

The particular examples to the above general schema can be the following.

Example 1. Consider a finite universe U along with the collection of its non-
empty subsets. For each subset x, let m(x) = |x|, i.e. the cardinality of x. In this
case, the part relation is the relation of being a proper subset, the ingredient
relation is the relation of being a subset, the sum x+ y is the union x ∪ y, and,
the product x · y is the intersection x ∩ y.

Then µ(x, y, r) holds true if and only if |x∩y||x| ≥ r. The Bayes formula in

Proposition 3 becomes

µ+(x, y,
|x ∩ y|
|x|

) =
|y| · µ+(y, x, |x∩y||y| )

|x|
. (7)

Example 2. A parallel example is furnished by a collection of bounded mea-
surable sets in a finite-dimensional Euclidean n-space, with the cardinality |x|
replaced with the n-volume V n(x).

Example 3. Consider a finite probability space (Ω,P ) with the subspace (Ω+, P |Ω+)
of events with positive probability. In this case, the sum x+ y is the union x∪ y
and the product x · y is the intersection x ∩ y. The mass m(x) is now the prob-
ability P (x) of the event x. The Bayes theorem 3 acquires now the form

µ+(x, y,
P (x ∩ y)

P (x)
) =

P (y) · µ+(y, x, P (x∩y)
P (y) )

P (x)
. (8)
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Example 4. Consider a collection of indefinite satisfiable formulae F over a finite
universe U of things. For a formula f , the satisfiability set Sat(f) is defined as
Sat(f) = {u ∈ U : u |= f}. The rough inclusion µ is defined now as µ(f, g, r) if

and only if |Sat(f)∩Sat(g)|Sat(f)| ≥ r.
The Bayes formula in this case is like 7 with sets x replaced by sets Sat(f).

In case µ(f, g, 1) we say that the implication f(x)→ g(x) is a true decision rule.

Example 5. Consider an information system I = (U,A, V ) with the universe of
things U , attribute set A and the value set V : each a ∈ A maps the set U
into value set V and in consequence each thing u ∈ U is represented as the set
I(u) = {(a, a(u)) : a ∈ A}, cf., e.g., Pawlak [8].

We will consider the set PI = {(a, a(u)) : u ∈ U, a ∈ B, ∅ 6= B ⊆ A} of
all partial non-empty sets of attribute-value pairs defined by things in U , with
the ingredient relation defined by the subset relation. For a set x ∈ PI, we let
m(x) = |x|.

Remark 2. We would like to mention the usage of the name ‘mass’ in Dempster-
Shafer evidence theory cf. Dempster [3], where ’mass’ is a substitute name for the
’basic probability assignment’ m which denotes the values assigned to subsets of
the frame of discernment Θ. In this case values assigned to those subsets sum
up to 1 as they express degrees of belief that evidence is concentrated in a given
subset. The belief function Bel defined for a subset Θi of Θ as

Bel(Θ1) =
∑
{m(θ) : θ ⊆ Θ1} (9)

satisfies the monotonicity condition for the our notion of a mass m but need not
be additive.

4 A generalized Bayes theorem

Consider the mereological universe U . Let Y1 be the maximal collection of things
in U with the property:

(O) For each thing x in Y1, x overlaps with the class Cls(y1 \ {x}).
Let y1 = ClsY1.
Continuing in this way, we define y2, y3,.., yn such that
(1) U = y1 + y2 + ...+ yn.
(2) dis(yi, yj) when i 6= j for i, j + 1, 2, ..., n.
We call the system {y1, y2, ..., yn} a basis for the mereological space (U, π,m).
For each x ∈ U , we have thus

x = x · y1 + x · y2 + ...+ x · yn (10)

and

m(x) =
n∑
i=1

m(x · yi) =
n∑
i=1

m(yi) · µ+(yi, x). (11)

The general form of the Bayes theorem can be stated now.
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Proposition 4. We have

µ+(x, z) =
m(x · z)∑n

i=1m(yi) · µ+(yi, x)
. (12)

5 Relations to the notion of betweenness: a geometry for
mass-based rough mereology

The notion of betweenness relation due to Tarski [17], modified by van Bentham
[1] and adapted by us to the needs of data analysis and behavioral robotics will
acquire here an abstract formulation in the framework of the mass mereology.

We introduce first the notion of distance δ(x, y) between two things x, y in

the universe U . For argmaxrµ(x, y, r) = m(x·y)
m(x) and argmaxsµ(y, x, s) = m(x·y)

m(y) ,

we let
δ(x, y) = max{m(x·y)

m(x) ,
m(x·y)
m(y) }. Hence, δ(x, y) = m(x · y) ·max{ 1

m(x) ,
1

m(y)}=
m(x · y) ·min{m(x),m(y)}.
For a set Y = {y1, y2, ..., ym} of things in U , and a thing x ∈ U , we say that

x is between things in Y , B(x, Y ) in symbols, in case the following condition
holds true

B(x, Y )⇔ ∀z.z = x ∨ z 6= x ∧ ∃y ∈ Y.δ(x, y) ≥ δ(z, y). (13)

For a given x ∈ U we denote with the symbol BTW (x) the collection of sets
Y ⊆ U having the property that B(x, Y ).

Proposition 5. The collection BTW (x) is monotone, i.e., if Y1 ∈ BTW (x)
and Y1 ⊆ Y2 then Y2 ∈ BTW (x).

The following proposition sets some condition for betweenness.

Proposition 6. Assume that there exists a subset ∅ 6= Y0 ⊆ Y with the property
that ingr(y, x) holds true for each y ∈ Y0. Then B(x, Y ) holds true.

Proof. Consider y0 ∈ Y0. We have y0 · x = y0. Hence, δ(x, y0) = m(y0) ·
minm(x),m(y0) = m2(y0). For z 6= x, we have

δ(z, y0)=m(z · y0) ·min{m(z),m(y0)} ≤ m2(y0).

Remark 3. In particular cases, the betweenness relation can be described in more
precise terms. In behavioral robotics, when mobile robots are modeled as pla-
nar rectangles, and the rough inclusion is defined as µ(A,B, r) if and only if
V 2(A∩B)
V 2(A) ≥ r, it is shown that a robot A is between robots B and C if and only

if A is contained in the minimal rectangle spanned on B and C as its diagonal
vertices cf. Polkowski and Ośmia lowski [13], [14].

In the case of partial information sets in the set PI, we say that a set x =
{(a, a(u)) : a ∈ B} is a convex combination of sets xi = {(a, a(ui)) : a ∈ Bi} for
i=1,2,...,k where sets Bi are pairwise disjoint, B =

⋃
iBi, (a, a(u)) = (a, a(ui))

for a ∈ Bi, i = 1, 2..., k. Then we prove that B(u, {ui : i = 1, 2, ..., k}) holds true

with respect to the rough inclusion µ(x, y, r) if and only if |IND(x,y)|
|x| ≥ r, where

IND(x, y) = {a ∈ A : a(x) = a(y)} cf. Polkowski [11].
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6 In search of an application: Clustering

Let us consider a possible mechanism for clustering based on mass rough inclu-
sions. To this end, we introduce another distance function ∆(x, y) given by the
formula

∆(x, y) = |µ+(x, y)− µ+(y, x)| = m(x · y) · | 1

m(x)
− 1

m(y)
|. (14)

Given ε > 0, we consider the tolerance relation

τ(x, y)⇔ ∆(x, y) ≤ ε. (15)

We define clusters as tolerance classes, i.e. maximal collections of things with
the property that each pair of things in the collection are in the relation τ .

Let us provide a simple example.

Example 6. Consider things in a collection U being landscapes or photographs of
a countryland on which we have trees, figures of people, houses. For a particular
thing x we assign the mass m(x) as the sum m1(x) + m2(x) + m3(x), where
m1(x) = if and only if there are at least 3 trees on x, m2(x) = 1 if and only if
there are at least 2 people on x, and m3(x) = 1 if and only if there is at least
one house on x. We assume that m(x) is at least 1 for each x in U . Figure 1
shows possible outcomes for pairs of things and values of ε for which these things
may fall into one cluster. We have three possible types of things: Type I with
m=3, Type II with m=2, and, Type III with m=1. We include into x · y a unit
if and only if both x, y satisfy conditions for this unit, for instance if both x, y
have m1 = 1 then m1(x · y) = 1. We do not consider in this example the sum
operation.

Table 1. Types of mass assignment towards clustering

Type x Type y m(x · y) ∆(x, y) ε clustering

I I 3 ∆ = 0 any positive
I II 2 ∆ = 1

3
ε ≥ 1

3

I III 1 ∆ = 2
3

ε ≥ 2
3

II II 2 or 1 ∆ = 0 any positive
II III 0 excluded or 1 ∆ = 1

2

III III 40 excluded or 1 ∆ = 0 any positive

It follows that for ε < 1
3 , clustering makes into clusters things of the same

type: cluster 1 with things of Type I, cluster 2 with things of Type II, and,
cluster 3 with things of Type III.
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7 In search of an application: Making evidence approach
decisive

In evidence theory (cf. Dempster, loc.cit.), mass assignments are also called basic
probability assignments (b.p.a.’s) and they are assigned to all subsets of a set of
possible outcomes called the frame of discernment. We illustrate our approach
with an example.

Example 7. Imagine a car accident - a collision at the road crossing endowed
with traffic lights. It is crucial to establish what light was on for the driver on
the main road. Witnesses gave combined evidences resulting in the following
b.p.a. m:

m(red) = 0.25,

m(yellow) = 0.35,

m(green) = 0.20,

m(red or yellow) = 0.08,

m(red or green) = 0.02,

m(yellow or green) = 0.08,

m(red or yellow orgreen) = 0.02.

From this assignment, values of the belief function, Bel(A) =
∑
B⊆Am(B),

are computed:

Bel(red) = 0.25,

Bel(yellow) = 0.35,

Bel(green) = 0.20,

Bel(red or yellow) = 0.68,

Bel(red or green) = 0.47,

Bel(yellow or green) = 0.63,

Bel(red or yellow or green) = 1.0.

We now compute values of rough inclusion taking as new masses for rough

inclusions the computed values of Belief function. Hence, µ+(x, y) = Bel(x∩y)
Bel(x) .

These computed values of rough inclusions are collected in Figure 2. We omit
the full set {r, y, g} as the least decisive.

Table 2. Values of rough inclusions between sets of traffic lights

set red yellow green red, yellow red, green yellow, green

red 1.0 0.0 0.0 1.0 1.0 0.0
yellow 0.0 1.0 0.0 1.0 0.0 1.0
green 0.0 0.0 1.0 0.0 1.0 1.0

red, yellow 0.27 0.5 0.0 1.0 0.27 0.27
red, green 0.5 0.0 0.4 0.5 1.0 0.5

yellow, green 0.0 0.7 0.4 0.55 0.3 1.0
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We introduce the measure of independent evidence M(y) as the sum∑
all non−singleton sets x6=y

µ+(y, x). (16)

These values are therefore : M(red, yellow) = 0.54, M(red, green) = 1.0,
M(yellow, green) = 0.85. It follows that the maximally independent, having
the smallest intersection/dependence on other sets is red, yellow. One decides
that the light on the main road at the moment of crossing the crossroads was
either red or yellow. Now in this set, the proportion of evidence for red to evidence
for yellow is like 0.27:0.5 so the decision is on yellow light.

8 Conclusion

We have introduced the notion of a mass into rough mereology which has al-
lowed us to express the reciprocal relations of partial containment in the form
characteristical to the Bayes formula in probability theory. We have expressed
the betweenness relation in an abstract mass-based . We proposed an applica-
tion to clustering that allows for inducing various sets of clusters dependent on
teh threshold distance ε.We hope that this abstract formulation will prove a
convenient vehicle for some forms of approximate reasoning to be developed in
future. At the end, we proposed a decision procedure involving mass based rough
inclusions derived from belief values in evidence theory.
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Abstract. The paper deals with the problem of database workload and
its reconstruction. It is partially related to workload as a sequence of SQL
statements in physical database design problem. An efficient algorithm
based on greedy heuristic method for workload reconstruction using pe-
riodic patterns is provided. The quality of reconstruction is estimated by
proposed reconstruction quality indicator.

Keywords: workload and workload reconstruction · periodic patterns·
periodic patterns discovery· heuristic methods · optimization in physical
database design .

1 Introduction

The problem of physical database design and tuning often requires detailed work-
load analysis. The paper ”Automatic physical design tuning: workload as a se-
quence” [1] published in 2006 defines the structure of the workload as a sequence
of SQL queries. This paper influenced a lot of research on workload, however, the
topic of studying workload on an abstract plane to boost the performance of a
database management system has not been fully addressed. The following paper
introduces a new approach to the database workload based on the multiset con-
cept. In this approach we do not analyze a sequence of SQL queries, instead, we
take into account the multisets of queries abstract syntax trees (AST). Query
syntax tree is viewed as the implementation of the SQL query under specific
conditions at a specific time in a DBMS. Through the use of the AST concept,
the problem of the equivalence of SQL queries in the process of generating the
workload has been avoided. Similar problems have been discussed in previous
papers [11, 12]. Both dealt with application of periodic patterns methods to a
series of SQL queries. However, despite analyzing the workload on a physical
level, both papers lack (among other things) the analysis of transition cost be-
tween queries and DBMS states. Such costs are important when working with
bigger workloads and calculating their total cost, which then is used in various
recommendation systems.
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Prediction and reconstruction of the workload can become a useful tool for
optimizing recommendation modules. At a later stage, they can be used in the
development of some form of automated physical database design tools.
The following paper presents a new concept for the reconstruction of the work-
load. This concept is a result of combining of the data mining of periodic patterns
with elements of physical database design. Those elements include cost models
used in DBMS optimization. The aim of the article is to provide an effective
heuristic method to search for the optimal workload reconstruction and also
to provide the reconstruction quality measure. Both elements will be used in
workload prediction and determination of the workload prediction degree.

This paper is organized as follows. The second section presents the concept
of workload, including cost issues related to the physical workload model. The
third section deals with defining periodic patterns and their derivation rules. This
section also defines the workload reconstruction and reconstruction quality mea-
sure proposal. Section 4 introduces the algorithm which uses one of the heuristic
methods in order to generate an optimal reconstruction. Section 5 concludes and
discusses further research plans.

2 Workload

The article examines the workload on two essentially independent planes. On the
abstract plane, we do not include cost relations between database objects and
costs resulting from the transition from one database configuration to another.
As for the physical workload model, it reflects the behavior of the database
system for a given time period during which the aforementioned costs are taken
into account.

2.1 Database processing model

We consider a typical relational database system where the relational model of
data is used to represent data containers. Let x be a nonempty set of attribute
names later on called as a relational schema and let dom(a) denotes a domain
of attribute a ∈ x. A tuple t defined over a schema x is a full mapping t : x →⋃

a∈x dom(a) and such that ∀a ∈ x, t(a) ∈ dom(a). A relational table r created
on a schema x is a set of tuples over a schema x.

Query processor transforms SQL statements submitted by the user applica-
tions into the query execution plans formulated as the expressions of extended
relational algebra. The operations of extended relational algebra include the im-
plementation dependent variants of operations of standard relational algebra
such as selection, projection, join, antijoin, set operations, and other operations
like grouping, sorting, and aggregate functions. Due to the different implementa-
tion techniques, the operations included in the basic system of relational algebra,
e.g. selection or join contribute to an number of different elementary operations
depending on their implementations, e.g. index based selection, full scan selec-
tion, hash based join, index based join, etc.
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2.2 Abstract workload model

k SQL statements submitted by M users within the user applications a1, . . . ,
an are recorded in an application trace. A trace of an application ai is a finite
sequence of pairs <ci:tci , si1 :ti1 , . . . , sin :tin , di:tdi

> where ci is a connect state-
ment, tci is a timestamp when the statement has been processed, each sij is
SQL statement with a timestamps tij attached, and di is a disconnect statement
with its timestamp tdi . Processing of an application ai starts from processing of
a connect statement ci, the processing of SQL statements sij , and it finally ends
with processing of a disconnect statement di.

An audit trail is a sequence of interleaved trails of user applications. For ex-
ample, a sequence <ci:tci , si1 :ti1 , cj :tcj , sj1 :tj1 , si2 :ti2 , di:tdi dj :tdj> is a sample
audit trail from the processing of applications ai, and aj .

In the subsequent text the implementation record of each of the k SQL
queries is placed within a non-empty period of time [a,b] comming from M
users . It follows that syntactically equivalent SELECT queries can have different
implementations. The problem of SQL query equivalence is a complex problem
[3, 2].

We can circumvent this problem by using query execution plans accessible
through the use of mentioned EXPLAIN PLAN command. Such plans usually take
the form of enhanced syntax trees and are treated as query implementations.
SELECT query analysis on a non-empty period of time [a,b] results in extraction
of the syntax trees which are then placed in a syntax tree table [12]. This table
contains a complete and compressed information about the syntax trees of SQL
statements and the number of their occurrences in the analyzed workload. The
paper [12] contains detailed information about the construction of such tables. It
is worth noting, that a syntax tree is represented in a syntax tree table only once,
no matter how many times it is included in the other syntax trees as a subtree.
The cases of shared subtrees resulted in the adoption of the multisets theory. In
the following text we define a multiset M is defined as a pair <S, f> where S is
a set of values and f : S → N+ is a function that determines multiplicity of each
element in S and N+ is a set of positive integers [9]. We also assume that the
syntax trees have been unambiguously labeled by the letters of a fixed alphabet
- a set of natural numbers.

For simplicity in further definitions, we assume the condition that the exe-
cution time of each query together with the generated load was recorded unam-
biguously for a given workload.

For the given time period [a, b] and the number of analyzed SQL queries k,
let n ≤ k be a minimal number of the time period’s equal divisions such that
the total execution time for each of the queries (including all implementational
costs) fits in exactly one time segment with the length |[a, b]/n|. Such time period
division generates n time segments of equal length called the time units. Each
time unit has its established length and a start point in time [12].

Let U be a nonempty sequence of n disjoint time units over which a workload
of k queries is recorded and let |U | = n denote the total number of time units in
U . Then U [m] denotes the m-th time unit in U for m = 1..n. Let V be a mapping
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of a subset 1..k of natural numbers representing workload queries (or more pre-
cisely query syntax trees) into a subset 1..n of natural numbers representing time
units. This syntax tree-to-time unit mapping allows for registrations of syntax
trees in syntax tree tables. Those tables are later used to locate similar syntax
trees whose location in the [a,b] only slightly differs from the ”ideal” periodicity.

Let L be a set of all syntax trees (including all syntax subtrees) generated
from a given set of k SQL queries executed in a specified time period [a, b] with
a given sequence of time units U . For each T ∈ L, a workload trace of a syntax
tree T is a multiset WT of time units such that WT [i] =<{T}, fi> and fi(T ) is
equal to the total number of times the syntax tree T was processed in the i-th
time unit U [i].

In addition, let the syntax tree table comprising all syntax trees and subtrees
be given. A workload of the set L is denoted by WL and WL =

⊎
T∈L

WT

2.3 Physical workload model

In this paper, the aforementioned WL structure was used instead of the ear-
lier model of the physical workload considered in [1]. In addition, the following
extension was adopted. Instead of the sequence of SELECT expressions, the se-
quences of multisets of syntax trees were used. Due to the use of the SQL query
execution plans it was possible to register on-the-fly: operations, containers and
access paths with costs (and workloads) at the level of each operation in the
execution plan.

Let the enumeration of the syntax trees be monotonic through the set of
natural numbers with accordance with the timestamp values. Let {Sk} be a
multiset of syntax trees with a given U(t). Let (S1, S2, ..., SN ) be a sequence of
N multisets registered in WL.

There are many methods for registering the SELECT queries in relational
databases. An example of such a method in the Oracle DBMS is the so-called
audit trail applied in [12]. In addition, there are built-in workload logging tools
(eg. Profiler tool in Microsoft SQL Server). A physical structureshould be un-
derstood as any access path supported by the database server. Those structures
include, among others: indexes, materialized views, multidimensional clustering
of tables, etc. A configuration of the workload WL is the set of possible-to-use
physical database structures that can be materialized. A physical structure is
considered significant if it can potentially be used in the execution plan of a
SELECT query (even if it was not used in the final execution plan at the defined
time period [a, b]). The topic of costs in database systems is a very broad subject,
simplified in this paper. In order to have comprehensive knowledge about costs,
eg. in the Oracle database system, we refer the reader to [6].

The following notation was used in the further part of the work. COST ({S},
C) means the total cost of operations in the EXPLAIN PLAN expression encoded
with the appropriate syntactic trees at the given C database configuration. Let
TRANSITION-COST (Ci, Cj) be the minimum cost of the transition between
the Ci and Cj configurations. These costs include costs related to the creation /
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removal of indexes and other physical structures. We assume the available opti-
mization mechanisms that estimate costs on an ongoing basis, perform without
unnecessary overhead using built-in extensions such as what-if, etc.

Representation of the ({S1}, {S2}...{SN}) sequence execution is defined as
a sequence (C1, {S1}, C2, {S2} ... CN , {SN}, CN+1). It is a sequence in which
each multiset of syntax trees has a pre-configuration and post-configuration (we
allow for empty configurations).

We define the sequence execution cost <C1, {S1}, C2, {S2}...CN , {SN},
CN+1 >, as

∑N
k=1 (COST ({Sk}, Ck) + TRANSITION-COST (Ck−1, Ck))+

TRANSITION-COST (CN , CN+1).
The zero state C0 can be, for example, the initial state of the database or its
value can be set by built-in what-if applications. All the costs discussed so far
are accompanied by workloads and time units. In the further part of the arti-
cle, we assume that in each U(i), i = 1, 2, ..., n, the total workload is directly
proportional to the total costs, treating the concepts of costs and workloads
interchangeably.

3 Workload reconstruction using periodic pattern theory

Workload reconstruction plays an important role in the automated physical
database design and in physical design optimization mechanisms. In this pa-
per out of all possible reconstructions, we investigate only those most probable
and, at the same time, the most acceptable when it comes to costs. It means we
study those WL into WL mappings for which the total costs during reconstruc-
tion does not exceed initial total workload costs. Those mappings maintain the
consistency of the subsequences implemented through a minimal set of periodic
patterns with an emphasis on maximizing quality indicators of periodic patterns

3.1 Periodic patterns

The theory and applications of the concept of periodic patterns to the workload
prediction problem were discussed in the previous works of one of the authors
[11, 12]. The theory of periodic patterns is well known. It grew out of, among
others, the periodic sets [7] as well as periodic events [8].

Let the workload WL and the sequence of time units U be given. The se-
quences C,C ′ ⊆ WL of the same length are called equivalent if C = C ′ occurs
for all corresponding coordinates.

A periodic pattern in a workload WL is a tuple <C, f , t, p, > where:

1. the carrier C determines a non empty subsequence C ⊆WL

2. f is a number of time unit in U where the repetitions of C start
3. t is a total number of occurrences of equivalent sequences C ⊆ WL, such

that p denotes the number of consecutive time unit elements after which the
t pairs of neighboring sequences are equivalent.

4. Parameters f , t, p satisfy the following inequality: f, t ≥ 1, p ≥ 0, f + (t −
1) ∗ p + |C| − 1 ≤ |U |
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Also, if t = 1 then p = 0 and the pattern <C,f, 1, 0> is called the trivial periodic
pattern (trivial pattern)

Let <C, f , t, p, > be a periodic patterns in WL with a given U .
A trace of a carrier C is a subsequence C ⊆ WL, denoted tr(C, f, n), in which
the first f − 1 elements are the empty multisets.
A trace of a periodic pattern <C, f , t, p, > over the time unit sequence U , under
the condition f + (t− 1) ∗ p+ |C| − 1 ≤ n, is a subsequence TR(< C, f, t, p >, n)
of a sequence WL such, that TR(< C, f, t, p >, n) = tr(C, f, n) ] tr(C, f + p, n)
] . . .] tr(C, f + (t− 1) ∗ p, n)

3.2 Derivation rules

According to the work [4], for the periodic patterns we define the derivation rules
by means of which new periodic patterns can be generated. Given the WL and
U , the following rules take place:
Rule 0 (Triviality) Let C be a submultiset, such that C ⊆ WL[f ] for f ∈
{1, .., n}. Then <C,f, 1, 0> is a (trivial) periodic pattern in WL. This rule states
that in any non-empty workload WL , you can find all the trivial patterns of the
form <C,f, 1, 0>.
Rule 1 (Normalization) Let <C,f ,t,p> be a periodic pattern in WL. Then
<C ′,f ′,t,p>, where f ′ = f + i, is a periodic pattern in WL, such that C ′ is
formed from C by the elimination of all of the i-empty multisets preceding C
and/or the elimination of all of the empty multisets trailing C.
Rule 2 (Exclusion/Duality) Let <C,f ,t,p> be a periodic pattern in WL. If
fsplit = f + i ∗ p for 0 ≤ i ≤ t − 1, then only one of the following patterns is a
periodic pattern: a) P =<C,f ,i−1,p> with WL = WL \ TR(P ′, n) is a periodic
pattern in WL such that P ′ = < C, fsplit, t − i + 1, p>, b) P ′= <C, fsplit,
t− i + 1, p> with WL = WL \ TR(P, n) is a periodic pattern in WL such that
P =<C,f ,i− 1,p>

Contrary to the previously mentioned research, in this paper we omit the
concept of periodic patterns ”validity”. As a result, the process of building and
applying derivation rules may result in ”depletion” of the workload that takes
place in the Exclusion/Duality rule
Rule 3 (Elimination) Let <C,fi,ti,pi>, <C,fj ,tj ,pj> be periodic patterns in
WL, such that fi < fj . Then the following cases hold:

(1) If ti = tj = 1 then 〈C, fi,2, fj − fi〉 cannot be a periodic pattern in WL

(the carrier C starting from position fi can occur a maximum of 1 time in
WL - in accordance with the definition. The following sub-rules stating the
maximum of ti, tj times starting from fi, fj respectively)

(2) If ti = 1, tj > 1 and fj − fi = pj , then 〈C, fi,tj + 1, pj〉 is not a periodic
pattern in WL.

(3) If tj = 1, ti > 1 and fj = fi + ti ∗ pi, then 〈C, fi,ti + 1, pi〉 is not a periodic
pattern in WL.

(4) If tj 6= 1, ti 6= 1, pi = pj and fj = fi + ti ∗ pi, then 〈C, fi,ti + tj , pi〉 is not a
periodic pattern in WL.
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Rule 4 (Decomposition) Let <C,f ,t,p> be a periodic pattern in WL. Then
〈C ′, f ,t, p〉, where a carrier C ′ is a subsequence of a carrier C, is a periodic
pattern in WL.
Rule 5 (Composition) Let <Ci,fi,t,p>, <Cj ,fj ,t,p> be periodic patterns in
WL, such that fi ≤ fj and ]s∈{i,j}TR(< Cs, fs, t, p >, n) ⊆WL. Then 〈Ck, fi,t,
p〉 is a periodic pattern in WL such that Ck = tr(Ci, 1, fj−fi+ |Cj |)]tr(Cj , fj−
fi, fj − fi + |Cj |).

For example, given the periodic patterns 〈TV 2,1,3,4〉 and 〈T ,4,3,4〉 in a work-
load WL with given U then 〈TV 2∅T , 1,3, 4〉 is a periodic pattern in WL as well.

3.3 Reconstruction and workload reconstruction quality measure

The model theory, in George Polya’s view, deals with the equivalence classes of
similar periodic sequences. The motivation behind the reconstruction concept is
the fact that for each sequence of determined processes (and with such we are
working) there exists a period and pre-period [5]. The theory of shifts, in terms of
periodic patterns for sequences, makes it possible to indicate the minimal sets of
generators and their calculation is possible with the help of efficient algorithms.
The problem raised in the work relates to parallel processes that interact with
each other in real time. The study of the periodicity of such structures is close
to the study of symbolic dynamics in particular of groups of automorphisms of
similar structures.

Let R be a non-empty set of periodic pattens in a WL given time unit sequence
U(n). We say that R is a reconstruction of the workload WL in U(n) if:

i. ]|R|s=1TR(< Cs, fs, ts, ps >,n) = WL

ii. all TRs implementing connect-disconnect processes remain consistent in re-
lation to each other. We allow duplication of database connect/disconnect
processes in case of hypothetical processes, assuming that logging in and
logging out does not involve costs.

As a quality measure of the reconstruction R is a real value 0 ≤ mR < 1
defined as:
mR = 1− (1/

∑|R|
i=1(‖Ci‖ ∗ ti))1/|R|

where ‖Ci‖ is the length of the carrier Ci, |R| is the cardinality of R. When
R = R0 = {< WL, 1, 1, 0 >} we assume that mR0

= 0.
Let the Ri, Rj be reconstructions in WL with a given U(n). We say that the

reconstruction Ri is better (more feasible) than the reconstruction Rj (denoted
Ri > Rj) if:

a) mRi ≥ mRj ,
b) |Ri| ≤ |Rj |
c) the total sum of the sequence execution costs in Ri is not greater than the

total sum of the sequence execution costs in Rj .
d) The number of the corresponding predictive patterns quality measures in

the reconstruction Ri is greater than the respective number of measures in
Rj , with at least one quality measure being taken into account.
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The predictive patterns quality measures have been described in [4] and may
easily be adapted to the generalized concept of predictive patterns described in
[10].

There is one more qualitative measure of periodic patterns. Namely, the ab-
solute number of different syntax trees in the C carrier of the given periodic
pattern. If we have two different periodic patters P and P ′ generating the same
costs, with P being more feasible then P ′ for most of the quality measures from
[4], we say that P dominates over P ′ if |supp({CP })| > |supp({CP ′})| where
{CP } is a multiset of the carrier C in a periodic pattern P.
The total cost of sequence execution in a reconstruction is the sum of the costs
generated by the sequence of traces of all periodic patterns of the given recon-
struction.

The concept of the database workload reconstruction presented in this paper
was developed to predict the future database load. The benefits of estimating
the optimal prediction are the databases optimization possibilities. Based on the
database load forecast, one can create, for example, indexes, materialized views,
etc. These structures can then be used at the right time in the future in such a
way that, with their help, one can reconfigure significant structures even better
than those proposed by existing advisory devices. Another possible application
of the database workload reconstruction is the prediction of configuration. The
encoding of SELECT queries using execution plan syntax trees enabled the current
registration of important physical structures used in the query implementations.
Using this fact at a further stage, it is possible to reconstruct the configuration
in the given WL, and thus to assess the quality of selection of physical structures
used in the configurations.

The optimization issue for the reconstruction and thus for the estimation of
optimal prediction is to determine the best reconstruction in the sense of the >
relationship described above.

Example 1. Let WL = < {1}, {12}, {212}, {21}, {2} >. We may have a triv-
ial reconstruction R0 = << {1}, {12}, {212}, {21}, {2} >, 1, 1, 0 > along with
another cardinality 1 reconstruction R1 = << {1}, {1}, {2} >, 1, 3, 1 >. Then
mR0

= 0 < 8
9 = mR1 , wherein the traces of the reconstructions R0 and R1

are identical and thus the total costs of the sequence execution overlap in both
reconstructions. From this it follows that R1 is better than R0 reconstruction.

Example 2. Let WL = < {1}, {12}, {212}, {21}, {2} > be a workload with a
given U(n) and a pair of indexes I1 and I2 used in the implementation of certain
SELECT queries stored as syntax trees 1 and 2. The coded information in the
syntactic tree is, among others, the access path, i.e. a complete set of relevant
physical structures used in implementations. In this example it means that in the
trees 1 and 2 the indexes I1, I2 were used respectively. In addition, we assume
that the database storage is not affected in any time unit U(i). Assume that the
costs of creating indexes I1, I2 are the same regardless of where they are created.
In addition, assume that based on the value of costs stored in the syntactic
tree table, the costs of implementing the syntactic trees 1, 2 are respectively
3: 4. The deviation of this ratio does not exceed 10% if the expressions are
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performed together in the same U(i). In the case when the syntax trees 1 and 2
are executed separately (ie in different U(i), U(j)) then the cost of the syntax tree
1 is twice as high as the cost of the syntax tree 2 with a deviation not exceeding
5%. The benefits of using both indexes are the same for both syntactic trees
regardless of whether 1 or 2 are executed together or separately. In addition,
the costs of removing indexes I1 and I2 are equal 0. The calculations of the
total reconstruction sequence costs show that the sum of the execution costs of
the periodic patterns sequence in R1 = {<< {1}, {1}, {2} >, 1, 3, 1 >} is lesser
than a respective sum in R2 = {<< {1} >, 1, 3, 1 >} {<< {1}, {2} >, 2, 3, 1 >}.
Moreover the conditions a) mR0 = 8

9 > 2
3 = mR1 with b) bring that R1 > R2.

4 Greedy heuristic method for workload reconstruction

The goal of the presented heuristic is to find the optimal, in the sense of the
aforementioned relation >, reconstruction R in a set of all reconstructions for
a given WL workload (not exceeding actual costs) at the given U(n). In the
algorithm, the input data is: WL in the form of sequences of natural numbers
multisets, generally understood implementation costs of all of the syntax trees
registered in WL, as well as the transition costs between individual neighboring
configurations. It is further assumed that the WL coding is given by a sequence
of multisets of natural numbers.

The motivation for the heuristic algorithm adaptation for configurations for
WL heuristic reconstruction was the observation that in the physical workload
structure, each multiset is inextricably linked to a certain configuration. As
shown by the numerous tests in the paper [1], heuristic solutions for configu-
rations are sub-optimal. It can, therefore, be expected that the heuristics for
reconstruction will proceed in the same way. Below we present a heuristic algo-
rithm for reconstruction.
The Algorithm
1. Let S = {s1, .., sM} be a set of physical structures in a given workload WL.
Using the exhaustive method to find the shortest path in the cost edge graph
[1], a set of optimal solutions P for each of the si is calculated separately. As a
result, we get a set P = {p1, .., pM}. Let pi =< ai1 ,WL[1], ..,WL[n], aiN+1

>.
1.1. Let R := ∅, while ( WL <> {∅}) do:

for i: = 1 to n do:

for each j ∈ supp({WL}) do:
1.1.1. < WL[i..n], i, 1, 0 >:=< WL[i..n] \ {stij}, i, 1, 0 > ∪ < {stij}, i, 1, 0 >,

< WL[1..n + 1 − i], i, 1, 0 >:=< WL[1..n + 1 − i] \ {stn+1−i
j }, n + 1 − i, 1, 0 >

∪ < {stn+1−i
j }, n + 1 − i, 1, 0 > where stij is j-support element at WL[i] and

WL[i..n] :=< WL[i],WL[i + 1], ..,WL[n] >.
In each 1.1.1 execute as follows: Ri := ∅. For each (pairwise) disjoint se-

quences (represented by the traces of the corresponding trivial periodic pat-
terns), use (for individual sequences (traces) respectively): decomposition rule
which is a preserving cost-based pruning technique and then apply any of the
rules of: composition and/or exclusion and/or elimination. Proceed in such a way
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that in the final result of this step you get a minimal set of periodic patterns
Ri with the minimum total value of the sequence execution costs. This set takes
into account the optimal ”path” of the solutions given by the current pi and the
maximum value of the quality reconstruction measure mRi .
2. Let C be the set of all configurations over the pi elements.
3. Greedy heuristics for R runs as follows:

3.1. Let r=< c1,WL[i], ..., cN ,WL[n], cN+1 > be the best configuration in P
in terms of the total costs. Let rr be the best reconstruction in terms of a quality
measure in R and such that its cost is the closest to the cost of configuration r.
Then P := P \ {r}, R := R \ {rr}. Let C := C ∪ {c1, ..., cN+1} .

3.2. Select the element s from the set P such that t = UnionPair(r,s) (de-
fined in [1]) is a configuration such that its value in terms of the total sequence
execution costs among all P configuration is the smallest. Similarly, find in R a
reconstruction Rs which is the smallest in R in terms of total costs. In addition,
the cost of executing the sequence for the configuration t is smaller than the cor-
responding costs for the configuration r. Parallel, find in R such a reconstruction
Rt which in terms of total costs is closest to configuration t (costs are not greater
than t). If there is no s element, then proceed to step 4. Assign P := P \ {s} ,
P :=P ∪ {t}, R := R \ {Rs}, R :=R ∪ {Rt}. Go to step 3.1.

4. Create a graph for all configurations with C at each level (for every
support-element in every WL[i] ). Find the shortest path in this graph. From the
set R, return the reconstruction that corresponds to the shortest path in this
graph.

5 Conclusions and future work

The paper presents a new concept of the workload reconstruction along with a
measure of reconstruction quality and an efficient algorithm for generating op-
timal workload reconstruction, thus estimating the workload prediction quality.
Unlike previous periodic pattern detection techniques based on the top-down
methodology, the presented recursive approach accelerates the periodic pattern
detection algorithm through a different derivation system. This system is mostly
based on the reducing derivation rules. This results in reduction of the work-
load elements that need to be analyzed, which influences the speed of workload
analysis.

The search for new heuristics, comparative tests, accuracy, and testing the
properties of the proposed measure of quality is the next stage of research.
Searching for the proposals for other quality measures and thus new criteria for
reconstruction is also included in that stage. In order to verify the efficiency and
quality of the presented algorithm, an implementation based on a ”live” load
course is planned. However, acquiring real companies strategic data is extremely
difficult. Currently, the development phase includes an extended implementa-
tion including cost optimization. Lastly, more extensive research on workloads
containing SQL-99 recursive queries should be conducted.

66



On some heuristic method..

References

1. Agrawal, S., Chu, E., Narasayya, V.R.: Automatic physical design tuning: workload
as a sequence. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data. pp. 683–694 (2006)
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Abstract. While working on data mining applications the main questions are: 

what do we want to know based on the given data and is the result worth the 

additional computing power designated for the task. Given the diversity of data 

and implementations, it is important to select the best-optimized solution for the 

given task. Every algorithm can behave better or worse when implemented in 

different languages or even deployed on different architectures. With the expan-

sion of cloud services, distributed programming solutions and containers, opti-

mization even on system level is possible with less effort. The main problem is 

knowing if the selected solution is better than what was used before. Having the 

possibility of optimizing the system, algorithm, implementing the solution in a 

different language or even cleaning the data a different way may give a signifi-

cant advantage. Most of the published results compare two similar algorithms, 

on a single machine, written in the same language. The tests differ between sci-

entific manuscripts, sometimes using the same datasets, but without providing 

the resulting cleansed dataset. That makes the context of the results very narrow 

and hard to interpret in a bigger scope. The root problem is running unified tests 

on a variety of solutions and optimization. 

 

Allocation of more resources for the same task sometimes isn't possible and can 

lead to data loss. Given the scale of some datasets, it is more practical to know 

if the changes are economically justified. That makes testing some changes on 

production environments difficult or even impossible. When selecting classifi-

ers, one must first run his own tests using datasets, the same or similar to the 

production data. Simplifying the process shortens the time from an idea to se-

lecting the best solution for the given job. My main focus is to ensure that every 

solution is being tested with regard to all of the most important parameters. This 

way we can measure the impact of changes in the same algorithm as well as the 

differences between classifiers using the same datasets. Giving a mechanism for 

standardized tests of new cleansing algorithms, classifiers, language implemen-

tations may result in a dynamic progress in a field of data mining. This way one 
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can find the best solution and the main differences in a matter of minutes de-

pending on the computing parameters defined for the system. 

 

The main purpose of our study is to build an automated system based on a dis-

tributed architecture. Instead of testing the solutions on a single local machine 

we use a cluster of machines. Those machines can have different hardware. 

