
1

ZeroSDN: A Highly Flexible and Modular
Architecture for Full-range Distribution of

Event-based Network Control
Thomas Kohler, Frank Dürr, and Kurt Rothermel

Abstract—Recent years have seen an evolution of SDN control
plane architectures, starting from simple monolithic controllers,
over modular monolithic controllers, to distributed controllers.
We observe, however, that today’s distributed controllers still
exhibit inflexibility with respect to the distribution of control
logic. Therefore, we propose a novel architecture of a distributed
SDN controller, providing maximum flexibility with respect to
distribution and improved manageability.

Our architecture splits control logic into lightweight control
modules, called controllets, based on a micro-kernel approach,
reducing common controllet functionality to a bare minimum and
factoring out all higher-level functionality. Lightweight controllets
also allow for pushing control logic onto switches and enable
local processing of data plane events to minimize control latency
and communication overhead while leveraging SDN’s global view
to maximize control decision quality. Controllets are intercon-
nected through a message bus supporting the publish/subscribe
communication paradigm with specific extensions for content-
based message filtering. Publish/subscribe allows for complete
decoupling of controllets to further facilitate control plane
distribution. Furthermore, we identify crucial requirements for
practical on-switch deployments, where we employ lightweight
virtualization techniques to ensure a safe control plane operation.
We evaluate both, the scalability and performance properties
of our architecture, including its deployment on a white-box
networking hardware switch.

Index Terms—Software-defined Networking; OpenFlow; Con-
trol Plane Distribution; Publish/Subscribe; White-box Network-
ing; Virtualization

I. INTRODUCTION

SOFTWARE-DEFINED NETWORKING (SDN) is based
on the paradigm of logically centralized control of network

elements. Logical centralization translates to the concept of dis-
tribution transparency, which is well-known from Distributed
Systems. Distribution transparency hides the complexity of a
physically distributed system from the application by making
distribution aspects “transparent”, i.e., not visible to the appli-
cation. Thus, the client can be implemented as if the system
were centralized. In particular, network control applications
implementing network control logic have a global view of
the network, although network information such as topology
information inherently has to be acquired through monitoring

Manuscript received March 28, 2018; revised August 9, 2018; accepted
September 28, 2018. Date of publication October XX, 2018; date of current
version October XX, 2018. The associate editor coordinating the review of
this paper and approving it for publication was S. Schmid.

The authors are with the Institute of Parallel and Distributed Systems (IPVS),
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany (e-mail:
{firstname.lastname}@ipvs.uni-stuttgart.de).

Digital Object Identifier 10.1109/TNSM.2018.XXXXXXX

by distributed network elements (the switches). Moreover, the
SDN controller itself might be (ideally) a distributed system
with all its defining properties like replication transparency,
fragmentation transparency, and without a single point of failure.
For instance, topology information stored in a “network infor-
mation base” might be replicated to and partitioned between
many servers to ensure availability and scalability.

A. Evolution of SDN Controller Architectures
Many SDN controllers have been implemented so far based

on the concept of logically centralized control. Figure 1
depicts the evolution of controller architectures with respect to
distribution and modularization.

First SDN controllers were monolithic systems, implementing
the controller as one process. The SDN controller connects
through the southbound interface to the switches using, for
instance, the popular OpenFlow protocol [1], and the control
applications interface with the SDN controller through a
northbound interface, e.g., a Java API or REST interface. To
increase fault-tolerance, the monolithic process implementing
all control logic can also be fully replicated.

Very similar to the evolution of monolithic operating system
kernels like the Linux kernel, this monolithic design was soon
extended to a modular monolithic design (Figure 1(a)), where
control modules implementing certain control functions (net-
work functions) can be dynamically loaded into the controller
process at runtime. Two examples showing that this design is
still used in practice are the popular ONOS and OpenDaylight
controllers [2], [3] relying on OSGi [4]. However, their modular
controller architectures remain monolithic since they still rely
on a central controller executing all modular control functions
in one process. Again, the logically centralized controller can
be physically distributed with each replica containing all control
functions, i.e., replicas are identical clones.

Mainly to further increase scalability and reliability, SDN
controller evolution continued to investigate distributed SDN
controllers (Figure 1(b)). Network control can be distributed
along two dimensions. First, similar to the modular monolithic
design, individual control functions can be factored out into
control modules, which are now partitioned between different
physical machines instead of fully replicating all control
functions on all machines. Secondly, control can be partitioned
over the network topology, i.e., the scope of individual control
modules can be limited to disjoint subsets of switches. While
facilitating scalability with the network size, partitioning raises
the need for coordinating the scope of control.

kohlerth
Textfeld
This is the author's version of an article that is to be published in the IEEE Transactions on Network and Service Management journal. Changes are made to this version by the publisher prior to publication.

kohlerth
Textfeld
Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

B. Motivation: A Full-range Distribution Architecture for SDN
Controllers

Observing that distributed SDN controllers already exist
today, can we conclude that their evolution has reached its
end? We argue that this is not the case, for the following
reasons.

First of all, implementing fully distributed network control
(without switch-external control functions) is not anticipated. In
other words, the traditional SDN approach mandates an external
network controller (monolithic or distributed). Direct switch-to-
switch communication for network control is not possible. This
reflects the clean-slate paradigm shift from distributed network
control to logically centralized control, where switches are just
“dumb” network elements, specialized to do fast forwarding,
according to rules defined by an “intelligent” remote controller
implementing all network control logic. On the one hand,
this reduces the functionality of switches to a bare minimum,
allowing for minimal switch resources and design. On the
other hand, outsourcing all control from the switch comes
at the cost of increasing latency due to incurring switch-
controller round-trip times (slower reaction), increasing load
on the control network, or difficult implementation of robust
logically centralized control relying on additional machines
that can fail. Therefore, we argue that a highly flexible SDN
architecture would allow for the full spectrum of distribution,
from fully centralized to fully distributed control. In other
words, control logic has to be brought back onto the switch.
Although execution of control logic on the switch hardware on
the one hand has been conceptually proposed in literature [5]–
[7], due to lack of distribution support or high computational
resource demand, in concrete implementations it has been
reduced to offloading of certain functionality, such as packet
generation [8] or state machine logic [9]. To fully exploit
the locality of switches, we argue to include the switch in
the control distribution and allow for decision making on
the local scope. Besides the extremes—fully (de-)centralized
control—we argue that network control decisions are ideally be
taken as local as possible, in order to minimize control latency,
while leveraging the logically centralized paradigm of SDN
through access to global knowledge in order to improve decision
quality. Since requirements, such as timeliness, optimality,
and consistency, may differ between network functions, a
network control architecture should provide the flexibility for
balancing these trade-offs for each individual network function.
For instance, for forwarding decisions at a switch, full global
knowledge is typically not required. The focus rather lays on
timeliness in order to reduce forwarding latency. In contrast,
traffic engineering or monitoring are applied on a much broader
time scale and thus looser latency constraints, but relying on
more global knowledge for improved solution quality.

Secondly, with the current concept we observe that con-
trollers tend to be quite heavyweight (which might also be a
practical reason why control has been removed from switches).
For instance, in order to just receive packet-in events, the ONOS
controller requires a full-fledged OSGi environment with a
total code size of ≈ 216MByte. Controllers that are more
lightweight typically lack modularity or distribution capability.

We argue that it should be possible to identify a minimal feature
set that every control module can implement to communicate
with switches and other distributed control modules. Anything
else should be factored out into the implementation of the
control function. In other words, we advocate a lightweight
micro-kernel approach for SDN controllers instead of a
heavyweight monolithic controller architecture.

Thirdly, we observe that switches and controllers are still
tightly coupled, which hinders the free distribution of control
logic. For instance, an OpenFlow control channel requires a
TCP connection to a controller. Since TCP is inherently based
on connections to certain machines, spawning new control
applications at other machines or migrating them between
machines is cumbersome and potentially disruptive [10], [11].
We argue that switches must be decoupled from the SDN
controller. This can be achieved by using state-of-the-art
communication middleware approaches as already successfully
used in other domains for the communication between services
[12]. As a side effect, choosing a suitable communication
middleware also allows for implementing control logic in
virtually any language and to support event-driven as well
as request/response types of interaction.

This article is an extended version of previous publications
[13], [14] and provides detailed insights into various aspects.
Its main contribution is a novel architecture for a distributed
SDN controller fulfilling all of the above requirements: (1) high
flexibility with respect to distribution of control logic covering
the whole design space from logically centralized to fully
distributed control; (2) micro-kernel controller architecture for
distributed lightweight controller modules (so-called control-
lets); (3) push-down of controllets implementing control logic
onto switches, allowing for fast local decision making while
leveraging global knowledge; (4) decoupling of controllets
through a message bus supporting content-based filtering of so-
called data plane events. Furthermore, we address challenges
in practical deployments of switch-local controllets, where
we employ lightweight virtualization techniques to cope with
hardware heterogeneity and to implement isolation and resource
control for a safe and controlled control plane operation. An
implementation of the proposed concepts is publicly available
on GitHub (https://zerosdn.github.io/) [15].

