
ZeroSDN: A Highly Flexible and Modular Architecture for
Full-range Network Control Distribution

Thomas Kohler Frank Dürr Kurt Rothermel
{firstname}.{lastname}@ipvs.uni-stuttgart.de

University of Stuttgart
Institute of Parallel and Distributed Systems (IPVS)

Universitätsstraße 38
70569 Stuttgart

ABSTRACT
Recent years have seen an evolution of SDN control plane
architectures, starting from simple monolithic controllers,
over modular monolithic controllers, to distributed controllers.
We observe, however, that today’s distributed controllers
still exhibit inflexibility with respect to the distribution of
control logic. Therefore, we propose a novel architecture of a
distributed SDN controller in this paper, providing maximum
flexibility with respect to distribution.

Our architecture splits control logic into light-weight con-
trol modules, called controllets, based on a micro-kernel
approach, reducing common controllet functionality to a
bare minimum and factoring out all higher-level functional-
ity. Light-weight controllets also allow for pushing control
logic onto switches and enable local processing of data plane
events to minimize latency and communication overhead.
Controllets are interconnected through a message bus sup-
porting the publish/subscribe communication paradigm with
specific extensions for content-based OpenFlow message fil-
tering. Publish/subscribe allows for complete decoupling of
controllets to further facilitate control plane distribution. We
evaluate both, the scalability and performance properties of
our architecture, including its deployment on a white-box
networking hardware switch.

CCS Concepts
• Networks → Network architectures; Programmable
networks; Bridges and switches; Network manageability;
• Software and its engineering → Publish-subscribe
/ event-based architectures;

Keywords
Software-defined Networking; OpenFlow; Control Plane Dis-
tribution; Publish/Subscribe; White-box Networking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ANCS’17 May 18–19, 2017, Beijing, China
© 2017 ACM. ISBN ???.

DOI: ???

1. INTRODUCTION
Software-defined Networking (SDN) is based on the

paradigm of logically centralized control of network elements.
Logical centralization is nothing more than the concept of dis-
tribution transparency, which is well-known from distributed
systems. Distribution transparency hides the complexity
of a physically distributed system from the application by
making distribution aspects “transparent”, i.e., not visible
to the application. Thus, the client can be implemented as
if the system were centralized. In particular, network con-
trol applications implementing network control logic have a
global view of the network, although network information
such as topology information inherently has to be acquired
through monitoring by distributed network elements (the
switches). Moreover, the SDN controller itself might be (ide-
ally) a distributed system with all its defining properties like
replication transparency, fragmentation transparency, and
without a single point of failure. For instance, topology in-
formation stored in a “network information base” might be
replicated to and partitioned between many servers to ensure
availability and scalability.

1.1 Evolution of SDN Controller Architec-
tures

Many SDN controllers have been implemented so far based
on the concept of logically centralized control. Figure 1
depicts the evolution of controller architectures with respect
to distribution and modularization.

First SDN controllers were monolithic systems, implement-
ing the controller as one process. The SDN controller connects
through the southbound interface to the switches using, for
instance, the popular OpenFlow protocol [28], and the con-
trol applications interface with the SDN controller through a
northbound interface, e.g., a Java API or REST interface. To
increase fault-tolerance, the monolithic process implementing
all control logic can also be fully replicated.

Very similar to the evolution of monolithic operating system
kernels like the Linux kernel, this monolithic design was soon
extended to a modular monolithic design (Fig. 1(a)), where
control modules implementing certain control functions can
be dynamically (un-)loaded into the controller process at
runtime. One popular example showing that this design
is still frequently used in practice is the OpenDaylight [29]
controller, relying on OSGi [30]. However, this modular
controller architecture remains to be monolithic since it still
relies on a central controller executing all modular control
functions in one process. Again, the logically centralized

kohlerth
Rechteck

kohlerth
Textfeld
Published in ACM/IEEE Symposium on Architectures for Networking and Communications Systems,ANCS'17, May 18-19, 2017, Beijing, China© IEEE 2017



controller can be physically distributed with each replica
containing all control functions, i.e., replicas are identical
clones.