Comparing test results from a base machine with a machine added to the cluster 

may allow to calculate an accurate difference in processing power so running 

the same tests on machines with the same architecture shouldn't be needed. For 

now, the cluster is built on Rancher, that allows deployment of new versions in 

a matter of seconds. The application consists of loosely coupled modules for da-

taset storage and cleansing, classifier storage, test generator and automated test 

runner. Datasets are stored with all their cleansed and test versions. That allows 

us to monitor the differences between the generated datasets and the result of 

filtering the data. Tests are generated based on a single cleansed dataset, this 

way we can see how one data cleaning algorithm impacts the tested implemen-

tation. Classifiers are stored in containers, and saved in a container database. 

The main focus is to ensure every container implements the basic interfaces for 

communicating with the application (for learning, visualisation and validation). 

The application communicates with containers asynchronously sending a job to 

the container and waiting for a response on a designated endpoint. Every classi-

fier has its container version, and new versions are being generated with the 

given dataset. This way we don't need to teach the classifier when changing any 

of the system parameters or the processor architecture. Using the container eco-

system gives us the possibility to set some of the system restrictions like a 

number of processor cores, the size of the memory or even control the number 

of containers running at the same time. All the containers used for tests are be-

ing run in a dedicated cluster. This gives control over the load for the whole 

system and makes the results more reliable. Adding new architectures and serv-

ers to the system is easy and can be done while the application is running. If the 

whole architecture isn't used some of the servers can be turned off to ensure low 

maintenance costs of the architecture. 

 

For an example, we want to add a new classifier to the database. We want to 

test the classifier using already defined standardized tests. First, we have to pre-

pare a container containing a REST API that is implementing basic interfaces 

used by the application and the classifier that those interfaces send data to. We 

define what tests to run and we add this job to the queue. If some jobs are cur-

rently running we must wait for the processes to finish.  The first step is to start 

the containers and try to teach them with the datasets. If everything is finished 

we store a snapshot of the container with the data loaded into the database. Eve-

ry container that finished this process is terminated and the application waits for 

every container to finish. The next step is to run tests on the previously prepared 

containers. Every cluster has it's calculated limits and we can run as many cop-

ies of the apps at the same time as far as we don't exceed the limit. Every test 

has its own dataset for learning and for validation. To start the tests we send a 

package with validation data, this way the test is run locally and we don't have 

any network delays during the tests. The container measures the time it started 
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and begins to run the tests. When it finishes it sends the results back to the serv-

er, where it is stored and prepared for analysis and publication. 

 

For now, the application can store multiple datasets and their versions with re-

gard to the used cleaning algorithms. One can define default automated tests for 

new classifier implementations. An advantage for active development is a pos-

sibility to build a graph of versions, allowing to analyze what changes generated 

better results at different datasets. Additionally, we can queue our tests and 

check the results after everything has been generated. 

 This solution may be a great way to unify the testing of new classifiers or any 

algorithms working on cleaning the datasets. Giving everybody a way for fast 

validation of results of their work. Publishing test results may additionally help 

many people choose the best solution for a certain task. 

 

Keywords: big data, datasets, classifiers, automated tests 
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(Extended Abstract)
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Abstract. Following our comparison of the efficiency of SAT-solvers [19, 20],
we analyse DIMACS input files previously generated for benchmarking purposes
in an attempt to pinpoint some common characteristics for the CNF formulas
that were relatively easier to process, i.e., were verified faster than comparable
instances of the same size.

1 Introduction

Since the early 1970s, when Cooke first proved it to be NP-complete, the Boolean
satisfiability problem, or SAT, has undergone a dramatic rise in importance. From the
subject of purely theoretical research in the area of computational complexity, SAT-
solving algorithms have become the cornerstone of a broad range of important practical
applications that rely on their efficiency. They include, but are not limited to: verification
[1, 2], (un)bounded model checking [5, 7, 13, 24, 25], planning [15], and composition of
web services [18]. It is equally important to note that the theoretical aspects of SAT also
remain the subject of keen scientific interest.

In our recent papers [19–21], we presented notable SAT-solvers, both state-of-the-
art and historical, comparing their efficiency at several computational problems of vary-
ing complexity: from P-complete chess problems to EXPTIME-complete Towers of
Hanoi puzzle. One obvious observation stemming from our comparison is that no sin-
gle SAT-solver is superior to others in the sense that it always performs faster regardless
of the input. In other words, solving SAT remains a considerable challenge: despite the
incredible progress made, especially in the last fifteen years, the potential for further
improvement is as large as ever.

The focus of this paper is not on SAT-solvers as such, but rather, on the input
Boolean formulas themselves. Specifically, we will investigate CNF formulas that are
comparatively easier or harder to verify compared to other generated instances of the
same size, attempting to identify some common patterns in their properties. Given that
this area that has not really been previously explored, this work is aiming to be an initial,
small step rather than an exhaustive investigation.

The rest of this paper is organized as follows. The next section summarises existing
work related to the subject. Section 3 shortly presents DIMACS, the standardised input
format used by SAT-solvers, as well as details the generation and analysis of input
CNF formulas. In Section 4 experimental results are compared and discussed. The final
section contains conclusions.
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2 Theoretical Overview and Related Work

In this section we discuss prior research into the difficulty of randomly generated in-
stances of NP-complete problems.

Many well-known, classical computational problems, though NP-complete, are rel-
atively easy to solve when it comes to typical instances [6]. The graph k-coloring prob-
lem, for example, was found to be solvable in logarithmic time in the vast majority
of cases [23]. On the other hand, since their complexity was proven in Karp’s seminal
1972 paper [14], we are bound to encounter hard instances eventually. This brings about
the question of whether there is any pattern to be found in the distribution of difficulty
in a set of randomly generated instances, which has been the subject of research since at
least the early 1990s. In the rest of this paper, we will focus on the Boolean satisfiability
problem (SAT), since it serves as the convenient ’common denominator’ to which other
hard problems are often translated.

It has been long observed that certain specific instances of SAT pose an unusu-
ally significant challenge to the the DPLL algorithm, contrary to perceived average
difficulty. In [6] Cheeseman, Kanefsky and Taylor summarise classical NP-complete
problems using ’order parameters’. For example, a set of instances of the Hamiltonian
path problem can be ordered by the average connectivity of their respective graphs: the
higher the connectivity, the higher the chance for a Hamiltonian path to exist. Further-
more, the authors show the existence of a phase transition at the boundary marked by
some critical value of the order parameter, which separates two distinct regions of likely
satisfiable and likely unsatisfiable instances, both of which are comparatively easy to
verify. It is at the boundary that the hardest instances occur.

This phase transition is investigated further by Gent and Walsh in [11]. Their ex-
perimental results confirm the association of hardest instances of problems with the
boundary, and that median problem difficulty generally follows the expected easy-hard-
easy pattern. However, they also show that the distribution of difficulty is significantly
more complex, and in particular note the presence of a region where instances can be
extraordinarily difficult, sometimes orders of magnitude harder than those closest to the
phase transition.

Gent and Walsh postulate the ’constraint gap’ to cause such unexpectedly hard prob-
lems to occur in an otherwise satisfiable region. In the DPLL algorithm, neither unit
propagation nor pure literal elimination ever branch out the search, leaving splitting
(i.e., the choice of the branching literal) as the only critical point which can potentially
result in an exponential blow-up in the number of explored assignments. This naturally
leads to the conclusion that the harder the instance, the more the algorithm is forced to
use the splitting rule compared to the other two. In other words, the hardest instances
are ’constrained’ in the sense they have just enough constraints to be unsatisfiable, but
very few more (or even none), forcing DPLL to utilize heuristics-based branching and
thus increasing verification time dramatically.

These results were further experimentally confirmed in other papers, including anal-
yses for 3-SAT formulas by Larrabee and Tsuji [16] and by Crawford and Auton [8],
with the latter work focusing on how the percentage of satisfiable instances changes as
a function of the clause/variable ratio of the formula.
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3 The Input Format, Formulas and Analysis

In this section we present the DIMACS input format commonly used by SAT-solvers,
discuss the input files used for our analysis and the factors taken into account during
the latter.

The renewed scientific interest in the Boolean satisfiability problem, and in partic-
ular the emergence of SAT Competitions in the early 2000s, resulted in the need of a
single, unified input file format. DIMACS has become such a standard.

The format uses plain text to represent a Boolean formula in conjunctive normal
form (CNF). Following an optional comment line and a header containing the number
of clauses and literals in the formula, each subsequent line corresponds to a new clause.
Variables are represented by subsequent natural numbers, with the minus sign denot-
ing negation. Spaces separate literals in clauses, and zeroes signal end of clause. An
example of a very simple CNF formula in the DIMACS format is shown below.

Listing 1.1. The input file corresponding to a simple formula (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1)
c Example DIMACS i n p u t
p c n f 3 2
1 −3 0
2 3 −1 0

The input files contain formulas resulting from the translations to SAT of several
NP-complete problems, including classical graph problems (vertex coloring, vertex
cover, Hamiltonian path) [14], as well as the extended string-to-string correction prob-
lem (ESCP). They were originally created as benchmarks for our previous work, i.e., a
comparison of SAT-solvers [19, 20].

For the purposes of this analysis, we have identified and separated groups of the
most and least difficult instances for each of the aforementioned problems, that is, the
input files whose processing required the most and the least time, respectively. When
calculating verification time, the average of individual solvers’ processing times was
considered. The solvers used were the same as in the aforementioned comparison: Lin-
geling and Plingeling [4], Glucose and Glucose-syrup [3], Clasp [10], Minisat [22],
ManySAT [12] and Microsoft Z3 [9]. However, zChaff [17] was excluded due to its age
and inability to process many instances in reasonable time, which would have consid-
erably skewed the average.

The DIMACS files in both groups were subsequently analysed and compared w.r.t.
factors such as total number of literals and clauses, average and maximum clause length,
percentage of negative literals and percentage of Horn clauses.

4 Results

In this section we discuss and compare the results of our analysis.
In Tab. 1, several characteristics are compared between the groups of easiest and

hardest generated instances of vertex k-colouring and vertex k-cover. For the former,
parameters of n = 100 (graph size) and k = 10 (number of colours) were set. For the
latter, graphs of size n = 50 were generated, with the vertex cover size at k = 30.
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Vertex k-colouring Vertex k-cover
Easier instances Harder instances Easier instances Harder instances

Avg running time 0.018 s 364.759 s 0.108 s 38.941 s
Avg number of clauses 24507 36007 36774 36994
Avg number of literals 49813 72813 74967 88127
Avg clause size 2.033 2.022 2.039 2.382
Longest clause 10 10 60 60
Negative literals 97.96% 98.63% 98.04% 83.41%
Horn clauses 0% 0% 99.03% 99.34%

Table 1. Comparison of characteristics between easier and harder instances of the vertex k-
colouring and k-cover problems.

Hamiltonian path String correction
Easier instances Harder instances Easier instances Harder instances

Avg running time 4.810 s 34.101 s 0.538 s 42.968 s
Avg number of clauses 8000200 8000200 49808 49808
Avg number of literals 20135132 17115771 318476 318476
Avg clause size 2.517 2.139 6.394 6.394
Longest clause 200 200 66 66
Negative literals 80.66% 93.25% 19.67% 19.67%
Horn clauses 0% 0% 0% 0.01%

Table 2. Comparison of characteristics between easier and harder instances of the Hamiltonian
path problem and ESCP.
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It can be observed that the characteristics of hard instances depend primarily on
the computational problem and its specific translation to SAT. For instance, in the ver-
tex k-colouring problem, they have up to 50% more literals and clauses. This in turn
can be attributed to the randomly generated input graphs for these instances having
significantly more edges, and as such requiring more constraints in the form of clauses.
Notably, despite the overwhelming majority of literals in both groups of instances being
negative, there are no Horn clauses, again due to the specifics of the SAT encoding.

On the other hand, for vertex k-cover the average number of clauses is roughly the
same in easy and hard instances. However, the number of literals, and thus average
clause length, is generally higher (up to 15%) in the latter group. Furthermore, an even
more noteworthy difference is in the percentage of negative literals, which is also around
15% lower, suggesting that the extra literals in hard instances are positive.

In the same way, Tab. 2 compares instances of the Hamiltonian path problem and the
extended string-to-string correction problem (ESCP). For the former, generated graphs
were of size n = 200, whereas the parameters for ESCP were set as n = 20 (length of
input strings), k = 15 (maximum number of operations) and l = 5 (alphabet size).

In the case of the Hamiltonian path problem, the harder instances actually have less
literals and thus, on average, shorter clauses. This, too, is consistent with the nature
of the problem in question: fewer edges (and thus shorter conditional clauses in the
resultant formula) make for a graph that is harder to find a Hamiltonian path, while the
most trivial satisfiable instance is actually one in which all possible edges exist.

Finally, in the comparison of ESCP instances, all analysed characteristics are vir-
tually identical, further emphasising the lack of any clear pattern behind the relative
difficulty of specific instances of SAT.

It is important to note that our analysis is not yet another attempt to back up the the
findings previously described in Section 2, i.e., the existence of a phase transition and a
’constraint gap’ at the boundary between regions of expected (un)satisfiability. Instead
of considering the distribution of difficulty across some order parameter, we took into
account benchmarks generated using the same settings, i.e., the same order parameter,
in an attempt to pinpoint patterns related to the composition of the formulas themselves.
However, it clearly appears that the differences are related to the specific characteristics
of computational problems translated to SAT.

5 Conclusions

We have analysed Boolean formulas in CNF, representing translations of well-known
NP-complete problems to SAT. The input files were grouped depending on their average
processing time by SAT-solvers, and compared on several factors, including average
clause length and percentage of Horn clauses, between the easiest and most difficult
instances.

There do not appear to be easily noticeable global characteristics of CNF formu-
las representing harder instances of NP-complete problems. Depending on the specific
problem and its translation to SAT, the formulas whose processing takes longer can, for
instance, have longer clauses, or conversely, more clauses of similar average length to
that in the ’easier’ group. Similarly, the percentage of negative literals or Horn clauses
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are also dependent on the NP-complete problem translated to SAT, and not some pattern
prevalent across all comparatively easier or harder instances.

These observations seem in line with SAT being NP-complete, and as such, a dif-
ficult computational problem. Just as there is not a single SAT-solver always offering
superior performance, no single factor contributes to a particular instance of SAT being
comparatively easier or harder to verify than others of same size. This was most evi-
dent in the ESCP comparison: characteristics of both groups of instances were nearly
identical, clearly showing that we cannot expect easy answers when it comes to hard
computational problems. At least, not yet.
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Abstract. Modelling and verification of software systems is an effective
phase of system development, as it can uncover failures in design early
in the development process. There is an increasing need for languages
and processes that allow for the specification of uncertainty that allow,
for example, the modelling of the unknown behaviour of a user, or the
stochastic failure rate of hardware components.
In this paper we introduce a formal semantics on Stochastic Regular
Expressions (SREs) over probabilistic action logics for quantitative ver-
ification. We provide the recursive calculation of the language generated
by an SRE, enhanced to reuse local results for global verification of sys-
tem specifications. Furthermore, we demonstrate how to model systems
with SREs and how to perform reachability analysis with Probabilistic
Action-based Computational Tree Logic (PACTL*).

Keywords: stochastic regular expressions, probabilistic formalism,
probabilistic model checking, probabilistic verification

1 Introduction

The analysis of systems with a probabilistic behaviour plays an important role
in several applications, such as software engineering, speech recognition, digital
communications and computational biology among others. On the other hand,
regular expressions have spread through all of theoretical computer science and
enjoy plentiful applications in the field of natural language processing, including
parsing, deep language models, model inference and machine translation.

Several studies have been conducted in probabilistic version of regular ex-
pressions that is studied as probabilistic concurrent Kleene algebra in [12] and
extended with additional Kleene theorems in the application of quantitative rea-
soning on database queries [3].

Kartzow and Weidner [7,17] define a Monadic Second-Order Logic (MSOL)
and a constraint logic with temporal properties for data analysis for probabilistic
regular expressions. Additionally, Weidner specified Probabilistic Regular Ex-
pressions for infinite strings with ω-properties in his thesis [16].

In this paper, we define a semantics of stochastic regular expressions in the
context of probabilistic model checking, employing a probabilistic extension of
Action-based Computation Tree Logic (ACTL*) to reason about temporal prop-
erties quantitatively. Probabilistic model checking [8] is a technique developed
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in order to automatically perform such assessments, and has been successfully
applied in recent years [10]. Probabilistic models used for model checking can be
at different levels of abstraction, such as Markov Chains [2], Markov Decision
Processes [2] and Stochastic Petri Nets [11] among others. In contrast to state-
based representations, we introduce an approach and focus on stochastic regular
expressions as an input model for probabilistic model checking applications.

2 Stochastic Regular Expressions (SRE)

In this section, we briefly recall SRE [14] and action logic [1].

2.1 Syntax of SRE

The syntax of a Stochastic Regular Expression (SRE) E over an alphabet Σ is
defined recursively as follows:

E := α

∣∣∣∣∣ ∑
i

Ei[ni]

∣∣∣∣∣ E1 : E2

∣∣∣∣∣ E∗f (1)

with α ∈ Σ∪{ε}, ni ∈ N0, f ∈ [0, 1] ⊂ R and every term Ei is a SRE, such that:

1. Atomic Action α: α is an atomic action that belongs to the alphabet Σ.

2. Choice
∑

iEi[ni]: One of the provided terms Ei[ni] is probabilistically chosen
according to calculated probabilities from occurence values. ni denotes the
occurrence value or choice rate for each term, such that the i-th term is
chosen with probability ni∑

j nj
. Occurrence value or choice rate is defined as

the number of cases that the node is chosen statistically.

3. Concatenation E1 : E2: The terms E1 and E2 are successively interpreted.

4. Kleene Closure E∗f : The term E is repeated for an indefinite number of
times, subject to a binomial distribution. Each iteration occurs with a prob-
ability of f . The termination probability is 1− f .

5. Plus Closure E+f : The +Closure is a syntactic sugar that is omitted here,
but can be easily emulated with E : E∗f .

Without loss of generality, the empty string ε is not included in the alphabet.
However we include the empty string ε as an atomic action. On the other hand,
ε can be derived from an expression like α∗0.0, α ∈ Σ.

A derivation of a conventional regular expression E is the set of sentences, or
strings over the alphabet, derivable from it. This defines the language L(E) of
E. This notion of language derivation is similarly applicable to SRE, except that
each string has a probability value associated with it, and hence the language
itself is associated with a probability distribution of its members as explained in
the following within its denotational semantics.
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2.2 Denotational semantics of SREs

Intuitively SREs can be understood as an expression that defines a specific prob-
ability function over its language strings such that JEK : s ∈ Σ∗ → [0, 1]. Such
probabilistic language (p-language) is previously described for discrete events
systems in [9]. In the following, we provide a trivial example on the p-language
to explain the relationship between the SRE and the p-language.

The semantics of SREs are described by the p-language [9] in the style of
denotational semantics [15]. The probability function for an SRE E is denoted
by JEK, and its application to a particular string s is denoted JEKs, which rep-
resents an acceptance probability associated with string s in the language L(E).
The probability function recursively calculates the occurrence probability of an
arbitrary string s ∈ Σ∗ in a SRE model. By definition, if an arbitrary string s
has a probability value greater than 0, it is accepted as a word of SRE. Meaning
that if s ∈ L(E) then JEKs > 0.

Example 1. Let L be a probabilistic language [9] describing the Bernoulli
process where each experiment has two outcomes a and b with probabilities p
and 1− p respectively. Then L is defined on the alphabet Σ = {a, b} as
L(s) = p#(a,s).(1 − p)#(b,s) where #(a, s) is representing the number of occur-
rences in word s.

In the following we formally define some additional notions which will be
referred to throughout this paper.

Definition 1 (Words of a SRE). Words(E) = {w | w ∈ L(E)}

Definition 2 (Word length). A length of a word w = w0w1...wn is the num-
ber of included characters and denoted as |w|= n through the paper.

Definition 3 (Probability of a word in the language). The probability
function JEKs for every possible SRE term E (α |

∑
Ei(ni) | E1 : E2 | E∗f |

E+f ) is calculated recursively, where s = α1, ..αn ∈ Σ∗:

– Atomic actions:

JαKs = 1, if α = s

JαKs = 0, if α 6= s (2)

– Choice
r∑

Eini

z
s =

∑
k

( nk∑
ni

)
· JEkKs (3)

Since every term might recognize s, the overall probability for a choice
expression is the sum of all the term probabilities with respect to s.

– Concatenation:

JE1 : E2Ks =
n∑

i=0

(JE1Kα1..αi · JE2Kαi+1..αn)
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In the summation, s is decomposed into two (possibly empty) substrings,
each of which may be consumed by a concatenated expression. Even
though one term may recognize its substring argument, if the other term
does not recognize its respective substring, then that term returns a prob-
ability of 0, and the overall probability for that instance of decomposition is 0.

– Kleene closure:

JE∗f Kε = 1− f

JE∗f Ks =
n∑

i=1

(f · JEKα1..αi · JE∗f Kαi+1..αn) (4)

+f · JEKs · JE∗f Kε

The first formula accounts for empty strings, as the only way an iterated
expression should recognize an empty string is by not iterating; in other words
terminating without executing (The termination probability is therefore 1-f).
The other formula recursively defines the general case. Here, one iteration of
E will consume some portion of s, and the rest of s is consumed by further
iterations. It is assumed that an iteration of a loop always consumes some
non-empty string. Otherwise, the semantic model would have to account for
Kleene closure iterating indefinitely on an argument, which is not an useful
behaviour.

All SRE probability functions presented above are well formed probabilitity func-
tions. Interested readers can find the details of probability functions and the
proof of well formness in [14].

2.3 Action based Computation Tree Logic (ACTL*)

ACTL* is introduced in [4] where the comparison for state labelled and transition
labelled systems is studied. The syntax of ACTL* is described recursively on
action labelled transition systems as follows; where ϕ is a formula executed on
the runs of the system:

ϕ := True | ¬ϕ | ϕ ∧ ϕ′ | ∃ϕ | ϕ U ϕ′ | Xaϕ | Xϕ (5)

We biefly recall the definitions required for the ACTL* semantics.

Definition 4 (Labelled transition systems ). A labelled transition system
is a tuple (S,Act,→) where:

. S is a finite set of states

. Act is a finite, non-empty set of actions

. → is the transition relation denoted in ⊆ S × (Act∪ ε)× S and any element
of → is called a transition.
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Definition 5. A sequence (s0, α0, s1)(s1, α1, s2).. ∈ → ∞ is called a path from
s0. A run ρ = (s,Φ) is a pair from s ∈ S, where Φ is a path from s, first state
of ρ is s (first(ρ) = s) and path(ρ) = Φ. If a run θ is a suffix for run ρ, then
we denote as θ ≤ ρ.

The semantics is given by satisfaction relations based on the definitions above:

ρ |= True always

ρ |= ¬ϕ iff ρ 6|= ϕ

ρ |= ϕ ∧ ϕ′ iff ρ |= ϕ and ρ |= ϕ′

ρ |= ∃ψ iff there exists a run θ ∈ run(first(ρ)) such that θ |= ψ

ρ |= ψ U ψ′ iff there exists a θ with ρ ≤ θ such that θ |= ψ′ and for all ρ ≤ η ≤ θ : η |= ψ′
ρ |= Xϕ iff there exists s, α, s′, θ such that ρ = (s, (s, α, s′))θ and θ |= ϕ

ρ |= Xaϕ iff there exists s, s′, θ such that ρ = (s, (s, a, s′))θ and θ |= ϕ (6)

3 Semantics of Stochastic Regular Expression Trees with
Probabilistic Action based Computation Tree Logic

Our goal is to reason about temporal properties on SRE models probabilistically.
A very common logic Probabilistic computation tree logic (PCTL*) [6] and vari-
ants are defined on the state and path formulas. However Stochastic Regular
Expressions do not have the explicit notation of a state. Therefore we prefer to
extend the ACTL* logic semantically expressed on the runs of the system as
provided in subsection 2.3.

The extended syntax of a Probabilistic ACTL* (PACTL*) is defined as fol-
lows where ϕ is a word and Φ is a SRE formula.

Definition 6 (Syntax of PACTL*).

Φ = ¬Φ | Φ ∧ Φ′ | PP (ϕ) (7)

ϕ = true | Xaϕ | Xϕ | ϕ U ϕ′ (8)

where P ⊆ [0, 1]

3.1 Semantics of PACTL*

Every SRE term E is defined as a node that specifies operation type (choice,
concatenation, kleene closure or action), choice rate, kleene probability and
subnode(s).

Formally E is an action or a tuple based on its type: (N ,R), (N ), (N , k)
if the opetaion types are choice, concatenation, kleene closure (T = + |:| ∗
or action a ∈ Σ,) respectively. where N = {E1, E2, ..., En} is the finite set of
subnodes in the operating order (E1 : E2 6= E2 : E1), R = {r1, r2, ..rn} is the set
of corresponding choice rates (r ∈ N) and k ∈ [0, 1] is a kleene probability.
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We construct every SRE node in a bottom up fashion by parsing the given
string by using operator presedence. Hence, we avoid the ambiguity of the parsed
trees and remain them unique. (The order of operator predence is ∗, :,+). We
also restrict one operation type per SRE node which allows unambiguity.

The semantics is defined a satisfaction relation for a word w and a SRE term
E as follows:

E |= ¬Φ iff E 6|= Φ (9)

E |= Φ ∧ Φ′ iff E |= Φ ∧ E |= Φ′ (10)

E |= PP (ϕ) iff Pr{w |= ϕ | w ∈Words(E)} ∈ P (11)

w |= true always (12)

w |= Xaϕ iff w[0] = a and w[1] |= ϕ (13)

w |= Xϕ iff w[1] |= ϕ (14)

w |= ϕ U ϕ′ iff for some i ≤ |w|, w[i] |= ϕ′ and w[j] |= ϕ, ∀j < i. (15)

The set of words for an SRE can be calculated recursively on SRE node E:

Words(E) =



{a}, if T = a
∞⋃

Ei∈N
Words(Ei), if T = +

(Words(E0) ·Words(E1))... ·Words(En),∀Ei ∈ N if T =:

(Words(Esub))∗, where Esub ∈ N and E = (Esub)∗ if T = ∗
(16)

A system is specified as an SRE tree that includes a root node and finite set
of nodes defined in the alphabet. An SRE tree is formally defined as; TE =
(Eroot, E ,Σ), where Eroot is the root node, E is the finite set of all nodes and Σ
is the alphabet. Hence, verifying the the root node Eroot will result in verifying
the system.

4 Example: System Specification with SRE Tree

We provide an example automata and a corresponding SRE system specifica-
tion in the following paragraphs. Let us assume that we have a system that is
composed of some web services aiming to achieve a message protocol. The sub-
components Service 1(S1) and Service 2(S2) are executing the login of sytem
and message sending and logging out from the system respectively. The system
can be defined as a stochastic regular expression tree as follows:
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TE = (Eroot, E ,Σ)

Eroot = S

E = {S, S1, S2, E1, E2, E3, E4, E5, E6}
Σ = {start, login, authenticationFail, logout, sendMsg,

msgFail, terminate, success, retry}
S = S1 : S2

S1 = start : login

S2 = authenticationFail[15] + logout[20] + E1[65]

E1 = sendMsg : E2

E2 = msgFail[5] + E3[95]

E3 = E4 : E5

E4 = E∗0.256

E5 = logout : terminate

E6 = success : retry

Let a PACTL* formula P[0.3,0.4]

(
true U (XmsgFail)true

)
for the analysis on

TE . The formula indicates the reachability analysis of the action “msgFail” on
the root node Eroot = S. The words reaching the “msgFail’ from S are then
recursively calculated:

Words(S)[reaching“msgFail”] ⊂Words(S) = {start.login.sendMsg.msgFail (0.0325),

start.login.sendMsg.succes.retry.msgFail (0.008125),

start.login.sendMsg.succes.retry.succes.retry.msgFail (0.00203125), ....}

The union is then

0.0325×
∞∏
i=0

(0.25)i = 0.0325 ∈ [0.3, 0.4] (17)

S |= P[0.3,0.4]

(
true U (XmsgFail)true

)
(18)

Visually, we provide the corresponding probabilistic automata in Figure 1.
The proof of equivalence between probabilistic Rabin automata [13] and the p-
language, on which stochastic regular expression’s semantics denoted, is provided
in [5].

SREs are calculated in a bottom up way by remaining the probabilistic cal-
culations of strings. Such techique enables to reach every calculation on each
node locally. The idea is to calculate all information on every SRE term and
compose the solutions based on the operations.
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0start 1 2 3 4

5 6 7

Service1

Service2

login, 1 sendMsg, 0.65

authenticationFail, 0.15 msgnFail, 0.05

logout, 0.75

terminate, 1

success, 0.95

retry, 0.25

logout, 0.2

Fig. 1. Corresponding probabilistic automata to system TE

5 Conclusion

We described a formal semantics for model checking of SREs that enjoys various
applications in computer science. We studied the stochastic regular expressions
with action based probabilistic logic in the model checking context and used
stochastic regular expressions as an input model. Our initial attempt to reacha-
bility analysis with strings is also presented which is promising and convenient
for parallel and incremental computation especially in the domain of component
based systems or modular systems. The further investigation is to extend the
reachibility analysis for the application of full PACTL* on SRE trees and evalu-
ate our approach with set of models. Furthermore, we are planning to use SRE
model checking for the incremental computation of local changes that can occur
in the model.
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More about left recursion in PEG

Roman R. Redziejowski

roman@redz.se

Abstract. Parsing Expression Grammar (PEG) is extended to handle
left recursion, and under specified conditions becomes a correct parser
for left-recursive grammars in Backus-Naur Form (BNF).

1 Introduction

The technique of parsing by recursive descent assigns to each grammatical con-
struct a procedure that calls other procedures to process components of that
construct. As grammars are usually defined in a recursive way, these calls are
recursive. This method encounters two problems:

(1) Procedures corresponding to certain type of construct must chose which
procedure to call next.

(2) If the grammar contains left recursion, a procedure may call itself indefinitely.

Problem (1) has been traditionally solved by looking at the next input sym-
bol(s), which works if the grammar satisfies a condition known as LL(n). Another
way is to try the alternatives one by one, backtracking in the input, until one
succeeds (or all fail).

Making full search can require exponential time, so a possible option is limited
backtracking: never return after a partial success. This method has been used in
actual parsers [4,10] and is described in literature [1–3,7]. It has been eventually
formalized by Ford [5] under the name of Parsing Expression Grammar (PEG).

Problem (2) is serious because of a strong tendency to present grammars in
left-recursive form. Converting the grammar to right-recursive form is possible,
but is tedious, error-prone, and obscures the spirit of the grammar.

The problem has been in the recent years solved by what can be called
”recursive ascent”. Each recursion must end up in a part of syntax tree that
does not involve further recursion. It has been referred to as the ”seed”. After
identifying the seed, one reconstructs the syntax tree upwards, in the process of
”growing the seed”. Extensions to PEG using this method have been described
in [6, 8, 12,15–17].

The paper tries to find out under which conditions this process will work
correctly. The idea of ”working correctly” needs an explanation. One of the most
common ways to define the syntax of a formal language is the Backus-Naur Form
(BNF) or its extended version EBNF. We treat here PEG as a parser for BNF
that implements recursive descent with limited backtracking. Because of limited
backtracking, PEG may miss some strings that belong to the language defined
by BNF. The author has previously tried to answer the question under which
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conditions PEG will accept exactly the language defined by BNF (see [13, 14]).
This paper tries to answer the same question for PEG equipped with recursive
ascent technique to handle left recursion.

We look here at a process inspired by Hill [6]. Section 2 introduces a subset
of BNF grammar with natural semantics that is a slight modification of that due
to Medeiros [9,11]. In Section 3 we develop some concepts needed to discuss left
recursion. In Section 4 we describe the parsing process, check that it terminates,
and state the conditions under which it reproduces the BNF syntax tree. The
last section contains some comments. Proofs of the Propositions are found in
Appendix.

2 The BNF grammar

We consider an extremely simplified form of BNF grammar over alphabet Σ. It
is a set of rules of the form A = e where A belongs to a set N of symbols distinct
from the letters of Σ and e is an expression. Each expression is one of these:

ε (”empty”), e1e2 (”sequence”),

a ∈ Σ (”letter”), e1|e2 (”choice”).

A ∈ N (”nonterminal”).

where each of e1, e2 is an expression and ε denotes empty word. The set of all
expressions is in the following denoted by E. There is exactly one rule A = e for
each A ∈ N . The expression e appearing in this rule is denoted by e(A).

Each expression e ∈ E has its language L(e) ⊆ Σ∗ defined formally by natural
semantics shown in Figure 1. String x belongs to L(e) if and only if [e]x BNF→ x
can be proved using the inference rules from Figure 1. Note that if a proof of
[e]x BNF→ x exists, one can prove [e]xy BNF→ x for every y ∈ Σ∗

[ε]w BNF→ ε
(empty)

[a]aw BNF→ a
(letter)

[e(A)]w BNF→ x

[A]w BNF→ x
(rule)

[e1]xw
BNF→ x [e2]w

BNF→ y

[e1e2]xw
BNF→ xy

(seq)

[e1]w
BNF→ x

[e1|e2]w BNF→ x
(choice1)

[e2]w
BNF→ x

[e1|e2]w BNF→ x
(choice2)

Fig. 1. Formal semantics of BNF

One can read [e]w BNF→ x as saying that expression e matches prefix x of string
w. Thus, x ∈ L(e) means that e matches the string x. We say that expression e
is nullable to mean that ε ∈ L(e).

Figure 2 is an example of formal proof using the rules from Figure 1. It
verifies that the string baac belongs to L(S) as defined by this grammar:

S = Ac A = Aa|B B = b
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[b]baac BNF→ b

[B]baac BNF→ b

[Aa|B]baac BNF→ b

[A]baac BNF→ b [a]aa BNF→ a

[Aa]baac BNF→ ba

[Aa|B]baac BNF→ ba

[A]baac BNF→ ba [a]a BNF→ a

[Aa]baac BNF→ baa

[Aa|B]baac BNF→ baa

[A]baac BNF→ baa [c]c BNF→ c

[Ac]baac BNF→ baac

[S]baac BNF→ baac

Fig. 2. Example of BNF proof

The proof can be represented in the inverted form shown in Figure 3. This
seems more intuitive when speaking about ”recursive descent”. The diagram on
the right is simplified to show only the expressions. It is the syntax tree of baac.

[S]baac BNF→ baac

[Ac]baac BNF→ baac

[c]c BNF→ c[A]baac BNF→ baa

[Aa|B]baac BNF→ baa

[Aa]baac BNF→ baa

[a]a BNF→ a[A]baac BNF→ ba

[Aa|B]baac BNF→ ba

[Aa|B]baac BNF→ b

[a]aa BNF→ a[A]baac BNF→ b

[Aa|B]baac BNF→ b

[B]baac BNF→ b

[b]baac BNF→ b

S

Ac

cA

Aa|B

Aa

aA

Aa|B

Aa

aA

Aa|B

B

b

Fig. 3. BNF tree and syntax tree
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3 Left recursion

3.1 Recursion classes

For e ∈ E define first(e) as follows:

first(ε) = first(a) = ∅, first(A) = {e(A)},

first(e1|e2) = {e1, e2}, first(e1e2) =

{
{e1} if ε /∈ L(e1),
{e1, e2} if ε ∈ L(e1).

Define further First to be the transitive closure of relation first. In the fol-
lowing, we write e

first−→ e′ to mean that e′ ∈ first(e), and e
First−→ e′ to mean that

e′ ∈ First(e).

An expression e is left-recursive if e
First−→ e. Let R ⊆ E be the set of all left-

recursive expressions. Define relation Rec ⊆ R× R so that (e1, e2) ∈ Rec means

e1
First−→ e2

First−→ e1. It is an equivalence relation that defines a partition of R into
equivalence classes; we refer to them as recursion classes. The recursion class
containing expression e is denoted by C(e) .

Let e be an expression belonging to recursion class C. If e = A ∈ N or
e = e1e2 with non-nullable e1, the expression e′ ∈ first(e) must also belong
to C. This is so because e′ is the only element in first(e), and we must have

e
first−→ e′

First−→ e to achieve e
First−→ e. In e = e1|e2 or e = e1e2 with nullable e1, one of

expressions e1 or e2 may be outside C. It is a seed of C, and e is an exit of C. For
e = e1e2 in C, e2 is a leaf of C. The set of all seeds of C is denoted by Seed(C)
and the set of all its leafs by Leaf(C).

As an example, the grammar used in Figure 2 has R = {A,Aa|b, Aa}. All
these expressions belong to the same recursion class with exit Aa|b, seed b and
leaf a.

To simplify the discussion, we asume in the following that all exits have the
form e1|e2, that is, e1 ∈ R in e1e2 is not nullable. As the ordering of BNF choice
expression does not influence its language, we assume that e2 in e1|e2 is always
the seed.

3.2 Recursion sequence

Consider a node in the syntax tree and the leftmost branch emanating from it.

It is a chain of nodes connected by
first−→. If the branch contains any left-recursive

expressions, expressions belonging to the same recursion class C must form an
uninterrupted sequence. Indeed, if e1 and e2 appearing in the branch belong

to C, we have e1
First−→ e

First−→ e2
First−→ e1 for any e in between. Such sequence is a

recursion sequence of class C. The same argument shows that the branch can
contain at most one recursion sequence of a given class, and that sequences of
different classes cannot be nested.
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The last expression in the sequence must be an exit of C. One can easily see
that each recursion class must have at least one exit. We assume in the following
that this is the case.
Let e

first−→ e′ be two consecutive expressions in a recursion sequence. Let [e]w BNF→ x
and [e′]w BNF→ x′. Expression e can be one of these:

– A = e′. Then x = x′ according to (rule).

– e′|e2. Then x = x′ according to (choice1).

– e1|e′. Then x = x′ according to (choice2).

– e′e2. Then x = x′y where y ∈ L(e2) according to (seq).

Define adv(e, e′) = {ε} in each of the first three cases and adv(e, e′) = L(e2) in
the last. For a recursion sequence s = e[n], e[n−1], . . . , e[2], e[1] define

adv(s) = adv(e[n], e[n−1]) . . . adv(e[2], e[1]).

For e ∈ R define Adv(e) to be the union of adv(s) for all recursion sequences s
starting with e, ending with e, and not containing e. The following is easy to
see:

Lemma 1. If [e]w BNF→ x and [e]w BNF→ x′ are two consecutive results for the same
e in a recursion sequence, we have x ∈ x′Adv(e).

4 Parsing

Given a BNF grammar, we define for each e ∈ E a parsing procedure named [e].
The procedure may return ”success” after possibly ”consuming” some input,
or ”failure” without consuming anything. In the following, the result of calling
[e] for input w is denoted by [e]w; it is either fail or the consumed string x
(possibly ε).

The action of parsing procedure [e] for e /∈ R is the same as in PEG and is
shown in Figure 4.

The procedure [e] for e ∈ R is a ”grower” for the recursion class C(e) and
input string w. The grower has a ”plant” [e′, w] for each expression e′ ∈ C(e).
The plant is a procedure with memory. The procedure emulates the action of
parsing procedure [e′], but may use results from other plants instead of calls
to parsing procedures. It computes a result as shown in Figure 5. The memory
holds the result of procedure applied to w. It is denoted by ⟨e′, w⟩. The grower
initializes all its plants with ⟨e′, w⟩ = fail, and then repeatedly calls all plants
in some order. If the result is better than already held by the plant, it replaces
the latter. (A string is better than fail, and longer string is better than shorter
one.) The grower stops when it cannot improve any result. The result in [e, w]
is then the result of parsing procedure [e].