The rest of the article is structured as follows. In §II, we
describe the architecture of our distributed SDN controller
together with an overview of the basic concepts. We proceed
with describing the message bus in more detail in §III. In §IV,
we discuss how our concept enables highest flexibility in terms
of control distribution, before we present local logic based on
global knowledge, along with multiple applications. We also
address the relation to Data Plane Programming and Network
Function Virtualization as well as challenges in practical
deployment. In §V we elaborate on implementation aspects,
followed by an evaluation of performance and scalability of our
distributed architecture as well as results from the deployment
of on white-box networking switch hardware in §VI. We discuss
related work in §VII and conclude the article in §VIII.

3

Clogic

OpenFlow

(Master)

C2

CF0 CF1 CF2

C1

CF0 CF1 CF2

C0

CF0 CF1 CF2

S
M

lo
g

ic

S2
C

P
D

P

S1

C
P

D
P

S0

C
P

D
P

(a) Modular, monolithic, replicated;
C: controller instance, CF: control function,
SM: state module; Si: switch

S2

C
P

D
P

S1

C
P

D
P

S0

C
P

D
P

...

CM2,logicCM0,logic

...

OF
OF

OF

CM0
CM2
CM2,0CM1CM0,0

SM0
SM1 SM2

SA SA

SA

(b) Modular, distributed (partitioned, replicated);
CM: control module, SA: local OpenFlow-wrapper
(switch adapter)

S2

C
P

D
P

S1D
P

S0

C
P

D
P

CM2,0CM0

L0 L1

µK µK

µ-Kernel

SM0

µK

CM2,1

µ-Kernel
SM2

µ-Kernel
SM2

L0 L1

µK µK

L3

µK

L4

µK

SM4

SM3SM1

SM1
SM1

MESSAGE

BUS

C
P

(c) µ-kernel architecture with fully distributed local
(L) & external controllets (CM), interconnected by
a message bus.

Fig. 1. Evolution of distribution in SDN controller architectures. Rightmost: ZeroSDN’s full-range distributed architecture.

II. ARCHITECTURE

We start by introducing the basic architecture of our
distributed SDN controller (see Fig. 1(c)).

Our approach is based on what we call a micro-kernel
architecture for SDN controllers. We split network control
logic into lightweight control modules, whose instances we
call controllets (CMi). In contrast to a monolithic controller,
controllets do not require a heavyweight execution environment.
Instead, we execute each controllet in a separate process, possi-
bly being also physically distributed, and enable communication
between them. The micro-kernel (µK) just provides basic
functions for messaging including publish/subscribe message
routing and parsing (in particular of OpenFlow messages), and
registration and discovery of controllets and switches. Any
other functionality like network topology management, routing,
etc. is implemented by the controllets’ “business” logic. One
advantage of having a slim functionality for the SDN micro-
kernel is that we can port the micro-kernel with little effort to
different languages enabling us to basically use any language
for the implementation of controllets. Moreover, the lightweight
nature of controllets enables us to push down control logic
by executing controllets directly on switches (Si), instead on
remote server hardware. We denote controllets running locally
on switches as Li. Opposed to a monolithic solution, the
distribution of control logic comes at the cost of increased
complexity for the distribution of its state. We discuss trade-offs
in control distribution in Section IV-A.

Communication is based on a unified message bus to
decouple controllets from switches and other controllets, both,
logically and physically. We are thus able to reduce the switch-
controller coupling to inter-module communication over the
message bus. Each controllet and switch can communicate
with other controllets or switches through the message bus by
sending events using the publish/subscribe (pub/sub) paradigm,
or sending direct messages using the request/response paradigm.
Decoupling controllets and switches allows for flexible distribu-
tion including migration of controllets, and dynamic spawning
or exchanging of controllets at runtime. The message bus
implementation is integrated into the micro-kernel.

Overall, this architecture allows for maximum flexibility.
Next, we refine our architecture and elaborate on the technical
details and further key features enabled by our approach.

III. THE SDN MESSAGE BUS: DECOUPLING CONTROLLETS
THROUGH EVENTS

Our architecture is based on event-based communication to
decouple the producers of events from their consumers in both,
time (asynchronous communication) and space (distribution of
logic between nodes). In the domain of SDN, we particularly
consider so-called data plane events (DPE) stemming from
packets or state changes of data plane elements (switches and
end systems). They include the addition or removal of network
elements, link status updates, and packet ingress or egress.
From certain DPEs state information can be inferred, such as
knowledge of the physical network topology and end system
protocol state, e.g., TCP-sessions. A DPE is either processed in
the hardware forwarding-pipeline of the switch, e.g., a packet
ingress is processed according to the flow rules installed in the
switch’s TCAM (fast-path), or is being forwarded to the control
plane (slow-path), e.g., when no matching forwarding rule
exists. In the latter case, the switch silicon passes the associated
packet to the switch’s CPU, where it is encapsulated into an
OpenFlow PACKET_IN message. When not processed locally
(see §IV-B), the switch publishes the DPE to the message bus,
which delivers it to controllets that are subscribed to this kind
of event. The message bus is responsible for routing event
notifications to their subscribers. Since DPEs often include
matches on packet header fields, we argue that the message bus
should support content-based filtering of events [16]. Therefore,
event conditions include matches on header field tuples or any
other meta-data. This paradigm can also emulate standard
client/server communication (request/response), multicast, or
topics [16] using filters on receivers, groups, topics, etc.

Event routing in the message bus is exemplarily illustrated
in Figure 2: an ingress TCP segment from an end system at
S0 is encapsulated in a DPE (OF_PKT_IN) and published to
the message bus, where a remote monitoring firewall controllet
(Mon) and one instance of a remote forwarding controllet
(Forw2) have matching subscriptions, i.e., are responsible for
such events, and are consequently delivered the event. As
a result of processing this event, Forw2 sends a packet-out
message (OF_PKT_OUT) over the message bus directly to S2

using the request/response pattern. Analogously, Forw2 installs
a flow from S0 to S2 by sending flow modification messages
(OF_FLOW_MOD; omitted in Figure 2 for readability).

4

However, we do not restrict ourselves to basic data plane
events, but also consider complex data plane events involving,
for instance, multiple packets and timing conditions. For
instance, a complex event could be triggered by a certain
sequence of packets, or the non-arrival, i.e., absence, of a
certain packet over a defined period of time, also across multiple
switches. Typically, switches only fire basic events, which
are then forwarded to subscribing controllets, which in turn
evaluate complex event conditions to fire complex data plane
events. Due to space constraints, we do not further elaborate
on complex data plane events in this article.

Another type of events, used for inter-controllet commu-
nication, is the control plane event (CPE), which bears state
changes or other events of the controllets’ business logic or
their micro-kernel, such as topology changes, firewall policy
changes, or recovery/shutdown of controllets. CPEs are mainly
used for coordination among controllets. In our example, a link
failure DPE (OF_PORT_STATUS) at S1 is disseminated to the
message bus and delivered to the subscribed Topo controllet,
which hence adapts its knowledge about the network topology.
Consequently, Topo informs interested controllets by publishing
a CPE (TOPO_CHANGED), for which all forwarding controllets
have subscribed to react to topology changes, and so on.

Recent SDN research has shown that consistency in an
inherently distributed system of switches and controllers
might require certain semantics of the delivery of messages
[17]. The message bus transparently implements a range of
semantics, such as exactly once or the relaxed at most once, by
employing corresponding messaging primitives, such as atomic
multicast, (un-)ordered multicast, etc. Thus, the message bus
provides arbitrary guarantees on message delivery (reliability)
to controllets as building blocks for implementing network
control with flexible consistency semantics that match the
criticality of respective control tasks.

Since the message bus is a crucial system component,
we want to briefly discuss its implications regarding scal-
ability and reliability. In traditional messaging middleware,
publish/subscribe used to be implemented by a hardware
appliance or a software-based component, the broker, which
manages subscriptions and implements filtering of messages
in a centralized fashion. To prevent swapping one centralized
component (the centralized SDN controller) for another (the
centralized message broker), we employ a distributed solution
that exhibits high scalability: Modern brokerless message bus
implementations use efficient transport mechanisms for event
dissemination, like multicast or unicast with publisher-side
subscription based filtering or even hardware-based filtering
with line-rate performance [18], targeting scalability to hundred
thousands of subscriptions [19], which suffices to accommo-
date typical data center networks [20]. We provide macro-
evaluations of our message bus implementation in Section VI.
Should performance issues arise nonetheless, e.g., due to an
insufficiently dimensioned control network, scalability can be
improved by employing a message bus hierarchy, where the
scope of controllets is limited, e.g., reflecting tiers on modern
data center network topologies, such as core, spine, and leaves.
Regarding failure tolerance, we stress that failure of the message
bus translates to a broken control channel, which is equally

Mon
µ-Kernel

Forw1
µ-Kernel

Forw2
µ-Kernel

Topo
µ-Kernel

MESSAGE

BUS

S1

C
P

D
P

S2

C
P

D
PS0

C
P

D
P

TCP
segment

OF_PKT_IN

DST_PORT: 80

OF_PKT_IN

Subnet: 10.1/16

OF_PORT_

STATUS:*

TOPO_CHANGED:*

OF_PKT_OUTµK

µKµK
Link

failure

Fig. 2. Content-based routing (publish/subscribe) of data plane events (dotted)
and control plane events (dashed) for exemplary subscriptions and direct
messaging (request/response; dash-dotted) over the message bus, decoupling
remote controllets.

severe as a broken control channel in traditional, less distributed
SDN architectures. On the contrary though, local control in
our architecture increases failure-tolerance, as we show later.