Mainly to further increase scalability and reliability, SDN
controller evolution continued to investigate distributed SDN
controllers (Fig. 1(b)). Network control can be distributed
along two dimensions. First, similar to the modular mono-
lithic design, individual control functions can be factored
out into control modules, which are now partitioned between
different physical machines instead of fully replicating all
control functions on all machines. Note, that this partition-
ing over control functions, as depicted, mandates multiple
concurrent controller connections. This feature was originally
unsupported by OpenFlow and has been added in version
1.2. However, vendor-specific implementation in hardware
switches might impose restrictions, e.g., on the number of
concurrent controller connections [18], limiting practicability.
To overcome compatibility issues, an n :m switch-controller-
mapping can be implemented by a simple wrapper1 that
runs locally on each switch and proxies OpenFlow messages
from the switch to control modules, and vice-versa. Secondly,
control can be partitioned over the network topology, i.e.,
the scope of individual control modules can be restricted to
a subset of switches. This possibly requires further concepts
to coordinate instances with different scopes, e.g., through a
controller hierarchy, on the other hand facilitates scalability
with the network size.

1.2 Motivation: A Full-range Distribution Ar-
chitecture for SDN Controllers

Observing that distributed SDN controllers already exist
today, can we conclude that SDN controller evolution has
reached its end? We argue that this is not the case, for the
following reasons.

First of all, implementing fully distributed network con-
trol (without switch-external control functions) is not an-
ticipated. Thus, with current SDN, switches talk to the
external monolithic network controller or distributed exter-
nal control modules, but not to other switches. There is
no direct communication between network elements. This
reflects the clean-slate paradigm shift from distributed net-
work control to logically centralized control, where switches
are just fast forwarders and all “intelligence” is outsourced
to external machines. Obviously, this outsourcing comes
at a cost like increased round-trip times (slower reaction),
increased control network load, or difficult implementation
of robust logically centralized control relying on additional
machines that can fail. Therefore, we argue that a highly
flexible SDN architecture would allow for the full spectrum
of distribution, from fully centralized to fully distributed
control. In other words: we must enable the possibility to
bring control back onto the switch. Although execution of
control logic on the switch hardware on the one hand has
been conceptually proposed in literature [12, 17, 13], due to
lack of distribution support or high computational resource
demand, in concrete implementations it has been reduced to
offloading of certain functionality, such as packet generation
[4] or state machine logic [3]. To fully exploit locality of
the switches, we argue to include the switch hardware in
the control distribution and allow for decision making on
the local scope. Besides the extremes—fully (de-)centralized
control—we argue that network control decisions are ideally

1denoted as SwitchAdapter (SA) in our implementation

be taken as local as possible, in order to minimize latency,
while leveraging the logically centralized paradigm of SDN
through access to global knowledge, i.e., access to neighbor
switches as well as to the entire controller hierarchy, in order
to improve decision quality. Since requirements, such as time-
liness, optimality, and consistency, may tremendously differ
between network functions, a network control architecture
should provide the flexibility for balancing these trade-offs
for each individual network function to account for their het-
erogeneity. For instance, for forwarding decisions at a switch,
which are inherently distributed, typically full global knowl-
edge is not required but the focus lays on timeliness in order
to reduce network latency. In contrast, traffic engineering
or monitoring are applied on a much broader time scale and
thus looser latency constraints, but relying on more global
knowledge for improved solution quality.

Secondly, with the current concept we observe that con-
trollers tend to be quite heavy-weight (which might also be
a practical reason why control is removed from switches).
For instance, in order to just receive packet-in events, the
prominent OpenDaylight controller requires a full-fledged
OSGi environment with a total code size of ≈ 280 MByte.
More light-weight controllers typically lack modularity or dis-
tribution capability. We argue that it should be possible to
identify a minimal feature set that every control module can
implement, basically to communicate with switches and other
distributed control modules. Anything else should be factored
out into the implementation of the control function. In other
words, we advocate a light-weight micro-kernel approach
for SDN controllers instead of a heavy-weight monolithic
controller architecture.