In order to create a formal record of parsing process, we represent actions
of parsing procedures and plants by inference rules shown in Figure 6. A rule
with conclusion [e]w = X represents a call to [e] returning X. One with conclu-
sion ⟨e, w⟩ = x represents setting new result x in ⟨e, w⟩. A premise [e′]w = X
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represents call a to sub-procedure [e′] returning X; a premise ⟨e′, w⟩ = X rep-
resents result obtained from [e′, w]. With these conventions, parsing process is
represented as a formal proof.

An example of such proof is shown in Figure 7. It represents parsing process
for the string and grammar from example in Figure 3. Note that part of that
tree was constructed by going down and part by going up.

[ε] Indicate success without consuming any input.

[a] If the text ahead starts with a, consume a and return success.
Otherwise return failure.

[A = e1] Call [e1] and return result.

[e1 e2] Call [e1]. If it succeeded, call [e2] and return success if [e2] succeeded.
If [e1] or [e2] failed, backtrack: reset the input as it was before the invo-
cation of [e1] and return failure.

[e1| e2] Call [e1]. Return success if it succeeded. Otherwise call [e2] and return
success if [e2] succeeded or failure if it failed.

Fig. 4. Actions of parsing procedures

[A,w] Return ⟨e(A), w⟩.

[(e1 e2), w] If ⟨e1, w⟩ = fail, return fail.
If ⟨e1, w⟩ = x, call [e2] on z where w = xz and restore input to w.
If [e2]z = fail, return fail.
Otherwise return x [e2]z.

[(e1| e2), w] If ⟨e1, w⟩ ̸= fail, return ⟨e1, w⟩.
If ⟨e1, w⟩ = fail and there exists plant [e2, w], return ⟨e2, w⟩.
Otherwise call [e2], restore input to w, and return [e2]w.

Fig. 5. Actions of plants

We say that ”parsing procedure [e] handles string w” to mean that the pro-
cedure applied to w terminates and returns either x ∈ Σ∗ or fail.

Proposition 1. Each parsing procedure [e] for e ∈ E handles all w ∈ Σ∗.

Proof is found in the Appendix.

Proposition 2. For each result [e]w = x or ⟨e, w⟩ = x in a parse tree there
exists a proof of [e]w BNF→ x.

Proof is by induction on height of the subtree.
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The conditions under which each BNF tree has a corresponding parse tree
depend on the context in which certain expression may be used. We assume that
the grammar has a start expression S and use as context the BNF proof for
[S]u BNF→ u for u ∈ Σ∗.

For e ∈ E, we define Tail(e) as the set of all strings that may follow a string
matched by e in the proof of [S]u BNF→ u. More precisely, it is the set of strings z in
all results [e]xz BNF→ x that appear in that proof. A possible method for estimating
Tail(e) can be found in [14]. For e ∈ R, TailR(e) excludes occurrences of e in
a recursion path except the first one.

The ordering of choice expression is essential for rules (choice2.p), (choice2.g),
and(choice3.g). But, the ordering does not affect the language defined by BNF
rules. Therefore, we can always rearrange the choice as is best for the parsing.

Proposition 3. If the grammar satisfies the following conditions (1)-(3) then
for each proof of [S]u BNF→ u there exists parse tree with root [S]u = u. Moreover,
for each subproof [e]w BNF→ x of that proof exists parse tree with root [e]w = x or
⟨e, w⟩ = x.

For each e = e1|e2 ∈ R, e2 /∈ C(e); (1)

For each e = e1|e2, L(e1)Σ∗ ∩ L(e2)Tail(e) = ∅; (2)

For each e ∈ R, Adv(e)Σ∗ ∩ TailR(e) = ∅. (3)

Proof is found in the Appendix.

5 Comments

We presented sufficient conditions under which the extended PEG is a correct
parser for BNF grammars. Because we treat PEG as parser for BNF, it does not
include syntactic predicates of classical PEG.

We chose here the scheme for handling left recursion inspired by [6] because
it seems easy to analyze. The scheme where the grower scans all plants even if
nothing changes is also easy to analyze; in a practical implementation the plant
would be called only if its argument(s) change.

Checking (2) in the presence of left recursion is not simple. Without left
recursion, one can use approximation by prefixes, with LL(1) as the extreme
case. The languages defined by left recursion often have identical prefixes and
differ only at the far end.

The chosen scheme required a rather severe restriction (1) to the grammar.
It seems possible to replace it by a requirement that languages of different seeds
of the same recursion class are disjoint, as well as languages of expressions in
first−1(e) for e ∈ R. This is the subject of further research, as well as attempts
to analyze other schemes.
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[ε]w = ε
(empty.p)

[e(A)]w = X

[A]w = X
(rule.p)

⟨e, w⟩ = X

[e]w = X
(grow.p)

[a]aw = a
(letter1.p)

b ̸= a

[b]aw = fail
(letter2.p)

[a]ε = fail
(letter3.p)

[e1]xz = x [e2]z = y

[e1e2]xz = xy
(seq1.p)

[e1]w = fail

[e1e2]w = fail
(seq2.p)

[e1]xz = x [e2]z = fail

[e1e2]xz = fail
(seq3.p)

[e1]w = x

[e1| e2]w = x
(choice1.p)

[e1]w = fail [e2]w = X

[e1| e2]w = X
(choice2.p)

⟨e(A), w⟩ = X

⟨A,w⟩ = X
(rule.g)

⟨e1, xz⟩ = x [e2]z = y

⟨(e1e2), xz⟩ = xy
(seq1.g)

⟨e1, xz⟩ = x [e2]z = fail

⟨(e1e2), xz⟩ = fail
(seq2.g)

⟨e1, w⟩ = fail

⟨(e1e2), w⟩ = fail
(seq3.g)

⟨e1, w⟩ = x

⟨(e1| e2), w⟩ = x
(choice1.g)

⟨e1, w⟩ = fail ⟨e2, w⟩ = X

⟨(e1| e2), w⟩ = X
(choice2.g)

⟨e1, w⟩ = fail [e2]w = X

⟨(e1| e2), w⟩ = X
(choice3.g)

e ∈ R
⟨e1, w⟩ = fail

(init.g)

where X denotes x or fail.

Fig. 6. Formal semantics of parser

⟨Aa, baac⟩ = fail

[b]baac = b

[B]baac = b

⟨Aa|B, baac⟩ = b

⟨A, baac⟩ = b [a]aac = a

⟨Aa, baac⟩ = ba

⟨Aa|B, baac⟩ = ba

⟨A, baac⟩ = ba [a]ac = a

⟨Aa, baac⟩ = baa

⟨Aa|B, baac⟩ = baa

⟨A, baac⟩ = baa

[A]baac = baa [c]c = c

[Ac]baac = baac

[S]baac = baac

Fig. 7. Example of parse tree
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A Appendix

A.1 Proof of Proposition 1

The proof is by induction on the length of w with Lemma 3 as induction base
and Lemma 2 as induction step. ⊓⊔

Lemma 2. If each parsing procedure handles all words of length n or less, each
parsing procedure handles all words of length n+ 1.

Proof. Let the rank of expression e, denoted ρ(e), be defined as follows:

– ρ(ε) = ρ(a) = 0, and otherwise:

– For e /∈ R, highest ρ(e′) for e′ ∈ First(e) plus 1;

– For e ∈ R, highest ρ(e′) for e′ ∈ Seed(C(e)) ∪ Leaf(C(e)) plus 1.
One can easily see that this definition is not circular.

Assume that each procedure handles all words of length n or less, and consider
a word w of length n + 1. We use induction on rank of e to show that each [e]
handles w.

(Induction base:) Obviously, each procedure of rank 0 handles w.

(Induction step:) Assume that each procedure of rank m or less handles all words
of length n+ 1 or less. Take any procedure [e] of rank m+ 1.
If e /∈ R, e can be one of these:

– A ∈ N . We have ρ(e(A)) = m; thus e(A) handles w, and so does A.

– e1e2 with nullable e1. We have ρ(e1) ≤ m and ρ(e2) ≤ m. Each of them
handles words of length n+ 1 or less, so e1e2 handles w.

– e1e2 with non-nullable e1. We have ρ(e1) = m, so e1 handles w. If it fails, so
does e1e2. Otherwise it consumes x ̸= ε and e2 is applied to the rest w′ of
w, with length n or less. Thus, e2 handles w′, so e1e2 handles w.

– e1|e2. We have ρ(e1) ≤ m and ρ(e2) ≤ m. Each of them handles words of
length n+ 1 or less, so e1|e2 handles w.

If e ∈ R, the result of [e] is obtained by grower for the recursion class C(e) and
input w. The grower stops when it cannot improve any result. Each improvement
means consuming more of w. Since w is finite, the grower must eventually stop.
Thus, [e] handles w. ⊓⊔

Lemma 3. Each parsing procedure handles word of length 0.

Proof. The proof is essentially the same as that of Lemma 2, with w replaced
by ε, and simplified case of e1e2 with non-nullable e1. ⊓⊔

A.2 Proof of Proposition 3

Suppose we are given a BNF proof of [S]u BNF→ u. We are going to show that
each partial proof of that proof (and the final proof) has the corresponding parse
tree. In the following, we say ”subtree [e]w BNF→ x” to mean the partial proof with
result [e]w BNF→ x. Define the level of subtree [e]w BNF→ x as follows:
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– For e = ε and e = a the level is 1.

– For e /∈ R, other than above, the level is 1 plus the highest level of subtrees
for components of e.

– Each result with e ∈ R belongs to some recursion sequence. All subtrees
in that sequence have the same level, equal to 1 plus the highest level of
subtrees for the seed and leafs of that recursion sequence.

The proof is by induction on the level.

(Induction base:) The parse trees for subtrees on level 1 are [ε]w = ε respectively
[a]az = a. They represent calls to parsing procedures [ε] and [a].

(Induction step:) Assume that there exists parse tree for each subtree on level n
or less. We show that there exists parse tree for each subtree on level n+ 1.
For a subtree [e]w BNF→ x on level n+1 where e /∈ R we construct parse tree from
parse trees of subtrees. This is done in Lemma 4 and represents calls from [e] to
its subprocedures.
The root of each subtree [e]w BNF→ x on level n+ 1 where e ∈ R belongs to some
recursion sequence (perhaps degenerated to length 1). We construct parse trees
for all results in the sequence from parse trees for the leafs and the seed. This is
done in Lemma 5 and represents work done by the grower. ⊓⊔

Lemma 4. Assume there exists parse tree for each subtree of [e]w BNF→ x. There
exists parse tree for [e]w BNF→ x.

Proof. The parse tree for [e]w BNF→ x is constructed in the way that depends
on e:

– A = e′. [A]w BNF→ x is derived from [e′]w BNF→ x according to (rule).
As assumed, there exists parse tree [e′]w = x for [e′]w BNF→ x. The parse tree
[A]w = x is constructed from it using (rule.p).

– e1e2. [e1e2]xz
BNF→ xy is derived from [e1]xz

BNF→ x and [e2]z
BNF→ y according

to (seq).
As assumed, there exist parse trees [e1]xz = x and [e2]z = y. for [e1)]xz

BNF→ x
and [e2]z

BNF→ y. The parse tree [e1e2]xz = xy is built from them using
(seq1.p).

– e1|e2 with [e1|e2]w BNF→ x derived from [e1]w
BNF→ x according to (choice1).

As assumed, there exists parse tree [e1]w = x for [e1]w
BNF→ x. The parse tree

[e1|e2]w = x is constructed from it using (choice1.p).

– e1|e2 with [e1|e2]w BNF→ x derived from [e2]w
BNF→ x according to (choice2).

As assumed, there exists parse tree [e2]w = x for [e2]w
BNF→ x. [e2]w

BNF→ x
means w ∈ L(e2)Tail(e). As specified in Figure 4, parser calls the procedure
[e1] on z. According to Proposition 1, the call returns either fail or prefix
y of w. By Proposition 2, this latter would mean w ∈ L(e1)Σ∗, which con-
tradicts (2). Therefore must be [e1]y = fail. The parse tree [e1|e2]w = x is
constructed from [e1]w = fail and [e2]w = x using (choice2.p).

⊓⊔
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Lemma 5. If there exist parse tree for each seed and each leaf of recursion
sequence e[k], . . . , e[2], e[1], there exists parse tree for each result in the sequence
and in particular for e = e[k].

Proof. Suppose the grower is called to handle e for input w. We start by showing
that after the n-th round of the grower, ⟨e[n]⟩ contains the root of parse tree for

the subtree [e[n]]w
BNF→ x[n].

As the grower checks all plants on each round, it will call ⟨e[n]⟩ on round n.
The proof is by induction on n.

(Induction base:) Expression e[1] is an exit e1|e2 of the sequence, with e2 as seed.

The result [e[1]]w
BNF→ x is derived from [e2]w

BNF→ x using (choice2).
When the grower calls [e[1], z] in its first round, [e1, z] contains fail. As e2 is
the seed of the sequence, there exists parse tree with root [e2]w = x. The parse
tree for ⟨e[1], w⟩ = x is constructed from it using (choice3.g).

(Induction step:) Consider the round n+1 and assume that [e[n], w] contains the

root ⟨e[n], w⟩ = x of parse tree for subtree [e[n]]w
BNF→ x. What happens when the

grower calls [e[n+1], w] depends on expression e[n+1]. It can be one of these:

– A = e′ with [e[n+1]]w
BNF→ x derived from [e′]w BNF→ x according to (rule).

The e′ here is e[n] with parse tree ⟨e′, w⟩ = x. The parse tree for ⟨e[n+1], w⟩
is constructed from it using (rule.g).

– e1e2 with [e[n+1]]xz
BNF→ xy derived from [e1]xz

BNF→ x and [e2]z
BNF→ y accord-

ing to (seq).
The e1 here is e[n] with parse tree ⟨e1, xz⟩ = x. As e2 is a leaf of the sequence,
there exists parse tree with root [e2]z = y. The parse tree for [e[n+1], w] is
constructed using (seq1.g).

– e1|e2. By (1), e2 /∈ C. The BNF result [e[n+1]]w
BNF→ x is derived from or

[e2]w
BNF→ x according to (choice2).

As e[n] is in C, it must be e1 with parse tree ⟨e1, w⟩ = x. The parse tree for
⟨e[n+1], w⟩ is constructed from it using (choice1.g).

Note that from (3) follows ε /∈ Adv(e). Thus, according to Lemma 1, a new result
is stored in ⟨e[n], w⟩ in every turn.

Suppose the grower does not stop after e[k] because it finds a better re-
sult for plant [e[k], w]. If this better result is x′, we have by Lemma 1 x′ =
⟨e[k], w⟩Adv(e[k]) which means Adv(e[k]) is a prefix of TailR(e), and contradicts
(3). Thus, the grower stops at e[k].

The parse tree [e]w = x is constructed from ⟨e[k], w⟩ = x using (grow.p). ⊓⊔
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1 Multi-agent Systems and ATL?

Multi-agent systems describe interactions of multiple entities called agents, often as-
sumed to be intelligent and autonomous [1, 14]. Alternating-time temporal logic (ATL?)
and its fragment ATL [2] are logics which allow for reasoning about strategic interac-
tions in such systems, by extending the framework of temporal logic with the game-
theoretic notion of strategic ability. Hence, ATL? enables to express statements about
what agents or their groups can achieve. Such properties can be useful for specification,
verification, and reasoning about interaction in agent systems [12, 13], as well as about
security and usability in e-voting protocols [4, 9]. They have become especially relevant
due to active development of algorithms and tools for verification [16], where the “cor-
rectness” property is given in terms of strategic ability. While model checking of ATL
under perfect information seems to be feasible in practice [5], model checking of ATL
under imperfect information [17] is still applicable only to small and medium size sys-
tems [10]. This lecture is about selected approaches which can make model checking
ATL?, ATL and its time extension TATL more efficient.

2 Model Reduction Methods for Variants of ATL?

Abstraction is a method which typically transforms large (or infinite) models into smaller
(or finite) ones, but frequently defined over lattices of more that two truth values. We
present multi-valued ATL? (mv-ATL?

4), an expressive logic to specify strategic abilities
in multi-agent systems [7]. We show how to identify constraints on mv-ATL?

4 formulas
for which the general method for model-independent translation from multi-valued to
two-valued model, can be suitably adapted to mv-ATL?

4, Moreover, we present a model-
dependent reduction that can be applied to all formulas of mv-ATL?

4. In all cases, the
complexity of verification increases only polynomially when new truth values are added
to the evaluation domain.

Partial order reduction (POR) is another method used to alleviate the state space
explosion in model checking [15]. We define a general semantics for strategic abilities
of agents in asynchronous systems, with and without perfect information, and present
some general complexity results for verification of strategic abilities in asynchronous
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systems [11]. A methodology for POR in verification of agents with imperfect infor-
mation is discussed, based on the notion of traces introduced by Mazurkiewicz. We
define the logic simple ATL?, which is the restriction of ATL? such that the strategic
modalities cannot be nested and the next step modality is not allowed. Two semantics of
simple ATL? are considered and it is shown that for memoryless imperfect information
contrary to memoryless perfect information, one can apply the partial order reduction
techniques known for Linear-time Temporal Logic without the next step operator.

3 Timed ATL

Finally, we discuss Timed Alternating-time Temporal Logic (TATL), a discrete-time
extension of ATL. A new semantics, based on counting the number of visits in loca-
tions of the history, is introduced in addition to timed memoryful and memoryless ones
[3]. We show that all the defined semantics are equivalent for TATL≤,≥, i.e., when = is
not allowed in the formulas. We provide a strategy analysis revealing that it suffices to
consider only two actions per location to verify any TATL≤,≥ formula. This does not
extend to TATL. The above results allow for building a hierarchy of strategies compar-
ing the expressive power of the logics against ATL. We discuss a possible impact of this
hierarchy on improving efficiency of model checking for TATL≤,≥.
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Abstract. In the paper, we discuss an extension of exploration sys-
tems introduced by Andrzej Ehrenfeucht and Grzegorz Rozenberg. The
extension is defined by adding an interpretation of nodes and edges in
zoom structure of exploration system. The interpretation is based on the
concepts, namely local logic and logic infomorphism, from the notion
of information flow by Jon Barwise and Jerry Seligman. This extension
makes it possible, in particular, to give a natural interpretation of reac-
tion systems in exploration systems as tools for controlling attention in
reasoning about the perceived situation in the physical world.

Key words: reaction system, zoom structure, exploration system, in-
formation system, local logic, infomorphism, logic infomorphism

1 Introduction

In the paper, we present a preliminary discussion about possible links between
the exploration systems and the information flow approach.

The original motivation behind reaction systems (mostly taken from [1] and
[2]) was to model interactions between biochemical reactions in the living cells.
Therefore, the formal notion of reaction reflects the basic intuition behind bio-
chemical reactions. A biochemical reaction can take place if in a given state all
of its reactants are present and none of its inhibitors is present. When a reaction
takes place, it creates its products.

Zoom structures were introduced to integrate structure of a depository of
knowledge of a discipline of science (e.g., biology) in the context of reasoning
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about the perceived situation related to reaction systems in the physical world.
A discipline of knowledge must be structured and the integrating structure here
is a well-founded partial order which is well suited to represent a hierarchical
structure of knowledge. Exploration systems combine the zoom structures with
the reaction systems that are “running within” zoom structures (see, e.g., [3, 4]).

We propose to extend exploration systems by adding interpretation of nodes
and edges of zoom structures. The interpretation of nodes of zoom structures,
in the form of labels of nodes, is defined by local logics (related to information
systems) [5]; the labels of edges in the zoom structure are interpreted as logic
infomorphisms between local logics labeling nodes linked by edges. Through
local logic it is possible to address a notion of reasoning with respect to local
knowledge. Logic infomprphisms can be treated as abstract representations of
communications between local logics because each of two local logics linked by a
logic infomorphism has some knowledge about facts derivable by the second one.
It is possible to treat exploration system as a distritbuted basis for reasoning
about the perceived situation related to biochemical processes running in the
physical world.

The content of the paper is organized as follows. In Sect. 2 we present the
basic concepts of reaction systems. Rudiments of the information flow approach
are included in Sect. 3. The zoom structures, exploration systems, and their
extension are discussed in Sect. 4.1.

2 Reaction Systems

In this section we recall some basic notions concerning reaction systems (mostly
taken from [1] and [2]). The original motivation behind reaction systems was to
model interactions between biochemical reactions in the living cells. This leads
to the following definitions.

Definition 1. A reaction is a triplet a = (Ra, Ia, Pa), where Ra, Ia, Pa are finite
nonempty sets with Ra ∩ Ia = ∅. If S is a set such that Ra, Ia, Pa ⊆ S, then a is
a reaction in S.

The sets Ra, Ia, Pa, are called the reactant set of a, the inhibitor set of a, and
the product set of a, respectively. Clearly, since Ra, Ia are disjoint and nonempty,
then if a is a reaction over S, then |S| ≥ 2. We will use rac(S) to denote the set
of all reactions over S.

The enabling of a (biochemical) reaction in the given state of a biochemical
system and the resulting state transformation are defined as follows.

Definition 2. Let T be a finite set

– Let a be a reaction. Then a is enabled by T , denoted by ena(T ), if Ra ⊆ T
and Ia ∩ T = ∅. The result of a on T , denoted by resa(T ), is defined by:
resa(T ) = Pa if ena(T ) and resa(T ) = ∅, otherwise.

– Let A be a finite set of reactions. The result of A on T, denoted by resA(T ),
is defined by: resA(T ) =

⋃
a∈A resa(T ).
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The intuition behind a finite set T is that of a state of a biochemical system,
i.e., a set of biochemical entities present in the current biochemical environment.
Thus a single reaction a is enabled by state T if T separates Ra from Ia, i.e.,
Ra ⊆ T and Ia ∩T = ∅. When a is enabled by T , then its result on T is just Pa.
For a set A of reactions, its result on T is cumulative, i.e., it is the union of the
results of all individual reactions from A. Since reactions which are not enabled
by T do not contribute to the result of A on T, resA(T ) can be defined by

resA(T ) =
⋃
{resa(T )|a ∈ A and ena(T )}.

Now the central notion of a reaction system is defined as follows.

Definition 3. A reaction system is an ordered pair A = (S,A), where S is a
finite set such that |S| ≥ 2 and A ⊆ rac(S) is a nonempty set of reactions in S.

Thus a reaction system is basically a finite set of reactions over a set S, which
is called the background set of A and its elements are called entities. The result
function of A, resA : 2S −→ 2S is defined by resA = resA.

The behaviour of a reaction system (which results from the interactions be-
tween its reactions) is determined by its dynamic processes which are formally
defined as follows.

Definition 4. Let A = (S,A) be a reaction system and let n ≥ 1 be an integer.
An (n-step) interactive process in A is a pair π = (γ, δ) of finite sequences such
that γ = C0, . . . , Cn and δ = D0, . . . , Dn, where C0, . . . , Cn, D0, . . . , Dn ⊆ S,
and Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, . . . , n}.

The sequence γ is the context sequence of π and the sequence δ is the result
sequence of π. Then, the sequence τ = W0,W1, . . . ,Wn defined by Wi = Ci ∪Di

for all i ∈ {0, . . . , n} is the state sequence of π with W0 = C0 called the initial
state of π (and of τ). If Ci ⊆ Di for all i ∈ {1, . . . , n}, then we say that π (and
τ) is context-independent. Note that we can assume then that Ci = ∅ for all
i ∈ {1, . . . , n} without changing the state sequence.

Thus, an interactive process begins in the initial state W0 = C0 ∪ D0. The
reactions from A enabled by W0 produce the result D1 which together with
C1 forms the successor state W1 = C1 ∪ D1. The iteration of this procedure
determines π: for each i ∈ {0, . . . , n − 1}, the successor of state Wi is Wi+1 =
Ci+1 ∪Di+1, where Di+1 = resA(Wi).

The context sequence formalizes the intuition that, in general, a reaction
system is not a closed system and so its behavior is influenced by its environment.
Note that a context-independent state sequence is determined by its initial state
W0 and the number of steps (n). In general, for an n-step interactive process π
of A, π is determined by its context sequence and n.

Also, in a context-independent state sequence τ = W0, . . . ,Wi,Wi+1, . . . ,Wn,
during the transition from Wi to Wi+1 all entities from Wi − resA(Wi) van-
ish. This reflects the assumption of no permanency: an entity from a current
state vanishes unless it is produced/sustained by A. Clearly, if π is not context-
independent, then an entity from a current state Wi can be also sustained
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(thrown in) by the context (Ci+1). This feature is also a major difference with
standard models of concurrent systems such as Petri nets (see, e.g., [6]).

3 Barwise and Seligman’s logic for distributed system

In [5], the formal counterpart of information available to different sources/agents,
including their prior knowledge, is captured through the notion of classification;
a classification specifies an agent’s information and knowledge regarding which
object satisfies which properties or is of which type. The formal definition is
given as follows.

Definition 5. A classification A = 〈Tok(A), Typ(A), |=A〉 consists of
(i) a set, Tok(A), of objects to be classified, called tokens of A,
(ii) a set, Typ(A), of properties used to classify the tokens, called the types of
A, and
(iii) a binary relation, |=A, between Tok(A) and Typ(A).

If a |=A α, then a is said to be of type α inA. That is, |=A basically specifies which
token is of which type. Following the literature of rough sets [7, 8], the notion
of classification, presented in [5], can be viewed as a special kind of information
system, which is a tuple (U,A, {Va}a∈A, {fa}a∈A) consisting of respectively sets
of objects, attributes, a set of values for each attribute, and a set of functions for
each attribute specifying which object satisfies which attribute with what value.
In the context of classification, U is basically Tok(A), {(a, v) : a ∈ A, v ∈ Va} is
Typ(A), and for u ∈ U , fa(u) = v can be associated with u |=A (a, v) for each
(a, v) ∈ Typ(A).

Now the notion of infomorphism, defined below, represents relationship be-
tween classifications, and provides a way of moving information back and forth
between them.

Definition 6. Let A = 〈Tok(A), Typ(A), |=A〉 and B = 〈Tok(B), T yp(B), |=B〉
be two classifications. An infomorphism f : A � B from A to B is a con-
travariant pair of functions f = (f̂ , f̌) such that f̂ : Typ(A) 7→ Typ(B) and
f̌ : Tok(B) 7→ Tok(A) satisfying the following fundamental property of infomor-
phisms.
f̌(b) |=A α iff b |=B f̂(α) for each b ∈ Tok(B) and α ∈ Typ(A).

The notion of an interpretation, sometimes also called a translation of one
language into another, is an example of infomorphism between classifications.
There are two aspects of an interpretation; one is to do with tokens (structures),
and the other is to do with types (sentences). An interpretation I : L1 � L2 of
languages L1 into L2 does two things. At the level of types, it associates with
every sentence α of L1, a sentence I(α) of L2, its translation. At the level of
tokens, it associates with every structure M for L2, a structure I(M) for L1.
The relation that I(M) |=L1

α iff M |=L2
I(α), presents that what I(α) says

about the structure M is equivalent to what α says about the structure I(M).
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      L1 – sentences                                    L2 – sentences                  

L1 – structures                                  L1 – structures

╞ L1 ╞ L2

α I(α)

I

I(M)                                              M

Fig. 1. Interpretation: a translation of one language to another

Definition 7. Given the infomorphisms f : A� B and g : B � C, the compo-
sition
gf : A� C of f and g is the infomorphism defined by ĝf = ĝf̂ and ǧf = f̌ ǧ.

Given a classification of information, often it is found that some tokens are
identical with respect to some types, and distinct with respect to the rest. The
example, as given in [5], might render a better understanding in this regard.

My copy of today’s edition of the local newspaper bears much in com-
mon with that of my next door neighbour. If mine has a picture of Presi-
dent Clinton on page 2, so does hers. If mine has three sections, so does
hers. . . . Mine has orange juice spilled on it, hers does not. Hers has the
crossword puzzle solved, mine does not.

In the theory of classification, this aspect is captured by the following notions
of invariant and quotient classification.

Definition 8. Given a classification A, an invariant is a pair I = (Σ,R) con-
sisting of a set Σ ⊆ Typ(A) of types of A and a binary relation R between tokens
of A such that if aRb, then for each α ∈ Σ, a |=A α if and only if b |=A α.

In the above definition though R needs not to be an equivalence relation, in the
further considerations R is considered to be the smallest equivalence relation
containing the concerned relation.

Definition 9. Let I = (Σ,R) be an invariant on the classification A with respect
to an equivalence relation R. The quotient of A by I, denoted as A/I, is the
classification with types Σ, whose tokens are the R-equivalence classes of tokens
of A, and with [a]R |=A/I α if and only if a |=A α.

One can notice that the notion of invariance, as defined in [5], also corresponds
to the notion of indiscernibility in the context of rough set literature. In an
information system, given by the tuple (U,A, {Va}a∈A, {fa}a∈A), two objects
x, y of U are said to be indiscernible (i.e., xIND(A)y) if fa(x) and fa(y) receive
the same value from Va for any a ∈ A. Moreover, the notion of sequent, defined
below, also has a counterpart in rough set literature. A sequent can be viewed
as a non-deterministic decision rule, i.e., relation between two (finite) sets of
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descriptors (e.g. (a, v) for a ∈ A and v ∈ Va) describing the available data of the
information system.

Example 1. For a given information system A=(U,A, {Va}a∈A, {fa}a∈A) and
the indiscernibility relation IND(A) one can define two classifications Cl(A) =
(U,Σ, |=A) and Cl(A/IND(A)) =(U/IND(A), Σ, |=A/IND(A)), where Σ is a
subset of Type(A) (cf. below Def. 5), x |=A α denotes that x satisfies α, and
[x]IND(A) |=A/IND(A) α means that x |=A α [7, 8]. One can easily check that
these two classifications can be linked by infomorphisms (id, g) : Cl(A) �
Cl(A/IND(A)), where id is the identity on Σ and g assigns to [x]IND(A) any
object from [x]IND(A) and (id, h) : Cl(A/IND(A)) � Cl(A), where id is the
identity on Σ and h(x) = [x]IND(A) for x ∈ U .

2

As pointed out in [5],

one way to think about information flow in a distributed system is
in terms of a ‘theory’ of the system, that is, a set of known laws that
describes the system.

Based on this general notion of classification, the notion of sequent or notion of
consequence of a deductive logic is captured as follows.

As a classification, say (Tok(A), T yp(A), |=A), specifies a perspective about
the properties of the Tok(A) we may call the classification as classification of A
considering A to refer to that particular perspective.

Definition 10. Let cl(A) = (Tok(A), T yp(A), |=A) be a classification of A.
(i) For any Γ,∆ ⊆ Typ(A), 〈Γ,∆〉 is considered to be a sequent of Typ(A).
(ii) A sequent 〈Γ,∆〉 is a partition of Σ′ ⊆ Typ(A) if Γ ∪∆ = Σ′ and Γ ∩∆ =
φ.
(iii) A binary relation ` between subsets of Typ(A) is called a (Gentzen) conse-
quence relation.
(iv) A theory T = (Σ,`) is a pair, where Σ ⊆ Typ(A) and ` is a consequence
relation on Σ.
(v) A constraint of the theory T is a sequent 〈Γ,∆〉 such that Γ ` ∆.
(vi) A token a of Tok(A) satisfies 〈Γ,∆〉 provided that if a is of type α for every
α ∈ Γ , then a is of type β for some β ∈ ∆. A token not satisfying a sequent is
called a counterexample to the sequent.
(vii) The theory T (cl(A)) = (Typ(A),`A) generated by cl(A) is the theory whose
constraints are the set of sequents satisfied by every token of Tok(A).
(viii) A theory whose constraints are satisfied by every token of the classification
is called a complete theory.

Here it is to be noted that sequents are all possible pairs of sets of types, and some
of them come under the consequence relation. Usually, some natural conditions
are imposed on the set of sequents if one would like to consider it as a theory.
Below we present such conditions in the definition of the regular theory.
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Definition 11. A theory T = (Σ,`) is regular if it satisfies the following proper-
ties viz., identity, weakening, and global cut for all types α, and all set Γ, Γ ′, ∆,∆′,
Σ′, Σ0, Σ1 of types.
Identity α ` α
Weakening If Γ ` ∆, then Γ, Γ ′ ` ∆,∆′.
Global cut If Γ,Σ0 ` ∆,Σ1 for each partition 〈Σ0, Σ1〉 of Σ′, then Γ ` ∆.

Proposition 1. The theory T (cl(A)) = (Typ(A),`A) generated by the classifi-
cation cl(A) of A is a regular theory.

Proposition 2. Any regular theory T = (Σ,`) satisfies the following condition.
Finite cut: If Γ, α ` ∆ and Γ ` ∆,α, then Γ ` ∆.

Definition 12. Given two theories T1 = (Typ(T1),`T1) and T2 = (Typ(T2),`T2),
a (regular theory) interpretation f : T1 7→ T2 is a function from Typ(T1) to
Typ(T2) such that for each Γ,∆ ⊆ Typ(T1) if Γ `T1

∆, then f(Γ ) `T2
f(∆).

The notion of local logic puts the idea of a classification together with that
of a regular theory. Moreover, introducing a notion of normal tokens it models
resonable but unsound inferences.

Definition 13. A local logic L = (Tok(L), T yp(L), |=L,`L, NL) consists of
(i) a classification cl(L) = (Tok(L), Typ(L), |=L),
(ii) a regular theory Th(L) = (Typ(L),`L), and
(iii) a subset NL ⊆ Tok(L), called the normal tokens of L, which satisfies all
the constraints of Th(L).

Definition 14. A logic infomormhism f : L1 � L2 consists of a contravariant
pair f = (f̂ , f̌) of functions such that
(i) f : cl(L1) � cl(L2) is an infomorphism of classifications,

(ii) f̂ : Th(L1) 7→ Th(L2) is a theory interpretation, and
(iii) f̌(NL2) ⊆ NL1 .

It can be observed that through these notions of classification, local logic, and
logic infomorphism the target of the authors [5] was to formalize respectively
an individual’s information base, logical reasoning base, and flow of information
from one individual to another in the process of decision making.

4 Exploration Systems and Their Extension Grounded in
Local Logics over Information Systems

In this section, we consider exploration systems which combine zoom structures
with reaction systems “running within” zoom structures (see, e.g., [3, 4]). The
original intuition and motivation was that a zoom structure is the integrating
structure of a depository of knowledge of a discipline of science (e.g., biology).
A discipline of knowledge must be structured and the integrating structure here
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is a well-founded partial order which is well suited to represent a hierarchical
structure of knowledge (as, e.g., is the case in biology).

Formally zoom structures are defined as follows (we consider irreflexive par-
tial orders; recall that a partial order is well-founded if every walk against its
edges is finite).

Definition 15. A zoom structure is a 6-tuple Z = (D,E, Γ,∆, {Di}i∈Γ , {Ej}j∈∆),
where

(i) D is a non-empty set,
(ii) E ⊆ D × D is such that the E+ (i.e., the transitive closure of E) is a

well-founded partial order,
(iii) Γ,∆ are finite sets,
(iv) {Di}i∈Γ is a partition of D (into non-empty sets), and
(v) {Ej}j∈∆ is a partition of E (into non-empty sets).

Obviously, Z can be also seen as a node- and edge-labelled graph, where D
is its set of nodes labelled by elements of Γ , and E is its set of edges labelled by
elements of ∆.

Data structures for implementing large sets of data are often hierarchical: in
accessing specific data one usually performs a series of zoom operations each of
which leads from a topic to its “subtopic.” This is reflected in the basic notion
of an inzoom of Z.

Definition 16. Let Z = (D,E, Γ,∆, {Di}i∈Γ , {Ej}j∈∆) be a zoom structure.
An inzoom of Z is a finite sequence x = x1, x2, . . . , xn such that n ≥ 2, xi ∈ D
for i ∈ {1, . . . , n}, and, for each i ∈ {2, . . . , n}, (xi, xi−1) ∈ E.

The set of inzooms of Z is denoted by INZOOM(Z).
Thus an inzoom represents a “reverse walk” in Z, i.e., a walk through nodes

such that each single step goes against an edge of E. In the framework of zoom
structures, inzooms (rather than nodes) are basic units for reasoning about and
the usage of zoom structures.

While a zoom structure represents the static integrating structure of a depos-
itory of knowledge, the dynamic processes of exploring depositories of knowledge
are represented by reaction systems “embedded” (rooted) in zoom structures.
The embedding of a reaction system in a zoom structure is realized by requir-
ing that the background of the reaction system consists of inzooms of the zoom
structure.

Definition 17. Let Z be a zoom structure. A reaction system A = (S,A) is
rooted in Z if S ⊆ INZOOM(Z).

Recall that a reaction systemA = (S,A) specifies, through the result function
resA, a set-theoretical transformation of the set of subsets of its background set
S (hence on the states of A). (When one allows processes of A to be more general
than context-independent, then more general transformations are considered.)
The background set can be any set and if we choose it to be a set of zooms of
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Z, then we root A in Z, “ allowing” A to explore (the knowledge deposited in)
Z.

This leads to the notion of an exploration system.

Definition 18. An exploration system is an ordered pair E = (Z,F), where Z
is an extended zoom structure and F is a family of reaction systems rooted in Z.

In the original definition (see [3]) Z is a construct more general than a zoom
structure. However, for the purpose of our discussion it suffices to assume here
that Z is a zoom structure.

Exploration systems can be used for reasoning about perceived situation in
the physical world. Note that objects in D do not have to belong to the ground
level of hierarchical modeling obtained by sensory based perception of reality.
They can be constructs of higher level of the hierarchical modeling for perception
based reasoning about the currently perceived situation. Moreover, edges in E
can be interpreted as links representing possible relevant interactions between
objects from D. This means that results of interactions can be used in perception
based reasoning about the currently perceived situation.

Example 2. Let Z = (D,E, Γ,∆, {Di}i∈Γ , {Ej}j∈∆) be a zoom structure such
that D = {x1, x2, . . . , x10}, Γ = {1, 2, 3}, ∆ = {4, 5, 6}, D1 = {x1, x2, x3}, D2 =
{x4, x5, x6, x7}, D3 = {x8, x9, x10}, E = E4 ∪E5 ∪E6, E4 = {(x5, x7), (x8, x10),
(x1, x4), (x3, x5)}, E5 = {(x6, x7), (x4, x7), (x2, x3)}, and E6 = {(x5, x10), (x1, x3),
(x1, x2), (x3, x8), (x9, x10)} (see Figure 2). It is illustrated in Figure 2.

Let A = (S,A) be a reaction system rooted in Z such that S = {(x3, x2, x1),
(x3, x1), (x3, x2), (x2, x1), (x7, x4), (x10, x8)} and A contains the reaction a =
(Ra, Ia, Pa) withRa = {(x3, x2, x1), (x2, x1)}, Ia = {(x10, x8)}, and Pa = {(x7, x4)}.
This gives an example of a reaction system rooted in a zoom structure.

4.1 Exploration Systems Grounded in the Space of Information
Systems

We propose to extend exploration systems by adding interpretation of nodes
and edges of zoom structures. The interpretation of nodes of zoom structures
is given in the form of labels of nodes defined by local logics (related to infor-
mation systems) [5] and interpretation of edges in the zoom structure are logic
infomorphisms between local logics labeling nodes linked by the edges.

Having such a framework, following the information flow approach [5] one can
construct local logics for individual agents as well as local logic representing the
whole network of local logics. However, such a global logic will be very complex
what makes it hardly possible to derive efficiently conclusions of the basis of such
a local logic. Moreover, due to the cumulation of uncertainties the reasoning on
the basis of such a logic may be not satisfactory.