IV. HIGHLY FLEXIBLE CONTROL PLANE DISTRIBUTION

In this section, we make a solid case for rethinking the radical
clean-slate approach most common SDN architectures follow by
showing how lightweight controllets can bring back control onto
the switch while still benefiting from the logically centralized
paradigm of SDN. We also address drawbacks of control
decentralization and challenges in practical deployments.

A. Augmented Fully Distributed Control

Most SDN architectures have abandoned fully decentralized
network control based on a distributed control plane imple-
mented solely by switches in favor of logically centralized
control. While not strictly arguing for or against logically
centralized control or fully distributed control, we observe that
the strict notion of separating data plane elements from the
logically centralized control plane limits the full potential of
the SDN paradigm. For instance, “legacy” distributed control
protocols, such as distance vector or link state routing protocols,
have proven to be fault-tolerant and scalable. As investigated
by [17], vigorous efforts have to be undertaken to provide the
same fault-tolerance with a logically centralized SDN network.
We stress the fact that maintaining a global view and exerting
logically centralized control comes at a cost [21] due to the
inherent need for acquiring a global state, which gets costlier the
stricter the consistency requirements are, and communication
with a remote control entity, respectively. A full global view
is however not even needed for many control decisions, as we
show later. Hence, logically centralized control should not be
the sole option. Consequently, we argue that true flexibility in
network control implies to leverage the whole design space of
control (de-)centralization and thus also includes the option for
full distribution of network control, as depicted in Figure 3.

Recent developments in networking hardware enable switch-
local control logic due to a) increased computing performance
and b) programmability through open access to the switch’s

5

control plane. In particular, white-box networking switches
feature open, Linux-based switch operating systems as the
control plane, running on increasingly powerful CPUs (see
§VI-C). Therefore, and in-line with recent research [8], [9],
[22], [23], our architecture encourages pushing lightweight
controllets directly onto the switch, as illustrated in Fig-
ure 1(c). These switch-local controllets can then execute the
full spectrum from simple local logic to fully distributed
network control protocols. Like any controllet, also switch-local
controllets communicate through the message bus. Thus, we
can implement distributed network control alongside logically
centralized network control, or implement anything in-between
(Figure 3, light-shaded area). This scheme allows for the
best of both worlds—fully decentralized processing, yet being
centrally coordinated, and logical centralization, which allows
for trading-off control latency (latency of event processing
and communication) against overheads of distribution and
synchronization of controller state. For the synchronization of
state among controllets, communication primitives of varying
reliability offered by the message bus can be combined with
additional methods to achieve a desired level of consistency and
other properties, for instance by employing a 2-phase commit
protocol for distributed transactions [24]. The selection of a
suitable level of synchronicity (synchronization requirement;
Figure 3, dark-shaded area) depends on the criticality of a
network function to control. For instance, network operators
could consider admission control more critical than monitoring
or traffic engineering, where temporal inconsistencies are
bearable, i.e., changes in these policies do not have to be
enacted as quickly (eventual consistency).

Besides the partitioning of controller state data along network
functions, state can additionally be partitioned by topological
scope. Through incorporation of (more) global knowledge, i.e.,
state data of larger topological scope, we can thus additionally
trade-off the scope of state data against solution quality of
control decisions (Figure 3, dark-shaded area). As we show
next, local knowledge can be augmented by partial caching
or aggregation of (more) global knowledge upfront or by
requesting remotely within a control decision process.

Potential control decision conflicts can be resolved by pub-
lishing all policy information and aggregating them locally alike.
Local controllets decide which policy information is relevant
for their control decisions, issue corresponding subscriptions,
and cache received policy data.

The flexibility of our approach is to the best of our knowledge
yet unmet and exploits the full conceptual range of SDN.

B. Local Data Plane Event Processing

We argue for placing control decision making as close as
possible to the entities it is affecting, i.e., pushing down decision
making instead of decisions (in form of forwarding entries) to
the switches. We denote this concept as local data plane event
processing (LDPEP). LDPEP allows for reacting most timely on
data plane events, decreasing control latency. Another important
advantage is that the state data of local scope naturally is most
recent locally and constitutes the ground truth for decision
making. Due to its locality, it neither has to be costly acquired

X

c
e

n
tr

a
liz

a
ti
o

n

X
fast, possibly suboptimal:

low

high

low high

X

ZeroSDN

solution quality

c
o

n
tr

o
l

la
te

n
c

y

synchronization requirement /

scope of state data
high /

global

low /

local

fast, optimal:

AFC (§IV.B1)intermediate local

procedures (§IV.B3)

centralized
control

LDPEP

Fig. 3. Design space and trade-offs in network control distribution. Opposed
to logically centralized control with high control latency (dark blue), ZeroSDN
covers the full spectrum (light-shaded area) and offers an additional degree of
freedom by exploiting the trade-offs of state data scope and synchronization
requirements against solution quality (dark-shaded area).

nor has it to be consistently agreed upon. Furthermore, opposed
to a non-local controllet, the total control load is inherently
balanced to local controllets, relieving the message bus.

We apply a fast heuristic to quickly decide whether an event
is to be processed locally or remotely. Therefore, we consider
the scope of the state data required for decision making, as well
as the scope of the particular control decision. If the involved
state data and decision are of limited scope and all necessary
state data is locally available, the event is processed locally.
Otherwise, the event is propagated over the message bus to be
processed by remote entities in the control plane. Note that
this decision is not exclusive and also the control scope is not
necessarily limited to a single switch. Even with LDPEP, we
still allow controllets to have forwarding rules being installed
directly at the switch.

LDPEP not only decreases latency but also increases
the network’s failure resilience: it constitutes a stand-alone
procedure in case an adequate remote controllet or the entire
message bus is currently unavailable.

In the following, we will show essential use cases enabled
by LDPEP and elaborate on its design by example.

1) Autonomous Forwarding: A prime candidate that natu-
rally lends itself to LDPEP is simple forwarding as, e.g., being
implemented by the MAC learning switch Nicira extension
[25] in the prominent SDN software switch implementation
Open vSwitch (OVS) [26].

In the following, we will present the concept of Autonomous
Forwarding, which is illustrated in Figure 4, running on a typ-
ical switch hardware platform. Following standard OpenFlow
behavior, packets (Ê from Hostsrc destined to Hostdst) without
matching forwarding rules in the fast-path Ë are escalated over
the slow-path to the switch’s control plane (Ì PACKET_IN),
where a forwarding decision is taken and applied by installing
respective forwarding rules (Ð FLOW_MOD) for subsequent
packets and sending the particular packet to a switch data plane
egress port (Ñ PACKET_OUT). Naively one could conclude
the only state information needed for the forwarding decision
was the end host MAC to switch-port mapping, which is either
passively learned Í from ingress packets or actively probed.
However, the destination host might not be attached to a port
of that switch. In addition, forwarding decisions might violate
global network policies, such as firewall rules, ACLs, or tenant
isolation.

6

µ-Kernel

MSG

BUS

C
P

-
C

P
U

A
S

IC
-

D
P

AFC

SM0

Hostsrc Hostdst

query

Cache

Excep-

tions

FIB

PKT_IN

Li - AFC

D
e

c
is

io
n

P
ro

c
e

s
s

publish

mapping

TCAM

PKT_OUTFLOW_MODOF-Agent

publish
PKT_IN

a
g

g
re

g
a

te

subscribe

policies

subscribe

topology

data

update

pkpj

query dst

port

Flow

Table

learn

mapping

query

exception

install

flow

forward

packet

update
query

query

hit

miss hit

miss

➊

➋

➎

➏

➌

➍

➐

➑

➑➐

➐ ➑

➄➅

➁

➀➃

PCI-E

TCP

TCP/

IPC

Si

fast-path

slow-

path

Fig. 4. Schematic overview of the Autonomous Forwarding controllet and
its processing of a local data plane event (forwarding of Hostsrc → Hostdst)
on a typical switch hardware platform.

To implement centrally coordinated control, preventing
policy conflicts, and leverage global network view, the Au-
tonomous Forwarding controllet (AFC) subscribes to relevant
topology data and policy information on the message bus À.
Due to limited resources on the switch, the extent of local state
caching has to be limited. Received publications about possibly
interfering policies are thus aggregated Á into an exception
list, storing end hosts and local switch-ports that are affected
by any policy and are thus being blacklisted (or whitelisted).
Similarly, topology information is reduced to only relevant
parts for local processing before being stored in the cache.

In the forwarding decision process, the MAC-switch-port
mapping of Hostsrc is learned and the Forward Information
Base (FIB) cache is updated Í. Note that FIB entries (tuples)
may be arbitrarily extended, for instance to consider VLAN
tags. Since the mapping constitutes topology information that
in general is highly relevant for many other controllets as
well, it is published to the message bus Ã. Then, the cached
topology data, i.e. the FIB, is queried for the switch-port
associated with Hostdst Î. In case the data is not present locally,
the PACKET_IN event can be escalated to the message bus
to be processed by some remote controllet Ä or a request
for the required data can be published. To evaluate whether
autonomous local processing can be applied, the exception list
is queried Ï. In case of a hit, the decision must not be taken
locally and is thus escalated to the external control plane by
a publication of the event to the message bus Å. Otherwise,
local processing proceeds ÐÑ. Note that for policies that can
be translated directly into local drop-rules, such as admission
control, affected DPEs with corresponding matches in the
exception list can still be processed entirely locally.