Thirdly, we observe that switches and controllers are still
tightly coupled, which hinders the free distribution of control
logic. For instance, an OpenFlow control channel requires
a TCP connection to a controller. Since TCP is inherently
based on connections to certain machines, spawning new
control applications at other machines or migrating them be-
tween machines is cumbersome and potentially disruptive [23,
2]. We argue that switches must be decoupled from the SDN
controller. This can be achieved by using state-of-the-art
communication middleware approaches as already success-
fully used in other domains for the communication between
services [11]. As a side effect, choosing a suitable communi-
cation middleware also allows for implementing control logic
in virtually any language and to support event-driven as well
as request/response types of interaction.

The main contribution of this paper is a novel archi-
tecture for a distributed SDN controller fulfilling all of the
above requirements: (1) high flexibility with respect to distri-
bution of control logic covering the full spectrum from logi-
cally centralized to fully distributed control; (2) micro-kernel
controller architecture for distributed light-weight controller
modules (so-called controllets); (3) push-down of controllets
implementing control logic onto switches, allowing for fast
local decision making while leveraging global knowledge; (4)
decoupling of controllets through a message bus supporting
content-based filtering of so-called data plane events. An
implementation of the proposed concepts is publicly available
on GitHub [47].

The rest of the paper is structured as follows. In §2, we
describe the architecture of our distributed SDN controller
together with an overview of the basic concepts. We pro-
ceed with describing the message bus concept in more detail



Clogic

OF
(Master)

S0

CP
S1

CP

S2

CP

C2

CF0 CF1 CF2

C1

CF0 CF1 CF2

C0

CF0 CF1 CF2
S
M
lo
gi
c

(a) Modular, monolithic, replicated;
C: controller instance, CF: control function,
SM: state module

...

CM2,logicCM0,logic

...
OF OF OF

CM0 CM2
CM2,0CM1CM0,0

SM0
SM1 SM2

S0

S1

S2

SA SA

SA

(b) Modular, distributed (partitioned, repli-
cated);
CM: control module, SA: switch adapter

CM2,0CM0

S0

S1

S2

L0 L1
µK µK

µ-Kernel
SM0

µK

CM2,1

µ-Kernel
SM2 µ-Kernel

SM2

L0 L1
µK µK

L3
µK

L4
µK

SM4

SM3SM1

SM1
SM1

MESSAGE
BUS

(c) µ-kernel architecture with fully dis-
tributed local (L) & external controllets
(CM), interconnected by a message bus.

Figure 1. Evolution of distribution in SDN controller architectures. Rightmost: Our envisioned fully distributed architecture.

in §3. In §4, we discuss how this concept enables highest
flexibility in terms of control plane distribution, before we
present detailed applications for executing local logic based
on global knowledge, which we denote as local data plane
event processing. In §5 we describe the most important as-
pects of our implementation of the concepts, followed by an
evaluation of performance and scalability of our distributed
control architecture as well as results from the deployment
of local logic on white-box networking switch hardware in §6.
Based on the presented concepts for a distributed network
controller, we outline a roadmap towards a highly scalable
holistic system control plane in §7, before we discuss related
work in §8, and conclude the paper in §9.

2. ARCHITECTURE
We start by introducing the basic architecture of our dis-

tributed SDN controller (cf. Fig. 1(c)) including an overview
of the basic functions and concepts.

Our approach is based on what we call a micro-kernel
architecture for SDN controllers. We split network control
logic into light-weight control modules, whose instances we
call controllets (CMi). In contrast to a monolithic controller,
controllets do not require a heavy-weight execution envi-
ronment. Instead we execute each controllet in a separate
process, possibly being also physically distributed to sepa-
rate hardware, and enable each controllet to communicate
with other controllets or switches through messages. The
micro-kernel (µK) just provides basic functions for messag-
ing including publish/subscribe message routing and parsing
(in particular of OpenFlow messages), and registration and
discovery of controllets and switches. Any other functionality
like network topology management, routing, etc. is imple-
mented by the controllets’ “business” logic. One advantage of
having a slim functionality for the SDN micro-kernel is that
we can port the micro-kernel with little effort to different
languages enabling us to basically use any language for the
implementation of controllets. Moreover, the light-weight
nature of controllets also enables us to execute controllets
directly on switches (Si), typically featuring limited comput-
ing resources, to push-down control logic onto switches. This
decreases communication latency and overhead. We denote
controllets running locally on switches as Li.