Instead of this we propose to construct local logics only for some fragments
of zoom structures which are relevant for the perceived situation. Namely, we
propose to construct local logics corresponding to subnetworks defined by the
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Fig. 2. Zoom structure from Example 2.

partition of nodes given by a zoom structure (representing subdomains of knowl-
edge). It should be noted that the partition blocks can be further restricted
by using reactants of relevant reactions from exploration system. In the conse-
quence, the fragments of networks for which it is necessary to construct locals
logic representing them is substantially reduced. The aim is to make the reason-
ing process efficient and leading to conclusions on the perceived situation. The
products of reactions from the considered exploration system are used as point-
ers indicating relevant fragments of zoom structure. These fragments are used
in further steps of reasoning on the basis of local logics toward understanding
the perceived situation.

There is one more extension we propose to the zoom structure defined above.
This is specified by a selection function making it possible to select, from the
family of reaction systems given in the considered exploration system, a rele-
vant reaction system, for the next step of reasoning on the basis of the current
information on the currently perceived situation. We assume here that this in-
formation is represented, in particular, in a distinguished nodes (called sensory
nodes) of extended zoom structure, where information systems and correspond-
ing to them local logics are labeling nodes.

5 Conclusions

We presented a preliminary discussion about extension of exploration systems
defined in [3, 4]. In the full version of the paper we plan to give more details
about this extension and its possible applications.

In our further research, we plan to consider the exploration systems as dy-
namic complex networks with the structures changing by the control mechanisms
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responsible for the behavior of exploration systems. The control of an agent, us-
ing a given exploration system interacting with the environment, is aiming to
satisfy the ’needs’ of the agent. It should be noted that the needs may change
with time. One may ask how such complex exploration systems may be con-
structed and modified with time. Here, we would like to point to two special
strategies following two kinds of judgments used for making changes in the cur-
rent exploration system. The first one is based on aggregation of information
systems labeling nodes of zoom structures of these exploration systems and con-
sequently the local logics corresponding to them. The aggregations are such as
operations of join of information systems with some relevant constraints. These
constraints are used to filter Cartesian products of sets of objects in the joint
information systems to obtain relevant computational building blocks (granules)
for describing the perceived situation, e.g., the ones which are used for approxi-
mation of complex vague concepts responsible for triggering action or plans (see,
e.g., [9]). The second kind of strategies is based on the ability of agents to create
the so called complex granules making it possible to extend the fragments of
the physical world, perceived by agents, to the new fragments localized in the
scope of these complex granules (see, e.g., [10–12]). More detailed discussion on
the issues related to dynamic behavior of exploration systems will be included
in our next papers.
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Abstract. Gene Regulatory Networks represent the interactions among
genes regulating the activation of specific cell functionalities and they
have been successfully modeled using threshold Boolean networks. In this
paper we propose a systematic translation of threshold Boolean networks
into Reaction Systems. Our translation produces a non redundant set of
rules with the minimal number of objects. This translation allows us
to simulate the behavior of a Boolean network simply by executing the
(closed) Reaction System we obtain. Moreover, it allows us to investigate
the role of different genes simply by “playing” with the rules related to
different genes. Starting from a well-known Boolean network model of
the Yeast-Cell Cycle, we construct the corresponding Reaction System
and start an investigation on causal dependencies among genes.

1 Introduction

In the context of molecular biology of cells, Gene Regulatory Networks (GRNs)
represent the interactions among genes regulating the activation of specific cell
functionalities. More specifically, genes in a GRN can be either active (i.e. the
corresponding protein is expressed) or not, and each active gene can either stimu-
late or inhibit the activation of a number of other genes. Moreover, the activation
of some genes is also usually influenced by other factors such as the availability
of some substances in the environment or the reception of a signal form neighbor
cells. As a consequence, gene regulatory networks can be seen as the mechanism
that allow a cell to react to external stimuli. When a stimulus is received, it
causes a change in the activation state of a few genes, that, in turn, influence
other genes, allowing a new configuration of active genes (corresponding to a
new set of active cell functionalities) to be reached.

Several approaches have been proposed to model and analyze GRNs (see
[24] for a survey on this topic). Modeling techniques can either deal only with
the qualitative aspects of such networks (treating them essentially as logic cir-
cuits), or can describe also the quantitative aspects, such as the rates of the
interactions. The latter approach is for sure more precise, but requires many
additional details of the network dynamics to be taken into account, such as the
rates of transcription and translation of genes’ DNA into proteins and the rates
of protein-protein and protein-DNA interactions. Qualitative models are often
sufficient to reason on the behavior of the regulatory networks, although with
some degree of approximation.
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In the qualitative modeling setting, one of the most successful modeling
frameworks for gene regulatory networks are Boolean networks. In this setting,
a particular simple form of Boolean networks, the so called threshold Boolean
networks [16, 19, 22], have been widely used to model the dynamics of quite
complex regulatory networks. In threshold Boolean networks, the Boolean func-
tion of each node depends on the sum of its input signals only. This variant of
Boolean networks can be easily implemented and, at the same time, it is well
suited for representing gene regulatory networks.

Boolean networks allow dynamical properties of GRNs to be investigated.
Starting from an initial configuration of active genes, the dynamics of a GRNs
is expressed as a sequence of steps in which such a configuration is updated
according to the influences among the genes described by the Boolean network.
Dynamical properties can be investigated either by performing simulations, or
by constructing the (finite) graph representing all possible dynamical evolutions.
Example of properties that are often studied on these models are reachability
and stability of configurations, and confluence of evolutions started from different
initial configurations into stable configurations (attractors).

Analysis of dynamical properties may become computationally very expen-
sive. In order to reduce the state space to be analyzed, minimization techniques
can be applied. The Boolean function represented by a Boolean network can
be synthesized in any framework of logic minimization. The classical approach
to logic minimization that produces sum of products two level formulas can be
used (see e.g., Espresso [10, 23]). More than two level minimization is harder,
but the size of the resulting expressions can significantly decrease. In particular,
bounded multilevel forms, such as three or four-level forms [8, 7, 9, 10] could rep-
resent a good tradeoff among the cost of the final representation and the time
needed for the minimization procedure.

Other analysis methods for GRNs could be applied by changing the repre-
sentation of the Boolean networks describing them. In this paper we propose
a systematic translation of threshold Boolean networks into Reaction Systems
[17, 13]. Reaction systems were introduced by Ehrenfeucht and Rozenberg as a
novel model for the description of biochemical processes driven by the interac-
tion among reactions in living cells. Reaction systems are based on two opposite
mechanisms, namely facilitation and inhibition. Facilitation means that a reac-
tion can occur only if all its reactants are present, while inhibition means that
the reaction cannot occur if any of its inhibitors is present. The state of a Re-
action System consists of a finite set of objects which can evolve by means of
application of reactions. The presence of an object in a state expresses the fact
that the corresponding biological entity, in the real system being modeled, is
present. Quantities (or concentrations) of the entities are not described: Reac-
tion Systems are hence a qualitative modeling formalism.

In this setting the dynamic run of the Reaction System simulates the evolu-
tion of the Boolean network. This correspondence allows us to “play” with the
rules of the Reaction System related to different genes in order to detect dy-
namic causality dependencies between genes activation/deactivation. Moreover,
we believe that this correspondence will allow us to apply to Boolean networks
well-known techniques to detect causality relationships between objects in bio-
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logical systems. The understanding of causality relationships among the events
happening in a biological (or bio-inspired) system is an issue investigated in the
context both of systems biology (see e.g. [18, 11, 12]) and of natural computing
(see e.g. [15]).

In [14] Brijder, Ehrenfeucht and Rozenberg initiate an investigation of causal-
ities in Reaction Systems [17, 13]. Causalities deal with the ways entities of a
Reaction System influence each other. In [14], both static/structural causali-
ties and dynamic causalities are discussed, introducing the idea of predictor. In
[2, 1, 3, 5, 4, 6], the idea of predictors was enhanced by defining the notions of
formula based predictor and specialized formula based predictor. These new con-
cepts allow us to study all causal dependencies of one object from all others.
We believe that the Reaction System simulating a Boolean network can then be
investigated by computing the specialized formula based predictor of a partic-
ular activation/deactivation gene configuration. This will allow us to obtain a
logic formula characterizing all alternative activation/deactivation gene config-
urations that lead to the requested configuration in a bounded number of steps.
This could be very useful to understand which genes are necessary for reaching
a requested configuration.

The translation we propose in this paper produces a non redundant set of
rules with the minimal number of objects.

The paper is organized as follows. Section 2 introduces the main concepts of
(Closed) Reaction Systems. In Section 3 we describe how Boolean networks are
defined and how they work. Section 4 presents the systematic translation from
Boolean network to Reaction Systems we propose. Finally, in Section 5 we apply
our methodology to simulate and study the Yeast-Cell Cycle Boolean Network.

2 Closed Reaction Systems

In this section we recall the basic definition of Reaction Systems [17, 13]. Let S be
a finite set of symbols, called objects. A reaction is formally a triple (R, I, P ) with
R, I, P ⊆ S, composed of reactants R, inhibitors I, and products P . Reactants
and inhibitors R ∪ I of a reaction are collectively called resources of such a
reaction, and we assume them to be disjoint (R∩ I = ∅), otherwise the reaction
would never be applicable. The set of all possible reactions over a set S is denoted
by rac(S). Finally, a Reaction System is a pair A = (S,A), where S is a finite
support set, and A ⊆ rac(S) is a set of reactions.

The state of a Reaction System is described by a set of objects. Let a =
(Ra, Ia, Pa) be a reaction and T a set of objects. The result resa(T ) of the ap-
plication of a to T is either Pa, if T separates Ra from Ia (i.e. Ra ⊆ T and
Ia ∩ T = ∅), or the empty set ∅ otherwise. The application of multiple reac-
tions at the same time occurs without any competition for the used reactants
(threshold supply assumption). Therefore, each reaction which is not inhibited
can be applied, and the result of the application of multiple reactions is cumu-
lative. Formally, given a Reaction System A = (S,A), the result of application
of A to a set T ⊆ S is defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

An important feature of Reaction System is the assumption about the non-
permanency of objects: the objects carried over to the next step are only those
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produced by reactions. All the other objects vanish, even if they are not involved
in any reaction.

The dynamics of a Reaction System is generally driven by the contextual
objects, namely the objects supplied to the system by the external environment
at each step. Closed Reaction Systems are the subset of general Reaction Systems
where the external environment provides objects at the first step only.

This allows us to simplify the dynamics of a (closed) Reaction System A =
(S,A). Indeed, given the initial set D0 the semantics can be simply defined as
the result sequence, δ = D1, . . . , Dn where each set Di, for i ≥ 1, is obtained
from the application of reactions A to the state obtained at the previous step
Di−1 ; formally Di = resA(Di−1) for all 1 ≤ i < n. For the sake of simplicity,
we write Di−1 →A Di as a shorthand for Di = resA(Di−1). In this case the
sequence of states of the Reaction System coincides with the result sequence
δ = D1, . . . , Dn.

3 Boolean Networks

We present a formal definition of threshold Boolean networks [22] considering a
set M of n elements, S1, S2, . . . Sn to be nodes of a network. We assign to each
element, at each time instant t, a value Si(t) ∈ {0, 1} denoting if the element Si
is present at that instant or not. The interactions among elements are given by
the set of edges of the network called E. Each edge in E can be either activating
or inhibiting. An edge from element Sj to element Si is denoted aij (where i 6= j
given that a element cannot either activate or inhibit itself). An activating edge
has value 1 while an inhibiting one has value −1. Elements M can be partitioned
in two sets Msa and Mnsa of self-activating and non-self-activating elements,
respectively, M = Msa ∪Mnsa. A self-activating elements if is present at time t
and it is not inhibited will be present at time t + 1, while a non-self-activating
one will not. Moreover we assume that each element Si has associated a value
θi ∈ Θ which is called the threshold parameter of Si. The pair (M,E) is called a
threshold Boolean network.

The states of the nodes in the network are updated in parallel in discrete time.
The rules for updating the values of nodes are the following, for i ∈ {1, . . . , n}

Si(t+ 1) =



1 if
∑
j

aijSj(t) > θi

0 if
∑
j

aijSj(t) < θi

Si(t) if Si ∈Msa ∧
∑
j

aijSj(t) = θi

0 if Si ∈Mnsa ∧
∑
j

aijSj(t) = θi

where the value θi is the threshold parameter associated to the element Si.

Typically the threshold parameter θi associated to Si is equal to 0 so that
the switch is inactive if there is no input signal, and it switches on when signals
are present. A node which needs more than one incoming signals to be activated
can be represented in the model by setting θi to a value greater than 0.

Starting from an initial condition, the network produces a dynamical se-
quence of states and it can reach a periodic attractor or a fixed point.
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Fig. 1. An example of gene regulatory network.

There is a natural representation of Boolean networks by means of graph
where the nodes represent the elements and the edges represent the interactions
between the elements; an activating edge is indicated by → while an inhibiting
one is indicated by a. Non self-activating genes are represented by nodes with
half-arrow (⇀) self loops.

We introduce an example to illustrate threshold Boolean networks and their
dynamic evolution.

Example 1. Let us consider the threshold Boolean network (M,E) with elements
M = {A,B,C,D} such that Msa = {A,B,C} and Mnsa = {D} and with the
edges depicted in Fig. 1. Thus, the element D is non self-activating while the
elements A,B and C are self-activating. We also assume that the threshold
parameter for each element is 0.

We describe the temporal evolution considering an initial state in which the
element D is present while the others are not. We have

Step A B C D
1 0 0 0 1
2 1 1 0 0
3 1 1 1 0
4 0 1 1 1
5 0 1 1 0
6 0 0 1 0
7 0 0 1 0

Initially the element D stimulate the activation of both elements A and B be-
cause the element C, their inhibitor is not present. Note that at the second step
the element D is inactive because it is non self-activating. Then, at step 3, the
elements C is present because it is activated by B while A and B are still present
because they are self-activating and at step 2 C was not present. At step 4, the
element C actives D and inhibits A which is not present anymore. By contrast,
C does not inhibit the element B which is still present because it was present at
step 3 but also A was present. The step 5 is similar. Finally at step 6 the element
B is not present anymore because in the previous configuration A and D were
absent and the inhibitor C was activated. The last one is also a stationary state
of the system, since no more evolutions of the network are possible from such
state.
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4 Translation of Boolean Networks into Reaction Systems

We present a translation of threshold boolean networks in closed Reaction Sys-
tem. Given a Boolean network (M,E) with M = {S1, S2, . . . Sn} we define for
Si ∈M ,

Act(Si) = {Sj | j ∈ [1, n] ∧ aij = 1} In(Si) = {Sj | j ∈ [1, n] ∧ aij = −1}

We recall that aij denotes an edge from element Sj to element Si. Hence,
Act(Si) reports the elements Sj which activates Si and analogously In(Si) re-
ports the elements Sj which inhibits it.

Definition 1. Let (M,E) be a threshold Boolean network with elements M =
{S1, S2, . . . Sn} and threshold parameters Θ = {θ1, θ2, . . . θn}. We define its
translation as the closed Reaction System RS((M,E)) = (M,A), where reac-
tions in A are constructed according to the following inference rules:

1)

Pi ⊆ Act(Si) Ii ⊆ In(Si)
#Pi −#(In(Si) \Ii) = θi − 1

(Pi, Ii, {Si}) ∈ A

2)

Si ∈Msa Pi ⊆ Act(Si) Ii ⊆ In(Si)
#Pi −#(In(Si)\Ii) = θi

(Pi ∪ {Si}, Ii, {Si}) ∈ A

The closed Reaction System RS((M,E)) simulates the threshold Boolean
network (M,E) using reactions obtained by applying either the inference rule
1) or the inference rule 2). Rule 1) defines the reactions which simulate the
production of a element Si at time t + 1 whenever at time t the number of
the elements which activate Si minus the number of the elements which inhibit
Si is greater than θi (according to the rule given in Section 3). This behavior is
simulated by a reaction which has as product Si, as reactants Pi and as inhibitors
Ii where Pi is a subset of the elements which activates Si and analogously Ii is
a corresponding subset of the elements which inhibits it. Note that this reaction
can be applied if in the Reaction System state none of the elements in Ii is
present. As a consequence, the set of the elements which are inhibitors of Si and
which may be present is given by In(Si)\Ii. Therefore we guarantee that the
cardinality of Pi minus that of In(Si)\Ii is greater than θi. More specifically we
require that this difference is equal to θi − 1 in order to built a minimal set of
reactions in the corresponding Reaction System.

Rule 2) is defined for self-activating elements which remains active at time
t + 1 if they are present at time t and they are not inhibited (according to the
rule given in Section 3). In Reaction System, due to the non-permanency of
objects, the objects carried over to the next step are only those produced by
reactions. Therefore, in this case, the reaction which simulates the behavior has
Si as reagent and also as product. Similarly as in the case 1), Pi is a subset of
the elements which activates Si and Ii is a corresponding subset of the elements
which inhibits Si. In this case, however, we require that the cardinality Pi minus
the number of inhibitors which might be present (i.e. (In(Si)\Ii) ) is exactly θi.

Example 2. We give the translation of the threshold Boolean network (M,E)
presented in Example 1. Fig. 1) illustrates the interactions between the elements
of the network M = {A,B,C,D} such that Msa = {A,B,C} and Mnsa = {D}.
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By assuming again that the threshold parameter for each element is 0 we
obtain the closed Reaction System RS((M,E)) = (M,A) with reactions A are
defined as follows:

({C}, ∅, {D}), ({B}, ∅, {C}) ({C}, ∅, {C}), ({A,D}, ∅, {A})
({D}, {C}, {A}), ({A}, {C}, {B}) ({A}, {C}, {A}), ({B,D}, ∅, {B})
({D}, {C}, {B}), ({A,D}, ∅, {B}) ({B,A}, ∅, {B}), ({B}, {C}, {B})

The reactions on the left are obtained by applying the rule 1) while those on
the right by applying the rule 2). The two columns on the left contains one or
more reaction for each elements which produces the element. For the elements
D and C there is exactly one reaction given that they do not have inhibitors.
By contrast, the element C inhibits both A and B. In the first case, there is
just one reaction which says that D produces A if not inhibited by C. The
case of B is similar but it can be activated by two element, A and D. Hence,
there are three different reactions corresponding to the possible conditions of
elements which can activate and inhibit B. Note that the requirements of rule
1) guarantee that only minimal subsets are considered. For instance a reaction
such as ({A,D}, {C}, {B}) is subsumed by ({A,D}, ∅, {B}) given that the latter
reaction can be applied regardless of the presence of C.

The two columns on the right shows the reactions for self-activating elements,
A, B and C. Similarly as in the previous case there is one or more reaction
for each self-activating elements which has the element both as reagent and as
product.

We can now prove the soundness of the translation of threshold Boolean
networks in closed Reaction System. To relate the configurations of a threshold
Boolean network with the state of the associated Reaction System we introduce
the following definition.

Definition 2. Given a threshold Boolean network (M,E) with M = {S1, . . . Sn},
and a state at time t, S(t) = {S1(t), S2(t), . . . Sn(t)}. The translation of the state
S(t) in a corresponding Reaction System state is given by RS(S(t)), defined as
follows: RS(S(t)) = {Si | Si(t) = 1, i ∈ [1, n]}.

Theorem 1. Let (M,E) be a threshold Boolean network with elements M =
{S1, S2, . . . Sn} and threshold parameters Θ = {θ1, θ2, . . . θn}. Given a state at
time t, S(t) = {S1(t), S2(t), . . . Sn(t)} we have that

RS(S(t+ 1)) = resA(RS(S(t)))

where A = RS((M,E)) = (M,A) is the Reaction System obtained by the trans-
lation.

Due to Theorem 1 a threshold Boolean network (M,E) with a state S(0) at
time 0 can be simulated by the corresponding closed Reaction SystemRS((M,E))
by considering the initial state RS(S(0)).

At this point, it important to count the number reactions of the closed Re-
action System necessary to simulate a threshold Boolean network (M,E). Such
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number depends on the number of the nodes M and of the edges of the network
E and also on the threshold parameters Θ. For each Si ∈ M the number of
the reactions which have Si as a product depends on the cardinality of Act(Si)
and In(Si) and on θi. Indeed, Act(Si) and In(Si) represents the number of the
incoming edges which activates and inhibits Si respectively.

Proposition 1. Given a threshold Boolean network (M,E) with elements M =
{S1, S2, . . . Sn} and threshold parameters Θ = {θ1, θ2, . . . θn}.
Moreover, let RS((M,E)) = (S,A) be the corresponding closed Reaction System.

– For each i ∈ {1, . . . , n}, let N(Si) = #({(R, I, P ) ∈ A | Si ∈ P}) be the
number of the reactions which produce the element Si. We have that

N(Si) =



∑min(mi,(li+1+θi))
k=1+θi

(
mi

k

)
×
(

li
k−1−θi

)
, if Si ∈Mnsa;

∑min(mi,(lj+1+θi))
k=1+θi

(
mi

k

)
×
(

li
k−1−θi

)
+∑min(mi,(lj+θi))

h=θi

(
mi

h

)
×
(
li

k−θi

)
, if Si ∈Msa.

where mi = #(Act(Si)) and li = #(IN(Si)).
– We have that #(A) =

∑n
i=1N(Si).

The previous result is a direct consequence of Definition 1.

Example 3. Let us consider the closed Reaction System RS(M,E) = (M,A),
presented in the Example 2, which is the translation of the threshold Boolean
network (M,E) of Example 1. The reaction system has 12 reactions. Indeed,
since A,B and C belong to Msa while D belongs to Mnsa and the threshold
parameter is 0 by applying Proposition 1, we obtain:

N(A) =
∑min(1,2)
i=1

(
1
i

)
×
(

1
i−1
)

+
∑min(1,1)
i=0

(
1
i

)
×
(
1
i

)
= 1 + (1 + 1) = 3

N(B) =
∑min(2,2)
i=1

(
2
i

)
×
(

1
i−1
)

+
∑min(2,1)
i=0

(
2
i

)
×
(
1
i

)
= (2 + 1) + (1 + 2) = 6

N(C) =
∑min(1,1)
i=1

(
1
i

)
×
(

0
i−1
)

+
∑min(1,0)
i=0

(
1
i

)
×
(
0
i

)
= 1 + 1 = 2

N(D) =
∑min(1,2)
i=1

(
1
i

)
×
(

0
i−1
)

= 1

5 Simulating the Yeast-Cell Cycle Boolean Network

The cell-cycle process by which a cell goes and divides into two cells is a vital
process the regulation of which is conserved among the eukaryotes [21]. The
process mainly consists in four phases depicted in Figure 2.

In phase G1 the cell grows and, under appropriate conditions, commits to
division, in phase S the DNA is synthesized and chromosomes replicated, G2
is the phase where the cell checks the duplicated chromosomes, and finally in
the M (Mitosis) phase the cell is divided into two. After the Mitosis phase, the
cell enters the G1 phase, hence completing a cycle. There are about 800 genes
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Fig. 2. The complete cell-cycle

Fig. 3. The Boolean network (MCell, ECell).

involved in the cell-cycle process of the budding yeast [25]. However, the number
of key regulators that are responsible for the control and regulation of this com-
plex process is much smaller. Based on extensive literature studies, the authors
in [20] constructed a network of key regulators involving 11 genes. The relations
between genes are described by the boolean network (MCell, ECell) depicted in
Figure 3, where the threshold parameter θ is always 0. The boolean network
was used to study the time evolution of the protein states. Starting from the
211 = 2048 possible initial states describing a configuration for gene activation,
they discover that all of them flow into one of seven attractor stationary states.
In particular, among the seven fixed points there is one big attractor that at-
tracts 1764 initial states. We translated the Boolean network (MCell, ECell) of
Figure 3 into a Reaction System Acell = RS(MCell, ECell) = ((MCell, ACell) by
applying the procedure described in Definition 1. The Reaction System Acell has
52 reactions. For simplicity, we just show the translation of reactions describing
the production (activation) of a single node of the Boolean network. Consider the
central node named Sic1 in the Boolean network of Figure 3. It has 2 activating
incoming arcs and 3 inhibiting incoming arcs. Since Sic1 ∈Msa, by Proposition 1

there will be
∑min(2,4)
i=1

(
2
i

)
×
(

3
i−1
)
+
∑min(2,3)
i=0

(
2
i

)
×
(
3
i

)
= (2+3)+(1+6+3) = 15.

Indeed, by applying our translation we find the following rules for the production
of Sic1:
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Fig. 4. The cell cycle evolution

({Cdc20}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
({Swi5}{Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
({Cdc20, Swi5}, {Clb1, 2, Cln5, 6}, {Sic1})
({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
({Cdc20, Swi5}, {Cln1, 2, Clb5, 6}, {Sic1})
({Sic1}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
({Sic1, Cdc20}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Cdc20}, {Clb5, 6, Cln1, 2}, {Sic1})
({Sic1, Cdc20}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Swi5}, {Clb5, 6, Cln1, 2}, {Sic1})
({Sic1, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Cdc20, Swi5}, {Cln1, 2}, {Sic1})
({Sic1, Cdc20, Swi5}, {Clb1, 2}, {Sic1})
({Sic1, Cdc20, Swi5}, {Clb5, 6}, {Sic1})
Note that the behavior of the reactions producing Sic1 faithfully model the ac-
tivation of gene Sic1 in the Boolean network. Consider the case where genes
Cdc20, Swi5 and Clb5, 6 are all active according to the Boolean network of Fig-
ure 3 after one step Sic1 becomes active. The previous state is represented in the
Reaction System as the set of activated genes D0 = {Cdc20, Swi5, Clb5, 6}. Now
starting from D0, we can apply rule ({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
to obtain the production(activation) of gene Sic1, therefore Sic1 ∈ D1 where
D0 →ACell

D1. Note that if Cln1, 2 was also active in the initial state then gene
Sic1 could not be activated according to the Boolean network. This is modeled
in the Reaction System by the fact that none of the 15 rules producing Sic1

could be applied to the set D0 = {Cdc20, Swi5, Clb5, 6, Cln1, 2}. Once we have
obtained the complete Reaction System Acell that simulates the entire Boolean
network we can run it with any initial state D0 in order to study the behaviour
of the cell when some genes are activated. As a first experiment we executed
the Reaction System with the initial state D0 that it was observed in nature
triggers the cell-cycle. Indeed, usually the cell stays in a stationary state where
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just genes Sic1 and Cdh1 are active. When the cell grows, the external cell size
signal Cell size arrives and activates Cln3. This ”excites” the cell from its
stationary state and triggers the cycle. We can observe the different states of
activation/deactivation of genes during the cell cycle by executing the Reaction
System with an initial state where Sic1, Cdh1 and Cln3 are active.
Thus, the following evolution can be observed.

{Sic1, Cdh1, Cln3} →ACell
{SBF, MBF, Sic1} →ACell

{SBF, MBF, Sic1, Cln1, 2} →ACell
{SBF, MBF, Cln1, 2} →ACell

{SBF, MBF, Cln1, 2, Clb5, 6} →ACell

{SBF, MBF, Cln1, 2, Clb5, 6, Clb1, 2, Mcm1} →ACell

{Cln1, 2, Clb5, 6, Clb1, 2, Mcm1, Cdc20} →ACell
{Clb1, 2, Mcm1, Cdc20, Swi5} →ACell

{Clb1, 2, Mcm1, Cdc20, Swi5, Sic1} →ACell
{Mcm1, Cdc20, Swi5, Sic1} →ACell

{Cdc20, Swi5, Sic1, Cdh1} →ACell
{Swi5, Sic1, Cdh1} →ACell

{Sic1, Cdh1} →ACell
{Sic1, Cdh1}

At this point the evolution reaches the stationary state {Sic1, Cdh1} and the
cell waits for another external stimulus to arrive, that is an external new cell
size signal that activates gene Cln3 and triggers a new cycle. The evolution of
the Reaction System represents the evolution of the Boolean network depicted
in Figure 4 that describes the entire cell cycle. The Reaction System ACell can

Fig. 5. The cycle evolution where gene SBF was silenced

now be used for studying the influence that each gene has in the cell cycle.
Each gene can be silenced in turn simply by deleting the rules that produces
such gene. Note that this corresponds to simulate the Boolean network where
we canceled the node representing the gene together with all his arcs. As a sec-
ond example consider the case where gene SBF was silenced. To this aim, let
the Reaction System ACell = (MCell, ACell), we consider the Reaction System
ACell−SBF = (MCell, ACell/{(Ra, Pa, {SBF})| a ∈ ACell}). In this case, start-
ing from the stationary state {Sic1, Cdh1, Cln3} the following evolution can be
observed.

{Sic1, Cdh1, Cln3} →ACell−SBF
{Cdh1, MBF, Sic1} →ACell−SBF

{Cdh1, MBF, Sic1}

The corresponding evolution on the Boolean network is depicted in Figure 5.
It can be observed that if gene SBF was silenced the cell could not perform

the cycle because after one step it reaches a new stationary state. This shows
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Fig. 6. The cycle evolution where gene Mcm1 was silenced

that the gene SBF was, in some way, necessary for the cycle to be performed. As
a last example consider the case where gene Mcm1 was silenced. The evolution
we obtain by considering the Reaction System
ACell−Mcm1 = (MCell, ACell/{(Ra, Pa, {Mcm1})| a ∈ ACell}) starting with the
stationary state {Sic1, Cdh1, Cln3} is directly depicted in Figure 6.

In this case we obtain a very different result from the previous one. Indeed,
it can be observed that even if gene Mcm1 was silenced the cell could perform
most of its cycle and go back to the initial stationary state. This suggests that
the gene Mcm1 was not necessary for the cycle to be performed. Indeed, the cell
can recover even if, for some reasons, gene Mcm1 could not be activated.

6 Conclusions

In this paper we proposed a systematic translation of boolean networks into
reaction systems. This allows us to simulate the behaviour of a boolean network
simply by executing the reaction system we obtain. We applied our method to
model the extensively studied Cell cycle that allows a cell to split. The translation
of the boolean network describing the Cell cycle into a reaction system allows
us to investigate the role of different genes simply by ”playing” with the rules
related to the production of such gene. In this way, we studied the effects of the
silencing of some genes such SBF and Mcm1 on the entire cell cycle.

However we think that the main advantage of our translation will be the
application of well known techniques for detecting dynamic causalities relations
in reaction systems (see [14, 2, 1, 3, 4]) to determine causality relations between
genes of a boolean network.
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Abstract. Pushing forward a previous investigation on security of reaction
systems, we introduce new state based security properties. Assume there are
some states of a reaction system that are in some sense critical, and that
we want to hide whether the system reaches them. We define new security
properties that guarantee that an external observer who has only a partial
knowledge on the objects provided by the environment cannot infer whether
a secret state is reached by the system. We also propose an effective method
for verifying such properties. The verification method is based on a newly
defined extension of the concept of formula based predictor to set of states.

1 Introduction

Reaction systems is a qualitative modeling formalism introduced by Ehrenfeucht
and Rozenberg to model biological systems [1, 2]. It is based on the two opposite
mechanisms of facilitation and inhibition. Facilitation means that a reaction can
occur only if all its reactants are present, while inhibition means that the reaction
cannot occur if any of its inhibitors is present. A reaction system is essentially a
set of rewrite rules (reactions) having the form (R, I, P ), where R, I and P are sets
of objects representing reactants, inhibitors and products, respectively. The state
of a reaction system is a finite set of objects, describing the biological entities that
are present in the modeled system. The presence of an object in the state means
that the corresponding biological entity is present in a number of copies as high as
needed. This is the threshold supply assumption and characterizes reaction systems.

A reaction system evolves by means of the application of its reactions.The thresh-
old supply assumption ensures that all the applicable reactions in a step are always
applied, since they do not compete for thier reactants. The application of a set of
reactions results in the introduction of all of their products in the next state of
the system. The behaviour of a reaction system is driven by the (set of) contextual
elements which are provided by the external environment at each step. Such ele-
ments join the current state of the system and can enable or disable reactions. The
computation of the next state of a reaction system is a deterministic procedure.
Consequently, if the contextual elements provided to the system at each step are
know, then the whole execution of the system is determined. On the other hand, if
they are not known, the overall system dynamics becomes non deterministic.

? Work supported by the grant VEGA 1/0778/18 and by the project “Metodologie infor-
matiche avanzate per l’analisi di dati biomedici” (University of Pisa, PRA 2017 44).
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In previous papers [3, 4] we investigated the concept of opacity in reaction sys-
tems. Assume we have a real biochemical system described by a reaction system,
and an observer having a partial information about the objects provided by the en-
vironment because of the cost of obtaining such informaton. We can distinguish two
types of objects: visible low level (L) objects, and invisible high level (H) objects.
We studied the detectability of H-objects, namely how much information on the
presence of H-objects can be obtained by just observing the presence of L-objects in
context sequences. This problem, called information flow [5], was extensively stud-
ied in security by introducing the concept of opacity [6, 7]. We reformulated opacity
for reaction systems and proposed dynamic causality relatioships (formula based
predictors) as an effective method to verify opacity properties in reaction systems.

In this paper we push forward our approach by considering sets of secret states.
Let Sec be a set of states and assume we want to hide to an external observer
whether a reaction system reaches one of such states. So, Sec is a set of secret
states. As before, the observer can only see L-objects in context sequences. In order
to prevent the observer to infer whether the system reaches a secret state, we have
to ensure that for every context sequence leading to one of such states there exists
another context sequence leading to a non-secret state that is indistinguishable from
the previous one from the (limited) point of view of the observer. In other words, the
two context sequences must make the same use of L-objects, which are the only ones
that can be observed. We will formalize this idea in terms of two security properties
called Current State Opacity and n-p Window Current state Opacity, and we will
provide effective methods for verifying them based on dynamic causalities.

Dynamic causalities deal with the ways entities dynamically influence each other.
Brijder, Ehrenfeucht and Rozenberg initiated an investigation on causalities in reac-
tion systems [8], by introducing the idea of predictor. Assume that one is interested
in knowing whether a particular object s ∈ S will be present after n steps of ex-
ecution of the reaction system. Since the only source of non-determinism are the
contextual elements received at each step, knowing which objects will be received
allows the production of s after n steps to be predicted. In [9–12] the new notion of
formula based predictor was introduced. A formula based predictor is a propositional
logic formula to be satisfied by the sequence of (sets of) elements provided by the
environment. Satisfaction of the logic formula precisely discriminates the cases in
which s will be produced after n steps from those in which it will not. In the style of
[13, 14], here the notion of formula-based predictor is first naturally extended to sets
of objects (states), and then it is extended to sets of states. The result is a formula
based predictor that can be used to precisely characterize all context sequences that
lead to one secret state in a set Sec. We apply this extended predictor for secret
states in Sec to prove whether the reaction system is opaque for an observer that
can only see L-objects of the context sequence provided by the environment.

2 Reaction Systems

In this section we briefly introduce reaction systems [1, 2]. Given S, a finite set of
symbols, called objects, a reaction is a triple (R, I, P ) with R, I, P ⊆ S, composed
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of reactants R, inhibitors I, and products P . Reactants and inhibitors are disjoint
(R∩I = ∅) otherwise the reaction would never be applicable. The set of all possible
reactions over a set S is denoted by rac(S). Finally, a reaction system is a pair
A = (S,A), with S a finite background set, and A ⊆ rac(S) a set of reactions.

The state of a reaction system is a set of objects. Let a = (Ra, Ia, Pa) be a
reaction and T be a set of objects. The result resa(T ) of the application of a to T is
either Pa, if T separates Ra from Ia (i.e. Ra ⊆ T and Ia ∩ T = ∅), or the empty set
∅ otherwise. The application of multiple reactions at the same time occurs without
any competition for the used reactants (threshold supply assumption). Therefore,
each reaction for which no inhibitor is present in the current state is applied, and
the result of application of multiple reactions is cumulative. Given a reaction system
A = (S,A), the result of the application of A to a set T ⊆ S is defined as resA(T ) =
resA(T ) =

⋃
a∈A resa(T ). An important characteristic of reaction systems is the

assumption about the non-permanency of objects: the objects carried over to the
next step are only those produced by reactions. All the other objects vanish.

The dynamics of a reaction system A = (S,A) is driven by the contextual ob-
jects, namely the objects which are supplied to the system by the external envi-
ronment at each step. The dynamics is defined as an interactive process π = (γ, δ),
with γ and δ being finite sequences of sets of objects called the context sequence and
the result sequence, respectively. The sequences are of the form γ = C0, C1, . . . , Cn

and δ = D0, D1, . . . , Dn for some n ≥ 1, with Ci, Di ⊆ S, and D0 = ∅. Each set
Di, for i ≥ 1, in the result sequence is obtained from the application of reactions A
to a state composed of both the results of the previous step Di−1 and the objects
Ci−1 from the context; formally Di = resA(Ci−1 ∪Di−1) for all 1 ≤ i ≤ n. Finally,
the state sequence of π is the sequence W0,W1, . . . ,Wn, where Wi = Ci ∪Di for all
1 ≤ i ≤ n. In the following we call γ = C0, C1, . . . , Cn a n-step context sequence.

3 Preliminaries on Predicate Logic

The aim of formula based predictors is to characterize all context sequences that
lead to the production of a specific object in a given number of steps. In order to
describe conditions on the presence or absence of objects in context sequences, we
use objects of reaction systems as propositional symbols. Formally, we define the set
FS of propositional formulas on S in the standard way: S ∪{true, false} ⊆ FS and
¬f1, f1 ∨ f2, f1 ∧ f2 ∈ FS if f1, f2 ∈ FS . Propositional formulas FS are interpreted
with respect to subsets of S. Intuitively, a subset C ⊆ S is used to describe the
objects that are present in (an element of) a context sequence, and this implies
the truth of the corresponding propositional symbol. The formal definition of the
satisfaction relation is as follows.

Definition 1. Let C ⊆ S for a set of objects S. Given a propositional formula
f ∈ FS, the satisfaction relation C |= f is inductively defined as follows:

C |= s iff s ∈ C, C |= true,
C |= ¬f ′ iff C 6|= f ′, C |= f1 ∨ f2 iff either C |= f1 or C |= f2,
C |= f1 ∧ f2 iff C |= f1 and C |= f2.
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In the following ≡l stands for the logical equivalence on propositional formulas FS .
Moreover, given a formula f ∈ FS we use atom(f) to denote the set of propositional
symbols that appear in f . The simplified version of a formula is obtained by applying
the standard formula simplification procedure of propositional logic converting a
formula to Disjunctive Normal Form, DNF(f). We recall that for any formula
f ∈ FS the simplified formula DNF(f) is equivalent to f , it is minimal with
respect to the number of propositional symbols and unique up to commutativity
and associativity. Thus, we have f ≡l DNF(f) and atom(DNF(f)) ⊆ atom(f)
and there exists no formula f ′ such that f ′ ≡l f and atom(f ′) ⊂ atom(DNF(f)).

The causes of an object in a reaction system are defined by a propositional
formula on the set of objects S. First of all we define the applicability predicate of
a reaction a as a formula describing the requirements for applicability of a, namely
that all reactants have to be present and inhibitors have to be absent. This is
represented by the conjunction of all atomic formulas representing reactants and the
negations of all atomic formulas representing inhibitors of the considered reaction.

Definition 2. Let a = (R, I, P ) be a reaction with R, I, P ⊆ S for a set of objects
S. The applicability predicate of a, denoted by ap(a), is defined as follows: ap(a) =(∧

sr∈R sr
)
∧
(∧

si∈I ¬si
)
.

The causal predicate of a given object s is a propositional formula on S representing
the conditions for the production of s in one step, namely that at least one reaction
having s as a product has to be applicable.

Definition 3. Let gA = (S,A) be a r.s. and s ∈ S. The causal predicate of s in A,
denoted by cause(s,A) (or cause(s), when A is clear from the context), is defined
as follows3: cause(s,A) =

∨
{(R,I,P )∈A|s∈P} ap ((R, I, P )) .