While maintaining a local exception list is mandatory for
policy adherence, the scope of non-local topology information
to be locally cached can be chosen more fine-grainedly,
considering the available resources on the particular switch and
the desired data consistency. The scope of the local topology
cache thus can range from purely local over regional (neighbor
switches) to global view. This allows for trading off optimality
of a control decision against resource consumption (memory,
processing) and latency (for decision making and enacting).
As mentioned above, data consistency is a crucial factor for
the optimality and even validity of a decision. Typical cache
invalidation and eviction strategies such as least recently used
or least frequently used can be applied to optimize caching
behavior. As a middle ground, instead of topology data itself,
the cache can just store the primary source for that data—the
controllet at which the data is local. Thus, in case such data is
needed, the respective peer can be queried directly rather than
publishing an uninformed query to the whole message bus.

2) ARP Handling: ARP is another essential networking
mechanism, which has already been investigated in the context
of local control and controller-function offloading [8], [27].
Autonomous forwarding can be easily extended to include ARP
handling. Additional to the link layer address data, ARP needs
network protocol address data, which is passively or actively
acquired, alike. Since ARP is a control protocol, we argue
to employ a reactive control scheme, where all ARP requests
are escalated to and handled in the control plane. Thus, at
the cost of negligible memory consumption, ARP handling
profits from decreased latency of LDPEP, while the remote
controllets are effectively shielded from ARP control load that,
in contrast to proactive flows, is to be fully handled by the
control plane. Extensive evaluations of quantitative impact of
local ARP handling can be found in the mentioned literature.

3) Fast Failover & Adaptive Link Load Balancing: While
decisions of the AFC and ARP LDPEPs are permanent, i.e.,
typically not challenged by external authorities (remote control-
lets), we now describe another class of LDPEP: intermediate
local procedures. These allow for fast local reaction, while
possibly compute-intensive and thus time-intensive centralized
control decision is eventually determined and possibly replacing
the local short-term procedure decision.

In our exemplary local fast failover procedure, a link
failure (yet another type of data plane event) between a
pair of adjacent switches (S1, S2) is detected at S1 and
propagated to a controllet running on S1. A local procedure
temporarily compensates the failure by steering the traffic over
a link locally known1 to belong to a redundant path to S2.
S2 recovers analogously. Although being possibly suboptimal,
local intermediate procedures provide a timely recovery, while
the failure event is propagated to the message bus, where a
remote controllet recalculates a globally optimal route that is
ultimately deployed to the switches possibly overriding the
decision of the local procedures. If S1 and S2 have broader
cache scope, they could even avoid most suboptimal recoveries
by coordinating their plans among each other using peer-to-

1Switch to switch links can be discovered by employing active probing
using the Link Layer Discovery Protocol, as described in Section V.

7

peer communication, and adapt it in case of discovered sub-
optimality. A related approach [28] relying on pre-installation
of failover flows and thus consuming additional scarce flow
table space shows that recovering through remote controllers
is one order of magnitude slower than local procedures.

Instead of being applied to recover from (rare) failures, re-
steering flows over redundant links according to the present
link utilization can be a time-event-triggered (periodic) process,
which we denote as adaptive link load balancing. This
procedure is highly appealing for traffic engineering and
more dynamic than traditional approaches, such as Equal-cost
Multipath Routing (ECMP) [29]. Recent switch instrumentation
technologies, like Broadcom’s BroadView [30], even enable
fine-grained access to hardware switch-port queue statistics,
which allows for more detailed traffic analysis. Furthermore,
adaptive link load balancing can be applied not only on local
scopes, but rather on different levels of a whole control hierar-
chy, e.g., reflecting tiers on data center network topologies.

4) Control Plane Feedback Mechanism: Local controllets
are the only entities that can directly access the switch’s
flow table entries. Thus, any applied change to a flow table
can be propagated to interested controllets, implementing a
feedback mechanism that allows a controllet to verify whether
its flow change has been successfully applied—a precursor
for a transactional interface [31]. Although policy conflicts
between controllets should be avoided by coordination upfront,
with this mechanism, controllets are able to detect conflicts,
e.g., when a rule, encoding a policy of one controllet CM1

is modified by another controllet CM2 such that the original
policy of CM1 is violated.

C. Relation to Data Plane Programming and Network Function
Virtualization

Data Plane Programming, like advocated by the popular P4
initiative [32], has become a huge trend in SDN. It features
protocol-independent and flexible packet processing in net-
working hardware, opposing OpenFlow’s matching mechanism
which is limited to static headers of established network
protocols and the rather static hardware processing-pipelines
of traditional switch silicon. In a nutshell, Data Plane Program-
ming leverages the increased capabilities and programmability
of modern networking hardware, such as network processors,
FPGA-augmented switch silicon, programmable switching
ASICS like the popular Tofino ASIC, or programmable NICs
to extend the expressiveness of packet processing in the data
plane, i.e., on the fast-path. Data Plane Programming paves
the way for complex yet efficient processing of high-volume
data in the network at line-rate, for instance in the domain of
data analytics or stream processing [33], thus recently coining
the term In-Network Computation [34].

Hence, Data Plane Programming provides a particularly
interesting opportunity for Network Function Virtualization
(NFV), where network functions such as firewalls, NAT
gateways, or load balancers, are flexibly moved from costly
dedicated hardware middleboxes onto commodity server hard-
ware using virtualization techniques. Even with standard
OpenFlow, complex network-centric appliances such as content-
based routing can be entirely substituted by on-route packet

processing directly on switches data plane, providing line-
rate throughput [18] and eliminating the need for a remote
middlebox or a virtualized network function (the broker). Data
Plane Programming shifts this frontier even further, enabling
pushing down more complex network functions to switches.

Recent NFV-related SDN approaches typically focus on the
distribution of network functions onto the switch data plane,
like the generic frameworks OpenBox [35] and NetBricks [36],
or the management and orchestration of virtualized network
functions (vNFs), like the E2 [37] framework, which handles
the dynamism, placement, and chaining of vNFs. ZeroSDN
is mostly complementary to NFV. While it also supports the
implementation of dynamic network functions in the switch data
plane2, for instance implementing a stateless firewall with the
AFC, with LDPEP, ZeroSDN rather focuses on the distribution
of control plane functions for fast adaption, as shown with the
intermediate local fail-over procedure or local load balancing.
Contrasting OpenFlow and P4, ZeroSDN thus incorporates local
control decision making, rather than mere local deployment of
remote control decisions.

D. Challenges of Deployment on Networking Hardware

1) Migration and Closed Switch Hardware: In order to be
able to run controllets locally, the switch’s control plane has
to be accessible, which is a defining property of white-box
switches. The proliferation of white-box switches is reflected in
the increasing number of hardware and software specifications
for white-box switches, that are provided to the public domain
by big players like Facebook and Microsoft [38]. The white-box
market share is expected to double within the next five years
[39]. However, for switches with an inaccessible control plane
or insufficient resources, we provide a fallback mechanism that
enables integration in our architecture. Such a switch is coupled
with a dedicated SwitchAdapter, which instead of running
locally is running on any other hardware, preferably in close
proximity to the switch, via an OpenFlow connection and acts
as a gateway to the switch in the message bus. Note that an
external SwitchAdapter is still capable of executing local logic,
yet additional network latency is incurred. We determine the
penalty of externalizing the SwitchAdapter in Section V-B.

2) Isolation and Resource Control through Lightweight
Virtualization: The accessibility of the control plane is white-
box switches’ boon and bane: it allows arbitrary processes of
different provenance to run in a less controlled environment,
opposed to the closed switch model of traditional full-stack
vendor implemented proprietary switch platforms. This raises
concerns regarding security and reliability. (Unintentional) ad-
verse behavior of control plane processes, including failures and
excessive resource consumption, could starve other essential
processes and thus poses a severe threat to its entire operation.
Consequently, we derive two requirements for the practical
deployment of LDPEP: 1) Isolation to protect processes’ data
from each other and ensure data integrity, and 2) Prioritization

2In principle, LDPEP can implement arbitrary packet processing—in the
control plane. For a detailed discussion on LDPEP’s generalization to arbitrary
slow-path packet processing and the sweet spot of packet processing, we refer
to related work of ours [14].

8

and resource control to ensure liveness of control operation
and thus ultimately network operation. Furthermore, the current
white-box switch landscape exhibits a high heterogeneity with
respect to hardware, i.e. switch silicon and control plane
architecture (x86, ARM, PowerPC), and software, i.e. operating
systems and forwarding agents.

We combine local controllets with lightweight virtualization
to cope with white-box networking heterogeneity and to achieve
required isolation properties. Since the large overhead of
virtualizing a full OS along with an application (traditional
virtual machines) counteracts the latency gains of local logic,
we focus on using two lightweight techniques: 1) Library
OS / Unikernel, such as Rump Kernel [40], where the guest
OS is stripped down to a bare minimum, i.e., providing
just the functionality the virtualized application needs for its
operation and 2) Containers, such as LXC and Docker, which
abandon hardware emulation and full OS virtualization in
favor of using isolation features of a shared kernel, providing
multiple isolated user-space instances. They allow for fine-
grained control over both, the scope of isolation (namespaces)
and resources allocation (cgroups) at minimal overhead. We
evaluate the overhead of these techniques in Section VI-C.