Communication is based on a unified message bus to de-
couple controllets from switches and other controllets, both,
logically and physically. We are thus able to reduce the
switch-controller coupling to inter-module communication

over the message bus. Controllets can run on any hardware
entity connected to the message bus, e.g., switches, or server
hardware. Each controllet and switch can send messages
through the bus to other controllets or switches either us-
ing the request/response or the publish/subscribe (pub/sub)
paradigm. Decoupling controllets and switches allows for
flexible distribution including migration of controllets, and
dynamic spawning or exchanging of controllets at runtime.

Overall, this architecture allows for maximum flexibility.
Next, we refine our architecture and elaborate on the technical
details and further key features enabled by our approach.

3. THE SDN MESSAGE BUS: DECOU-
PLING CONTROLLETS THROUGH
EVENTS

Our architecture utilizes event-based communication to de-
couple the producers of events from the consumers of events
in time (asynchronous communication) and space (distribu-
tion of logic between nodes including switches and hosts). In
the domain of SDN, we particularly consider so-called data
plane events (DPE), stemming from packets or state changes
of data plane elements (switches and end systems). They
include the addition or removal of network elements, link
status updates, and packet ingress or egress. From certain
DPEs state information, such as physical network topology
knowledge and end-host protocol state, e.g., TCP-sessions,
can be inferred. A DPE is either processed in the hardware
forwarding pipeline of the switch, e.g., a packet ingress is
processed according to the flow rules installed in the switch’s
TCAM, or is being forwarded to the control plane, e.g., when
no matching forwarding rule exists. In this case, the switch
ASIC passes the associated packet to the OpenFlow agent
(running on the switch’s CPU), which itself encapsulates the
packet into an OpenFlow PACKET_OUT message. When not
consumed locally (c.f. §4.2), the switch publishes the DPE
to the message bus, which delivers it to controllets that are
subscribed to this kind of event. The message bus is responsi-
ble for routing event notifications to their subscribers. Since
DPEs often include matches on packet header fields, we argue
that the message bus should support content-based filtering
of events [14]. Therefore, event conditions include matches
on header field tuples or any other meta-data. This paradigm
can also emulate standard client/server communication, mul-
ticast, or topics [14], using filters on receivers, groups, topics,
etc.



However, we do not restrict ourselves to basic data plane
events, but also consider complex data plane events involving,
for instance, several packets and timing conditions. For
instance, a complex event could be triggered by a certain
sequence of packets, or the non-arrival, i.e., absence, of a
certain packet over a defined period of time, also across
multiple switches. Typically, switches only fire basic events,
which are then forwarded to subscribing controllets, which
in turn evaluate complex event conditions to fire complex
data plane events. Due to space constraints, we don’t further
elaborate on complex data plane events in this paper.

Another type of events used for inter-controllet communi-
cation is the control plane event (CPE), which encapsulates
state changes or other events of the controllets’ business logic
or their micro-kernel, such as topology changes, firewall pol-
icy changes, or recovery/shutdown of controllets. CPEs are
mainly used for coordination among controllets.

Recent SDN research has shown that consistency in an
inherently distributed system of switches and controllers
might require certain semantics on the delivery of messages
(“exactly once” delivery) [21]. The message bus paradigm is
well-suited to transparently implement this strong semantic
together with more light-weight semantics like “at most once”
delivery for less critical tasks. The necessary code for the
publishers and subscribers is part of the micro-kernel included
by every controllet.