We introduce a simple reaction system as running example.

Example 1. Let A1 = ({A, . . . , G}, {a1, a2, a3}) be a reaction system with

a1 = ({A}, {}, {B}) a2 = ({C,D}, {}, {E,F}) a3 = ({G}, {B}, {E}) .

The applicability predicates of the reactions are ap(a1) = A, ap(a2) = C ∧ D and
ap(a3) = G ∧ ¬B. Thus, the causal predicates of the objects are

cause(A) = cause(C) = cause(D) = cause(G) = false,
cause(B) = A, cause(F ) = C ∧D, cause(E) = (G ∧ ¬B) ∨ (C ∧D).

Note that cause(A) = false given that A cannot be produced by any reaction. An
analogous reasoning holds for objects C, D and G.

4 Formula Based Predictors

In the first part of this section we introduce the notion of formula based predictor
as it was originally presented in [9]. Then, we extend the notion of predictors to

3 We assume that cause(s) = false if there is no (R, I, P ) ∈ A such that s ∈ P .
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states (see Corollary 1) and to sets of states (see Corollary 2) in order to address
causal dependences of the secret states set Sec that we want to hide.

A formula based predictor for an object s at step n+1 is a propositional formula
satisfied exactly by the context sequences leading to the production of s at step n+1.
Minimal formula based predictors can be calculated in an effective way.

Given a set of objects S, we consider a corresponding set of labelled objects
S × IN. For the sake of legibility, we denote (s, i) ∈ S × IN simply as si and we
introduce Sn =

⋃n
i=0 Si where Si = {si | s ∈ S}. Propositional formulas on labelled

objects Sn describe properties of n-step context sequences. The set of propositional
formulas on Sn, denoted by FSn , is defined analogously to the set FS (presented in
Sect. 3) by replacing S with Sn. Similarly, the set FSi

can be defined by replacing
S with Si. Given a formula f ∈ FS , a corresponding formula labelled(f, i) ∈ FSi

can be obtained by replacing each s ∈ S in f with si ∈ Si.
A labelled object si represents the presence (or the absence, if negated) of object

s in the i-th element Ci of the n-step context sequence γ = C0, C1, . . . Cn. This in-
terpretation leads to the following definition of satisfaction relation for propositional
formulas on context sequences.

Definition 4. Let γ = C0, C1, . . . Cn be a n-step context sequence and f ∈ FSn a
propositional formula. The satisfaction relation γ |= f is defined as

{si | s ∈ Ci, 0 ≤ i ≤ n} |= f .

As an example, let us consider the context sequence γ = C0, C1 where C0 = {A,C}
and C1 = {B}. We have that γ satisfies the formula A0 ∧ B1 (i.e. γ |= A0 ∧ B1)
while γ does not satisfy the formula A0 ∧ (¬B1 ∨ C1) (i.e. γ 6|= A0 ∧ (¬B1 ∨ C1)).

The latter notion of satisfaction allows us to define formula based predictor.

Definition 5 (Formula based Predictor). Let A = (S,A) be a reaction system,
s ∈ S and f ∈ FSn a propositional formula. We say that f f-predicts s in n + 1
steps if for any n-step context sequence γ = C0, . . . , Cn

γ |= f ⇔ s ∈ Dn+1

where δ = D0, . . . , Dn is the result sequence corresponding to γ and Dn+1 =
resA(Cn ∪Dn).

Note that if formula f f-predicts s in n + 1 steps and if f ′ ≡l f then also f ′ f-
predicts s in n+1. More specifically, we are interested in the formulas that f-predict
s in n+ 1 and contain the minimal numbers of propositional symbols, so that their
satisfiability can easily be verified. This is formalised by the following approximation
order on FSn .

Definition 6 (Approximation Order). Given f1, f2 ∈ FSn we say that f1 vf f2
if and only if f1 ≡l f2 and atom(f1) ⊆ atom(f2).

In [9] it is shown that there exists a unique equivalence class of formula based
predictors for s in n+ 1 steps that is minimal with respect to the order vf .

We now define an operator fbp that allows formula based predictors to be ef-
fectively computed.
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Definition 7. Let A = (S,A) be a r.s. and s ∈ S. We define a function fbp :
S× IN→ FSn as follows: fbp(s, n) = fbs(cause(s), n), where the auxiliary function
fbs : FS × IN→ FSn is recursively defined as follows:

fbs(s, 0) = s0 fbs(s, i) = si ∨ fbs(cause(s), i− 1) if i > 0
fbs((f ′), i) = (fbs(f ′, i)) fbs(f1 ∨ f2, i) = fbs(f1, i) ∨ fbs(f2, i)
fbs(¬f ′, i) = ¬fbs(f ′, i) fbs(f1 ∧ f2, i) = fbs(f1, i) ∧ fbs(f2, i)
fbs(true, i) = true fbs(false, i) = false

The function fbp gives a formula based predictor that, in general, may not be min-
imal with respect to the approximation order vf . Therefore, the calculation of a
minimal formula based predictor requires the application of the standard simplifica-
tion procedure that simplifies the obtained logic formula and puts it in disjunctive
normal form, here called simply DNF(.).

Theorem 1. Let A = (S,A) be a r.s.. For any object s ∈ S,

– fbp(s, n) f-predicts s in n+ 1 steps;
– DNF(fbp(s, n)) f-predicts s in n+ 1 steps and is minimal w.r.t. vf .

Example 2. Let us consider again the reaction system A1 of Ex. 1. We are interested
in the production of E after 4 steps. Hence, we calculate the logic formula that f-
predicts E in 4 steps applying the function fbp:

fbp(E, 3) = fbs
(
(G ∧ ¬B) ∨ (C ∧D), 3

)
=
(
fbs(G, 3) ∧ ¬fbs(B, 3)

)
∨
(
fbs(C, 3) ∧ fbs(D, 3)

)
=
(
(G3) ∧ ¬(B3 ∨ fbs(A, 2))) ∨ (C3 ∧D3)

=
(
G3 ∧ ¬B3 ∧ ¬A2

)
∨ (C3 ∧D3)

)
A context sequence satisfies fbp(E, 3) iff the execution of the reaction system leads
to the production of object E after 4 steps. Furthermore, in this case the obtained
formula is also minimal w.r.t. vf . This is because DNF(fbp(E, 3)) = fbp(E, 3).
Indeed, the formula fbp(E, 3) cannot be further simplified and any literal cannot
be canceled without obtaining a non equivalent formula.

The result of Theorem 1 can be easily extended to states. Indeed, we can char-
acterize all the context sequences that lead to the production of the set of objects
of the state. To this aim, we need to consider the context sequences that satisfy all
conditions for the production of each single object of the set. Assume sec to be a
state, that is, a set of objects in S then we can characterize all the context sequence
leading to states in the following way.

Corollary 1. Let A = (S,A) be a r.s.. Consider sec a set of objects in S,

–
∧

s∈sec fbp(s, n) f-predicts sec in n+ 1 steps;

– DNF
(∧

s∈sec fbp(s, n)
)

f-predicts s in n+ 1 steps and is minimal w.r.t. vf .

Moreover, the previous results can be extended to finite sets of states. Assume
Sec to be a set of states {sec1, sec2, ...., secm}, for some m. We need to characterize
all the context sequences that lead to some state in Sec.
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Corollary 2. Let A = (S,A) be a r.s.. Let Sec be a set of states {sec1, sec2, ...., secm},
for some m,

–
∨

seci∈Sec

(∧
s∈seci fbp(s, n)

)
f-predicts the set Sec in n+ 1 steps;

– DNF
(∨

seci∈Sec

(∧
s∈seci fbp(s, n)

))
f-predicts Sec in n+ 1 steps and is mini-

mal w.r.t. vf .

Example 3. Let us consider again the reaction system A1 of Examples 1 and 2.
Assume we are interested in reaching the state {E,F} after 4 steps. In Example 2
we calculated the logic formula that f-predicts E in 4 steps applying the function
fbp. This resulted in the formula

(
G3 ∧¬B3 ∧¬A2

)
∨ (C3 ∧D3)

)
. Analogously, we

can calculate the logic formula that f-predicts F in 4 steps applying the function
fbp. This resulted in the formula (C3 ∧D3). Now, in order to obtain the minimal
formula characterising the context sequences that lead to the state where both E
and F are present, according to Corollary 1, we need to compute

DNF(fbp(E, 4) ∧ fbp(F, 4)) =

DNF
((

(G3 ∧ ¬B3 ∧ ¬A2) ∨ (C3 ∧D3)
)
∧ (C3 ∧D3)

)
= C3 ∧D3.

A context sequence satisfies C3 ∧D3 iff the execution of the reaction system leads
to the production of both object E and F after 4 steps.

Assume now we are interested in characterising the context sequences that
either lead to state {E,F} or to state {B} after 4 steps. Hence, in this case
Sec = {{E,F}, {B}}.

According to Corollary 2 the minimal formula can be obtained by computing

DNF ((fbp(E, 4) ∧ fbp(F, 4)) ∨ fbp(B, 4)) =
DNF((C3 ∧D3) ∨A3) = (C3 ∧D3) ∨A3.

Note that any sequence satisfying the formula (C3 ∧D3) ∨ A3 leads to a state
in Sec. Moreover, such sequences are the only ones that can lead to the production
of a state in Sec.

5 Information flow

As in [3, 4], we now consider a reaction system A = (S,A) where we assume an ex-
ternal observer can only detect or see some kinds of objects in the context sequence.
To formally describe this situation, borrowing techniques developed for reasoning
about flow based security (see [5]), we divide objects from S into two groups, namely
public (low level) objects L and private (high level) objects H. It is assumed that
L∪H = S and L∩H = ∅. We assume that an observer can see only L-objects, i.e.
objects from L. Moreover, we introduce an equivalence on sets of objects and on
contexts sequences. Two sets of objects A,B are equivalent with respect to the set
M if they contain the same objects apart from those in M . Formally, A ≡M B iff
A\M = B\M . This can be applied to reaction system contexts: we write γ1 ≡M γ2
if γ1 = C1

0 , ....C
1
n, ... and γ2 = C2

0 , ....C
2
n, ... and ∀i, C1

i ≡M C2
i . To formalize infor-

mation flow between L-objects and H-objects we exploit a concept known as current
state opacity (see [15] for an overview paper).
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5.1 Current State Opacity

Let us assume a set of states Sec with Sec ⊂ 2S . We assume an external observer of
the system who can detect or see only L objects in the context sequence, but who
wants to discover whether the current state Wi is a secret state belonging to Sec.
In this context a reaction system is i-current state opaque if whenever there exists
a context sequence leading to a secret state of Sec, there exists an equivalent (with
respect to the L object) context sequence that does not lead to a secret state in Sec.
This will assure us that just observing the context sequence an external observer
cannot decide whether the system will go to a secret state.

Definition 8. (i-Step Current State Opacity) The reaction system A = (S,A) is
i-current state opaque with respect to L and Sec iff whenever there exists an i-step
context sequence γ leading to a secret state in Sec, that is, Di+1 ∈ Sec, there also
exists an i-step context sequence γ′ not leading to a state in Sec, that is, D′i+1 6∈ Sec,
such that γ ≡L γ

′.

Note that differently from our previous work [3, 4], here the attacker observes
properties of context sequences to detect properties of the system states.

Since formula based predictors express all causal dependences of an object from
all the objects of the context sequences, we can use this concept to verify if a reaction
system is i-step current state opaque.

Theorem 2. A r.s. A is i-current state opaque with respect to L and Sec iff

DNF
(∨

sec∈Sec

(∧
s∈sec fbp(s, i)

))
= c1 ∨ c2 ∨ ... ∨ cn and

∀m ∈ {1, ..., n}, {A | Aj ∈ atom(cm), with 0 ≤ j < i} ∩ (S \ L) 6= ∅.

Proof. We start by proving the right hand implication. Assume by contradiction
that the reaction system A is i-current state opaque with respect to L and Sec but
that there exists a cm such that {A | Aj ∈ atom(cm), with 0 ≤ j < i}∩ (S \L) = ∅.
Choose a minimal context sequence γ such that γ |= cm. γ has to be minimal in
the sense that it just provides the positive literals in the conjunction cm. Note that
by hypothesis, γ provides only low level L-objects. Note that γ |= cm implies that

γ |= c1 ∨ c2 ∨ ...∨ cn = DNF
(∨

sec∈Sec

(∧
s∈sec fbp(s, i)

))
. By applying Corollary 2

we have that the context sequence γ leads to the production of one state in Sec after
i steps. However, since γ contains just low level objects L, any context sequence
γ′ such that γ′ ≡L γ will satisfy cm, since cm contains only L-objects. Then, by
Corollary 2 any γ′ will lead to the production of a state in Sec after i steps. Therefore
A is not i-current state opaque. This gives a contradiction.

For proving the left hand implication, assume, by contradiction that every ci
contain at least an H object but that the reaction system A is not i-current state
opaque with respect to a set of low level objects L and Sec. This implies that there
do not exist two context sequence γ and γ′ with γ ≡L γ′ such that one lead to a
secret state in Sec and the other does not.

Choose a γ leading to the production of a state in Sec such that it satisfy only
one particular conjunction ci in the disjunction c1∨c2∨ ...∨cn. By Corollary 2 such
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γ exists and we can choose γ as the minimal context sequence satisfying a ci. Since
by hypothesis ci is a conjunction containing at least one object in S \L consider γ′

as the context sequence satisfying the conjunction of low level objects in ci but that
does not satisfy the S \ L literals in ci. Now, by construction γ ≡L γ′. However,
γ′ 6|= ci. Moreover, since we have chosen γ to be the minimal context sequence
satisfying just ci and ci ∈ c1 ∨ c2 ∨ ... ∨ cn then it is simplified, we can be sure that
γ′ 6|= c1 ∨ c2 ∨ ... ∨ cn. Then, by Corollary 2, we have that the context sequence γ′

does not lead to the production of a state in Sec. Hence, we found γ and γ′ such
that γ ≡L γ′ and context sequence γ leads to a secret state in Sec while context
sequence γ′ does not. This gives a contradiction. ut

This gives us an easy method to verify if a reaction system is i-current state opaque
with respect to a set of low level objects L and a secret set of states Sec. While
computing c1∨c2∨ ...∨cn gives us a way to represent all different context sequences
that lead to the production of a secret state in Sec (see Corollary 2), the condition
that each conjunction in c1 ∨ c2 ∨ ... ∨ cn has to contain at least one non low level
object, gives us a way to automatically construct an L-equivalent context sequence
that does not lead to a state in Sec. We will illustrate this construction in the next
example. As a consequence of Theorem 2, we can state the following proposition.

Proposition 1. The property of a reaction system A to be i-current state opaque
with respect to a set of low level objects L and a secret set of states Sec is decidable.

Example 4. Let A2 = ({A, . . . , F}, {a1, a2, a3, a4}) be a reaction system with

a1 = ({A}, {B}, {C}) a2 = ({A}, {D}, {C})
a3 = ({D}, {}, {B}) a4 = ({F}, {}, {E})

and consider L = {A,B,E, F}, Sec = {{C,E}}. Note that A2 is 3-current state
opaque even if E is caused just by a low level object F . Roughly speaking, A2 is i-
current state opaque for each i ≥ 2 because in that case C is always caused by an H
level object. This can formally be proved by consideringDNF(fbp(C, 3)∧fbp(E, 3))

DNF(fbp(C, 3) ∧ fbp(E, 3)) = DNF
(
fbs
(
(A ∧ ¬B) ∨ (A ∧ ¬D), 3

)
∧ fbs(F, 3)

)
= DNF

(
((fbs(A, 3) ∧ ¬fbs(B, 3))
∨ (fbs(A, 3) ∧ ¬fbs(D, 3))) ∧ fbs(F, 3)

)
= DNF

(
((A3 ∧ ¬B3 ∧D2) ∨ (A3 ∧ ¬D3)) ∧ F3

)
= (A3 ∧ ¬B3 ∧D2 ∧ F3) ∨ (A3 ∧ ¬D3 ∧ F3)

Since both conjunctions A3 ∧ ¬B3 ∧ D2 ∧ F3 and A3 ∧ ¬D3 ∧ F3 contain at least
a high level object D then by Theorem 2 we are sure that A2 is 3-current state
opaque.

It is worth noting that using the formula based predictor for each γ leading to
the production of a secret state in Sec we can actually construct γ′ with γ ≡L γ′

such that γ′ does not lead to a secret state in Sec. Indeed, let γ = C1, C2, C3

where C2 and C3 are such that D ∈ C2, F,A ∈ C3 and B 6∈ C3. Consider then
γ′ = C1, C2 \ {D}, C3, by Corollary 2, we have that γ lead to a state in Sec while
γ′ does not lead to the state in Sec.
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The following example shows that the conditions for a system to be i-current
state opaque cannot be checked on isolation. Let A3 = ({A, . . . ,D}, {a1, a2}) be
the following reaction system with rules

a1 = ({A}, {D}, {B}) a2 = ({A,D}, {}, {C})

and consider L = {A,B,C}, Sec = {{C}{B}}. Note that both rules depend on one
H-object D. However, the system is not i-current state opaque for any i ≥ 1. Let
us verify if a system is 3-current state opaque,

DNF(fbp(B, 3) ∨ fbp(C, 3)) = DNF
(
fbs
(
(A ∧ ¬D), 3

)
∨ fbs

(
(A ∧D), 3

))
= DNF

(
(fbs(A, 3) ∧ ¬fbs(D, 3)
∨ (fbs(A, 3) ∧ fbs(D, 3))

)
= DNF

(
(A3 ∧ ¬D3) ∨ (A3 ∧D3)

)
= A3

In this case, the conjunction A3 does not satisfy the claim of Theorem 2 since
it does not have at least one hight level H-object. Indeed, consider any context
sequence γ = C1, C2, C3 where A ∈ C3. Note that any context sequence γ′ ≡L γ
will provide A at the third step. Then, by Corollary 2, any γ′ ≡L γ will lead to the
state in Sec. Hence, A3 is not 3-state opaque.

5.2 n-p Window State Opacity

We now introduce a stronger notion of opacity. Assume now that an observer can
observe all objects in the context sequence except for a “blurry window” on which
it can observe just L-objects. Once again he wants to discover whether the state at
some given step belongs to the set of secret states Sec.

We first define the concept of observational window of a context sequence. Let
γ = C0, ....Cn, ..., Cp, ..., Ci, by γn,p, for 0 ≤ n ≤ p we denote the subsequence
Cn, ..., Cp.

Definition 9. (n-p Window i-State Opacity) Let n and p such that 0 ≤ n ≤ p ≤ i.
Reaction system A = (S,A) is n-p window i-state opaque with respect to L and

Sec, iff whenever there exists a γ such that Di+1 belongs to Sec, i.e. Di+1 ∈ Sec,
there exists γ′ such that state D′i+1 does not belong to Sec i.e. Di′+1 6∈ Sec and
γ0,n−1 ≡S γ

′
0,n−1, γn,p ≡L γ

′
n,p and γp+1,i ≡S γ

′
p+1,i.

Once again, formula based predictors can be used to verify if a reaction system
is n-p window i-state opaque.

Theorem 3. A reaction system A is n-p window i-state opaque with respect to L
and Sec iff for every

DNF
(∨

sec∈Sec

(∧
s∈sec fbp(s, i)

))
= c1 ∨ c2 ∨ ... ∨ cn and

∀m ∈ {1, ..., n}, {A | Aj ∈ atom(cm), with n ≤ j ≤ p} ∩ (S \ L) 6= ∅.

As before, to verify if a reaction system is n-p window i-state opaque with respect to
a set of low level objects L and a secret set of states Sec, we can check c1∨c2∨...∨cn.
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Proof. The proof is similar to the proof of Theorem 2, therefore it is only sketched.
For the right hand implication assume by contradiction that the reaction system

A is n-p window i-state opaque with respect to L and Sec but the second part of
the claim is false for at lest one cm. Choose a minimal (in the sense of the proof
of Theorem 2) context sequence γ such that γ |= cm. By hypothesis, γ does not
provide S \L objects at any step included between n and p. Note that any context
sequence γ′ such that γ0,n−1 ≡S γ′0,n−1, γn,p ≡L γ′n,p and γp+1,i ≡S γ′p+1,i will
satisfy cm. Then, by Corollary 2 any γ′ will lead to the production of a state in Sec
after i steps. This gives a contradiction.

For proving the left hand implication, assume, by contradiction that every ci
contain at least one S \ L object at some step included between n and p but A
is not n-p window i-state opaque. This means that there do not exist two context
sequence γ and γ′ with γ0,n−1 ≡S γ′0,n−1, γn,p ≡L γ′n,p and γp+1,i ≡S γ′p+1,i such
that one lead to a secret state in Sec and the other does not.

Choose a γ = C0, ..., Ci leading to the production of a state in Sec such that it
satisfies only one particular conjunction ci in the disjunction c1 ∨ c2 ∨ ... ∨ cn. By
Corollary 2 such γ exists. Consider γ′ = C0, ..., Cn−1, C

′
n, ..., C

′
p, Cp+1, ..., Ci as the

context sequence such that C ′n, ..., C
′
p, satisfy the conjunction of low level objects

only included between n and p of ci but that does not satisfy the S \ L literals
of ci. Now, by construction γ0,n−1 ≡S γ′0,n−1, γn,p ≡L γ′n,p and γp+1,i ≡S γ′p+1,i.
However, γ′ 6|= ci. Following the reasoning of proof of Theorem 2, we can conclude
that we have found γ and γ′ such that one leads to a secret state in Sec while the
other does not. This gives a contradiction. ut

Therefore we can state the following.

Proposition 2. The property of a reaction system A to be n-p window i-state
opaque with respect to a set of low level objects L and a secret sets of state Sec
is decidable.

If a system is 0-i window i-state opaque then it is i-current state opaque.

Example 5. Consider again the reaction system A2, L and Sec as in Example 4.
A2 was 3-current state opaque. However, A2 it is not 3-3 window i-state opaque.
Recall that

DNF(fbp(C, 3) ∧ fbp(E, 3)) = (A3 ∧ ¬B3 ∧D2 ∧ F3) ∨ (A3 ∧ ¬D3 ∧ F3).

Then, {A | Aj ∈ atom((A3∧¬B3∧D2∧F3)), with 3 ≤ j ≤ 3}∩(S\L) = ∅ and Theo-
rem 3 is not satisfied. Consider, for example, we can choose γ = {}, {}, {D}, {A,B, F},
then any γ′ such that γ0,2 ≡S γ

′
0,2, γ3,3 ≡L γ′3,3 must be γ′ = {}, {}, {D}, C ′3 with

C ′3 ⊇ {A,B, F}, therefore also γ′ will lead to a secret state in Sec.
Finally, note that A2 is n-3 window i-state opaque for any 0 ≤ n ≤ 2.

6 Conclusions and further work

In this paper we have defined two state based security properties, that are, Current
State Opacity and n-p Window State Opacity for reaction systems. We proposed ef-
fectively computable methods for verifying such properties based on the new notion
of formula based predictor for set of secret states sets, newly defined in Section 4.
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As further work we plan to elaborate other notions of opacity for reaction sys-
tems. The first one is in a sense a complement notion to n-p Window i-State Opacity.
We consider an observer who can see only a small “window” of computation. If af-
ter that computation a secret state has been reached we expect that there exists
seemingly the same window which leads to non-secret states. Also we plan to study
the notion Initial State Opacity. In this case an observer tries to learn properties of
an initial state of the computation. We believe that these concepts, borrowed by the
security theory, can be also studied in the context of reaction systems. Moreover, it
would be interesting to study variants of reaction systems with a limited threshold
assumption and with timed properties (for a process algebra example, see [16]).
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Abstract. Two structurally di�erent methods of associating transition
system semantics to event structure models are distinguished in the lit-
erature. One of them is based on con�gurations (event sets), the other
on residuals (model fragments). In this paper, we consider three kinds
of event structures (resolvable con�ict structures, extended prime struc-
tures, stable structures), translate the other models into resolvable con-
�ict structures and back, provide the isomorphism results on the two
types of transition systems, and demonstrate the preservation of some
bisimulations on them.

1 Introduction

Since the introduction of event structures in [26], many variants of event-oriented
models have been proposed based on di�erent behavioural relations between
events and thus providing a di�erent expressive power. Among the models are
prime event structures [26] (with conjunctive1 binary causality, represented by
a partial order and being under the principle of �nite causes, and symmetric
irre�exive con�ict, obeying the principle of con�ict heredity; all these guarantee
unique event enablings within the model); extended prime event structures [1]
(with conjuctive binary causality, being possibly with cycles and not being under
the principle of �nite causes, and symmetric irre�exive con�ict, not obeying
the principle of con�ict heredity; moreover, the relations can be overlapped);
stable event structures [28] (with non-binary conjuctive causality, allowing for
alternative enablings, and the stability constraint (i.e .the intersection of two
non-con�icting causal predecessors sets for an event is a causal predecessors
set for the event) resulting in unique enablings within a con�guration); event
structures for resolvable con�ict [14] (with dynamic con�icts, i.e. con�icts can
be resolved or created by the occurrences of other events), etc. Comparative
analysis of some classes of event structures can be found in the works [1, 2, 11,
12, 14, 15, 16, 18].

Two methods of associating a labeled transition system [20] with an event-
oriented model of a distributed system, such as an event structure [26] or a

? Supported by German Research Foundation through grant Be 1267/14-1.
1 An event is enabled once all of its causal predecessors have occurred.
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con�guration structure [13], can be distinguished: a con�guration-based and a
residual-based method. In the �rst case,2 states are understood as sets of events,
called con�gurations, and state transitions are built by starting with the empty
con�guration and enlarging con�gurations by already executed events. In the
second approach,3 states are understood as event structures, and transitions are
built by starting with the given event structure as an initial state and removing
already executed parts thereof in the course of an execution.

In the literature, con�guration-based transition systems seem to be predom-
inantly used as the semantics of event structures, whereas residual-based tran-
sition systems are actively used in providing operational semantics of process
calculi and in demonstrating the consistency of operational and denotational se-
mantics. The two kinds of transition systems have occasionally been used along-
side each other (see [18] as an example), but their general relationship has not
been studied for a wide range of existing models. In a seminal paper, viz. [23],
bisimulations between con�guration-based and residual-based transition systems
have been proved to exist for prime event structures [28]. The result of [23] has
been extended in [5] to more complex event structure models with asymmetric
con�ict. Counterexamples illustrated that an isomorphism cannot be achieved
with the various removal operators de�ned in [5, 23]. The paper [6] demon-
strated that the operators can be tightened in such a way that isomorphisms,
rather than just bisimulations, between the two types of transition systems be-
longing to a single event structure can be obtained. A key idea is to employ
non-executable (impossible) events4 if the model allows them (and to introduce
a special non-executable event otherwise), in order to turn model fragments into
parts of states. This idea has been applied by the authors on a wide variety of
event structure models, and for a full spectrum of semantics (interleaving, step,
pomset, multiset). Thanks to the results, a variety of facts known from the lit-
erature on con�guration-based transition systems (e.g., [4, 10, 13, 28]) can be
extended to residual-based ones.

The aim of this paper is to connect several models of event structures by
providing behaviour preserving translations between them, and to demonstrate
the retention of some of the bisimulation concepts in the two types of transition
systems associated with the models under consideration.

In Section 2 of this paper, we consider three kinds of event structure mod-
els (resolvable con�ict, extended prime, stable event structures), de�ne removal
operators for them, and translate the other models into resolvable con�ict event
structures and back. Section 3 contains the de�nitions of the two types of tran-
sition systems, describes the isomorphism results, and demonstrate the preser-
vation of some bisimulations on the transition systems. Section 4 concludes.

2 E.g., see [1, 2, 11, 12, 14, 15, 17, 18, 24, 27].
3 E.g., see [3, 7, 8, 9, 18, 19, 21, 22, 25].
4 In an event structure, an event is called non-executable or impossible if it does not
occur in any con�guration of the structure, i.e. the event is never executed.
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2 Event Structure Models

2.1 Event Structures for Resolvable Con�ict

In this section, we consider event structures for resolvable con�ict, which were
put forward in [14] to give semantics to general Petri nets. A structure for re-
solvable con�ict consists of a set of events and an enabling relation ` between
sets of events. The enabling X ` Y with sets X and Y imposes restrictions on
the occurrences of events in Y by requiring that for all events in Y to occur,
their causes � the events in X � have to occur before. This allows for modeling
the case when a and b cannot occur together until c occurs, i.e., initially a and
b are in con�ict until the occurrence of c resolves this con�ict. Notice that the
event structure classes under consideration in this paper are unable to model the
phenomena of resolvable con�ict. In resolvable con�ict structures, the enabling
relation can also model con�icts: events from a set Y are in irresolvable con�ict
i� there is no enabling of the form X ` Y for any set X of events. Further, an
event can be impossible (i.e. non-executable in any system's run) if it has no
enabling or has in�nite causes or has impossible causes/prececessors.

De�nition 1. An event structure for resolvable con�ict (RC-structure) over L
is a tuple E = (E, `, L, l), where E is a set of events; ` ⊆ P(E)×P(E) is the
enabling relation; L is a set of labels; l : E → L is a labeling function.

Let E be an RC-structure over L. For X ⊆ E and e ∈ E, Con(X) ⇐⇒ ∀X̂ ⊆
X : ∃Z ⊆ E : Z ` X̂; fCon(X) ⇐⇒ X is �nite and Con(X). The con�ict
relation ] ⊆ E × E is given by: d ] e ⇐⇒ d 6= e ∧ ¬Con({d, e}). The direct
causality relation ≺⊆ E × E is de�ned as follows: d ≺ e ⇐⇒ ∀X ⊆ E : (X `
e ⇒ d ∈ X). A set X ⊆ E is left-closed i� X is �nite, and for all X̃ ⊆ X there

exists X̂ ⊆ X such that X̂ ` X̃. The set of the left-closed sets of E is denoted as
LC(E). Clearly, any left-closed set is con�ict-free. Let Conf (E) = {{e1, . . . , en} ⊆
E | n ≥ 0, ∀i ≤ n : ∀X ⊆ {e1, . . . , ei} : ∃Y ⊆ {e1, . . . , ei−1} : Y ` X} be the set
of con�gurations of E . Clearly, any con�guration X is a left-closed set but not
conversely.

Consider some properties of resolvable con�ict event structures.

De�nition 2. An RC-structure E = (E,`, L, l) is called

� rooted i� (∅, ∅) ∈ `;
� pure i� X ` Y ⇒ X ∩ Y = ∅;
� singular i� X ` Y ⇒ X = ∅ ∨ | Y |= 1;
� manifestly conjunctive i� there is at most one X with X ` Y , for all Y ⊆ E;
� conjuctive i� Xi ` Y (i ∈ I 6= ∅)⇒

⋂
i∈I Xi ` Y ;

� locally conjuctive i� Xi ` Y (i ∈ I 6= ∅)∧Con(
⋃

i∈I Xi∪Y )⇒
⋂

i∈I Xi ` Y ;
� with �nite causes i� X ` Y ⇒ Xisfinite;
� with binary con�ict i� | X |> 2⇒ ∅ ` X;
� in the standard form i� ` = {(A,B) | A ∩B = ∅, A ∪B ∈ LC(E)};
� 2-coherent i� X ∪ Y ∈ LC(E), for all X,Y ∈ LC(E) s.t. X ∪ Y ⊆ Z ∈
LC(E).5

5 This property is useful when proving Theorem 1.
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Lemma 1. An RC-structure E = (E,`, L, l) can be transformed into:

� a pure RC-structure PU(E) = (E, ̂̀, L, l)6 s.t. Conf (E) = Conf (PU(E)), if
E is a singular RC-structure;

� an RC-structure SF (E) = (E, ˜̀, L, l)7 in the standard form s.t. LC(E) =
LC(SF (E)). Moreover, Conf (E) = Conf (SF (E)), if E is a pure RC-structure.

Example 1. As an example, consider the pure, manifestly conjuctive, non-singular,
non-2-coherent RC-structure Erc = (Erc,`rc, L, lrc) with �nite causes and bi-
nary con�ict from [15], where Erc = {a, b, c}; `rc consists of ∅ ` X for all
X 6= {a, b} and {c} ` {a, b}; L = Erc; and lrc is the identity labeling function.
It is easy to see that LC(Erc) = Conf (Erc) = {∅, {a}, {b}, {c}, {a, c}, {b, c},
{a, b, c}}. This RC-structure models the initial con�ict between the events a
and b that can be resolved by the occurrence of the event c. The structure Erc
can be presented in the standard form Ẽrc with ˜̀rc

consisting of A ˜̀B such

that B ⊆ C ∈ LC(E) and A = C \ B, i.e. ˜̀rc
= {(∅, ∅), (∅, {a}), ({a}, ∅),

(∅, {b}), ({b}, ∅), (∅, {c}), ({c}, ∅), (∅, {a, c}), ({a, c}, ∅), ({a}, {c}), ({c}, {a}),
. . ., (∅, {a, b, c}), ({a, b, c}, ∅)}.

The standard form of RC-structures and the ability to specify impossible
events in the model allows for developing a relatively simple structural de�nition
of a removal operator which is necessary for residual semantics.

De�nition 3. For an RC-structure E = (E, `, L, l) in the standard form and
X ∈ LC(E), a removal operator is de�ned as follows: E \ X = (E′, `′, L, l′),
where

E′ = E \X
`′ = {(A′, B′) | ∃(A,B) ∈` s.t. A′ = A∩E′, B′ = B∩E′, (A′∪B′∪X) ∈LC(E)}
l′ = l |E′

According to the de�nition above, all the events in X are removed; however, we
retain the events, not forming left-closed sets with the events in X and hence
con�icting with some events in X, making the retained events impossible by
deleting their enabling relations.

From now on, we use Erc
L to denote the class of rooted, singular, locally

conjuctive RC-structures with binary con�ict.

2.2 Extended Prime Event Structures

For reasons of �exibility, the authors of [1] propose to generalise ordinary prime
event structures [28]8 by dropping the transitivity and acyclicity of causality,

6 An RC-structure PU(E) = (E, ̂̀, L, l) can be directly obtained by putting ̂̀ = `
\{(A,B) ∈ `| ∅ 6= B ⊆ A}.

7 An RC-structure SF (E) = (E, ˜̀, L, l) can be directly obtained by putting ˜̀ =
{(A,B) | B ⊆ C ∈ LC(E), A = C \B}.

8 A labeled prime event structure over a set L of actions is a tuple E = (E, ],≤, L, l),
where E is a set of events; ≤ ⊆ E × E is a partial order (the causality relation),
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as well as the principles of �nite causes and con�ict inheritance.9 As opposed
to prime event structures, the extended version allows for impossible events. In
this model, events can be impossible because of enabling cycles, or an overlap-
ping between the enabling and the con�ict relation, or because of impossible
causes/predecessors.

De�nition 4. An extended prime event structure (EP -structure) over L is a
triple E = (E, ],≺, L, l), where E is a set of events; ] ⊆ E × E is an irre�exive
symmetric relation (the con�ict relation); ≺⊆ E ×E is the enabling relation; L
is a set of labels; l : E → L is a labeling function. Let Eep

L denote the class of
EP -structures over L.

Let E = (E, ], ≺, L, l) be an EP -structure. For e ∈ E, de�ne ↓ e as a maximal
subset of E such that ∀e′ ∈↓ e : e′ ≺ e. For X ⊆ E, let ](X) = {e′ ∈ E | ∃e ∈
X : e ] e′}. We call a set X ⊆ E a con�guration of E if X is �nite, con�ict-free
(i.e. ∀e, e′ ∈ X : ¬(e ] e′)), left-closed (i.e. ∀e, e′ ∈ E : e ≺ e′ ∧ e′ ∈ X ⇒ e ∈ X),
and does not contain enabling cycles (i.e., 6 ∃e1, . . . , en ∈ X : e1 ≺ . . . ≺ en ≺ e1
(n ≥ 1)). The set of con�gurations of E is denoted by Conf (E).

In the graphical representation of an EP -structure, pairs of events related
by the enabling relation are connected by arrows; pairs of the events included in
the con�ict relation are marked by the symbol ].

Eep : ab c]

Fig. 1. An extended prime event structure Eep

Example 2. Figure 1 depicts the EP -structure Eep over L = {a, b, c}, with
Eep = L; ]ep = {(a, b), (b, a)}; ≺ep= {(a, c)}; and the identity labeling func-
tion lep. Observe that the principle of con�ict inheritance is violated. The set of
con�gurations of Eep is {∅, {a}, {b}, {a, c}}.

Consider the de�nition of the removal operator for EP -structures.

De�nition 5. For E ∈ Eep
L and X ∈ Conf (E), a removal operator is de�ned as

follows: E \X = (E′, ≺′, ]′, L, l′), with

E′ = E \X
]′ = ] ∩ (E′ × E′)
≺′ = (≺ ∩ (E′ × E′)) ∪ {(e, e) | e ∈ ](X)}
l′ = l |E′

satisfying the principle of �nite causes: ∀e ∈ E : bec = {e′ ∈ E | e′ ≤ e} is �nite;
] ⊆ E × E is an irre�exive and symmetric relation (the con�ict relation), satisfying
the principle of hereditary con�ict: ∀e, e′, e′′ ∈ E : e ≤ e′ and e ] e′′ then e′ ] e′′; and
l : E → L is a labeling function.

9 It was noted in [1] that, as far as �nite con�gurations are concerned, this does not
lead to an increase in expressive power.
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We see that the events inX are removed, yielding a reduction of the enabling and
con�ict relations. At the same time, any event con�icting with some event in X
is retained, equipping it with an enabling cycle, thereby making the con�icting
event impossible.

Translate EP -structures into RC-structures and conversely. For an EP -
structure EP = (E, ], ≺, L, l), de�ne RC(EP ) = (E′ = E,`′,L, l = l′), where

X `′ Y ⇐⇒

 either Y = {e}, X =↓ e,
or Y = {e, e′}, e 6= e′,¬(e ] e′), X = ∅,
or | Y |6= 1, 2, X = ∅.

For an RC-structure RC = (E′, `′, L, l′), let EP(RC) = (E′′ = E′, ]′′ = ]′,
≺′′=≺′, L, l′′ = l′).

Lemma 2. (i) For EP an EP -structure, RC(EP ) is a rooted, singular, man-
ifestly conjuctive RC-structure with binary con�ict such that Conf (EP ) =
Conf (RC(EP )).

(ii) For RC a rooted, singular, conjuctive RC-structure with binary con�ict,
EP(RC) is an EP -structure such that Conf (RC) = Conf (EP(RC)).

2.3 Stable Event Structures

Stable event structures, introduced in the work of Winskel [27] in order to over-
come the unique enabling problem of prime event structures, have an enabling
relation indicating which (usually �nite) sets X of events are possible prerequi-
sites of a single event e, written X ` e. We consider the version of stable event
structures of [28] where the con�ict relation is speci�ed for sets with two events.

De�nition 6. A stable event structure over L (S-structure) is a tuple E = (E,
], `, L, l), where

� E is a set of events;
� ] ⊆ E × E is an irre�exive, symmetric relation (the con�ict relation). We

shall write Con for the set of �nite con�ict-free subsets of E, i.e. those �nite
subsets X ⊆ E for which ∀e, e′ ∈ X : ¬(e ] e′). X ∈ Con means that the
events in X could happen in the same run, i.e. they are consistent;

� ` ⊆ Con×E is the enabling relation which satis�es X ` e and X ⊆ Y ∈ Con
⇒ Y ` e; and, moreover, X ` e, Y ` e, and X∪Y ∪{e} ∈ Con ⇒ X∩Y ` e
(the stability principle). ` indicates possible causes: an event e can occur
whenever for some X with X ` e all events in X have occurred before. The
minimal enabling relation `min is de�ned as follows: X `min e i� X ` e and
for all Y ⊆ X if Y ` e then Y = X;

� L is a set of actions;
� l : E → L is a labeling function.