V. IMPLEMENTATION

We have implemented an open-source prototype of our
distributed SDN controller architecture, consisting of a mod-
ular execution framework (ZMF) running a distributed SDN
controller application (ZSDN) with essential controllets atop
[15]. ZMF and most modules are written in C++, but we also
provide a Java-based module framework (JMF). We provide
build support for x86 and ARM architectures. This section
presents the most important aspects of our implementation.
Additional technical documentation is available online [15].

A. ZMF: The Zero Module Framework
Our micro-kernel implementation consists of two

components, the PeerDiscoveryService and
MessagingService. Module runtime environments
are completely decoupled and independent of each other. They
run in dedicated processes, possibly on separate hardware. The
PeerDiscoveryService implements module discovery
with dependency and life-cycle management, enabling
bootstrapping and peer dynamics. To this end, changes in a
module’s lifecycle state, such as joining/leaving the framework,
are propagated using efficient UDP multicast. Furthermore,
modules periodically confirm their state by multicasting
heartbeat messages. Thus, with linear message complexity,
each module knows the type and state of all other modules.

For the message bus we employ the production-grade low-
latency communication middleware ZeroMQ (ZMQ) [41].
Besides numerous communication patterns and transport mech-
anisms of varying reliability, ZeroMQ comes with a security
framework implementing authentication, confidentiality, mes-
sage integrity, etc. [42]. Access to the message bus is provided
to ZMF modules through the MessagingService. We use
TCP and IPC as reliable transport mechanisms. Later, we will
show the mapping of data plane events and control plane events
to pub/sub topics.

Integration
State
Control

DeviceTopology

Statistics LinkDiscoverySwitchRegistry

SimpleForwardingForwardingARP

SwitchAdapter

Fig. 5. Dependency graph for essential controllets.

B. ZSDN: A Distributed SDN Controller

ZSDN consists of prototypical controllets for distributed
SDN control. All controllets support OpenFlow (OF) 1.0 and
1.3. Common data structures like topology data are mapped to
Google Protocol Buffers [43] definitions, providing language-
independent module communication.

Figure 5 shows essential controllets and their logical inter-
dependencies. The SwitchAdapter (SA) wraps an OF-enabled
switch in an instance which is running locally on the switch,
integrating it to and representing it within the framework.

State controllets acquire data plane state by passively
reacting on subscribed events or active probing. For instance,
the SwitchRegistry registers all available switches through
subscriptions on changes of their representing SwitchAdapters,
whereas the LinkDiscovery controllet detects switch to switch
links by subscribing to LLDP (Link-Layer Discovery Protocol)
data plane events and proactively injecting LLDP packets over
the SA instances into the data plane. The Topology controllet
subscribes to both, SwitchRegistry and LinkDiscovery events,
such that eventually it holds complete topology knowledge,
excluding end systems, which are managed by the Device
controllet. Topology information can be actively queried by con-
trollets using req/rep. Topology changes are published through
events, allowing for passive synchronization of controllet-local
caches. Another module class provides control feedback to
the data plane and thus closes the network control loop by
modifying forwarding rules, such as the SimpleForwarding
controllet.

1) Event Space – Topics Mapping: Due to the lack of
practical high performance content-based pub/sub middleware
implementations, we use ZMQ’s topic-based pub/sub imple-
mentation instead. We map the event space of both, data plane
events (from SA) and control plane events (other controllets),
to topics employing a hierarchical topic scheme which allows
for fine-grained subscriptions. In the following, we describe
the mapping, while illustrating its usage on the example of a
SwitchAdapter.

Each controllet defines two sets of topics: Set TO defines
which message types (topics) a controllet is able to process, i.e.,
which data plane events it wants to receive from the message
bus. This set is mapped to corresponding subscriptions for
event filtering. Set FROM defines the topics published by the
controllet, i.e., events disseminated to the bus. Other controllets
can subscribe to these advertised topics.

Topic definition is strictly hierarchical. The first hierarchy
layer defines the type of declaration (TO or FROM). The second
layer comprises the identity of the controllet. All upper layers

9

contain structure of controllet-type specific content. Attributes
are encoded as a bit-sequence, with a specific length associated
to each hierarchy layer, at a specific location within the topic-
hierarchy. Wildcard matching (“?”) is supported.

For the SA, as shown in Listing 1, the semantics are as
follows: Listens to Events (TO): The SA will receive any
incoming message of these topics and forward it to the switch.
Publishes Events (FROM): any OF message the SA receives
from the switch is published using a corresponding topic within
this set of topics.

Listing 1. Excerpt of the SwitchAdapter topic-hierarchy.

TO=0x01
SWITCH_ADAPTER=0 x0000

SWITCH_INSTANCE=0x ? ? ? ? ? ? ?
OPENFLOW=0x00

FEATURES_REQUEST=0x05
PACKET_OUT=0x0D
FLOW_MOD=0x0E
ROLE_REPLY = 0x19
METER_MOD = 0x1D

FROM=0x02
SWITCH_ADAPTER=0 x0000
−
OPENFLOW=0x00

FEATURES_REPLY=0x06
PACKET_IN=0x0A

LB_GROUP=0x ?? d e f a u l t =0x00
IPv4 =0 x0800
TCP=0x06
UDP=0x11

PORT_STATUS=0x0C

2) Partitioning & Load Balancing: Note that hierarchy
layers are not tied to a fixed representation of the underlying
event space, e.g., SA topics are not restricted to directly
reflect OF-matching fields. Artificial hierarchy layers may
be freely introduced between any layers. For instance, to
enable load balancing of PACKET_IN messages, the SA
artificially discriminates PACKET_INs by introducing an
additional 1-Byte topic hierarchy layer (LB_GROUP) and
disseminating such events in a round-robin fashion to the set
of groups. Controllets participating in load balancing subscribe
to a specific LB_GROUP, whereas controllets that want to
receive all PACKET_INs apply a wildcard subscription on the
LB_GROUP layer. This mechanism enables partitioning along
the network topology where, for instance, Topology controllets
refine their subscriptions to certain groups.

C. Integration Schemes for LDPEP

One way to implement switch-local control is to identify
a set of essential controllets and run them locally on each
switch. That way, full modularization is maintained and the
controllets’ code can be directly reused. While highly scalable,
communication over the message bus, e.g., for querying
topology data in case of the AFC (see §IV-B1), incurs higher
latency compared to, e.g., direct memory access in case of a
single-process integration. Although TCP connections over the
local loopback interface are highly optimized in recent Linux
kernels, micro-benchmarks [13] indicate higher throughput and
lower latency when using inter-process communication (IPC).

When focusing on latency, LDPEP should be implemented
by a fully integrated, monolithic controllet connected to
the message bus in order to leverage the global view and
central coordination, as explained for the AFC. Performance
potential lays in a tighter coupling to the underlying switch
hardware. Ideally, local logic would be pushed down to the
data plane hardware using Data Plane Programming, which
however focuses on packet processing and thus is not suited
to implement arbitrary control logic.

By supporting multiple integration schemes, our architecture
offers great flexibility to network operators who have to
compromise between performance and implementation efforts,
based on the expected load. We have implemented the schemes
modularized (ZSDN-TCP, ZSDN-IPC) and fully integrated
(ZSDN-AFC) and compare their performance in the following.

VI. EVALUATION

In this section, we present the evaluation of our proposed
distributed SDN controller architecture, consisting of a raw
performance comparison, an analysis of the scalability of our
approach, as well as results from the deployment on our white-
box networking switch, including the overhead of virtualization.

A. Raw Controller Performance

First, we compare the raw performance of ZSDN with other
popular controllers with the following methodology.

We use cbench [44] for measuring controller throughput
and latency. Cbench emulates switch behavior by sending
OF_PACKET_INs (triggers) to the connected controller. To
measure throughput, cbench sends triggers as fast as possible
and averages over the number of received OF_FLOW_MOD
and OF_PACKET_OUT from the controller. To prevent double-
counting, we modified the processing of controllers to respond
with only one type of message. For sequential throughput,
cbench waits for a response to a sent trigger, before sending
the subsequent trigger. Hence, we approximate controller
processing latency as the inverse of sequential throughput.
Cbench and the controllers run on a testbed consisting of
12 nodes (Intel Xeon E3-1245v2 @ 3.4GHz, 4 physical
cores, 16 GB RAM) interconnected through a switched 1 GbE
network.

To investigate the impact of controller locality, as illustrated
in Figure 6, we differentiate between the switch (cbench) and
the controller (traditional SDN controller or ZSDN) running
on the same node Hi (local; OpenFlow channel: TCP over
loopback interface) and running on different nodes Hi+1 and
Hi (remote; OF Channel: TCP over switched Ethernet).

Each cbench run is averaging over 60 seconds in parallel
on each of the 12 nodes (local) and 120 seconds on each of
the 6 node pairs (remote), totaling in the aggregation of 12
minutes of observation time for each experiment.

µK

OpenFlow

Channel

local TCP:

loopback

remote TCP:

switched 1GbE

Hi

SF1

µK

SF2

µK

...

Hi+3

MESSAGE BUS (TCP/IPC)

SA

cbench
Hi+1

µK

Hi+2

Fig. 6. Evaluation setup of control plane (testbed) for raw controller
performance evaluation (§VI-A) and scalability evaluation (§VI-B).