Since the message bus depicts a crucial system compo-
nent, we would like to briefly discuss its implications regard-
ing scalability and reliability. Modern brokerless message
bus software implementations use efficient transport mech-
anisms for event dissemination, like multicast or unicast
with publisher-side subscription based filtering, targeting
scalability to hundred thousands of subscriptions [24], which
suffices to accommodate typical data center networks [26,
37]. Furthermore, scalability can be improved by employing
a message bus hierarchy, where the scope of controllets is
limited, e.g., reflecting tiers on modern data center network
topologies, such as core, spine, and leaves. We will address
this concept in future work. Failure of the message bus trans-
lates to a broken control channel which is equally severe as a
broken control channel in traditional, less distributed SDN
architectures. On the contrary though, local control in our
architecture increases failure-tolerance, as we show later.

Events are heavily used by distributed control, which uses
the message bus for both, control coordination and state data
synchronization, as described next.

4. HIGHLY FLEXIBLE CONTROL PLANE
DISTRIBUTION

Common SDN architectures have been reducing switches to
“dumb” network elements, specialized to do fast forwarding,
according to rules defined by an“intelligent” remote controller
implementing all network control logic. On the one hand,
this reduces the functionality of switches to a bare minimum,
allowing for minimal switch resources and design. On the
other hand, outsourcing control from the switch increases
latency due to incurring switch-controller round-trip times
and network overhead due to remote communication. In
this section, we will show how light-weight controllets can
bring back control onto the switch while benefiting from the
logically centralized paradigm of SDN, while also addressing
drawbacks of control decentralization.

4.1 Augmented Fully Distributed Control
SDN has abandoned fully decentralized network control

based on a distributed control plane implemented solely by
switches in favor for logically centralized control. We do not
want to strictly argue for or against logically centralized con-
trol or fully distributed control. However, we observe that the
strict notion of separating data plane elements and the logi-
cally centralized control plane imposed by OpenFlow limits
the full potential of the SDN paradigm. For instance, “legacy”
distributed control protocols, such as distance vector or link
state routing protocols, have proven to be fault-tolerant and
scalable. As investigated by [21], vigorous efforts have to
be undertaken to provide the same fault-tolerance with a
logically centralized SDN network. Therefore, we stress the
fact that maintaining a global view and applying logically
centralized control algorithms comes at a cost, and the ad-
vantages of logically centralized control should be traded-off
well against its disadvantages. Consequently, we argue that
truly flexible network control also includes the option for full
distribution of network control, to let the network operator
decide what paradigm fits his needs best.

Moreover, recent developments in networking hardware
make it feasible to push control logic onto switches, due to a)
increased computing performance and b) programmability
through open access to the switch’s control plane2. White-
box networking switches feature open, Linux-based network
operating systems (NOS) as the control plane, running on
increasingly powerful CPUs (c.f. §6.3).

Therefore, and in-line with recent research [35, 3, 4, 10],
our architecture supports pushing light-weight controllets
directly onto the switch, as illustrated in Figure 1(c). These
switch-local controllets can then execute the full spectrum
from simple local logic to fully distributed network control
protocols. Like any controllet, also switch-local controllets
communicate through the message bus using events—thus,
we can implement distributed network control alongside log-
ically centralized network control, or implement anything
in-between. This scheme allows for the best of both worlds—
fully decentralized processing, yet being centrally coordinated,
and logical centralization, which allows for gauging trade-offs
like timeliness w.r.t. event processing or convergence time for
classic decentralized control algorithms against distribution
and synchronization overheads. Furthermore, through incor-
poration of (more) global knowledge available through logical
centralization, we can additionally trade-off against solution
optimality of control decisions. As we show in the following
use cases, solely local knowledge can be augmented by partial
caching or aggregation of (more) global knowledge upfront
or by requesting remotely within a control decision process.
Potential control decision conflicts can be resolved upfront
by publishing all policy information and aggregating them lo-
cally alike. Local controllets decide which policy information
is relevant for their control decisions, issue corresponding
subscriptions, and cache or aggregate received policy data.
The flexibility of our approach is to the best of our knowledge
yet unmet and exploits the full conceptual range of SDN.