Let Es
L denote the class of S-structures over L.

A set X ⊆ E is a con�guration of an S-structure E i� X is �nite, con�ict-free
(i.e.,X ∈ Con), and secured (i.e., there are e1, . . . , en such thatX = {e1, . . . , en}

150



and {e1, . . . , ei} ` ei+1, for all i < n). The set of con�gurations of E is denoted
Conf (E). For an S-structure E , X ∈ Conf (E), and e, e′ ∈ X, let e′ ≺X e i� e′

belongs to the smallest subset Y of X with Y ` e.

Example 3. Consider the S-structure Es over L = {a, b, c, d}, with Es = L;
]s = {(a, b), (b, a)}; `smin= {(∅, a), (∅, b), (∅, c), ({a}, d), ({b, c}, d)}; and the
identity labeling function ls. The set of con�gurations of Es is {∅, {a}, {b},
{c}, {a, c}, {b, c}, {a, d}, {a, c, d}, {b, c, d}}. Notice that Es is not a �ow event
structure because the event c not con�icting with the event a may be a cause
for d or may not.

De�nition 7. For E = (E, ], `, L, l) ∈ Es
L and X ∈ Conf (E), a removal

operator is de�ned as follows: E \X = (E′, ]′, `′, L, l′), with

E′ = E \X
]′ = ] ∩ (E′ × E′)
`′ = {(W ′, e) |W ′ ∈ Con′, ∃(W ′′, e) ∈ `′min s.t. W ′′ ⊆W ′} where

`′min= {(W ′′, e) | ∃(W, e) ∈ `min s.t. W ′′ =W ∩ E′, e ∈ E′,
W ′′ ∪X ∈ Con, {e} ∪X ∈ Con}

l′ = l |E′

We see that all the events in X are deleted; the con�ict relation ]′ contains the
pairs of remaining con�icting events; the de�nition of `′ is based on that of `′min,
which consists of the pairs from ` without the pairs whose events con�ict with
some event in X, thereby making them impossible.

For an S-structure S = (E, ],`, L, l), let RC(G) = (E′ = E,`′,L, l′), where

X `′ Y ⇐⇒

 either Y = {e}, e ∈ E,X ` e,
or | Y |= 2, Y ∈ Con,X = ∅,
or | Y |6= 1, 2, X = ∅.

For an RC-structure RC = (E′,`′,L, l′), let S(RC) = (E′′ = E′, ]′′ =
]′,`′′,L, l′′), where X `′′ e ⇐⇒ e ∈ E′, X ⊆ E′, fCon′(X), and ∃Y ⊆
X : Y `′ {e}.

Lemma 3. [15]

(i) For S an S-structure, RC(S) is a rooted, singular, locally conjuctive RC-
structure with �nite causes and binary con�ict s.t. Conf (S) = Conf (RC(F )).

(ii) For RC a rooted, singular, locally conjuctive RC-structure with �nite causes
and binary con�ict, S(RC) is an S-structure s.t. Conf (RC) = Conf (S(RC)).

2.4 Di�erent Semantics

In this subsection, we de�ne di�erent semantics for the event structure models
under consideration. From now on, we treat E as an event structure over L
speci�ed in De�nitions 1, 4, and 6, if not de�ned otherwise. Moreover, let EL =
Eep
L ∪ Es

L ∪ Erc
L .

We �rst introduce auxiliary notations. Given con�gurationsX,X ′ ∈ Conf (E),
we write:
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� X →int X
′ i� X ⊆ X ′ and X ′ \X = {e};

� X →step X
′ i� X ⊆ X ′ and X ′′ ∈ Conf (E), for all X ⊆ X ′′ ⊆ X ′;

� X →pom X ′ i� X ⊆ X ′ and ≤X′\X is a partial order;
� X →whp X

′ i� X ⊆ X ′ and ≤X′ is a partial order.

For ? ∈ {int, step, pom}, a con�guration X ∈ Conf (E) is a con�guration in
?-semantics of E i� ∅ →∗? X, where →∗? is the re�exive and transitive closure of
→?. Let Conf ?(E) denote the set of con�gurations in ?-semantics of E .

Lemma 4. Given an event structure E ∈ EL and ?, ∗ ∈ {int, step, pom},

(i) for a con�guration X ∈ Conf (E), the transitive and re�exive closure of ≺X ,
≤X , is a partial order. Let EdX = (X,≤X , L, l |X);

(ii) Conf (E) = Conf ?(E) = Conf ∗(E).

Given ? ∈ {int, step, pom}, an event structure E over L, and con�gurations
X,X ′ ∈ Conf ?(E) such that X →? X

′, we write:

� lint(X
′ \X) = a i� X ′ \X = {e} and l(e) = a, if ? = int;

� lstep(X
′ \ X) = M i� M(a) = |{e ∈ X ′ \ X | l(e) = a}|, for all a ∈ L, if

? = step;
� lpom(X ′ \ X)=Y i� Y = [(X ′ \ X,≤X′ ∩(X ′ \ X × X ′ \ X), L, l |X′\X)], if
? = pom;

� lwhp(X)=Y i� Y = [(X,≤X , L, l |X)].

Let E be an event structure over L and X = {e1, . . . , en} ∈ Conf int(E)
(n ≥ 0). We call e1 . . . en a derivation of X i� X0 = ∅ →int X1 . . . Xn−1 →int

Xn = X, and Xi \ Xi−1 = {ei}, for all 1 ≤ i ≤ n. A derivation e1 . . . en
of X ∈ Conf int(E) and a derivation f1 . . . fn of X ′ ∈ Conf int(E ′) are equal
(denoted e1 . . . en ∼ f1 . . . fn) i� there is an isomorphism ι : EdX → E ′dX ′
with ι(e1 . . . en) := ι(e1) . . . ι(en) = f1 . . . fn. Let Der(X) denote the set of all
equivalence classes [e1 . . . en] of derivations of X. For [e1 . . . en] ∈ Der(X), de�ne
lhp([e1 . . . en]) := a1 . . . an, where li(ei) = ai (1 ≤ i ≤ n).

3 Transition Systems TC (E) and TR(E)

3.1 De�nitions and Comparisons

In this subsection, we �rst give some basic de�nitions concerning labeled transi-
tion systems, and then de�ne the mappings TC (E) and TR(E), which associate
two distinct kinds of transition systems � one whose states are con�gurations
and one whose states are residual event structures � with an event structure E
over L.

A transition system T = (S,→, i) over a set L of labels consists of a set of
states S, a transition relation →⊆ S × L × S, and an initial state i ∈ S. Two
transition systems over L are isomorphic if their states can be mapped one-to-
one to each other, preserving transitions and initial states. We call a relation
R ⊆ S × S′ a bisimulation between transition systems T and T ′ over L i�
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(i, i′) ∈ R, and for all (s, s′) ∈ R and l ∈ L: if (s, l, s1) ∈→, then (s′, l, s′1) ∈→
and (s1, s

′
1) ∈ R, for some s′1 ∈ S′; and if (s′, l, s′1) ∈→, then (s, l, s1) ∈→ and

(s1, s
′
1) ∈ R, for some s1 ∈ S.

Introduce additional auxiliary notations. For a �xed set L of labels of event
structures, de�ne Lint := L, Lpom := PomL (the set of isomorphic classes of
partial orders labeled over L), and LDer := L∗, being another sets of labels of
the transition systems.

We are ready to de�ne labeled transition systems with con�gurations as
states.

De�nition 8. For an event structure E over L and ? ∈ {int, step, pom},

� TC ?(E) is the transition system (Conf ?(E),⇁?, ∅) over L?, where X
p
⇁? X

′

i� X →? X
′ and p = l?(X

′ \X);
� TCwhp(E) is the transition system (Conf int(E), ⇁whp, ∅) over Lpom, where

X
p
⇁whp X

′ i� X →whp X
′ and p = lwhp(X

′);
� TC hp(E) is the transition system ({Der(X) | X ∈ Conf int(E)}, ⇁hp, ε)

over LDer, where [e1 . . . en]
q
⇁hp [e1 . . . enen+1] (n ≥ 0) i� {e1, . . . , en},

{e1, . . . , en, en+1} ∈ Conf int(E), and q = lhp([e1 . . . enen+1]).

Consider the de�nition of labeled transition systems with residuals as states.

De�nition 9. For an event structure E over L and ? ∈ {int, step, pom},

� Reach?(E) = {F | ∃E0, . . . , Ek (k ≥ 0) s.t. E0 = E, Ek = F , and Ei ⇀X
? Ei+1

(i < k)}, where Ei ⇀X
? Ei+1 i� ∃X ∈ Conf ?(Ei) : Ei+1 = Ei \X and ∅ →? X

in Ei;
� TR?(E) is the transition system (Reach?(E), ⇀?, E) over L?, where F

p
⇀?

F ′ i� ∃X ∈ Conf ?(F) : F ⇀X
? F ′ and p = l?(X);

� TRwhp(E) is the transition system (Reachint(E),⇀whp, E) over Lpom, where

F p
⇀whp F ′ i� ∃X,X ′ ∈ Conf int(E) : F = E \X,F ′ = E \X ′, X ⇁whp X

′,
and p = lwhp(X

′);
� TRhp(E) is the transition system (Reachint(E), ⇀hp, E) over Lpom, where

F q
⇀hp F ′ i� ∃X,X ′ ∈ Conf int(E) : F = E \X, F ′ = E \X ′, [e1 . . . en]

q
⇁hp

[e1 . . . enen+1], where [e1 . . . en] ∈ Der(X), [e1 . . . enen+1] ∈ Der(X ′), and
q = l([e1 . . . enen+1]).

For instance, Figures 2�4 indicate the transition systems TR?(E) with the
states � the residuals of the structures considered in Examples 1�3, respectively.
Here, ? = step, if E = Erc; ? = whp, if E = Eep; and ? = pom, if E = Es.

Theorem 1. Given ? ∈ {int, step, pom,whp}, TC ?(E) and TR?(SF (PU(E)))
(TR?(E)) are isomorphic; however, TC hp(E) and TRhp(SF (PU(E))) (TRhp(E))
are not bisimilar; where E ∈ Erc

L (E ∈ Eep
L ∪ Es

L).

It is easy to see that even for the EP -structure Eep1 over L = {a, b, c}, with
Eep

1 = L;, ]ep1 = ∅, →ep
1 = {(a, c), (b, c)}, and the identity labeling function lep1 ,

TC hp(Eep1 ) and TRhp(Eep1 ) are not bisimilar.
From Lemmas 1, 2, 3, and Theorem 1 we get

153



E = {a, b, c}
LC(E) = {∅, {a},
{b}, {c}, {a, c},
{b, c}, {a, b, c}}

E = {b, c}
LC(E \ {a}) =

= {∅, {c}, {b, c}}

E = {b}
LC(E \ {a, c}) =

= {∅, {b}}

E = ∅
LC(E \ {a, b, c}) = {∅}

E = {a, b}
LC(E \ {c}) =

= {∅, {a}, {b}, {a, b}}

E = {a}
LC(E \ {b, c}) =

= {∅, {a}}

E = {a, c}
LC(E \ {b}) =

= {∅, {c}, {a, c}}

c

c a||b

c

b ab||c b

a ba||c a

Fig. 2. The residual transition system TRstep(Erc)

ab c]
b c

ba c

a

a;
c

b a; c

Fig. 3. The residual transition system TRwhp(Eep)

E = {a, b, c, d}
`min= {(∅, a), (∅, b), (∅, c),
({a}, d), ({b, c}, d)}

] = {(a, b), (b, a)}

E = {b, c, d}
`min= {(∅, c), (∅, d)}

] = ∅

E = {b, c}

] = ∅
`min= {(∅, c)}

E = {a, c, d}

] = ∅

`min= {(∅, c),
({c}, d)}

E = {a, b, d}

] = {(a, b), (b, a)}

`min= {(∅, a), (∅, b),
({a}, d), ({b}, d)}

E = {a, d}

] = ∅
`min= {(∅, d)}

E = {a}

] = ∅
`min= ∅

E = {b, d}

] = ∅
`min= {(∅, d)}

E = {b}

] = ∅
`min= ∅

a; d
(a; d)||c (b||c); d

ad b

c cc||d a||c

d a b d

c

b||
c c

Fig. 4. The residual transition system TRpom(Es)
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Corollary 1. Given ? ∈ {int, step, pom,whp},

(i) TR?(E) and TR?(SF (PU(RC(E)))) are isomorphic, if E ∈ Eep
L ∪ Es

L;
(ii) TR?(SF (PU(E))), TR?(EP(E)), and TR?(S(E)) are isomorphic, if E ∈ Erc

L .

3.2 Preserving Bisimulations by the Operators TC (·) and TR(·)

We �rst introduce bisimulation concepts on the event structure models.
Event structures E and E ′ from EL are interleaving, step, pomset, respec-

tively, bisimilar i� TC (E?) and TC (E ′?) are bisimilar for ? ∈ {int, step, pom},
respectively. For event structures E and E ′ over L,

� a relation R ⊆ Conf int(E) × Conf int(E ′) is called weak history preserving
bisimulation i� (∅, ∅) ∈ R and for any (X,Y ) ∈ R it holds:
• there is an isomorphism between EdX and E ′dY ;
• if X ⊆ X ′ for some X ′ ∈ Conf int(E), then Y ⊆ Y ′ for some Y ′ ∈
Conf int(E ′) such that (X ′, Y ′) ∈ R;
• if Y ⊆ Y ′ for some Y ′ ∈ Conf int(E ′), then X ⊆ X ′ for some X ′ ∈
Conf int(E) such that (X ′, Y ′) ∈ R.

� a relation R consisting of triples (X, f, Y ), where X ∈ Conf int(E), Y ∈
Conf int(E ′), and f : EdX → E ′dY is an isomorphism, is called history pre-
serving bisimulation i� (∅, ∅, ∅) ∈ R and for any (X, f, Y ) ∈ R it holds:
• if X ⊆ X ′ for some X ′ ∈ Conf int(E), then Y ⊆ Y ′ for some Y ′ ∈
Conf int(E ′) such that f ′ |X= f for some isomorphism f ′ : X ′ → Y ′, and
(X ′, f ′, Y ′) ∈ R;
• if Y ⊆ Y ′ for some Y ′ ∈ Conf int(E ′), then X ⊆ X ′ for some X ′ ∈
Conf int(E) such that f ′ |X= f for some isomorphism f ′ : X ′ → Y ′, and
(X ′, f ′, Y ′) ∈ R.

Theorem 2. Given E , E ′ ∈ EL, E and E ′ are weak history preserving bisimi-
lar i� TCwhp(E) and TCwhp(E ′) are bisimilar; E and E ′ are history preserving
bisimilar i� TChp(E) and TChp(E ′) are bisimilar.

Corollary 2. E and E ′ are interleaving, step, pomset, weak history preserving,
respectively, bisimilar i� TR?(ST (PU(E))) and TR?(ST (PU(E ′))) (TR?(E) and
TR?(E ′)) are bisimilar for ? ∈ {int, step, pom,whp}, respectively, where E , E ′ ∈
Erc
L (E , E ′ ∈ Eep

L ∪ Es
L).

4 Concluding Remarks

In this paper, we have de�ned two structurally di�erent ways of giving various
(interleaving, step, pomset, weak history preserving, history preserving) transi-
tion system semantics in the context of three event-oriented models � extended
prime event structures, stable event structures, and resolvable con�ict structures.
For each model, we have obtained an isomorphism between the corresponding
transition systems for all the semantics except for history preserving one. Also,
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we have developed some translations of the event structures from the classes un-
der consideration into resolvable con�ict structures and back, so as to compare
residual-based transition systems, constructed from the original structures, with
the ones constructed from the structures obtained after translation. Further,
we have demonstrated that interleaving, step, pomset, weak history preserving
bisimulations are captured by the corresponding bisimulations on the transtion
systems.

Work on extending our approach (e.g., to precursor [9], probabilistic [29],
local [17], dynamic [1] event structures, and to labeled event structures with
invisible actions) is presently under way and has yielded promising intermediate
results. Another future line of research is to extend our results on comparing two
kinds of transition systems to the non-pure case of resolvable con�ict structures
[14] and to the multiset transition relation.
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Abstract. Linear time-invariant hybrid automata (LTI-HA) have been
introduced to model space missions in early design phases. One of LTI-
HA’s main objectives was therefore to allow a composition of (sub) mod-
els. In this paper, we evaluate the expressiveness of the composition in
LTI-HA. To compare their expressiveness with the existing hybrid au-
tomata formalisms, this work proposes a formal notion of compositional
expressiveness. In contrast to the more traditional proofs using simula-
tion relations or bisimilarity to compare single models or their respective
behavioral expressiveness or equivalence, compositional expressiveness
relies on the complexity of the models and the composition operators
enabling the engineer to invest less effort in the modeling process. The
following text provides a comparative study of the LTI-HA and several
other hybrid formalisms, such as linear hybrid automata and the hy-
brid I/O automata, with respect to their compositional expressiveness.
Specifically, adequacy of their application is discussed based on the case
study in space mission feasibility verification.

1 Introduction

Most of the real systems consist of a set of subsystems brought together e.g. by
physical aspects or function. A compositional approach to modeling and analysis
of such a system relies exclusively on the models of the subsystems, without any
holistic information about the composed system, an approach that was first
formalized by Gottlob Frege in 1923 [FP93] [Fre05].

For describing space systems during early design phases, a hybrid formalism
was proposed in [ATW16] [ASGW16] [ATW15] - Linear Time-Invariant Hybrid
Automata (LTI-HA). The adequacy of LTI-HA was demonstrated in [ARW17]
by providing an operational semantics for the space mission domain-specific lan-
guage proposed by Schaus et. al [STF+13]. LTI-HA address the issue of combin-
ing continuous dynamics of different discrete states by applying the superposition
principle in the composition operator which is extensively applied in the classical
control theory as well as the theory of hybrid systems [LA14].

While expressiveness is usually considered from the point of view of behav-
ioral comparison of two formalisms on a meta level, comparison of expressive-
ness from the compositional point of view lacks the deserved attention [Cas05]
[BCH+13] [SA06]. Although many extensions for compositional semantics exist

159



for hybrid formalisms, only few of them are discussed in terms of expressiveness
of models [SY96] [Sif99] [BS00]. Although not desirable, this is an understand-
able state of affairs since compositional expressiveness of a modeling method is
rather a question of taste and usability.

The contribution of the following paper lies in the introduction of the notion
of compositional expressiveness and its application for comparison of LTI-HA
with other hybrid automata (HA) formalisms, such as linear hybrid automata
and hybrid I/O automata. The formal considerations in this work are supported
by an use-case based comparison of expressive power of the LTI-HA.

The remaining paper is structured as follows: the next section discusses some
of the related work, followed by several supporting definitions in section 3. Sec-
tion 4 is the core of this paper. First, two motivational examples are provided
from the application domain of early spacecraft modeling. Then, several formal
metrics are introduced to support the formal definition of the compositional ex-
pressiveness which is immediately applied to the LTI-HA formalism with respect
to hybrid I/O automata (HIOA) and linear as well as rectangular HA (LHA and
RHA, respectively). The paper is finalized with a discussion of behavioral ex-
pressiveness of LTI-HA models and some concluding remarks.

2 Related Work

As such, LTI-HA are closely related to the switched, piecewise affine and comple-
mentarity systems [LA14]. In [GT04], a class of piecewise affine automata with
superposition support is briefly introduced to be immediately applied for mod-
eling biological protein regulatory networks. However, as discussed in [ATW16]
and [ATW18], support for invariants and discrete resets could be problematic
for the composition. The composition operator has also not been formally intro-
duced for this promising formalism [GT04].

The general framework for timed compositional modeling formalism - timed
automata with deadlines where invariants of the classical timed automata are
replaced with the notion of deadlines - taken by Sifakis and Yovine [SY96] was
extended to hybrid systems in [BS00] by Bornot and Sifakis. They discuss the
possible compositional semantics of actions for hybrid systems. It is also assumed
that compatible automata operate on disjunct state spaces [BS00].

Van der Shaft and Schumacher [SS01] investigate compositionality from the
point of view of dynamic systems and discuss some important properties of the
composition operator such as commutativity and associativity.

3 Definitions

The following definitions capture the essential terms necessary for the later dis-
cussions [ATW18].

Definition 1 (LTI-HA). A linear time-invariant hybrid automaton H is a tu-
ple (L,X ,SI ,SO, T ,F), where:
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– L = {L1, . . . , Ln} is a set of discrete locations (or modes);
– X is a set of continuous real-valued variables, called state variables. Time

in this context refers to a designated variable t ∈ X .
– SI and SO are two disjoint sets of input and output events, respectively,

which define the event signature of the automaton;
– T ⊆ L × 2C(X ) × 2SI × 2SO × L is a guarded (not necessarily complete)

transition relation, where × denotes a Cartesian product and C(X ) is a
set of all possible constraints over X . The guard is thus a triple (C, E ,A)
with a set of constraints C ∈ 2C(X ) a set of input events E ∈ 2SI and a
set of output events A ∈ 2SO . The locations along with the transitions (with
possible loops) constitute the control graph representing the structure of the
given hybrid automaton;

– The change of any x ∈ X , except for the time reference t, at any time point is
described by the flow function fL of the currently active location describing
the continuous change of system state xi(t) = fxi,L(t). We are restricting
the flow functions only to those which are valid solutions for ordinary linear
time-invariant differential equations of some order k ≥ 1. This restriction
guarantees that flow functions fulfill the superposition property. Therefore,
for two simultaneously active locations L1 and L2 of two concurrent hybrid
automata the resulting rate of change of a global continuous variable xi is
defined as xi(t) = fxi,L1(t)+fxi,L2(t). Let F denote the set of flow functions
for every location in L and ṫ = 1 for all L ∈ L.

Definition 2 (Initial configuration). I is the initial state/configuration
of the system σ(t0) = (LI , VI), where LI ∈ L is the initial active mode, VI :
X 7→ R is the initial valuation of all the variables in X and VI(t) = t0.

Definition 3 (Composition operator). Any two LTI-HA H1 and H2 for
which holds ∀x ∈ X 1 ∩ X 2 : V 1

I (x) = V 2
I (x) are called compatible. Given two

compatible hybrid automata, the parallel composition H1||H2 produces a new
hybrid automaton Hc = (Lc,X c,ScI ,ScO, T c, F c) with the initial configuration
Ic, where the components are defined as follows:

1. Lc = L1 × L2 = {(L1
1, L

2
1), . . . , (L1

n1
, L2

n2
)} =

{Lc11, L
c
12, . . . , L

c
1n2

, . . . , Lcn1n2
}

2. X c = X 1 ∪ X 2

3. ScI = (S1
I \S2

O) ∪ (S2
I \S1

O)
4. ScO = S1

O ∪ S2
O

5. ∀ transitions (Lxi , C
x, Ex,Ax, Lxk), (Lyj , C

y, Ey,Ay, Lyl ):
(a) if Ex ∩ SyO = ∅: ∀L ∈ Ly: ∃((Lxi , L), Cx, Ex,Ax, (Lxk, L)) ∈ T c,
(b) ∃(Lij , Cx ∪ Cy, Ex ∪ (Ey\Ax),Ax ∪ Ay, Lkl) ∈ T c,

if ((Ey ∩ Ax = Ey ∩ SxO) and (SyO ∩ Ex = ∅))
or ((Ex ∩ SyO = ∅) and (Ey ∩ SxO = ∅))

where either x = 1, y = 2, or vice versa.
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6. ∀fxk,Li(t) ∈ F1, fxk,Lj (t) ∈ F2: fxk,Lij (t) = fxk,Li(t) + fxk,Lj (t)
7. IC = (LcI1I2

, V 1
I ∪ V 2

I )

The operator is not defined for not compatible LTI-HA.

4 Compositional Expressiveness

The following section provides two motivational examples: one informally dis-
cusses a use case when set-based directional event semantics is more expressive
than any semantics based on a singleton labels, and the second shows how su-
perposition principle allows a modeling engineer to apply the divide and conquer
approach more effectively and therefore reduces modeling effort.

4.1 Example 1

i

k

H1

|

......

......

j

l

H2

|

......

......

m

n

H3

|

......

......

o

p

H4

......

......

E1 : {a}
A1 : {}

E2 : {}
A2 : {a}
{c ≥ 10}

E3 : {a, b}
A3 : {}
{x > 10}

E4 : {}
A4 : {b}
{d ≥ 5}

Fig. 1. Expressiveness of the LTI-HA set-based directional event semantics

Consider the interaction patterns between the four transitions in the four
LTI-HA depicted in Figure 1. The automata are representing, from left to right:
a downlink module of a satellite moving on a Low Earth Orbit(LEO), primary
ground station A, synchronization module and the secondary ground station B.
Without loss of generality, we are only considering the parts of the automata rep-
resenting interactions with one another and not the specifics of their dynamics.
Synchronization events a and b represent availability of the ground stations A
and B, respectively. Synchronization module is responsible for synchronizing the
clocks of the satellite, a procedure carried out only when both ground stations
are available. This is done to eliminate possible synchronization faults (see, for
example, [DHSS95] or [LMS86]).

It is clear that transitions j → l and o → p can be taken independently,
while the transitions i→ k and m→ n cannot. The transition m→ n can only
be taken simultaneously with the both enabled transitions j → l and o → p.
The transition i → k will only be synchronized with the transition j → l. The
paths of non-zero length from l to j and p to o are represented with thick dotted
arrows. If the locations j and o can simultaneously be active with valuations
{c ≥ 10, d < 5} and {c ≥ 10, d ≥ 5}, then, obviously, transitions j → l and
o→ p are not always taken synchronously.
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For HIOA or structured HIOA (SHIOA [MLL06] [Mit07]) to model this sys-
tem, a relabling procedure consisting of two modifications may be performed:
first, both ground stations have to be modeled as a single automaton; second,
the transition with two events being simultaneous, a new event has to be intro-
duced, e = {a, b} which would synchronize with the m→ n transition. The same
holds for the timed automata if the continous dynamics could be modeled with
only clock variables [BY04].

Set-based undirectional hybrid automata formalism like [RTP96] may be suit-
able for modeling the system described in Figure 1. However, the composition
operator in [RTP96] only considers synchronous actions in case when there is a
non-empty intersection between them. Let us assume that the transitions i→ k,
m→ n and o→ p are labeled withΣi→k = {a},Σm→n = {a, b} andΣo→p = {b},
respectively. The above interaction is indeed preserved. However, if we first com-
pose H1 with H4 and only then with H3, the information about possible simul-
taneity of events a and b is lost. Since composition operator in [RTP96, p.7] only
considers the labeled dependencies between transitions pairwise, transition with
Σm→n = {a, b} will never be enabled. However, merging m→ n first with either
i→ k or o→ p solves the problem. Hence, composition operator in [RTP96, p.7]
is not associative. Our composition operation is both associative and supports
event directions making them more intuitional.

Obviously, not set-based undirectional based are less expressive than the
last two discussed methods. This clearly demonstrates the advantage of the
directional set-based event synchronization: directionality makes events more
intuitional while assigning more than one label to a transition, more complex
communication patterns are possible.

4.2 Example 2

As a second example, consider the two automata from [ATW18] in Figure 2.

Not Sending
s = s̄
d = d̄
c = c̄

Sending
s = c1(t − t̄)
d = −c1(t − t̄)
c = −c2(t − t̄)

Off
s = s̄
d = d̄
c = c̄

On
s = s̄

d = c3(t − t̄)
c = −c4(t − t̄)

({d ≥ 0, c > CRITICAL}, { gs visible }, { a })

({d = 0}, {},{ b } )
({}, { gs not visible },{ c } )

({c > CRITICAL},{ event visible },{ d } )

( { },{ event not visible },{ f } )
( {d ≥ LIMIT},{},{ e } )

Fig. 2. Downlink Satellite Component and Experimental Payload (Camera)

In the early conceptual phase of development, the satellite downlink module
which sends gathered information back to Earth is modeled as having only two
distinct states: Sending, when a ground station is visible and there is data to
send, or Not Sending, when either no ground station is available or there is no
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data to be sent (or both). In the Sending state the rate of change of available
data and sent data is the same with opposite signs, whereas in the Not Sending
state both parameters remain constant.

The valuable data which is sent back to Earth comes from a camera which
can rotate and fix on the events of interest. Hence, depending on whether an
event is visible or not, the camera can also be in two states: On and Off. The
data can only be written if there is enough free storage, therefore the constant
LIMIT represents the maximum data that can be stored at any instance. The
constant CRITICAL stands for the lowest level of battery charge needed for any
of the components to start.

The continuous variables s, d, c stand for the amount of data sent, the data
still stored on the satellites storage unit and the battery charge, respectively. c1-
c4 are some predefined constants. The downlink component can only be activated
when a ground station is visible which is represented by the gs visible event.

Since LTI-HA explicitly support the superposition principle for flow func-
tions, output trajectories do not need to be exclusive. This allows to combine
effects of both automata on the same continuous variable, in this case all three
of them: s, d, c by the composition operator [ATW18].

(S)HIOA explicitly forbid superposition of the output trajectories [LSV03,
p.131,p.141] [Mit07, p.35]. That is, for any formalism without support for su-
perposition to model a system where some of the components have overlapping
continuous output trajectories, it is necessary to model all of those components
as a single automaton with the cartesian product of all of the corresponding
locations.

Other hybrid automata formalisms follow either the same strategy as (S)HIOA
or imply an agreement of flow conditions between the locations [ATW18]. Thus,
they would also require an engineer to explicitly specify all of the possible com-
binations of flows thus eliminating the advantages of compositional analysis al-
together.

4.3 Generalization and Metrics

Transitions Given m LTI hybrid automata H1, ...,Hm, we define a synchro-
nization function sync: T∪ 7→ 2T∪ that maps the transition τ i to the set of all
transitions which synchronize with it:

sync(τ i) =



{τj |στi = στj , i 6= j} for non-directional event semantics

(LHA [ACHH93] [NOSY93] [Hen00],

RHA [Ras05] [PV94] [Hen00], HA [Áb12])

{τj |Στi ∩ Lj = Στj ∩ Li 6= ∅, i 6= j} for set-based non-directional event semantics

(LHA [RTP96])

{τj |σa,τi = σe,τj , i 6= j} for directional event semantics

(HIOA [LSV03], TA [BY04])

{τj |Aτi ∩ Eτj = SiO ∩ Eτj 6= ∅, i 6= j} for set-based event semantics

(LTI-HA [ATW18])

where T∪ =
⋃
i=1..m T i with T i from Hi, στ i is the label on the transition

τ i in the automaton Hi, σe,τ i , σa,τ i are the input and output labels on the
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transition τ in the automaton Hi. Στ i is a set of labels assigned to transition
τ i respectively. Li is the set of labels of the LHA i [RTP96]. τ i is any transition
out of T∪. Without loss of generality, we assume that for the directional event
semantics, there is always only a single automaton generating every consumable
event [ATW18] [LSV03].

The function rsync : T∪ 7→ 2T∪ maps the set of all transitions τ i to the set
of all transitions which generate the necessary inputs for the transition at hand:

rsync(τ i) =



same as sync(τ i) for non-directional event semantics

(LHA [ACHH93] [NOSY93] [Hen00],

RHA [Ras05] [PV94] [Hen00], HA [Áb12])

same as sync(τ i) for set-based non-directional event semantics

(LHA [RTP96])

{τj |σe,τi = σa,τj , i 6= j} for directional event semantics

(HIOA, TA)

{τj |Eτi ∩ Aτj = Eτi ∩ S
j
O 6= ∅, i 6= j} for set-based event semantics

(LTI-HA)

Therefore, rsync defines a different set of values in the cases of directional
event semantics. Table 1 provides a comparative study of compositional proper-
ties defined below for HA depending on the types of event semantics: directional
or non-directional, set-based or singular (singleton).
|sync(τ i)| provides the number of transitions from other automata with

whom the given transition may synchronize. For the directed event semantics,
output events are usually observable by any other automata [LSV03] [ATW18].
Obviously, for all the formalisms, this number is greater equal than zero.

The |rsync(τ i)|-row represents the number of transitions having as outputs
the inputs of τ i. Since the inverse function is defined in the same way as the
original for the undirectional event semantics, no change is observed here.
∀j : |{τ j |τ j ∈ rsync(τ i), Eτj ∩Aτj ⊂ Eτj ∩Hi}| is the number of transitions

which possibly generate the necessary input for the given transition but do not
have all the events generated by the automaton containing them. This is a critical
condition to be fulfilled during composition, if there is a single producer for each
event. It is guaranteed by the condition 5b for the composition operator of LTI-
HA and the condition (3) for the event synchronization in [RTP96, p.7].
|{s|s ⊂ rsync(τ i),∀τ j , τk ∈ s : j = k, @s′ ⊂ rsync(τ i) with τ l ∈ s′,∃τj ∈

s : j = l}| is the number of hybrid automata generating the necessary events
for a given transition. In the case of singular directional event semantics it is
only possible to synchronize with a single producer of an event for the HIOA
[LSV03] [Mit07]. Timed automata in the UPPAAL [BLP+96] allow for several
generators of a single event. This row is emphasized since this is a case of an
increased expressiveness of set-based labeling formalisms in contrast to singular
labeling mechanisms.

max (|s|s ⊂ rsync(τ i),∀τ j , τk ∈ s : j = k,@s′ ⊂ rsync(τ i) with τ l ∈ s′,∃τj ∈
s : j = l}|) represents the maximum number of transitions generating the neces-
sary events for the given transition, per automaton. For all the cases, the number
of those transitions can be non-zero, however, for the cases of set-based labelings,
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the events should be exactly those which lie in the intersection set of the whole
automaton and the given transition τ i, since synchronization (and structural
merging during composition) only occur pairwise in the existing formalisms.

The following row is another case where set-based approaches have a definite
advantage with respect to singular cases: it represents the number of possible
transitions from other automata which can consume subsets of the given event
label. Obviously, no such thing exists for singular cases, and only those having
strictly the same labeling will be able to sychronize.

Properties

Event

Semantics

Non-directional Directional

Singular Set-based Singular Set-based

Examples

[ACHH93]

[RTP96]

[LSV03]

[ATW18][NOSY93] [Mit07]

[Hen00] [BY04]

|sync(τ i)| ≥ 0 ≥ 0 ≥ 0 ≥ 0

|rsync(τ i)| > 0 ≥ 0 > 0 ≥ 0

∀j : |{τj |τj ∈ rsync(τ i), Eτi ∩ Aτj ⊂ Eτi ∩ S
j
O}| - 0 - 0

|{s|s ⊂ rsync(τ i), ∀τj , τk ∈ s : j = k, 0 or 1

@s′ ⊂ rsync(τ i) with τ l ∈ s′, ∃τj ∈ s : j = l}|
0 or 1 ≥ 0

(> 0 [BY04])
≥ 0

max (|s|s ⊂ rsync(τ i), ∀τj , τk ∈ s : j = k,
≥ 0 ≥ 0 ≥ 0 ≥ 0

@s′ ⊂ rsync(τ i) with τ l ∈ s′, ∃τj ∈ s : j = l}|)
∀Ai from τ i ∈ T∪, |Ai| > 1 :

|τj from Hj , j 6= i with s = Ej ∩ Ai ⊂ Ai, s 6= ∅|
0 ≥ 0 0 ≥ 0

Circular event dependencies no no yes yes

Stutter transitions yes yes no Ei = ∅,Ai = ∅, Ci = ∅

Table 1. Event semantics properties (B , Blocking, NB , Non-blocking)

Before we discuss the next row of the table, the following definitions are due.

Definition 4 (Event Dependency of Guards). Two guards - g1 = (C1, E1,A1)
from H1, g2 = (C2, E2,A2) from H2 - are said to be event-dependent iff E1 ∩
A2 6= ∅ ∨ E2 ∩ A1 6= ∅. The guard g1 is said to be event-dependent on the
second automaton iff E1 ∩ S2

O 6= ∅.

Event (in)dependency of guards consequently implies event-(in)dependency of
the corresponding transitions. It is clear from the constraint SI ∩ SO = ∅ that
those two guards cannot be in the same automaton.

Definition 5 (Cycle of Event Dependencies for a Set of Guards). A set
of guards G of size k ≥ 2 has a cycle of event dependencies if there is a sequence
of these guards (g0, ..., gk−1), such that ∀i, 0 ≤ i < k : Ai ∩ E(i+1)mod k 6= ∅.

Clearly, circular event dependencies are only possible for the directional cases.
The last row shows wether the formalism has an explicit support for stutter
transitions. HIOA have eliminated them in the later redefinitions to avoid com-
positionality issues [LSV03]. LTI-HA do not have implicit stutter transitions.
However, they can be explicitly defined, as provided in the Table 1. These tran-
sitions, however, are always enabled and will be taken immediately when their
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start-location is entered. They also pose a danger of introducing time locks (time
convergence), should there be a cycle containing only stutter transitions.

The relabling procedure discussed in the first example of this section, can be
formalized as follows:

∀τ i from Hi where |Eτ i | > 1 : ∀Hj with SjO ∩ Eτ i 6= ∅ : ||
Hj

(1)

The labeled event set Eτ i will be then renamed to a single letter in the composed
automaton. Although we do not account here for the cascading dependencies
of the events, it should be clear that in the worst case all of the automata
Hj , j = 1..m will have to be combined with each other by the user. E.g. consider
the scenario where one LTI-HA consumes all of the events generated by other
LTI-HA over a single transition. Furthermore, for any set of event labels A, all
of the possible subset of those events can be consumed by a different automaton.
That is, for every possible set from 2A, a new transition has to be introduced in
the automaton containing a transition labeled with A.

Locations As discussed in the second example of this section, the modeling
engineer has to account for all of the possible combinations of continuous flows
which could become exponential in the minimum number of states of the HA, if
for all |Li| holds |Li| ≥ 2. That is, for 10 LTI-HA with three states per automa-
ton, 310 locations would be required to model in any formalism not supporting
superposition: i.e. (S)HIOA, LHA, RHA, HA, etc.

Formally, in the worst case for a set of m LTI hybrid automata H1, ...,Hm:

if ∃X ⊆ XU ,XU =
⋃

i=1..m

X i where ∀x ∈ X,∀Lij : ẋLij 6= 0 (2)

then L =
m×
i=1

Li, |L| =
m∏
i=1

|Li|

where L is the total set of the composed locations.

Definition of Compositional Expressiveness Considering the above met-
rics, we can now define the notion of compositional expressiveness for hybrid
automata. It amounts to the information a modeling engineer uses to describe
the system components before the composed system is built. Clearly, since the
composition operator has exponential run-time and produces a structure with
an exponential number of nodes, it is desirable to shift the modeling complexity
into the ”pre-composition phase” since the modeling effort is then linear in the
number of nodes and edges.

We rely on the number of edges (T ) as well as the number of vertices (L)
needed to describe a system S. We assume that for both formalisms under com-
parison, a minimal representation can be achieved, and that there is some be-
havioral equivalence satisfied for models of S in the respective formalisms (e.g.
bisimilarity).
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Definition 6 (Compositional Expressiveness). A modeling formalism A is
compositionally more expressive than a modeling formalism B (A c B) if, for
describing a system S (or a family of systems):

1. TA(S) < TB(S)
2. LA(S) < LB(S)

for a minimal representations of S in A, HA(S), and B, HB(S), respectively.

Proposition 1. For a family of systems where the the condition from the equa-
tion (2) holds or ∃τ i from T∪ with |Eτ i | > 1, linear time-invariant hybrid au-
tomata are compositionally more expressive than HIOA.