10

We evaluate the following platforms: (1) ZSDN-TCP/IPC:
modular controller framework using single-instance controllets
with message bus communication using reliable (guaranteed and
in-order message delivery) transport mechanisms TCP and IPC
(UNIX domain sockets); (2) ZSDN-AFC: the Autonomous
Forwarding LDPEP controllet, as introduced in Section IV-B1,
fully integrated (single process, see §V-C); (3) NOX (verity)
[45], [46]: an early academic C++ implementation, popular for
its performance; (4) ONOS [2]: Java-based, carrier-grade; (5)
Floodlight [47]: Java-based, production-grade; (6) Ryu [48]:
Python-based, popular for support of recent OF versions.

Figure 7 shows the results of the controller comparison,
where error bars depict the standard deviation. Regarding local
throughput (Figure 7, top half), NOX performs best with
≈ 369± 2msg/ms (messages per millisecond). The LDPEP of
ZSDN-AFC results in similar figures with ≈ 260± 1msg/ms.

The performance penalty of distribution shows to be bearable:
distributed ZSDN throughput is about 53% of ZSDN-AFC
(≈ 138± 28msg/ms), mainly dedicated to message passing.
Note that here we ran only one instance of each controllet, thus
measuring only the costs of distribution, not its benefits, which
we measure in the next section. Interestingly, ZSDN throughput
decreases by 1/3 when using IPC instead of TCP. This contradicts
expectations risen through the micro-benchmarks, where UNIX
domain socket throughput was reported to be about 20%
higher than TCP on these nodes. While Floodlight is close
to ZSDN-IPC, ONOS performs slightly better. The Python-
based controller Ryu is far off with ≈ 0.8msg/ms. Overall,
throughput penalties for a remote OF connection are moderate.
Interestingly, the remote throughput of ONOS and Floodlight
are measured to be higher than their local throughputs, which
we could trace down to stem from their common Java-based
network framework (Netty). Note that although the control
load, i.e., event rate, in practical deployments can be expected
to be smaller than in our maximum throughput evaluation,
our results provide valuable insights in determining the upper
performance bound.

Looking at latency (Figure 7, bottom half) however, remote
latency is increased drastically compared to local latency
with factors of 2 (ZSDN-TCP) to 6 (ZSDN-AFC). This is
a strong argument for local processing, especially for the
integrated LDPEP mode. On the other hand, when using
modularized controllets, the penalty for running SAs remotely,
e.g., for migration or inaccessible control planes (see §IV-D1)
is bearable.

B. Scalability of Controllet Distribution

Next, we evaluate the benefits of distribution and replication
of ZSDN controllets. As illustrated in Figure 6, we distribute
the most compute-intense controllets SwitchAdapter (SA)
and SimpleForwarding (SF) to dedicated nodes. For the
moment, we use only a single SA instance (replication factor
k=1) placed at Hi (local) or Hi+1 (remote). Furthermore,
we replicate the SF with a varying replication factor n. Each
instance SFj with j ∈ [1, n] is placed on a dedicated node
(Hi+1+j). The SA distributes the total load evenly to these
instances (see §V-B2). We additionally vary the number of

0

100

200

300

0

20

40

60

T
hroughput

S
equential T

hroughput

ZSDN-TCP

ZSDN-IPC

ZSDN-AFC
NOX

ONOS
Floodlight

Ryu

Controller

av
g.

 th
ro

ug
hp

ut
 [m

sg
/m

s]

SA locality
local

remote

Fig. 7. Raw controller performance: comparison of throughput and sequential
throughput (inverse latency) for ZSDN and other popular controllers, drilled
down by switch-controller locality (local/remote).

switches s, cbench emulates. For each switch connection, the
SA spawns 4 threads, dedicated to that connection.

The results are shown in Figure 8. Even for n = 1 (no
SF replication), we achieve 15% higher throughput just by
placing the SF instance on a dedicated node. For s = 1 and
increasing n, throughput increases, but only sublinearly. In this
setting, the SA constitutes a bottleneck. It maxes out 1 thread
(per-core performance) and is not able to fire drastically more
data plane events which the SF instances could process. If
we increase s, the throughput increases almost linearly until
the (single) SA instance maxes out (per-CPU performance
(all cores)) at s = 3. Having n > 3 does not further improve
performance, such that the overall peak performance is reached
with s= 3, n= 3 at ≈ 280± 16msg/ms. Note that maxing
out introduces high indeterminism (e.g., apparent throughput
drop in graph). To investigate the scaling-up behavior, we
repeated the experiment using more powerful nodes (Xeon
E5-1650v3 @ 3.5GHz, 6 physical cores), where throughput
peaks at s=5, n=5 with ≈ 670± 20msg/ms. Note that more
compute-intense processing, such as deep packet inspection,
would much more benefit from distribution and replication.

For n = 1, latency increases by about 22% due to the
physical separation of SA and SF and thus one additional hop
over the control plane network. In contrast to remote, local
latency increases with increasing s, since SA and cbench are
running on the same host, thus sharing an increasingly loaded
CPU, slowing down cbench’s production of emulated data
plane events and SA’s distribution pace. With increasing n,
local latency increases as well, due to increased splitting and
merging efforts of events to be disseminated to the message
bus and reactions received over the bus. Remote latency follows
the same trend, but only slightly increases with increasing n
since the impact on latency of the OpenFlow TCP connection
over the physical network instead of the loopback interface is
the dominating factor. In more practical scenarios with lower
event rates but higher packet sizes, this effect is expected to
be of much lesser extent.

When using the full distribution capabilities by replicating
both, SF and SA, i.e., increasing n as well as k, and keeping n/k

11

160

180

200

220

240

260

280

2

4

6

8

10

12

T
hroughput

S
equential T

hroughput

1 2 3 4
#SF replicas (n)

av
g.

 th
or

ug
hp

ut
 [m

sg
/m

s]

SA locality local remote

#switches (s) 1 2 3

Fig. 8. Scalability evaluation (scale-out): modular ZSDN controller with
varying number of SimpleForwarding instances (n) and varying number of
connecting switches (s).

balanced, we could verify linear scalability. Depending on the
efficiency of group communication, which is very efficient in
ZMQ due to filtering right at the publisher, network saturation
limits scalability. For scenarios with such high event rates
however, it is reasonable to employ 10 GbE or higher on the
control plane, counteracting network capacity bottlenecks.

C. Performance on White-box Networking Switch Hardware

In our last evaluation, we compare the controller performance
on real white-box switch hardware, instead of emulating it. We
compare ZSDN-IPC, ZSDN-AFC, NOX, and Ryu. The device
under test is a typical top-of-rack white-box switch Edge-
Core AS5712-54X, whose hardware specification is publicly
available under the Open Compute Project [38]. Its control
plane comprises an x86 Intel Atom CPU with 4 cores at
2.4GHz, 8GB RAM, and a 1GbE NIC. Atop we run the
operating systems OpenNetworkLinux (ONL) 2.0 with a 3.16.39-
LTS kernel and Pica8 PicOS 2.8 with a 3.16.7 kernel. On
the data plane, it features a Broadcom Trident II ASIC with
48× 10GbE and 6× 40GbE ports.

Our methodology, illustrated in Figure 9, is as follows.
The switch runs a network operating system (NOS) on its
control plane. For remote performance, the OpenFlow agent

AS5712-54X

C
P

(N
O

S)
D

P

Sender

PKT_IN PKT_OUTOVS / OF-DPA

pkpj

Le
ar

ni
ng

S

w
itc

h

H1

HW Timestamping HW Timestamping
Reflector

PKT_OUT PKT_IN

H0

OF:
TCP

local

rem
ote (1G

bE
)

VI
R

T. C O N T R O L L E R

TRTT Trefl.

Tproc

ts,TX ts,RX tr,RXtr,TX

Fig. 9. Setup of measuring control plane processing latency (Tproc) on a
white-box switch (§VI-C) using hardware-timestamping on end systems.

running atop of the NOS connects to a remote controller. For
local, we deploy a controller directly on top the NOS, which
the OpenFlow agent connects to. Later, we isolate the local
controller using a hypervisor or container. We intentionally
provoke that every ingress packet at a data plane port is
processed in the control plane. To this end, the controllers
run learning switches, but do not install flows. In the data
plane, we connect two end-hosts (H0, H1) with 10 GbE links
to the switch. H0 is sending packets to H1 where they are
reflected back. Packet identity is ensured through unique
sequence numbers attached to the packets (as sole payload).
Both, egress (tTX) and ingress (tRX) times are captured using
hardware-timestamping. Thus we can measure the RTT at the
sender (TRTT = ts,RX − ts,TX) and the time spent for reflection
at the reflector (Trefl = tr,TX − tr,RX) with high precision.
We approximate the (one-way) switch processing latency
as Tproc = 1/2 ∗ (TRTT − Trefl), neglecting transmission and
propagation delay.