2We also observe a trend for increasing access to data plane
programmability. For instance, for popular switching ASICs,
Broadcom offers the OpenFlow - Data Plane Abstraction[8]
implementing an adaptation layer between OpenFlow and
the Broadcom ASIC SDK, while being generalized to provide
a vendor-independent access to switching ASICs in a uniform
manner by the Switch Abstraction Interface [33].



4.2 Local Data Plane Event Processing
We argue to place control decision making as close as

possible to the entities it is affecting, i.e., pushing down
decision making instead of decisions (in form of forwarding
entries) to the switches. We denote this concept as local
data plane event processing (LDPEP). Exploiting locality
allows for reacting most timely on data plane events, thus
not only decreasing latency, but also being able to decide on
most recent state data. Furthermore, opposed to a non-local
controllet, the total control load is inherently balanced to
local control modules relieving the message bus.

In LDPEP, we apply a fast heuristic to quickly decide
whether an event is to be processed locally or remotely.
Therefore, we consider the scope of the state data required for
decision making, as well as the scope of the particular control
decision. If the involved state data and decision are of limited
scope and all necessary state data is locally available, the
event is processed locally. Otherwise the event is propagated
over the message bus to be processed by remote entities in
the control plane. Note, that this decision is not exclusive
and also the control scope is not necessarily limited to a
single switch. Even with LDPEP, we still allow controllets to
have forwarding rules being installed directly at the switch.

LDPEP not only decreases latency but also increases the
network’s failure resilience: it constitutes a stand-alone pro-
cedure in case an adequate remote controllet or the entire
message bus is currently unavailable.

In the following, we will present essential use cases enabled
by LDPEP.

4.2.1 Autonomous Forwarding
A prime candidate that naturally lends itself to LDPEP is

simple forwarding as, e.g., being implemented by the MAC
learning switch Nicira extension [42] in the prominent SDN
software switch implementation Open vSwitch (OVS) [32].

In the following we will present the concept of Autonomous
Forwarding, which is illustrated in Figure 2, running on a typ-
ical switch hardware platform. Following standard OpenFlow
behavior, packets (Ê from Hostsrc destined to Hostdst) with-
out matching forwarding rules Ë are escalated to the switch’s
control plane (Ì PACKET_IN), where a forwarding decision is
taken and applied by installing respective forwarding rules
(Ð FLOW_MOD) for subsequent packets and sending the particu-
lar packet to a switch data plane egress port (Ñ PACKET_OUT).
Naively one could conclude the only state information needed
for the forwarding decision to be the end host MAC to switch-
port mapping, which is either passively learned Í from ingress
packets or actively probed. However, the destination host
might not be attached to a port of that switch. Also, for-
warding decisions might violate global network policies, such
as firewall rules, ACLs, or tenant isolation.

To implement centrally coordinated control, preventing
policy conflicts, and leverage global network view, the Au-
tonomous Forwarding controllet (AFC) thus subscribes to rele-
vant topology data and policy information on the message
bus À. Due to limited resources on the switch, the extent of
local state caching has to be limited. Received publications
about possibly interfering policies are thus aggregated Á into
an exception list, storing end hosts and local switchports that
are affected by any policy and are thus being blacklisted (or
whitelisted). Similarly, topology information is reduced to
only relevant parts for local processing before being stored
in the cache.

µ-Kernel

MSG
BUS

Si

C
P
-C
P
U

AS
IC
-D
P

AFC

SM0

Hostsrc Hostdst

query

Cache

Excep-
tions

FIB

PKT_IN

AFC

D
e
ci
si
o
n
P
ro
ce
ss

publish
mapping

TCAM

PKT_OUTFLOW_MODOF-Agent

publish
pkt_in

aggregate
subscribe
policies

subscribe
topology

data

update

pip0

query dst
port

Flow
Table

learn
mapping

query
exception

install
flow

forward
packet

updatequery

query

hit

miss hit

miss

➊

➋

➎

➏

➌

➍

➐

➑

➑➐

➐ ➑

➄➅

➁

➀➃

Figure 2. Schematic overview of the Autonomous Forwarding
controllet and its processing of a local data plane event (for-
warding of Hostsrc → Hostdst) on a typical switch hardware
platform.