Proof. The proof follows from the discussions and metrics from the this section.

5 Discussion

This paper has introduced an initial approach at formalizing the notion of com-
positional expressiveness in terms of events labeling and continuous flow combi-
nations. It has been directly applied to demonstrate the superior compositional
expressiveness of LTI-HA with respect to HIOA.

Timing of transitions was never considered in this work, as well as the modal
extensions of guards [SY96, p.5]. In the extended version of this work, we plan
to include timeliness of events as well as the modalities for combining the guards
which are assigned to the transitions into the notion of compositional expres-
siveness. We also intend to adopt the notion of HA comparability of Lynch et.
al. [LSV03] and put the LTI-HA in the context of other formalisms in terms of
behavioral expressiveness.

Associativity is an important property for composition of discrete event sys-
tems in general and hybrid automata in particular [SS01] [CL10]. Proving it for
LTI-HA is not trivial due to the complex event semantics and remains as a future
challenge.

The relabling procedure discussed in section 4 can potentially be extended
to a full algorithm which would transform a system of LTI-HA into a system
of HIOA which is a powerful modeling method with tool support [Fre05]. This
algorithm would also require a behavioral expressiveness relation established
between the two formalisms which we also intend as a future work. A formal
meta-language that could be used to define simulation relations could be the
extension theorem [BS00] [SY96] or timed transition systems [Cas05] [BCH+13].
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Abstract. Berman and Paterson proved that Test-Free PDL is weaker
than PDL. As the description logics ALCtrans and ALCreg are, respec-
tively, variants of Test-Free PDL and PDL, there is a concept of ALCreg
that is not equivalent to any concept of ALCtrans. Generalizing this, we
show that there is a concept of ALCreg that is not equivalent to any
concept of the logic that extends ALCtrans with inverse roles, nominals,
qualified number restrictions, the universal role and local reflexivity of
roles. We also provide some results for the case with RBoxes and TBoxes.
One of them states that tests can be eliminated from TBoxes of the de-
terministic Horn fragment of ALCreg.

1 Introduction

Propositional Dynamic Logic (PDL) is a well-known modal logic for reasoning
about computer programs [5,7]. Its variant ALCreg is a description logic (DL) for
reasoning about terminological knowledge [16]. Berman and Paterson [2] proved
that Test-Free PDL is weaker than PDL. In particular, they gave a formula of
PDL that is not equivalent to any formula of Test-Free PDL. This means that
there is a concept of ALCreg that is not equivalent to any concept of ALCtrans
(a variant of Test-Free PDL). While bisimulations are usually used for separat-
ing the expressive powers of modal and description logics (see, e.g., [3,4,10]),
the proof given by Berman and Paterson [2] exploits the fact that “over a sin-
gle symbol alphabet, the regular sets are precisely those which are ultimately
periodic” (see [6, Theorem 3.1.2]) and is somehow similar to the proof of that
connectivity is inexpressible in first-order logic.

Generalizing the result and method of Berman and Paterson, in Section 3 we
prove that there is a concept of ALCreg that is not equivalent to any concept
of the DL ALCIOQUSelftrans, which extends ALCtrans with inverse roles (I),
nominals (O), qualified number restrictions (Q), the universal role (U) and local
reflexivity of roles (Self ) as of the DL SROIQ [8]. That is, extending ALCtrans
with the features I, O, Q, U and Self does not help in expressing the test
operator. Modifying the proof of Berman and Paterson [2] for dealing with the
features O, Q, U and Self can be done in a rather straightforward way (see
our Lemmas 1, 3, 4 and their proofs). However, dealing with inverse roles (I)
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requires an advanced refinement, as regular sets over an alphabet consisting of
an atomic role and its inverse need not be ultimately periodic. The proof of our
Lemma 2 is more sophisticated than the proof of [6, Theorem 3.1.2].

In Section 4, we provide a result stating that using regular RBoxes and acyclic
TBoxes for ALCIOQUSelftrans does not help in expressing tests, but using
simple stratified TBoxes under the stratified semantics on the background allows
us to express every concept by another without tests. A further result states
that tests can be eliminated from TBoxes of the deterministic Horn fragment
of ALCreg. This suggests that tests can be eliminated from tractable1 Horn
fragments of PDL-like logics.

2 Preliminaries

This section provides notions and definitions related with syntax and semantics
of DLs [1]. We denote the sets of concept names, role names and individual
names by C, R+ and I, respectively. A concept name is an atomic concept, a
role name is an atomic role. Let R = R+ ∪R−, where R− = {r | r ∈ R+} and
r is called the inverse of r. We call elements of R basic roles. We distinguish a
subset of R+ whose elements are called simple roles. If r ∈ R+ is a simple role,
then r is also a simple role. The set Σ = C ∪R+ ∪ I is called the signature.

Let Φ ⊆ {I,O,Q,U ,Self }, where the symbols mean inverse roles, nominals,
qualified number restrictions, the universal role and local reflexivity of roles,
respectively. Roles and concepts of the DLs ALC, ALC+Φ, (ALC+Φ)trans and
(ALC+Φ)reg are defined as follows.

If L = ALC, then:

– if r ∈ R+, then r is a role of L,
– if A ∈ C, then A is a concept of L,
– > and ⊥ are concepts of L,
– if C and D are concepts of L and R is a role of L,

then ¬C, C tD, C uD, ∃R.C and ∀R.C are concepts of L.

If L = ALC+Φ, then additionally:

– if I ∈ Φ and R is a role of L, then R is a role of L,
– if O ∈ Φ and a ∈ I, then {a} is a concept of L,
– if Q ∈ Φ, n ∈ N, C is a concept of L, R is a simple role of L (i.e., a simple

role that is a role of L), then ≥nR.C and ≤nR.C are concepts of L,
– if U ∈ Φ, then U is a role of L,
– if Self ∈ Φ and r ∈ R+, then ∃r.Self is a concept of L.

If L = (ALC+Φ)trans, then additionally:

– ε is a role of L,
– if R and S are roles of L and are different from U ,

then R t S, R ◦ S and R∗ are roles of L.

1 I.e., with a PTime or lower data complexity.
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⊥I = ∅ >I = ∆I {a}I = {aI} (¬C)I = ∆I \ CI R
I

= (RI)−1

(C uD)I = CI ∩DI (C tD)I = CI ∪DI εI = {〈x, x〉 | x ∈ ∆I}
(∃R.C)I = {x ∈ ∆I | ∃y (〈x, y〉 ∈ RI ∧ y ∈ CI)} (R ◦ S)I = RI ◦ SI

(∀R.C)I = {x ∈ ∆I | ∀y (〈x, y〉 ∈ RI ⇒ y ∈ CI)} (R t S)I = RI ∪ SI

(∃R.Self )I = {x ∈ ∆I | 〈x, x〉 ∈ RI} (R∗)I = (RI)∗

(≥nR.C)I = {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n} (C?)I={〈x, x〉 |x ∈ CI}
(≤nR.C)I = {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ n} UI = ∆I ×∆I

Fig. 1. Semantics of complex concepts and complex roles.

If L = (ALC+Φ)reg, then additionally:

– if C is a concept of L, then C? is a role of L.
This constructor is called the test operator.

When Φ = ∅, we shorten the names (ALC+Φ)trans and (ALC+Φ)reg to
ALCtrans and ALCreg, respectively. Similarly, we write ALCIOQUSelftrans to
denote (ALC+Φ)trans with Φ = {I,O,Q,U ,Self }, and so on.

We denote atomic concepts by letters like A or B, atomic roles by letters like
r or s, and individual names by letters like a or b. We use letters C and D to
denote (arbitrary) concepts, R and S to denote (arbitrary) roles.

An interpretation is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set, called
the domain, and ·I is the interpretation function of I that maps each a ∈ I to
aI ∈ ∆I , each A ∈ C to a subset AI of ∆I , and each r ∈ R+ to a relation
rI ⊆ ∆I × ∆I . The function ·I is extended to interpret complex roles and
concepts as specified in Figure 1.

Concepts C and D are equivalent, denoted by C ≡ D, if CI = DI for all
interpretations I. Similarly, roles R and S are equivalent, denoted by R ≡ S, if
RI = SI for all interpretations I.

If L is a sublogic of L′ (like (ALC+Φ)trans is a sublogic of (ALC+Φ)reg),
then we say that L is weaker (or less expressive) than L′ (in expressing concepts)
if there exists a concept C of L′ that is not equivalent to any concept of L.

2.1 RBoxes

A finite set S of context-free production rules over R is called a context-free semi-
Thue system over R. It is symmetric if R → Sk . . . S1 belongs to S for every
production rule R → S1 . . . Sk of S.2 It is regular if the language consisting of
words derivable from any R ∈ R is regular. Assume that R is derivable from
itself.

2 If k = 0, then the RHS (right hand side) of each of the rules represents the empty
word ε.
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A role inclusion axiom (RIA) has the form S1 ◦ · · · ◦ Sk v R, where k ≥ 0
and S1, . . . , Sk, R are basic roles. If k = 0, then the LHS (left hand side) of the
inclusion stands for ε.

A (regular) RBox is a finite set R of RIAs such that S = {R → S1 . . . Sk |
(S1 ◦ · · · ◦ Sk v R) ∈ R} is a regular and symmetric semi-Thue system with the
property that only ε and words with length 1 can be derived from any simple
role R ∈ R. An RBox is allowed for a DL L if it uses inverse roles only when
they are allowed for L. Since it is undecidable whether a context-free semi-Thue
system is regular, we assume that each RBox R is accompanied by a mapping
πR that associates each R ∈ R with a regular expression πR(R) that generates
the set of words derivable from R using the rules of the corresponding semi-Thue
system.

If S1 ◦ · · · ◦ Sk v R is a RIA of R, then we call R an intensional predi-
cate specified by R. An interpretation I validates a RIA S1 ◦ · · · ◦ Sk v R if
(S1 ◦ · · · ◦ Sk)I ⊆ RI . It is a model of an RBox R if it validates all RIAs of R.

2.2 TBoxes

A TBox axiom (or terminological axiom) is either a general concept inclusion
(GCI) C v D or a concept equivalence C

.
= D. A concept equivalence A

.
= D

(where A ∈ C) is called a concept definition. A TBox is a finite set of TBox
axioms. It is allowed for a DL L if it uses only concepts of L. An interpretation
I validates C v D (resp. C

.
= D) if CI ⊆ DI (resp. CI = DI). It is a model of

a TBox T if it validates all axioms of T .
A TBox T is acyclic if there exist concept names A1, . . . , An such that T

consists of n axioms and the i-th axiom of T is of the form Ai
.
= C, C v Ai

or Ai v C, where C does not use the concept names Ai, . . . , An. The concept
names A1, . . . , An are called intensional predicates specified by T .

A TBox T is called a simple stratified TBox if there exists a partition
(T1, . . . , Tn) of T , called a stratification of T , such that, for each 1 ≤ i ≤ n,
Ti = {Ci,j v Ai,j | 1 ≤ j ≤ ni}, where each Ai,j is a concept name that does
not occur in T1, . . . , Ti−1 and may occur at the LHS of v in the axioms of Ti
only under the scope of u, t and ∃. The concept names Ai,j , for 1 ≤ i ≤ n and
1 ≤ j ≤ ni, are called intensional predicates specified by T .

Note that negation (¬) is allowed at the LHS of v in GCIs of a simple
stratified TBox, but it can be applied only to concepts that do not use the
predicates defined in the current or later strata.

3 The First Result

In this section, we prove the following theorem:

Theorem 1. There is no concept of ALCIOQUSelftrans equiv-
alent to the concept C = ∃((r ◦A?)∗ ◦ r ◦B? ◦ r ◦A?).> or
C = ∃((r ◦A?)∗ ◦ r ◦ (¬A)? ◦ r ◦A?).> of ALCreg.
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To prove this theorem we will use a family of interpretations Im =
〈∆Im , ·Im〉, m > 1, illustrated and specified as follows:

w1

A

r // · · · r //wm−1

A

r //wm

B

r //wm+1

A

r // · · · r //w2m−1

A

r //
w2m
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ai
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BB�������
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^^=====
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– ∆Im = {w−2m, w−2m+1, . . . , w2m},
– rIm = {〈wi, wi+1〉, 〈w2m, w−2m〉 | −2m ≤ i < 2m},
– sIm = ∅ for s ∈ R+ − {r},
– BIm = {w−2m, w−m, w0, wm, w2m},
– AIm = ∆Im −BIm ,
– CIm = ∅ for C ∈ C− {A,B},
– aIm = w2m for a ∈ I.

Note that |∆Im | = 4m + 1. Comparing Im with the structure Am used in [2],
note that the domain of Am has the size 2m+1, Am does not deal with nominals,
and only one propositional variable is interpreted in Am as a non-empty subset
of the domain.

Observe that, for C being one of the two concepts mentioned in Theorem 1,
w0 ∈ CIm but wm /∈ CIm . The structure of the proof of Theorem 1 is as follows.
Given any concept D of ALCIOQUSelftrans, we first transform it to a concept
D2 of ALCIOtrans over the signature {r,A,B, a} such that DIm2 = DIm for
all m > 1 (see Lemma 1). We then transform D2 to a concept D3 such that
DIm3 = DIm2 for all m > 1, the ∗ operator is used only for rn and rn for
some n (see Lemma 2), and for every subconcept ∃R.D′3 or ∀R.D′3 of D3, R is
of the form r, r, (rn)∗ or (rn)∗ for some n ≥ 1 (see Lemma 3). Next, we show
that there exists m > 1 such that w0 ∈ DIm3 ⇔ wm ∈ DIm3 (see Lemma 4).
Thus, for that m, CIm 6= DIm3 , and therefore, C is not equivalent to D (since
DIm3 = DIm2 = DIm).

Lemma 1. For any concept C of ALCIOQUSelftrans, there exists a concept
D of ALCIOtrans over the signature {r,A,B, a} such that DIm = CIm for all
m > 1.

Proof. Let D be the concept obtained from C by:

– replacing every subconcept
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• ≥nR.E, where n ≥ 2, by ⊥,
• ≥1R.E by ∃R.E,
• ≥0R.E by >,
• ≤nR.E, where n ≥ 1, by >,

• ≤0R.E by ∀R.¬E,
• ∃U.E by ∃r∗.E,
• ∀U.E by ∀r∗.E,
• ∃R.Self by ⊥,

– replacing every concept name different from A and B by ⊥,
– replacing every nominal {b}, where b 6= a, by {a},
– replacing every role name s different from r by ∅,
– repeatedly replacing every role ∅ tR or R t ∅ by R, every role ∅∗ by ε, and

every role ∅, ∅ ◦R or R ◦ ∅ by ∅,
– replacing every subconcept ∃∅.E by ⊥, and every ∀∅.E by >.

It is easy to see that D satisfies the properties mentioned in the lemma. �

We treat a word R1 . . . Rk over the alphabet {r, r} as the role R1 ◦ · · · ◦Rk,
and by Rn we denote the composition of n copies of R. Thus, R0 = ε. Conversely,
a role R without tests that uses only basic roles r and r is treated as a regular
expression over the alphabet {r, r} (where t stands for ∪, and ◦ for ;). For such
a role R, by L(R) we denote the regular language generated by R. For a word R
over the alphabet {r, r}, by |R| we denote the length of R (defined in the usual
way), and by ||R|| we denote the norm of R, which is defined as follows: ||ε|| = 0,
||r|| = 1, ||r|| = −1, ||RS|| = ||R||+ ||S||. Observe that, for words R and S over
the alphabet {r, r}, if ||R|| = ||S||, then RIm = SIm for all m > 1.

Lemma 2. Let R be a role without tests that uses only basic roles r and r. Then,
there exists a role S such that SIm = RIm for all m > 1 and the ∗ operator can
be used in S only for rn and rn for some n.

Proof. Since L(R) is a regular language, by the pumping lemma, there exists
an integer p > 0 such that every word from L(R) of length at least p can be
represented as xyz such that |y| > 0, |xy| ≤ p and xyiz ∈ L(R) for all i ≥ 0.

Let n = p(p − 1) · · · 2 · 1 and let L′ be the language obtained from L(R)
by deleting all words y such that there exists x ∈ L(R) with |x| < |y| and
||x|| = ||y||. By pumping(x, y, z) we denote the formula

xyz ∈ L′ ∧ |y| > 0 ∧ |xy| ≤ p ∧ ∀i ≥ 0 xyiz ∈ L(R).

Observe that, if w′ = xyz ∈ L′ and pumping(x, y, z) holds, then:

– ||y|| 6= 0 because otherwise we would have xz ∈ L(R), |xz| < |w′| and
||xz|| = ||w′||, which contradict the definition of L′;

– if ||y|| > 0 then, for all i ≥ 0, there exists u ∈ L(R) with ||u|| = ||w′(rn)i||;
– if ||y|| < 0 then, for all i ≥ 0, there exists u ∈ L(R) with ||u|| = ||w′(rn)i||.

Denote this observation by (?). For each integer j, 0 ≤ j < n, let

K+
j = {||xyz|| : pumping(x, y, z), n | (||xyz|| − j) and ||y|| > 0}

K−j = {||xyz|| : pumping(x, y, z), n | (||xyz|| − j) and ||y|| < 0}.
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For intuition, informally, we intend to define S to be the role⊔
S1 t ((

⊔
S2) ◦ (rn)∗) t ((

⊔
S3) ◦ (rn)∗), (1)

where S1, S2 and S3 are the finite sets of words over the alphabet {r, r} con-
structed as follows:

– S1 := {x ∈ L′ : |x| < p}, S2 := ∅, S3 := ∅;
– for each j from 0 to n− 1 do
• if K+

j 6= ∅ then

- if K+
j does not have a minimum then add rj to both S2 and S3;

- else: let k = minK+
j , if k ≥ 0 then S2 := S2 ∪ {rk} else S2 := S2 ∪

{(r)−k} (for this second case, notice that −k is a positive integer);
• if K−j 6= ∅ then

- if K−j does not have a maximum then add rj to both S2 and S3;

- else: let k = maxK−j , if k ≥ 0 then S3 := S3 ∪ {rk} else S3 :=

S3 ∪ {(r)−k}.

Formally, we define S to be the role obtained from (1) by deleting any i-th
main disjunct such that Si is empty, for i ∈ {1, 2, 3}. To prove that SIm = RIm

for all m > 1 it is sufficient to show that:

1. if w ∈ L(S), then there exists u ∈ L(R) such that ||u|| = ||w||,
2. if w ∈ L(R), then there exists u ∈ L(S) such that ||u|| = ||w||.

Consider the assertion (1) and let w ∈ L(S). There are the following cases:

– Case w ∈ S1: We have that w ∈ L′ ⊆ L(R). Just take u = w.
– Case w = rj(rn)h, K+

j 6= ∅ and K+
j does not have a minimum: Thus,

there exists w′ = xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| > 0 and
||w′|| = j + n · h′ for some h′ < h. By (?), there exists u ∈ L(R) such that
||u|| = ||w||.

– Case w = rk(rn)h, K+
j 6= ∅, k = minK+

j and k ≥ 0: Thus, there exists
w′ = xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| > 0 and ||w′|| = k.
By (?), there exists u ∈ L(R) such that ||u|| = ||w||.

– Case w = (r)−k(rn)h, K+
j 6= ∅, k = minK+

j and k < 0: Thus, there exists
xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| > 0 and ||w′|| = k. Notice
that ||(r)−k|| = k. By (?), there exists u ∈ L(R) such that ||u|| = ||w||.

– Case w = rj(rn)h, K−j 6= ∅ and K−j does not have a maximum: Thus,
there exists w′ = xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| < 0 and
||w′|| = j + n · h′ for some h′ > h. By (?), there exists u ∈ L(R) such that
||u|| = ||w||.

– The four previous cases are related to S2. The four remaining cases, which
are related to S3, can be dealt with in a similar way.

Consider the assertion (2) and let w ∈ L(R). There exists w′ ∈ L′ such that
||w′|| = ||w||. If |w′| < p, then w′ ∈ S1 and we can just take u = w′. Suppose
|w′| ≥ p. Thus, w′ can be represented as xyz such that pumping(x, y, z) holds.
There are the following cases:
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– Case ||y|| > 0: There exists 0 ≤ j < n such that ||w′|| ∈ K+
j and ||w′|| =

j + n · i for some integer i. Consider the following subcases.

• Case K+
j does not have a minimum: Thus, rj ∈ S2. Taking u = rj(rn)i,

we have that u ∈ L(S) and ||u|| = ||w′|| = ||w||.
• Case k = minK+

j and k ≥ 0: Thus, rk ∈ S2. Observe that ||w′|| ≥ k

and n | (||w′|| − k). Taking u = r||w
′||, we have that u ∈ L(S) and ||u|| =

||w′|| = ||w||.
• Case k = minK+

j and k < 0: Thus, (r)−k ∈ S2. Observe that ||w′|| ≥ k

and n | (||w′|| − k). Taking u = (r)−k(r||w
′||−k), we have that u ∈ L(S)

and ||u|| = ||w′|| = ||w||.
– The case when ||y|| < 0 is dual to the above case and can be dealt with

analogously. �

Let C denote the set of concepts C of ALCIOtrans over the signature
{r,A,B, a} such that, for every subconcept ∃R.D or ∀R.D of C, R is of the
form r, r, (rn)∗ or (rn)∗ for some n ≥ 1.

Lemma 3. For any concept C of ALCIOtrans over the signature {r,A,B, a},
there exists a concept D ∈ C such that DIm = CIm for all m > 1.

Proof. Let E be the concept obtained from C by replacing every role R by a role
S that satisfies the conditions mentioned in Lemma 2. We have EIm = CIm for
all m > 1. Then, let D be obtained from E by repeatedly applying the following
transformations:

∃(R t S).F ≡ ∃R.F t ∃R.F ∀(R t S).F ≡ ∀R.F u ∀R.F
∃(R ◦ S).F ≡ ∃R.∃S.F ∀(R ◦ S).F ≡ ∀R.∀S.F

∃ε.F ≡ F ∀ε.F ≡ F.

It is clear that D ∈ C and DIm = EIm = CIm for all m > 1. �

For a concept C ∈ C, by nr(C) we denote the number of occurrences of ∃r,
∃r, ∀r and ∀r in C.

Lemma 4. For any concept C ∈ C and integers m and k such that m > 1,
4m+ 1 is prime and nr(C) < m− |k|, we have wk ∈ CIm ⇔ wk+m ∈ CIm .

Proof. This proof is similar to the one of [2, Lemma 3]. The intuition is as follows:

– a concept C ′ can distinguish wk and wk+m only if nr(C ′) is large enough so
that the checking can recognize that the neighborhood of wk differs from the
corresponding neighborhood of wk+m, in particular, to recognize that the
first one contains wm+1 (resp. w−m−1) and the second one contains w−2m
(resp. w2m); the reason is that, since 4m + 1 is prime, either ((rn)∗)Im =
∆Im ×∆Im or 〈wi, wj〉 ∈ ((rn)∗)Im iff j = i;

– since nr(C) < m− |k|, C cannot distinguish wk and wk+m.
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Observe that −m < k < m. We prove this lemma by induction on the
structure of C. The cases when C is A, B, > or ⊥ are trivial. The cases when
C is of the form D u E or ∀R.D are reduced to the cases of ¬(¬D t ¬E) and
¬∃R.¬D, respectively.

– Case C = {a}: Since aIm = w2m, wk /∈ CIm and wk+m /∈ CIm .
– Case C = ¬D: We have nr(D) = nr(C). By induction, wk ∈ DIm ⇔ wk+m ∈
DIm , and hence, wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = DtE: We have nr(D) ≤ nr(C) and nr(E) ≤ nr(C). By induction,
wk ∈ DIm ⇔ wk+m ∈ DIm and wk ∈ EIm ⇔ wk+m ∈ EIm , which imply
that wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃r.D: We have nr(D) = nr(C) − 1 < m − |k| − 1 ≤ m − |k + 1|.
By induction, wk+1 ∈ DIm ⇔ wk+1+m ∈ DIm . Hence, wk ∈ (∃r.D)Im ⇔
wk+m ∈ (∃r.D)Im , which means wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃r.D: We have nr(D) = nr(C) − 1 < m − |k| − 1 ≤ m − |k − 1|.
By induction, wk−1 ∈ DIm ⇔ wk−1+m ∈ DIm . Similarly to the previous
case, this implies that wk ∈ (∃r.D)Im ⇔ wk+m ∈ (∃r.D)Im , which means
wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃(rn)∗.D and (4m+ 1)|n : We have 〈wi, wj〉 ∈ ((rn)∗)Im iff j = i.
Hence,

wk ∈ (∃(rn)∗.D)Im ⇔ wk ∈ DIm
wk+m ∈ (∃(rn)∗.D)Im ⇔ wk+m ∈ DIm .

We have nr(D) = nr(C). By induction, wk ∈ DIm ⇔ wk+m ∈ DIm . There-
fore, wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃(rn)∗.D and (4m + 1)6 | n : Since 4m + 1 is prime,
0, n, 2n, 3n, . . . , (4m)n have all 4m + 1 different residues modulo 4m + 1.
Hence, 〈wi, wj〉 ∈ ((rn)∗)Im for all wi, wj ∈ ∆Im , and

wk ∈ (∃(rn)∗.D)Im ⇔ wk+m ∈ (∃(rn)∗.D)Im ,

because they are both equivalent to that there exists wj ∈ DIm . Therefore,

wk ∈ CIm ⇔ wk+m ∈ CIm .

– The case C = ∃(rn)∗.D is similar to the two previous cases. �

We now recall and prove Theorem 1.

Theorem 1 There is no concept of ALCIOQUSelftrans equiv-
alent to the concept C = ∃((r ◦A?)∗ ◦ r ◦B? ◦ r ◦A?).> or
C = ∃((r ◦A?)∗ ◦ r ◦ (¬A)? ◦ r ◦A?).> of ALCreg.

Proof. For a contradiction, suppose D is a concept of ALCIOQUSelftrans equiv-
alent to C. By Lemma 1, there exists a conceptD2 ofALCIOtrans over the signa-
ture {r,A,B, a} such that DIm2 = DIm for all m > 1. By Lemma 3, there exists
a concept D3 ∈ C such that DIm3 = DIm2 for all m > 1. Let m be an integer such
that m > nr(D3) and 4m+ 1 is prime. By Lemma 4, w0 ∈ DIm3 ⇔ wm ∈ DIm3 .
This contradicts the facts that DIm3 = DIm2 = DIm = CIm , w0 ∈ CIm and
wm /∈ CIm . �
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Corollary 1. For any Φ ⊆ {I,O,Q,U ,Self }, (ALC+Φ)trans is weaker than
(ALC+Φ)reg in expressing concepts.

4 Dealing with RBoxes and TBoxes

The result of the previous section roughly states that, without using RBoxes and
TBoxes, it is hard to eliminate tests, at least it is impossible to eliminate tests
from ALCIOQUSelfreg without decreasing the expressive power. As expected,
using acyclic TBoxes that consist only of concept definitions do not help in
expressing tests. The first result of this section states that using RBoxes and
acyclic TBoxes that are defined more liberally as in Section 2 does not help either.
The second result states that, however, using simple stratified TBoxes under the
stratified semantics on the background, it is possible to express every concept by
another without tests. The third result states that tests can be eliminated from
the deterministic Horn fragment of ALCreg. Due to the lack of space, proofs of
these results are provided only in the long version [11] of the current paper.

4.1 The Case with RBoxes and Acyclic TBoxes

We say that a concept C is inexpressible in a DL L even when using RBoxes and
acyclic TBoxes if, for every concept D, every RBox R and every acyclic TBox
T of L such that the intensional predicates specified by R and T do not occur
in C, there exists a model I of R and T such that CI 6= DI .

Proposition 1. The concept C = ∃((r ◦A?)∗ ◦ r ◦B? ◦ r ◦A?).> or
C = ∃((r ◦A?)∗ ◦ r ◦ (¬A)? ◦ r ◦A?).> of ALCreg is inexpressible in
ALCIOQUSelftrans even when using RBoxes and acyclic TBoxes.

4.2 Eliminating Tests from Concepts by Simple Stratified TBoxes

Let T be a simple stratified TBox. An interpretation I is called a standard model
of T (under the stratified semantics) if there exist a partition (T1, . . . , Tn) of T
and interpretations J0, . . . ,Jn such that:

– Ti = {Ci,j v Ai,j | 1 ≤ j ≤ ni} for 1 ≤ i ≤ n,
– Jn = I and ∆Ji = ∆I for all 0 ≤ i < n,
– xJ0 = xI for all x ∈ Σ − {Ai,j | 1 ≤ i ≤ n and 1 ≤ j ≤ ni},
– for each 1 ≤ i ≤ n, xJi = xJi−1 for all x ∈ Σ−{Ai′,j | i ≤ i′ ≤ n, 1 ≤ j ≤ ni′}

and AJi
i,j , for 1 ≤ j ≤ ni, are the smallest subsets of∆Ji such that AJi

i,j = CJi
i,j .

It can be shown that, for every interpretation J0, there exists a unique standard
model I of T such that ∆I = ∆J0 and xI = xJ0 for all x ∈ Σ−{Ai,j | 1 ≤ i ≤ n
and 1 ≤ j ≤ ni}. We call it the standard model of T based on J0.

In what follows, let Φ ⊆ {I,O,Q,U ,Self } (in general, extending Φ with
other features does not affect Proposition 2 given below). Let C be a concept of
(ALC+Φ)reg, D a concept and T a simple stratified TBox of (ALC+Φ)trans such

180



The Influence of the Test Operator on the Expressive Power

that the intensional predicates specified by T do not occur in C. We say that
C is expressed by D and T under the stratified semantics if, for every standard
model I of T , CI = DI .

Proposition 2. Every concept of (ALC+Φ)reg can be expressed by a concept
and a simple stratified TBox of (ALC+Φ)trans under the stratified semantics.

4.3 Eliminating Tests from Horn TBoxes

The previous subsection deals with eliminating tests from a standing alone con-
cept by using a simple stratified TBox under the stratified semantics. Roughly
speaking, it suggests that tests in PDL-like roles can be eliminated by using
fixpoints outside roles. The result of this subsection states that tests can be
eliminated from TBoxes of the deterministic Horn fragment of ALCreg. This is
possible because the traditional semantics of such TBoxes has a fixpoint char-
acterization.

A role can be treated as a regular expression over the alphabet R+∪{C? | C is
a concept}, where t and ◦ stand for ∪ and semicolon, respectively. Conversely,
a word over this alphabet can be treated as a role. Given a role R, let L(R)
denote the regular language generated by R and let ∀∃R.C be a new concept
constructor whose semantics in an interpretation I is specified as follows:

(∀∃R.C)I =
⋂
{(∀S.∃S′.C)I | SS′ ∈ L(R)}.

Observe that, if R ∈ R+, then ∀∃R.C ≡ ∀R.C u ∃R.C.
The deterministic Horn fragment of ALCreg, denoted by D-Horn-ALCreg,

is designed with the intention to be (probably) the most expressive fragment
of ALCreg that has a PTime data complexity (under the traditional semantics).

A D-Horn-ALCreg TBox axiom is an expression of the form Cl v Cr, where
Cl and Cr are concepts defined by the following BNF grammar, with A ∈ C and
s ∈ R+:

Cl ::= > | A | Cl u Cl | Cl t Cl | ∃Rl.Cl | ∀∃Rl.Cl (2)

Rl ::= s | Rl ◦Rl | Rl tRl | R∗l | Cl? (3)

Cr ::= > | ⊥ | A | ¬Cl | Cr u Cr | ¬Cl t Cr | ∃Rr.Cr | ∀Rl.Cr (4)

Rr ::= s | Rr ◦Rr | Cr? (5)

A D-Horn-ALCreg TBox is a finite set of D-Horn-ALCreg TBox axioms.

Remark 1. A (reduced) ABox is a finite set of assertions of the form A(a), ¬A(a)
or r(a, b) (where A ∈ C and r ∈ R+). A knowledge base in D-Horn-ALCreg is a
pair 〈T ,A〉 consisting of a D-Horn-ALCreg TBox T and an ABox A. The notion
of whether an interpretation is a model of an ABox or a knowledge base is defined
in the usual way. A knowledge base is satisfiable if it has a model. It can be
proved that checking whether a given knowledge base 〈T ,A〉 in D-Horn-ALCreg
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is satisfiable is solvable in polynomial time in the size of the ABox A.3 That
is, D-Horn-ALCreg has a PTime data complexity. If ∀∃ in (2) is replaced by ∀,
then instead of D-Horn-ALCreg we obtain the general Horn fragment of ALCreg
with a NP-hard data complexity for the satisfiability problem.4 �

The following theorem states that tests can be eliminated from
D-Horn-ALCreg.

Theorem 2. For every D-Horn-ALCreg TBox T over a signature Σ, there ex-
ists a D-Horn-ALCreg TBox T ′ without tests over a signature Σ′ ⊇ Σ such
that:

1. for every model I of T , there exists a model I ′ of T ′ such that ∆I = ∆I
′

and xI = xI
′

for all x ∈ Σ,

2. for every model I ′ of T ′, the interpretation I over Σ specified by ∆I = ∆I
′

and xI = xI
′

for all x ∈ Σ is a model of T .

5 Conclusions

Generalizing the result and method of Berman and Paterson [2], we have proved
that there is a concept of ALCreg that is not equivalent to any concept of the
DL that extends ALCtrans with inverse roles, nominals, qualified number re-
strictions, the universal role and local reflexivity of roles. This implies, among
others, that CPDL (Converse-PDL) is more expressive than Test-Free CPDL,
and GCPDL (Graded Converse-PDL) is more expressive than Test-Free GCPDL.
Extending our result by applying the technique of [2], it can also be proved that
CPDLn+1 (CPDL with at most n+1 levels of nesting of tests) is more expressive
than CPDLn, and similarly for GCPDL.

The other results of this paper state that, on the other hand, using simple
stratified TBoxes under the stratified semantics on the background, it is possi-
ble to express every concept by another without tests. Furthermore, tests can
be eliminated from the deterministic Horn fragment D-Horn-ALCreg of ALCreg.
If one extends D-Horn-ALCreg with other features (e.g., I, O, Q, U and Self )
appropriately so that the resulting language still has a PTime data complexity
(cf. Horn-SHIQ [9], Horn-SROIQ [15] and Horn-DL [14]), then our elimination
technique (presented in the long version [11] of the current paper) can still be
applied. Besides, it is hard to define a fragment of ALCreg that is more expressive
than D-Horn-ALCreg and still has a PTime data complexity under the tradi-
tional semantics. So, we have a tendency to claim that tests can be eliminated
from tractable Horn fragments of PDL-like logics.

3 A more general result was proved in [13] for D-Horn-CPDLreg, which extends
D-Horn-ALCreg with inverse roles and regular RBoxes.

4 The hardness was shown for the general Horn fragment of ALC [12].
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Abstract. In this paper guinea pig classification using deep learning
imaging methods was performed on the Nvidia DIGITS 6. Models capa-
ble of distinguishing skinny, abyssinian and crested fur types were cre-
ated in the process. To increase the classification accuracy empty images
(with only the background) were added to the data set. Upon evaluation,
the created model recognized the animals correctly from images taken in
various household backgrounds.

Keywords: deep learning · animal recognition · robotics

1 Introduction

Robotic systems are nowadays increasingly appearing in various industries. This
trend is also represented in various animal care facilities like farms, daries, shel-
ters [1,2] and more. New robotic systems are created, that fill the public space as
well as connect to the personal home environment. With the growing need of au-
tomating work more software and hardware platforms are employed to increase
the ease of life.

In this work, deep learning techniques were utilized to create a classification
model of guinea pigs in different home environments (living room, office, corridor,
etc.), to explore the possibilities of bringing such systems into the world of
household animals. Creating such a model was important, to understand how
machine learning algorithms would adapt to live creatures, while keeping a high
accuracy of the prediction and short inference times needed in robotics.

To address these problems GoogLeNet was used. The pre-trained model con-
nects various techniques known from Deep Learning like convolutions, pooling,
adding softmax and more [3], to distinguish all the objects that are present in
the image. It implements so called Inception modules, that range from 245 filters
to 1024 in top inception modules. The consequence of this is the possibility to
remove fully connected layers on top completly [4].

Gathered results, will perform as a base for future projects of animal social
and care systems. Example appliances could include:

– automatic feeding and cleaning systems,
– automatic pet door management,
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– illness and status detectors,

– or mobile, home robots allowing the owners to check on their pets using
mobile software.

1.1 Related Works

Related works about animal classification were published in regard of wild animal
monitoring [5]. The authors used convolutional neural networks to create a model
from the Serengeti National Park camera-trap database snapshot containing
179683 images. Then they tested the set using popular topologies like AlexNet,
VGGNet, GoogLeNet and finally ResNets.

Similarly convolutional neural networks were used to recognize 20 species
common in North America [6] over a 14346 image training data set. The im-
agery data from motion triggered cameras was automatically segmented using
the graph-cut algorithm.

Another approach was taken for classifying different animals for automated
species recognition [7]. The authors enforced ScSPM (Sparse coding Spatial
Pyramid Matching) [8] to extract and classify animal species over a 7 thou-
sand image data set. After that multi-class pre-trained SVMs were applied to
classify global features of animal species.

All mentioned authors follow a similar pattern when using machine learning
for image classification, but none of them concern household animals. All pre-
sented projects face different problems from those, that could be encountered in
a safe, indoor environment. Hence, different data acquisition techniques had to
be used.

1.2 Nvidia DIGITS

DIGITS (Nvidia Deep Learning GPU Training System) was used in this project.
It is an open-source project for training deep neural networks (DNNs). The soft-
ware simplifies common deep learning tasks such as managing data, designing
and training neural networks and monitoring performance in real time. [9, 10].

The solution comes with pre-trained models (but it allows usage of self created
ones) for example:

– GoogLeNet (Inception),

– AlexNet,

– UNET,

– and more.

In this paper GoogLeNet was used as the model of choice.
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2 Background / Formulation

Deep Learning (DL) is a machine learning technique growing in popularity over
the past few years. It is connected to the fact that it becomes more useful than
before thanks to the amount of available training data and advances in computer
hardware/software [11]. It allows to create models that perform the following
tasks:

– computer vision,
– speech recognition,
– natural language processing,
– recommendation systems,
– and more.

To understand how DL works, we should first define what learning actually
is. A simple definition was provided by Mitchell [12] as follows:

Definition 1. A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its performance at
task in T, as measured by P, improves with experience E.

This can apply to different kind of tasks, performance measures and expe-
riences. In this paper we will focus on the task of object classification using
computer vision.

Classification of objects is based on describing to what category a given input
belongs. This can be used in robotics for tasks like delivering foods and drinks
to clients by the Willow Garage PR2 robot [13]. The general rule is to create an
algorithm that produces the funcion: f : IRn → {1, ..., k}, where the category is
assigned when y = f(x) for input x.

This paper focused on supervised learning, which means that all data set
items were associated with a label (each guinea pig image was added to a specific
category). In practice, it means that the algorithm knew how to classify certain
objects with similary properties from the start.

2.1 Machine learning and neural networks

Articial neural networks are a subgroup of algirthms that are used for machine
learning. The main idea behind them is creating artificial neurons, wchich are
implemented as a non-linear function over a linear combination of input features.
Each neuron generally consist of one to multiple inputs with wages, activation
function, bias and one output.

In neural network algorithms we can tweak several parameters, that will
greately impact the final output: number of epochs, learning rate, solver type
and many more.

– Epoch - one complete pass of the data in the data set. The amount of epochs
should be determined through tests. Small number of epochs often leads to
bad predictions, while a big number leads to overfitting.
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– Learning rate - describes the rate at which the network abandons old
beliefs, for new ones to take their place. The value must be correct, values
that are too big or too small may lead to bad predictions.