The throughput results show significant throttling. This is
expected behavior, although the switch silicon is interconnected
with the CPU over a PCI-Express bus with plenty of bandwidth.
Switch vendors introduce limiting of traffic between the switch
silicon (data plane) and the CPU (control plane) in their switch
design, to prevent denial of service attacks on the control plane
caused by (uncontrolled) data plane traffic. We observe that
with ONL, throughput is capped at 1 kpps (1000 packets per
second) with a low peak CPU utilization of the ONL’s OF-
DPA daemon of 50% of one core. This shows that the rate
limit is clearly not caused by a CPU bottleneck. For switch-
ingress rates ≥ 20 kpps on PicOS, we measure an egress-rate of
about 7 kpps, while PicOS’s Open vSwitch daemon consumes
two cores. Note that due to isolation and resource control,
our lightweight virtualization deployment effectively protects
control plane operation, rendering additional safety mechanisms
like the vendor rate limiting superfluous.

For evaluating switch control plane processing latency, we
send with a rate of 100 kpps for 50 s. Through reflection, the
effective packet rate (ingress rate at the switch) is doubled. We
begin with a comparison of controllers (Figure 10) running
bare-metal (no hypervisor/container) on ONL or remotely
(Xeon E5-1650v3).

NOX

ZSDN-AFC

ZSDN-IPC

NOX

ZSDN-AFC

ZSDN-IPC

local
rem

ote

250 500 750 1000 1250 1500
switch CP packet processing latency [µs]

C
on

tr
ol

le
r

Fig. 10. Evaluation on a white-box networking hardware switch: comparison
of switch processing latencies (x-axes: medians (bars), averages (diamonds))
of modular ZSDN-IPC, fully integrated ZSDN-AFC, and NOX, drilled down
by switch-controller locality.

12

ZSDN / NOX

KVM

rumprun

Docker

remote

none

KVM

rumprun

Docker

remote

none

250 500 750 1000 1250 1500
switch CP packet processing latency [µs]

hy
pe

rv
is

or

none

remote

Docker

rumprun

KVM

Ryu

O
N

L
P

icO
S

1000 1500 2000 2500 3000 3500 4000 4500

Fig. 11. Processing latencies (x-axes: medians (bars), averages (diamonds)) of controllers (grid horizontal) running locally on network operating systems (grid
vertical) with varying isolation mechanisms (y-axis). Bare-metal (none) and remote execution are given as baselines. Whiskers enclose 95% of measured values.

For switch-local controllers, NOX performs best with an
average latency of ≈ 330± 75 µs. ZSDN-AFC is consistently
within 3% of NOX. The costs for module decoupling over
the message bus of ZSDN-IPC evaluates to ≈ 767± 112 µs,
a factor of 2.3, clearly showing the superiority of LDPEP
with the full integration scheme of ZSDN-AFC which still
profits fully from centralized view and coordination. Remote
execution increases latency by a factor of ≈ 1.8, for ZSDN-
AFC and NOX and a factor of ≈ 1.4 for ZSDN-IPC. Note that
our scenario of a one-hop switched 1 GbE control network
is almost ideal, providing a lower bound for switch control
plane processing latency. For larger distances or WAN scenarios,
remote control latencies are expected to be orders of magnitudes
higher. Ryu (Figure 11) is expectedly performing worse than
its C++ counterparts with ≈ 1795± 225 µs but surprisingly
20% faster remote execution.

We evaluate virtualization overhead of Docker (ONL only)
as well as rump kernels (rumprun) and full VMs (KVM), both
running on QEMU with KVM-acceleration enabled by the
Atom’s VT-x support. The baseline is bare-metal execution
(none). Since NOX and ZSDN are relying on Digital Shared
Objects (DSO), we were not able to port them to rumprun.
The results are illustrated in Figure 11. Docker has the lowest
overhead. With full isolation of all but the network namespace,
Docker imposes almost no overhead for NOX/ZSDN. Latency
and its deviation are within 1 µs to bare-metal execution.

Next, we measure the combined overhead of the hypervisor
and the guest OS of virtualization variants, employing KVM’s
pseudo-paravirtualized network driver virtio. Full virtualiza-
tion (KVM) adds large overhead. On average, 410 µs (factor
1.5) incur for ONL and 820 µs (factor 1.8) for PicOS, both
slower than remote execution. Standard deviations are larger by
factors 2 and 2.2, respectively. Ryu as a Unikernel (rumprun) is
showing much better results. Compared to a full VM, latencies
and deviations are greatly reduced by 220 µs and 285 µs for
ONL, and 310 µs and 190 µs for PicOS. This is the result of the
minimal guest OS and hence reduced OS overhead. Compared
to bare-metal/Docker, factors of 1.2 and 1.5 for latency on
ONL and PicOS are promising.

Lastly, we evaluate the difference between the NOSes. For all
measurements, compared to ONL, PicOS adds quite consistent
latency of 200 µs on average for bare-metal and remote, 420 µs
for NOX/ZSDN, and as high as 950 µs for KVM and rumprun.

Especially for higher packet rates, we have observed instability
of QEMU on PicOS.

We can conclude that containers provide isolation as needed
at minimal cost. We could verify and quantify the benefit of
reduced latency to be almost halved with containerized local
control logic, despite isolation.

VII. RELATED WORK

Many early approaches, including Onix [49], propose to
externalize state storage, which incurs additional latency for
lookups. In Onix, switches and controller instances are tightly
coupled. While Onix limits the shared view onto network state
information, HyperFlow [50], as our approach, holistically
propagates all kinds of data plane events. HyperFlow also
facilitates pub/sub to propagate events, event classification
is however limited to three topics, whereas our approach
leverages content-based filtering (mapped to a topic hierarchy
in our preliminary implementation) to allow for fine-grained
subscriptions. Furthermore, HyperFlow exclusively relies on
passive synchronization of the locally cached network wide
view, while our approach offers maximum flexibility allowing
both, local caches for fast access as well as access to highly
consistent centralized storage.

DevoFlow [5] is the first SDN approach to allow for local
decision making on the switch, however mandating changes
of the switching ASIC. Kandoo [6] proposes a two-layered
controller hierarchy with a root controller maintaining network-
wide state, and local controllers possibly running directly on
switching hardware, only handling local events where no global
knowledge is required. While this scheme allows for offloading
of simple local logic, local controllers do not hold any state data,
neither do they interact with each other at all. Our approach
is not limited to such a strict hierarchical scheme and does
not rely on a root controller instance, thus offering superior
flexibility.

While these approaches exhibit a static switch-controller
assignment, ElastiCon [7] allows for a dynamic switch to con-
troller instance mapping. By periodic monitoring of controller
load, the number of instances and the mapping is adapted for
effective load balancing. Since switches are still tightly coupled
to an instance, the authors introduce a switch migration protocol.
A similar problem is addressed in [10], [11]. The decoupling

13

of switch and controller offered by our approach eliminates
the need for complex and costly migration mechanisms.

More recent approaches improve on failure tolerance in
control distribution. Beehive [51] models control applications
as centralized asynchronous message handlers featuring and
thus focusing on application partitioning, exclusive handling of
messages among a set of controllers, as well as consistent
replication of control state information. Logical message
propagation is dictated by map-functions that determine to
which set of applications a specific message is to be sent
to. Message passing is not addressed in detail. Furthermore,
each Beehive controller instance contains all application logic
in contrast to our highly modular approach. Another work,
Ravana [17], focuses on controller fault-tolerance. Ravana
subsumes event dissemination from switches, their processing
by a controller, and the resulting execution of controller
commands at the switches in a transaction and guarantees that
control messages are processed transactionally with exactly-
once semantics. Message propagation and actual distribution
schemes are not addressed.

Fibbing [52] exerts centralized control over routers that
implement a legacy, non-SDN, control plane running fully
decentralized routing algorithms, such as OSPF and IS-IS. The
forwarding behavior of routers, i.e., their forwarding informa-
tion base, is manipulated as to achieve desired network behavior
by faking input messages to the distributed routing algorithms.
Although being congruent in the notion of centralized control,
unlike in our approach, Fibbing’s control is solely indirect and
thus inherently limited.

VIII. CONCLUSION

In this article, we presented a novel architecture for a highly
flexible distributed SDN controller based on a message bus for
communication and a micro-kernel design. Network control
logic is split into control modules, called controllets, which
can be freely distributed. Controllets communicate through
the message bus and are decoupled from switches and other
controllets using the publish/subscribe paradigm. The micro-
kernel design only requires controllets to implement a small
set of functions to connect to the message bus and participate
in publish/subscribe communication. Consequently, controllets
are extremely lightweight and can also be executed directly
on white-box switches to enable fully distributed network
control even without external SDN controller—a new level of
flexibility in control plane distribution that so far is not possible
with standard SDN controllers. Our evaluations showed the
practicality of our architecture for both, full distribution as
well as the integration of controllets for fast local processing
of data plane events, while still benefiting from global view
and centralized coordination. Through employing lightweight
virtualization techniques, we cope with crucial challenges of
practical deployment to ensure a safe operation of the control
plane and thus continuous network operation.

Possible future work includes evaluating specific patterns
of data plane events and control plane events to complex
network events as well as an event-driven execution of system
management workflows in a holistic system management plane
embracing the network control plane.

REFERENCES

[1] Open Networking Foundation, “OpenFlow Switch Specification,”
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf.

[2] The Linux Foundation, “ONOS - A new carrier-grade SDN network
operating system designed for high availability, performance, scale-out,”
http://onosproject.org/.

[3] OpenDaylight Foundation, “OpenDaylight: Open Source SDN Platform,”
https://www.opendaylight.org/.

[4] OSGi Alliance, “Open Services Gateway initiative,” https://www.osgi.
org/.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
performance Networks,” in Proceedings of the ACM SIGCOMM 2011
Conference, ser. SIGCOMM ’11. New York, NY, USA: ACM, 2011,
pp. 254–265.