In the forwarding decision process, the MAC-switchport
mapping of Hostsrc is learned and the Forward Information
Base (FIB) cache is updated Í. Note, that FIB entries (tu-
ples) may be arbitrarily extended, for instance to consider
VLAN tags. Since the mapping constitutes topology infor-
mation that is not solely needed by other AFCs, but is highly
relevant for many other controllets, it is thus published to
the message bus Ã. Then, the cached topology data, i.e. the
FIB, is queried for the switchport associated with Hostdst Î.
In case the data is not present locally, the PACKET_IN can
be escalated to the message bus to be processed by some
remote controllet Ä or a request for the required data can
be published. To check whether autonomous local processing
can be applied, the exception list is queried Ï. In case of a hit,
the decision must not be taken locally and is thus escalated
to the external control plane by a publication of the event to
the message bus Å. Otherwise, local processing proceeds ÐÑ.

While maintaining an exception list locally is mandatory,
the scope of non-local topology information to be locally
cached can be chosen more fine-grainedly, considering the
available resources on the particular switch and the desired
data consistency. The scope of the local topology cache thus
can range from purely local over regional (neighbor switches)
to global view. This allows for trading off optimality of
a control decision against resource consumption (memory,
processing) and latency (for decision making and enacting).
As mentioned above, data consistency is a crucial factor for
the optimality and even validity of a decision. Typical cache
invalidation and eviction strategies such as least recently used
or least frequently used can be applied to optimize caching
behavior. As a middle ground, instead of topology data itself,
the cache could just store the primary source for that data—



the peer (controllet) at which the data is local. Thus, in case
such data is needed, the respective peer could be queried
directly rather than publishing an uninformed query to the
whole message bus.

4.2.2 ARP Handling
ARP is another essential networking mechanism, which has

already been investigated in the context of local control and
controller-function offloading [4, 43]. Autonomous forwarding
can be easily extended to include ARP handling. Additional
to the link layer address data, ARP needs network protocol
address data, which is passively or actively acquired, alike.
Since ARP is a control protocol, we argue to employ a reactive
control scheme, where all ARP requests are escalated to
and handled in the control plane, rather than a proactive
scheme where forwarding rules keep the (known) non-control
flows in the data plane. Thus, at the cost of negligible
memory consumption, ARP handling profits from decreased
latency of LDPEP, while the remote controllets are effectively
shielded from ARP control load that, in contrast to proactive
flows, is to be fully handled by the control plane. Extensive
evaluations of quantitative impact of local ARP handling can
be found in the aforementioned literature.

4.2.3 Fast Failover & Adaptive Link Load Balancing
While decisions of the AFC and ARP LDPEPs are per-

manent, i.e., typically not challenged by external authori-
ties (remote controllets), we now describe another class of
LDPEP: intermediate local procedures. These allow for
fast local reaction, while possibly compute-intensive and thus
time-intensive centralized control decision is eventually deter-
mined and possibly replacing the local short-term procedure
decision.

In a first example, local fast failover, a link failure—just
another type of data plane event—between a pair of adja-
cent switches (S1, S2) is detected at S1 and propagated to
a controllet, running on S1. A local procedure temporarily
compensates the failure by steering the traffic over a link
locally known3 to belong to a redundant path to S2 (which
is typical for, e.g., data center network topologies). S2 recov-
ers analogously. Although being possibly suboptimal, local
intermediate procedures provide a timely recovery, while the
failure event is propagated to the message bus, where a re-
mote controllet recalculates a globally optimal route that
is finally deployed to the switches, possibly overriding the
decision of the local procedures. If S1 and S2 have broader
cache scope, they could even avoid most suboptimal recov-
eries, by coordinating their plans among each other, using
peer-to-peer communication, and adapt it in case of dis-
covered sub-optimality. A related approach [1], relying on
pre-installation of failover flows and thus consuming addi-
tional scarce flow table space, shows that recovering through
remote controllers is one order of magnitude slower than local
procedures.