– Solver type - contains information about how the weights are updated for
the network. This project used Stochastic Gradient Descent (SGD) [14] and
Adam.

When working with machine learning algorithms, we can encounter two prob-
lems, that are the result of our actions - underfitting and overfitting.

Overfitting takes place, when the model is training the data too well. That
happens when noise, details or random fluctuations are taken into consideration,
which negatively impacts the performance of the model on any new data. In such
case, the parameters should be adjusted to constrain the amount of detail that
the model learns.

Underfitting on the other hand is usually the result of big learning rates.
The model becomes too general, which in the end gives bad results for object
classification. To provide a solution to the problem, usually adjusting parameters
or using different ML algorithms should be used.

2.2 Optimizers used in the project

Stochastic Gradient Descent (SGD) is one of the most popular algorithms
in DL. It is an extension to the first-order optimization algorithm: Gradient
Descent. In SGD, the gradient is an expectation, which may be estimated even
using a small set of samples. SGD has proven to work very well with deep learning
models. While it doesn’t guarantee finding the local minimum, it usually finds
a very low value of the cost funcion quickly.

The estimate from the example x minibatch m′ can be written as follows:

g = 1
m′Oθ

∑m′

i=1 L
(
xi, yi, θ

)
, where the loss is L (x, y, θ) = − log p (y|x; θ) for

each example.

Adam is an optimization algorithm that is used for iteratively updating the net-
work weights based on the training data. The algorithm combines two extensions
of the SGD: Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square
Propagation(RMSProp). Instead of adapting the parameter learning rates based
on the average first moment (the mean) as in RMSProp, Adam also makes use
of the average of the second moments of the gradients (the uncentered variance).

2.3 Convolutional Networks

Convolutional Neural Networks (CNNs) are used for data, that has a known
grid-like topology. The name comes from the fact, that it employs an operation
called convolution, which is a kind of linear operation (instead of general matrix
multiplication).

Convolutions are operations on two functions of a real value argument. The
convolution can be represented as s(t) = (x ∗w)(t), where x is a single input, w
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is a valid probability density function and t is time. It leverages three important
ideas that can improve machine learning systems: sparse interactions, parameter
sharing and equivariant representations [11]. The output of the function is often
called the feature map.

Each layer of CNNs consists of three distinguishable stages: producing sets of
linear activations, detector stage and pooling. Pooling is a method that instead
of giving the output of the neural net, provides a summary statistic of all nearby
outputs. This is especially helpful, if images of variable size are given as an input.
Moreover it helps with feature extraction (as it is known, neural networks loose
data over time, with each layer) from convolutional layers.

2.4 GoogLeNet

GoogLeNet was introduced at ILSVRC 2014 competition, where it took first
place with a result of 6.67% error rate (which is close to human level perfor-
mance). The architecture consisted of 22 layers (27 with pooling) of the Deep
CNN reducing the number of parameters to 4 million (60 million compared from
AlexNet).

The main innovation between normal CNNs and GoogLeNet was the imple-
mentation of Inception modules. The modules ran several small convolutions in
order to reduce the number of parameters. Moreover batch normalization, RM-
Sprop and image distortions were used. Data from the previous layer was run
over four 1x1 convolutions, one 3x3 convolution and one 5x5 convolution, with
a 3x3 pooling added simultaneously. You can see the network presented on the
graph on Fig. 1.

The Inception module 3x3 and 5x5 condolutions ratio increases as higher
layers are achieved. This is due to the fact, that stacking Inception modules on
top of each other produces an effect where as features of higher abstraction are
captured by higher layers, their spatial concentration is expected to decrease [15].

The highest pro of the network is high inference speeds. GoogLeNet was
designed to be computational efficient, so that it could be run on devices with
limited computational power or low-memory footprint, making it a good choice
for robotics and its applications.

2.5 Deep Learning downsides

While Deep Learning is performing well for many cases of image classification, it
still has disadvantages, that should be considered when picking the right method.
The most known cons of the method are:

– small data sets can produce bad results,
– long calculation time is a big factor,
– debugging is extremly hard,
– picking good neural net parameters takes practice,
– it’s hard to gather the logic behind results.

With recent advantages in Deep Learning some of the factors are less limiting.
The learning duration for example, is being decreased using parallellization.
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Fig. 1. GoogLeNet 22 Convolutional Neural Network architecture featuring inception
layers.

3 Data Acquisition

The data was collected by recording a square video of each guinea pig over a
period of 30 seconds in different environments and then extracting frames as an
image. Each frame was then lowered in resolution to 256x256 px in order to fit
GoogLeNet requirements. Example images taken from the data set can be seen
in Fig. 2.

The entire data set consisted of 1098 images. From the initial data set - 25%
(274) images were excluded for model validation and 10% (110) were excluded to
calculate the test data loss and accuracy. Moreover 32 photos in different envi-
ronments (animal cage, sleepingroom, guestroom, balcony and bathroom) were
taken after the training to test the model behaviour. The visual representation
of the training data set can be seen on Fig. 3.

To ensure good accuracy of the model, images for each guinea pig had to
cover the whole anatomy of the animal. To achieve that, the following camera
positions were covered:

– facing the mouth,
– both sides front and back facing,
– rear view of the animal,
– top view with different distances to the guinea pig.

Moreover empty images (without guinea pigs) were added with the same
room backgrounds where previous photos were taken, to increase classification
accuracy in distinguishing wanted objects. This set contained 191 images mixed
with the guinea pig data set.

Guinea pigs phenotype highly depends on their breed. Therefore three different
subjects of diverese ages were used in the experiment:
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Fig. 2. Example images for crested, abyssinian and skinny guinea pigs from the pro-
vided data set.

– Fifi (4 years, abyssinian),

– Rey (2 years, crested),

– Asajj (2 years, skinny).

Using the data, four labels were produced and assigned to the following neural
network classes, which provided a base for further classification:

– None - when there is no guinea pig in the image,

– Abyssinian, Crested and Skinny - fur type.

Fig. 3. Data representation in the training data set. Category labels from left: crested,
skinny, abyssinian, none.
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Finally the data was processed by the neural network, on different settings.
Two parameters were changed during testing: learning rate and optimizer used,
while the epoch count remained at 15. The settings can be seen below:

1. First test:
– Epoch count: 15,
– Learning rate: 0.001 with fixed policy,
– Optimizer: Stochastic Gradient Descent.

2. Second test:
– Epoch count: 15,
– Learning rate: 0.001 with step down policy,
– Optimizer: Adam.

3. Third test:
– Epoch count: 15,
– Learning rate: 0.01 with step down policy,
– Optimizer: Stochastic Gradient Descent.

4 Results

Final results for classification models were gathered from the neural networks
described in the previous section.

Performing the first test gave good results, although overfitting was discov-
ered around epoch 13, with accuracy of 98,95% and loss of 0.04. Later epochs
drastically fell in value, producing an accuracy of 65,63% and loss of 1.03. Over-
fitting appeared because of the low learning rate from the very start, which
should have been avoided.

Second test, using Adam as the solver type, provided the best results. The
final acurracy and loss after 15 epochs were 99.31% and 0.04 respectfully. A
different training rate (0.01) was also tested, but it didn’t provide any useful
results.

The final test gave good results, but not satisfactory - it produced an accuracy
of 87,15% and loss of 0.32. That was not enough to be used for the guinea pig
classification system (the predictions would give false-positives).

The final classification model that was selected for further use and testing,
was taken from test number two, using the Adam optimizer. Over 15 epochs
with a learning rate of 0.001 ran on the GoogLeNet model on Nvidia DIGITS,
it has provided the best results. Using more epochs and a different learning rate
was tested afterwards, but it led to overfitting of the data. You can see the final
result on Fig. 4.

4.1 Manual image test results

After the model was created, a series of tests were performed to check, if the
inference is correct. The first set of tests consisted of images from the previously
gathered data set. The prediction was always right for provided images, with the
value between 70%-95%. You can see an example result on Fig. 5.
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Fig. 4. Graph showing the final accuracy (orange) and loss (green) of the second test
running Adam optimizer.

Moreover, as soon as acquiring enough information from predictions was
done, tests on new images were performed (different environments, same guinea
pigs) giving satisfactory results - guinea pigs were classified correctly on each
provided picture containing the animal. Example result one such case can be
seen on Fig. 6.

One failed prediction was encountered, when a picture of a background with
a cat was used. The cat was badly classified as an abyssinian guinea pig. This
happened due to the fact, that the data set didn’t contain images that were in
any case similar to the cat picture used. More cases like that can be produced
with the provided model, as it was trained on specific data in the first place.

Fig. 5. Example correct prediction results (79.53%) using previously captured images
in selected environments.
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Fig. 6. Example correct prediction results (94.0%) using post-model captured images
in animal cage environment.

5 Conclusion / Future work

Modern robotics highly depend on sensor readings of the surrounding environ-
ment. They often use camera input as one of the parameters to perceive the
world. Due to that, imaging methods for decision-making were introduced.

In this paper Deep Learning was implemented for guinea pig classification
in order to explore the possibilities of introducing household animal care using
robotics and automation, while keeping them safe.

The provided GoogLeNet model from Nvidia DIGITS has proven successful
in identifying the guinea pigs in different environments, even when taking images
that weren’t originally added to the data set. Some errors were observed (false-
positives) when no guinea pigs were present in the tested image. The model
will behave poorly when other animals are present in the pictures, since the
classification was based purely on guinea pigs.

Increasing the accuracy of the model, can greately improve the robot-animal
interactions, allowing to tailor behaviours to specific beings. This could be achieved
by using modifying the learning rate, using more images, creating more labels or
finally using a different optimizer or pre-built model. There are many possible
variables to take into consideration, when building a model for a defined task.

The guinea pig classification model after building with GoogLeNet, was able
to provide results almost instantly. This is important, if used for robotics, because
while waiting for an action, the environment can change quite drasticly. More-
over, such model are built to be deployed on an autonomous platform (Raspberry,
Jetson TX2 or any other), so the memory usage will be limited, increasing the
inference calculation time.

The created model proves that guinea pig fur recognition for robotic systems
is possible. The project gave good results - the created model recognized the
animals correctly from images taken in various household backgrounds. The
prediction was acquired fast making the inference time low. This is especially
important for robotic systems that deal with live animals, because the reaction
times need to be rapid.
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Future work might include robotic systems that monitor the state of specific
animals, adjust food distribution depending on image readings or alert when the
guinea pig suffers from any kind of illness.

Moreover, different types of models can be employed to see, which one fits
the needs the most. The project shouldn’t be limited to GoogLeNet.
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Abstract. One of the most significant achievements in machine learning
is the development of Ensemble techniques, which gave a powerful tool
for tuning classifiers. The most popular methods are Random Forests,
Bagging and Boosting. In this paper we present a novel ensemble model,
named Random Granular Reflections. This algorithm creates an ensem-
ble of homogenous granular decision systems. In each iteration of learning
process, the training decision system is covered by random homogenous
granules and the granular reflection is created, which takes part in clas-
sification process. Seeing the initial results - our approach is promising
and seems to be comparable with the selected popular models.

Keywords: Random Granular Reflections, Homogenous Granulation,
CSG Classifier, Ensemble Model, Rough Sets, Decision Systems, Classi-
fication

1 Introduction

This paper is about the application of granular rough computing in new Ensem-
ble model. The techique that we use to prepare the data for each iteration of
learning process was inspired by Polkowski standard granulation - see [16]. This
method was the beginning of many new algorithms with diverse applications,
for instance in Artiemjew [1]-[3], Polkowski [15]–[20], Polkowski and Artiemjew
[21] we have the presentation of standard granulation, concept dependent and
layered granulation in the context of training data size reduction, missing values
absorbtion and usage in the classification processes.

In our recent works - see [24] and [25] - we have developed a new granula-
tion technique - homogenous granulation (see. detail decription and toy example
in Sect. 2). This approximation technique is based on creation of groups of
r-indiscernible objects around each training object by lowering the ratio of in-
discernibility until the granules contain only homogoneus objects in the sense
of their decision class. In this method - what distinguishes it from previously
studied - there is no need to estimate optimal parameter of approximation. The
r-indiscernibility level for each central training object is formed in automatic
way and depends on the homogeneity in decision classes.
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The ensemble scheme of classification is really effective in many contexts, for
instance in rough set methods the exemplary succesfull applications can be found
in [6–8, 26, 29]. The recently developed approximation technique - homogenous
granulation - gave us motivation to check it in ensemble model creation. Addi-
tionally to Random Forests, Bagging and Boosting we propose a novel algorithm
- Ensemble of Random Granular Reflections. The method is based on represen-
tation of original training system by its granular reflections formed from random
homogenous granules, which covers it in each iteration of learning process. Each
granular reflection of training decision system is additionally reduced in size in
comparison with original training decision system. The granular reflection of
each iteration represents the internal knowledge from original system using the
random coverage. The level of data reduction is up to 50 per cent of original
data.

In this work we have first sight into this method and for simplicity we treat all
attributes as cathegorical. For experiments we performed 50 iterations of learning
process with use of CSG classifier - the classifier based on simple granules of
knowledge - see [4].

We have compared our new method with selected ensemble models - see Sect.
3.

The rest of the work contains the following content. In Sect. 2 we have in-
troduction to homogenous granulation algorithm. In Sect 3 we have brief intro-
duction to selected Ensemble models. In Sect. 4 we present our novel ensemblme
model - The Random Granular Reflections technique. In Sect. 5 we show the
results of the experiments, and we conclude the paper in Sect. 6.

2 Homogenous granulation

Detailed theoretical introduction to rough inclusions is available in Polkowski
[15] – [20].

For given objects u, v from training decision system, r granulation radius,
and A the set of attributes, the standard rough inclusion µ is defined as

µ(v, u, r)⇔ |IND(u, v)|
|A|

≥ r (1)

where

IND(u, v) = {a ∈ A : a(u) = a(v)}, (2)

The homogenous granules are formed as follows,

ghomogenous
ru = {v ∈ U : |gcdru |−|gru | == 0, for minimal ru fulfills the equation}

where

gcdru = {v ∈ U :
IND(u, v)

|A|
≤ ru AND d(u) == d(v)}
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and

gru = {v ∈ U :
IND(u, v)

|A|
≤ ru}

ru = { 0

|A|
,

1

|A|
, ...,
|A|
|A|
}

2.1 The process of training system covering

In the process of covering - the objects from training system are covered based
on chosen strategy. We use simple random choice because it is the most effective
method among studied ones - see [21]).

The last step of the granulation process is shown in the next section.

2.2 Granular reflections

In this step we formed the granular reflections of the original training sys-
tem based on the granules from the found coverage (the coverage is the set of
granules, which cover the universe of traning objects completly). Each granule
g ∈ COV (U, µ, r) from the coverage is finally represented by single object formed
using the Majority Voting (MV ) strategy (choice the most common values).

{MV ({a(u) : u ∈ g}) : a ∈ A ∪ {d}} (3)

The granular reflection of the decision system D = (U,A, d) is the decision
system (COV (U, µ, r), the set of objects formed from granules.

v ∈ gcdr (u) if and only if µ(v, u, r) and (d(u) = d(v)) (4)

for a given rough (weak) inclusion µ.

Toy example of described granulation method is presented in the next section.

2.3 Toy example of homogenous granulation

Considering training decision system from Tab. 1.

Homogenous granules for all training objects:

g0.75(u1) = (u1)

g1(u2) = (u2)

g1(u3) = (u3)

g1(u4) = (u4)
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Table 1. Training data system (Utrn, A, d), (a sample from Quinlan data set [23])

a1 a2 a3 a4 d

u1 sunny hot high strong no
u2 rain cool normal strong no
u3 overcast cool normal strong yes
u4 sunny mild high weak no
u5 sunny cool normal weak yes
u6 rain mild normal weak yes
u7 overcast hot high weak yes
u8 sunny mild normal strong yes
u9 overcast mild high strong yes
u10 rain mild high weak yes
u11 overcast hot normal weak yes

g0.75(u5) = (u5)

g0.75(u6) = (u6, u10)

g0.75(u7) = (u7, u11)

g0.75(u8) = (u8)

g0.75(u9) = (u9)

g1(u10) = (u10)

g0.5(u11) = (u3, u5, u6, u7, u11)

Granules covering training system by random choice:

g0.75(u1) = (u1)

g1(u2) = (u2)

g1(u4) = (u4)

g0.75(u6) = (u6, u10)

g0.75(u7) = (u7, u11)

g0.75(u8) = (u8)

g0.75(u9) = (u9)

g0.5(u11) = (u3, u5, u6, u7, u11)

Granular decision system from above granules is as follows:
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Table 2. Granular decision system formed from Covering granules

g0.75(u1) sunny hot high strong no
g1(u2) rain cool normal strong no
g1(u4) sunny mild high weak no

g0.75(u6) rain mild normal weak yes
g0.75(u7) overcast hot high weak yes
g0.75(u8) sunny mild normal strong yes
g0.75(u9) overcast mild high strong yes
g0.5(u11) overcast cool normal weak yes

In the next section there is a brief description of the selected popular En-
semble models.

3 Selected popular ensemble models

There are many techniques in the family of Enssemble models. One of the most
popular are Random Forests, Bagging and Boosting - see [31]. Short description
of mentioned models is to be found below.

Bootstrap Ensembles - Pure Bagging: It is the random committee of bootstraps
[33]. It is a method in which the original decision system - the basic knowledge
- is split into (TRN) training data set, and (TSTvalid) validation test data set.
And from the TRN system, for a fixed number of iterations, we form a new
Training systems (NewTRN) by random choice with returning of card{TRN}
objects. In all iterations we classify the TRNvalid system in two ways: the first
based on the actual NewTRN system and the second based on the committee
of all performed classifications. In the committee majority voting is performed
and the ties are resolved randomly.

Bagging based on Arcing - Bagging: The main difference between this method
and Bootstrap Ensembles is that the TRN is split into two data sets NewTRN
and NewTST - see [5] and [27]. This split is based on Bootstraps where weights
determine the probability with which objects are assigned to NewTRN set.
Initially weights are equal, but after first classification of the NewTST using
NewTRN weights are lowered for well-classified objects. The next step is normal-
ization of weights. This algorithm which shows forming of Bootstraps is called
Arcing. Classifying the TSTvalid with NewTRN in a single iteration as the
committee of classifiers is the last step of this method. In Arcing weights are
modified with the factor equal to 1−Accuracy

Accuracy .

Boosting based on Ada-Boost with Monte Carlo split: Classification method used
in this algorithm is similar to the previously described with the difference that
the NewTRN and NewTST are formed in a different way - see [9], [28] and [34].
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Objects for NewTRN are chosen based on weights and fixed ratio is used to split
the TRN data set. Previous experiments show that split ratio equal to 0.6 is
optimal, as it is close to the approximate size of the distinguishable objects in
the bootstraps. Other parts of this algorithm works like in the previous one.

Random forests: In this model random trees are created based on randomly
chosen attributes and then they take part in the classification process in each
iteration. This method can be usefull in other classifiers using the random set
of attributes before usage in classification process. The number of attributes,
which should be chosen depending on internal data logic, have to be found in an
experimental way.

In the following section we present introduction to our new Ensemble method.

4 Ensemble of Random Granular Reflections

In each iteration of our new ensemble model we have used a different homoge-
nous granular decision system formed from random homogenous granules, which
covers the original training system. The visualization of the model can be found
in Fig. 1.

The time comlexity of this model is quadratic. The most time consuming
part is granulation, which main component takes ((no. of obj.)2) ∗ (no. of att.)
operations.

Fig. 1. Ensemble of Random Granular Reflections
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5 Experimental Session

To perform initial experiments we used the australian credit data set from UCI
Machine Learning Repository [30]. We have run our algorithm with 50 itera-
tions of learning for each tested Ensemble model. As a reference point we have
chosen Committee of Bootstraps (Pure Bagging) [33], Boosting based on Arcing
(Bagging) [5], [27], and Ada-Boost with Monte Carlo split [9], [28] and [34] - for
details see Sect. 3. As a reference classifier we used CSG classifier [4] with radius
0.5. The effectiveness is evaluated by percentage of properly classified objects -
the accuracy.

The first result of Random Granular Reflections technique for chosen data set
is presented in Fig. 2. The results of the other popular ensemble models are to be
found in Figs. 3, 4 and 5. For selected data set our new technique outperformed
the other checked methods.

Fig. 2. Ensemble of Random Granular Reflections for australian credit dataset - the
accuracy of classification - 5 times 50 iterations of learning
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Fig. 3. Bagging ensemble model for australian credit dataset - the accuracy of classi-
fication - 5 times 50 iterations of learning

Fig. 4. AdaBoost ensemble model for australian credit dataset - the accuracy of clas-
sification - 5 times 50 iterations of learning
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Fig. 5. Pure Bagging ensemble model for australian credit dataset - the accuracy of
classification - 5 times 50 iterations of learning

6 Conclusions

The results of the experiments show the effectivenes of our new technique. The
Ensemble of Random Granular Reflections turn out to be competitive with other
techniqes like Bagging and Boosting. Despite promising initial results, much is
left to be done to evaluate the effectiveness and set of applications of this new
method.

In the future works we have a plan to extensively check the effectiveness
of new model and we are planning to apply the other types of granules in the
proposed ensemble model.
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Abstract

In the article, the emphasis is put on the modern artificial neural network (ANN) struc-
ture, which in the literature is known as a deep neural network. A network includes more
than one hidden layer and comprises many standard modules with ReLu nonlinear activa-
tion function. A learning algorithm includes two standard steps, forward and backward,
and its effectiveness depends on the way the learning error is transported back through all
the layers to the first layer. Taking into account all the dimensionalities of matrixes and
the nonlinear characteristics of ReLu activation function, the problem is very challenging.
In practice tasks, a neural networks internal layer matrixes with ReLu activations function,
include a lot of null value of weight coefficients. This phenomenon has a negative impact
on the effectiveness of the learning algorithm’s convergence. Analyzing and describing an
ANN structure, one usually finds that the first parameter is the number of ANNs layers
”L”. By implementing the hierarchical structure to the learning algorithm, an ANN struc-
ture is divided into sub-networks. Every sub-network is responsible for finding the optimal
value of its weight coefficients using a local target function to minimize the learning error.
The second coordination level of the learning algorithm is responsible for coordinating the
local solutions and finding the minimum of the global target function. In each iteration
the coordinator has to send coordination parameters into the first level of subnetworks.
By using the input and the teaching vectors, the local procedures are working and finding
their weight coefficients. At the same step the feedback error is calculated and sent to the
coordinator. The process is being repeated until the minimum of all the target functions
is achieved.

1 Deep neural network structure

A deep neural network is built with topologically and logically uniform modules known as
layers. A networks structure includes an input layer, a lot of hidden layers, and finally an
output layer. Usually, a network is built with 1 ÷ L layers of different or identical structure.
From a mathematical point of view, a layer could be described by a matrix of weight coefficients
W l, an input vector X(l−1), a hidden vector U l, an activation function ReLu(U) = max(0, U),
and an output vector X l (Fig.1).

A deep neural network includes L÷ 1 hidden layers and one output layer which contains a
different activation function. An output layer needs to aggregate a set of partial features from
previous layers to achieve the final result, that is an output signal. Using Fig.1, one can define
the target function:

Φ =
1

2
· (XL − Y )T · (XL − Y ) (1)

Where:
XL[1÷NL]-the output vector,
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Figure 1: Deep Neural Network structure

NL-the dimensionality of the output vector,
Y [1 : NL]-the vector of teaching data.

For all the hidden layers and for forward calculation, one can write:

U l = W l ·X l−1 (2)

X l = F (U l) (3)

Where:
l = 1÷ L- number of layers in a deep neural network,
U l- the internal vector for layer l,
F - the vector of activation function,
W l-the matrix of weight coefficients for layer l,
X l−1, X l - the input and output vector of layer l, accordingly.

The process of selecting an activation function is an essential and difficult task. When building
standard networks, usually sigmoid and tanh activation functions are used. A sigmoid function
has two areas of value in which the function, in an asymptotic way, achieves the value of zero or
one. This characteristic has a negative impact on the derivative value and, at the same time, on
the algorithm convergence. At the moment, a new activation function is used in a deep neural
network, a Rectified Linear Unit: ReLu, which is defined as follows:

f = ReLu(u) = max(0, u) (4)

From a mathematical point of view, this function is discontinuous for u = 0. In a computers
application, this problem is solved by the accepted value f = 0 for u = 0.

1.1 Learning algorithm

In computer applications, a back propagation learning algorithm is the most popular one. A
learning error is calculated from an output layer, through all the hidden layers to the input
data. From (1), one can calculate the first derivatives for the output layer, denoting:

∂Φ

∂XL
= EL = XL − Y (5)

∂Φ

∂WL
=

∂Φ

∂XL
· ∂X

L

∂UL
· ∂U

L

∂WL
= EL · ∂X

L

∂UL
· ∂U

L

∂WL
(6)
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Where:
EL = [εL1 , ε

L
2 , ...ε

L
NL ]-the vector of an output layer error.

The derivatives of the ReLu function could be written as follows:

∂XL

∂UL
= max(0, UL)

′
= 1(UL) (7)

The last part of equation (6) is calculated:

∂UL

∂WL
= XL−1 (8)

Finally, formula (6) can be written in the matrix form using the Hadamard � product
notation :

∂Φ

∂WL
= {EL � 1(U)L} · (XL−1)T (9)

∂Φ

∂XL−1 =
∂Φ

∂XL
· ∂X

L

∂UL
· ∂UL

∂XL−1 = EL · ∂X
L

∂UL
· ∂UL

∂XL−1 (10)

Using the same notation for an output layer, formula (10) can be written as:

EL−1 =
∂Φ

∂XL−1 = EL · ∂X
L

∂UL
· ∂UL

∂XL−1 (11)

In the matrix form:
EL−1 = (WL)T · {1(U)L � EL} (12)

The output layer error EL has to be translated into the previous layer L− 1, this process will
be repeated up to the first hidden layer. Fig. 3. shows the full scheme for a back propagation
algorithm and how a layer’s error is translated back through the network. The final back
propagation formulas have a recurrent structure. An algorithm will start from the output layer
L and going through all the hidden layers, will achieve the first hidden layer 1:

El−1 = (W l)T · {1(U)l � El} (13)

∂Φ

∂W l
= {El � 1(U)l} · (X l−1)T (14)

Where:
l = 1 : L.
According to Fig. 2. the layer is laid between input vector X(l−1) and output vector X l. The
same border is used for the back propagation error from El to E(l−1). In a standard neural
network, a sigmoid activation function is used. An output error is translated back to the first
layer decreasing its value and finally, an algorithm can calculate zero’s value. This property has
a very negative impact on convergence. Therefor, it is the main reason to use ReLu activation
function, especially in a deep neural network. Its derivative is equal to 1 or to 0 - the Heaviside
step function. Some derivatives (14) are equal to 0 and the weight coefficient does not change
in the actual iteration process (formula 14). The same can be observed in the error back
propagation function (formula 13).

Taking into account all the limitations mentioned above, a neural network learning algorithm
is decomposed, and a new coordination level is implemented. Two or more levels could be used
to improve the learning algorithm convergence.
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Figure 2: A scheme of an error back propagation through the layers

2 Learning algorithm decomposition

For a multi-layer ANN, a lot of hidden layers and one output layer are sectioned off. The
smaller part will be described as a sub-network. Every sub-network has its own output vector,
an input vector of the succeeding one X l, and a local target function Φl where l = 1 ÷ L .
Because of the specific organization of an ANNs hierarchy there are many sub-networks on the
first level, for each of which local target functions are defined:

Φ = {Φ1,Φ2....Φl...ΦL−1,ΦL} (15)

These sets of local tasks have to be coordinated to achieve the global solution. The co-
ordinator, as an independent task, will have its own target function. Taking everything into
account, this concept is the base on which one may build the new scheme of the ANN learning
algorithm’s structure (Fig. 3). It is the neural network ’s and the learning algorithm’s hierar-
chical structure. The two-level ANN learning algorithm can be described as a set of procedures.
The procedures on the first level are responsible for solving their local tasks and calculating the
part of matrix weight coefficients. The second-level procedure has to coordinate all the local
procedures (tasks) using its own local target function. The third-level procedure calculates
the learning parameters which are used by the second-level. There is a vertical decomposition
and interaction between the procedures. Two types of information are sent between the levels.
From the second level to the first level, one is a downward transmission of control signals:

Γ = (Γ1,Γ2, ...ΓL−1) (16)

Where:
Γl - vector of data sent from the coordinator to the two neighboring sub-networks l and l + 1,
l = 1÷ (L− 1) - number of sub-networks,

From the first level to the second level two sets of feedback signals are sent:

• forward feedback errors, which are generated by every sub-network when all sub-networks
calculate their local target functions value Φl:

EF = (E1F , E2F , ...EL−1F ) (17)
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Figure 3: A scheme of an error back propagation through the layers

• backward feedback errors, which are calculated by every sub-network in the back propa-
gation procedure:

EB = (E1B , E2B , ...ELB) (18)

2.1 Levels of calculation complexity

The standard ANN learning algorithm is a non-linear minimization task without constraints.
To solve this task, iteration procedures are used. Using the most popular back propagation
algorithm, one has to choose a lot of control parameters. The algorithm is time-consuming
and its convergence is not fast. Dividing the primary algorithm into the sub-network tasks,
the local target functions are simpler and can be used in different procedures. Additionally, a
new procedure is needed: the coordination procedure. In practice, however, the coordinator
does not have the ability to find all the parameters needed for the first-level procedures. To
solve this problem, a multi-level decision hierarchy is proposed [1]. The problems is solved
by the iteration algorithm on both the first and the second level. One can observe specific
dynamic processes. These processes are non-linear and use a lot of control parameters. During
the learning process these parameters are stable and do not change. Practice proves that this
solution is not optimal. To control the way learning parameters are changed in the iteration
process, an additional level could be used - the adaptation level (Fig. 3). Thus, one can build
three levels as a minimum:

• The local optimization procedures: the algorithm is defined directly as a minimization
task without constraints.

• The coordination procedure: this algorithm could be defined directly as a minimization
of the target function as well. Constraints could exist or not.
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• The adaptation procedure: the task or procedure on this level should specify the value
of learning parameters not only for the coordinator level, but also on the first level. To
solve this task, a procedure should achieve dynamic characteristic of the learning process
from all the levels.

As a conclusion, one can state that the complexity of the problem increases from the first level
to the next one. The coordination and adaptation procedures need more time to solve their
own procedure.

3 Calculation algorithm structure

The deep neural network with an input layer, a set of hidden layers and an output layer can
be used for further considerations. As standard ReLu activation function is used for all the
hidden layers. For an output layer both sigmoid or ReLu activation functions could be used. A
three part learning algorithm will be considered to decompose the standard learning algorithm’s
structure into sub-network tasks and taking into account Fig. 3.

3.1 Forward calculation

All sub - networks are independent because the coordinator sent an input and an output vector
Γl for all the layers. Sub-networks can calculate all values in a parallel way:

• For the first sub-network:

Φ1(W 1, X0,Γ1) =
1

2
· (X1 − Γ1)T · (X1 − Γ1) (19)

Others relations:
X1 = F (U1) (20)

U1 = W 1 ·X0 (21)

Where: X0, X1 - input and output vector of the first layer, accordingly,
F - vector of activation function. ReLu = max(0, U1),
U1 - internal vector.

• For the all hidden layers l = 2 : (L− 1):

Φl(W 1,Γl−1,Γl) =
1

2
· (X l − Γl)T · (X l − Γl) (22)

X l = F (U l) (23)

U l = W l · Γl−1 (24)

Where:
X l−1, X l - input and output vector of all the hidden layers, accordingly,
F - vector of activation function. ReLu = max(0, U l),
U1 - internal vector.
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• For the output layer:

ΦL(WL,ΓL−1, Y ) =
1

2
· (XL − Y )T · (XL − Y ) (25)

XL = F (UL) (26)

UL = WL · ΓL−1 (27)

Where:
XL - output vector,
Y - learning vector P epoch included.

3.2 Backward calculation

When all sub-networks have finished the forward calculation process, the next step can begin,
that is the backward calculation. The calculated error will be sent to the coordinator. Modified
formulas from subsection 1.1 are used. All subnetworks with their own target functions can
calculate their own backward errors in a parallel way:

• For the first sub-network, only the forward error is calculated,(see Fig.4):

E1F = X1 (28)

From formula(19) partial derivatives for the matrix of weight coefficient W 1 are:

∂Φ1

∂W 1
=
∂Φ1

∂X1
· ∂X

1

∂U1
· ∂U

1

∂W 1
(29)

∂Φ1

∂X1
= E1 = X1 − Γ1 (30)

Formula (29) can be rewritten in the matrix form:

∂Φ1

∂W 1
= {E1 � 1(U1)} · (X0)T (31)

Where:
1(U1) - derivative of the ReLu activation function ReLu

′
= max(0, U1)

′

= 1(U1).
The first sub-network can calculate a new value of the matrix weight coefficients W 1:

W 1(n+ 1) = W 1(n)− α · ∂Φ1

∂W 1
(32)

Where:
n - current iteration number.
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• For all the hidden layer l = 2 : (L− 1) and using formula (22), partial derivatives for the
matrix of weight coefficient W l and an input vector from the coordinator Γl−1 are:

∂Φl

∂Γl−1 =
∂Φl

∂X l
· ∂X

l

∂U l
· ∂U

l

∂Γl−1 (33)

∂Φl

∂X l
= El = X l − Γl (34)

∂U l

∂Γl−1 = W l (35)

Formula (33) can be rewritten in the matrix form:

∂Φl

∂Γl−1 = E l−1 = (W l)T · {1(U)l � E l} (36)

Where:
1(U l) - derivative of the ReLu activation function ReLu

′
= max(0, U l)

′

= 1(U l),

E l−1B = Γl − β · ∂Φl

∂Γl−1 = Γl − β · E l−1 (37)

The derivative for the weight coefficients of matrix W l is:

∂Φl

∂W l
=
∂Φl

∂X l
· ∂X

l

∂U l
· ∂U

l

∂W l
(38)

∂U l

∂W l
= Γl−1 (39)

Formula (38) can be rewritten i the matrix form:

∂Φl

∂W l
= {El � 1(U l)} · (Γl−1)T (40)

A sub-network can calculate the new value of the matrix weight coefficients:

W l(n+ 1) = W l(n)− α · ∂Φl

∂W l
(41)

Where:
n - current iteration number.

• For the output layer using formula (25) partial derivatives for the matrix of weight coef-
ficient WL and an input vector from the coordinator Γl−1 are:

∂ΦL

∂ΓL−1 =
∂ΦL

∂XL
· ∂X

L

∂UL
· ∂U

L

∂ΓL−1 (42)

∂ΦL

∂XL
= EL = XL − Y (43)
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∂UL

∂ΓL−1 = WL (44)

Formula (42) can be rewritten in the matrix form:

∂ΦL

∂ΓL−1 = EL−1 = (WL)T · {1(U)L � EL} (45)

E l−1B = ΓL−1 − β · ∂ΦL

∂ΓL−1 = ΓL−1 − β · EL−1 (46)

Applying the same procedure as above, a set of formulas is written:

∂ΦL

∂WL
=

∂Φl

∂XL
· ∂X

L

∂UL
· ∂U

L

∂WL
(47)

∂UL

∂WL
= ΓL−1 (48)

Formula (47) in the matrix form:

∂ΦL

∂WL
= {EL � 1(UL)} · (ΓL−1)T (49)

The output sub-network can calculate the new value of the matrix weight coefficients:

WL(n+ 1) = WL(n)− α · ∂ΦL

∂WL
(50)

Where:
n - current iteration number.

When all sub-networks have finished calculation of their local target functions, the forward
E lF and backward E lB feedback information are sent to the coordinator. At the moment all the
sub- networks modified of their matrixes of weight coefficient W l for l = 1 : L.

4 Coordinator structure

In a hierarchical learning algorithm, the coordinator plays the main role. It is now time to decide
what kind of coordination principle will be chosen. This principle specifies various strategies
for the coordinator and determines the structure of the coordinator. In [1] three methods were
introduced in which the interaction could be performed:

• Interaction Prediction. The coordination input may involve a prediction of the interface
input.

• Interaction Decoupling. Each first-level sub-system is introduced into the solution of
its task and can treat the interface input as an additional decision variable to be free.
Consequently, sub-systems are completely decoupled.

• Interaction Estimation. The coordinator specifies the ranges of interface inputs over which
they may vary.
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For a deep neural network containing L layers, the coordinator prepare l = 1÷ (L− 1) coordi-
nation signal Γl. One of them is treated as input vectors and the other as learning data vectors
for local target functions Φl for l = 1 : (L− 1). Every coordinator signal is correlated with two
feedback signals E lF and E lB . These signals are calculated by the first level sub-networks and
are sent to coordinator. The coordinator uses its own target function:

Ψ =
1

2

i=L−1∑
i=1

{(Γi − E iB)T · (Γi − E iB)}+ {(Γi − E iF )T · (Γi − E iF )} (51)

To minimize this function, the gradient method is used:

∂Ψ

∂Γi
= (Γi − E iB) + (Γi − E iF ) = 2 · Γi − [E iB + E iF ] (52)

The new value of coordination signal is calculated using the gradient method:

Γi(n+ 1) = Γi(n)− ρ · ∂Ψ

∂Γi
(53)

This new coordinator signals value is sent to the first level sub-networks and the entire
process is repeated.

5 Adaptation level

In formula (53) the learning parameter ρ could be constant or could change during the iteration
process. In the beginning the learning process is very dynamic, a large oscillation could be seen
in the first level of the local target functions. Because parameter ρ has to be small, the iteration
process is stable. However, although the minimum Ψ is achieved asymptotically, it happens
very slowly. To improve this algorithm, the coordinator sends the target function value Ψ(n)
to the adaptation level. The following simple algorithm could be used:
If Ψ(n) > Ψ(n− 1) then ρ = kd · ρ, where: kd = 0.95÷ 0.98 - decreasing parameter,
If Ψ(n) < Ψ(n−1) then ρ = ki ·ρ, where: ki = 1.02÷1.05 - increasing parameter. The new ρ is
sent to the coordinator and used in the iteration process. To make the entire learning process
more stable, Ψ is usually averaged by epoch:

Ψ(n, p+ 1) =
1

Np
·Ψ(n, p) +

Np − 1

Np
·
p=Np−1∑

p=1

Ψ(n, i) (54)

Where: Np - number of input vector in epoch, p - actual index value.

6 Numerical example and conclusion

In a life insurance company the underwriting process has been playing the central role in risk
control and premium calculation. A deep neural network could be used to help the insurance
agents to classify the insurance applicant and calculate the first version of premium. Therefore,
a special short questionnaire was prepared which includes only 10 main questions (Fig.4). All
the data were divided into three subsets: - learning set includes 250 records, -verification set
includes 50 vectors,- testing includes 100 vectors.
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Figure 4: An input data structure example

Figure 5: Dynamic characteristic of the second target function Φ2

Figure 6: Dynamic characteristics of the two feedback signals E2B and E2F
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Figure 7: Dynamic characteristics of the coordinator

Dynamic characteristics of the second subnetwork contain two phases. From start to 4000
iteration, error decrease very fast. In the next phase, the learning process is not optimal.

In Fig. 6. the feedback signals do not have optimal characteristics. Probably the learning
coefficient ρ is too hight and the coordinator tries to accelerate the learning process. Result
is reverse. The adaptation level should force its own strategy to stabilize the learning process.
Future works should focus on the coordinator and the adaptation level strategy. The main
question is - how to improve the characteristics of the learning process?
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