[6] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 19–24.

[7] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“ElastiCon: An Elastic Distributed Sdn Controller,” in Proceedings of
the Tenth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ser. ANCS ’14. New York, NY, USA: ACM,
2014, pp. 17–28.

[8] R. Bifulco, J. Boite, M. Bouet, and F. Schneider, “Improving SDN with
InSPired Switches,” in Proceedings of the Symposium on SDN Research,
ser. SOSR ’16. New York, NY, USA: ACM, 2016, pp. 11:1–11:12.

[9] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming Platform-independent Stateful Openflow Applications
Inside the Switch,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,
pp. 44–51, Apr. 2014.

[10] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson,
“Pratyaastha: An Efficient Elastic Distributed SDN Control Plane,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014.

[11] A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a dynamic
SDN virtualization layer: Control path migration protocol,” in 2015 11th
International Conference on Network and Service Management (CNSM),
Nov. 2015, pp. 354–359.

[12] D. Chappell, Enterprise service bus. " O’Reilly Media, Inc.", 2004.
[13] T. Kohler, F. Dürr, and K. Rothermel, “ZeroSDN: A Highly Flexible

and Modular Architecture for Full-range Network Control Distribution,”
in 2017 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE Press, May 2017, pp. 25–37.

[14] T. Kohler, F. Dürr, C. Bäumlisberger, and K. Rothermel, “InFEP -
Lightweight Virtualization of Distributed Control on White-box Net-
working Hardware,” in 2017 13th International Conference on Network
and Service Management (CNSM), Nov 2017, pp. 1–6.

[15] ZSDN, “Github Repository: Zero Software Defined Networking; Dis-
tributed Software Defined Networking (SDN) Controller,” https://github.
com/zeroSDN.

[16] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[17] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
Fault-tolerance in Software-defined Networking,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR ’15. New York, NY, USA: ACM, 2015.

[18] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Dürr, T. Kohler, and
K. Rothermel, “High Performance Publish/Subscribe Middleware in
Software-Defined Networks,” IEEE/ACM Transactions on Networking,
vol. PP, no. 99, pp. 1–16, 2017.

[19] nanomsg Documentation. (2017, Jan.) Differences between nanomsg
and ZeroMQ. http://nanomsg.org/documentation-zeromq.html. [Online].
Available: http://nanomsg.org/documentation-zeromq.html

[20] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat,
“Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 183–197.

[21] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically Centralized?: State Distribution Trade-offs in Software Defined
Networks,” in Proceedings of the First Workshop on Hot Topics in

14

Software Defined Networks, ser. HotSDN ’12. New York, NY, USA:
ACM, 2012, pp. 1–6.

[22] S. Schmid and J. Suomela, “Exploiting Locality in Distributed SDN
Control,” in Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 121–126.

[23] C. Cascone, L. Pollini, D. Sanvito, and A. Capone, “Traffic Management
Applications for Stateful SDN Data Plane,” in 2015 Fourth European
Workshop on Software Defined Networks, Sep. 2015, pp. 85–90.

[24] A. S. Muqaddas, P. Giaccone, A. Bianco, and G. Maier, “Inter-controller
traffic to support consistency in onos clusters,” IEEE Transactions on
Network and Service Management, vol. 14, no. 4, pp. 1018–1031, Dec
2017.

[25] VMWare Inc., “Open vSwitch – An Open Virtual Switch (Nicira
Extensions),” https://git.io/vgTKL.

[26] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” 2015, pp. 117–130.

[27] J. Yang, Z. Zhou, T. Benson, X. Yang, X. Wu, and C. Hu, “Focus:
Function offloading from a controller to utilize switch power,” 2016.

[28] N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers, “Fast Recovery
in Software-Defined Networks,” in 2014 Third European Workshop on
Software Defined Networks, Sep. 2014, pp. 61–66.

[29] D. Thaler and C. Hopps, “ Multipath Issues in Unicast and
Multicast Next-Hop Selection,” Internet Requests for Comments,
RFC Editor, RFC 2991, November 2000. [Online]. Available:
https://tools.ietf.org/html/rfc2991

[30] Broadcom, “BroadView: Analytics-Driven Dynamic Path Optimization,”
https://www.broadcom.com/collateral/tb/BroadView-TB301-RDS.pdf.

[31] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A Distributed and
Robust SDN Control Plane for Transactional Network Updates,” in
Proceedings of INFOCOM’15), Apr. 2015.

[32] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[33] T. Kohler, R. Mayer, F. Dürr, M. Maaß, S. Bhowmik, and K. Rothermel,
“P4cep: Towards in-network complex event processing,” in Proceedings
of the ACM SIGCOMM 2018 Morning Workshop on In-Network
Computing, ser. NetCompute ’18. New York, NY, USA: ACM, 2018, pp.
33–38. [Online]. Available: http://doi.acm.org/10.1145/3229591.3229593

[34] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
Network Computation is a Dumb Idea Whose Time Has Come,” in
Proceedings of the 16th ACM Workshop on Hot Topics in Networks, ser.
HotNets-XVI. New York, NY, USA: ACM, 2017, pp. 150–156.

[35] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network
Functions,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 511–524.
[Online]. Available: http://doi.acm.org/10.1145/2934872.2934875

[36] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of NFV,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, 2016, pp. 203–216. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/panda

[37] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker, “E2: A Framework for NFV Applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles, ser. SOSP ’15.
New York, NY, USA: ACM, 2015, pp. 121–136.

[38] Open Compute Project. Networking Specs And Designs. https://www.
opencompute.org/wiki/Networking/SpecsAndDesigns.

[39] Markets and Markets. https://www.marketsandmarkets.com/
Market-Reports/white-box-server-market-219773580.html.

[40] A. Kantee and J. Cormack, “Rump kernels: No os? no problem!” in
;Login: USENIX Magazine, October 2014, Vol. 39, No. 5. USENIX.

[41] iMatix Corporation, “ZeroMQ: Distributed Messaging,” http://zeromq.
org/.

[42] iMatix Corporation. CurveZMQ - Security for ZeroMQ. http://curvezmq.
org/page:read-the-docs.

[43] Google Inc., “Protocol Buffers,” https://developers.google.com/
protocol-buffers/.

[44] R. Sherwood and K.-K. Yap, “Cbench: an Open-Flow Controller
Benchmarker,” http://www.openflow.org/wk/index.php/Oflops.

[45] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an Operating System for Networks,”
SIGCOMM CCR, vol. 38, no. 3, pp. 105–110, Jul. 2008.

[46] The NOX Controller, “Github Repository: NOX Network Control
Platform,” https://github.com/noxrepo/nox.

[47] Big Switch Networks, “Floodlight: An Open SDN Controller,” http:
//www.projectfloodlight.org/floodlight/.

[48] Ryu SDN Framework Community, “Ryu: Component-based Software
Defined Networking Framework,” https://osrg.github.io/ryu/.

[49] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: A
Distributed Control Platform for Large-scale Production Networks,” in
Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI ’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–6.

[50] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking. USENIX Association,
2010, pp. 3–3.

[51] S. H. Yeganeh and Y. Ganjali, “Beehive: Simple distributed programming
in software-defined networks,” in Proceedings of the Second ACM
Symposium on SDN Research (SOSR ’16), Santa Clara, CA, Mar. 2016.

[52] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central Control
Over Distributed Routing,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, ser. SIGCOMM ’15.
New York, NY, USA: ACM, 2015, pp. 43–56.

Thomas Kohler received the M.Sc. degree in Com-
puter Science from Augsburg University, Germany, in
2013. He is currently pursuing the Ph.D. degree at the
Distributed Systems research group, University of
Stuttgart, Germany. His research interests include
consistency and determinism in Software-defined
Networking as well as White-box and programmable
networking hardware. In particular, his research
focusses on update consistency, local switch logic,
control plane distribution, and data plane program-
ming.

Frank Dürr is a senior researcher and lecturer
at the Distributed Systems Department of the In-
stitute of Parallel and Distributed Systems (IPVS)
at University of Stuttgart, Germany. He received
both his doctoral degree and diploma in computer
science from University of Stuttgart. Frank Dürr
is currently leading the mobile computing and the
software-defined networking (SDN) & time-sensitive
networking (TSN) groups of the Distributed Systems
Department. He has given tutorials on SDN at several
national and international conferences, and as a

lecturer he has been giving lectures and practical courses on networked
systems and SDN. Besides SDN and TSN, Frank Dürr’s research interests
include mobile and pervasive computing, location privacy, and cloud computing
aspects overlapping with these topics like mobile cloud and edge computing,
or datacenter networks.

Kurt Rothermel received his doctoral degree in
Computer Science from University of Stuttgart in
1985. From 1986 to 1987 he was Post-Doctoral
Fellow at IBM Almaden Research Center in San
José, U.S.A., and then joined IBM’s European
Networking Center in Heidelberg. Since 1990 he
is a Professor for Computer Science at the University
of Stuttgart. From 2003 to 2011 he was head of
the Collaborative Research Center Nexus (SFB 627),
conducting research in the area of mobile context-
aware systems. He is a Director of the Institute of

Parallel and Distributed Systems. His current research interests are in the field
of distributed systems, computer networks, and mobile systems.