Instead of being applied to recover from (rare) failures, re-
steering flows over redundant links according to the present
link utilization can be a time-event-triggered (periodic) pro-
cess, which we denote as adaptive link load balancing.
This procedure is highly appealing for traffic engineering and
more dynamic than traditional approaches, such as Equal-cost
Multipath Routing (ECMP) [38]. Recent switch instrumenta-

3Switch to switch links can be discovered by employing active
probing using LLDP [19], as described in §5.

tion technologies, like Broadcom’s BroadView [7], even enable
fine-grained access to hardware switchport queue statistics,
which allows for much more detailed traffic analysis. Fur-
thermore, adaptive link load balancing can be applied not
only on local scopes, but rather on different levels of a whole
control hierarchy, e.g., reflecting tiers on modern data center
network topologies.

4.2.4 Control Plane Feedback Mechanism
While not strictly processing data plane events, there exists

another appealing use case, enabled by local logic: rules in
a switch’s flow table constitutes state data as well, however
control plane state rather than data plane state. Changes
to these rules therefore depict a type of control plane event.
Since local controllets are the only entities that can directly
access the switch’s flow table entries, any applied change to
a flow table can be propagated to interested controllets. This
implements a feedback mechanism that allows an issuing con-
trollet to verify whether its flow change has been successfully
applied—a precursor for a transactional interface [9]. Al-
though policy conflicts between controllets should be avoided
by coordination upfront, with this mechanism, controllets are
able to detect conflicts, e.g., when a rule, encoding a policy
of one controllet CM1 is modified by another controllet CM2

such that the original policy of CM1 is violated.

4.2.5 Migration and Closed Switch Hardware
If a switch allows for local logic execution, we can scale the

scope of data it caches according to its available resources,
as described earlier. If a switch is not powerful enough to
execute a controllet or the switch’s control plane is inacces-
sible, we provide a fallback mechanism which still enables
integration in our architecture. Such a switch is coupled with
a dedicated SwitchAdapter, which instead of running locally,
is running on any other hardware, preferably in close prox-
imity to the switch, via a direct OpenFlow connection and
acts as a gateway to and representation of the switch in the
message bus. Note, that logically, an external SwitchAdapter
is still capable of executing local logic, yet additional network
latency is incurred. In our evaluations (c.f. §6), we determine
the penalty of externalizing the SwitchAdapter (c.f. §5.2).

5. IMPLEMENTATION
We have implemented a prototype of our distributed SDN

controller architecture, consisting of a modular execution
framework (ZMF [46]) running a distributed SDN controller
application (ZSDN [47]) with essential controllets atop. ZMF
and most modules are written in C++ , however, we provide
a Java-based module framework (JMF [45]), as well as exem-
plary modules in Java. Both feature build support for x86
and ARM architectures. In this section we will present the
most important aspects of our implementation.

5.1 The Zero Module Framework
Module runtime environments are completely decoupled

and independent of each other (not considering business logic
dependencies). They run in own processes, possibly on sep-
arate hardware. The ZMF implements automatic module
discovery along with logical dependency and life-cycle man-
agement (PeerDiscoveryService), enabling peer dynamics.
Modules (controllets) can join or leave the framework at run-
time, causing dependent modules to stop/resume operation.
Module lifecycle state data is propagated to other modules



using UDP multicast. Thus, each module knows all other
modules and their state.

For the message bus we employ a production-grade low-
latency communication middleware ZeroMQ (ZMQ) [20].
ZMQ bindings are available for all major programming lan-
guages. Later, we will show the mapping of both data plane
events and control plane events to pub/sub topics. We use
TCP and IPC as ZMQ’s underlying transport mechanisms.
Access to the message bus is provided to ZMF modules
through the MessagingService. Our micro-kernel imple-
mentation comprises both, the PeerDiscoveryService and
MessagingService.

5.2 ZSDN: A Distributed SDN Controller
ZSDN consists of prototypical controllets for distributed

SDN control. All controllets support OpenFlow (OF) 1.0
and 1.3. Common data structures like topology data are
mapped to Google Protocol Buffers [15] definitions, providing
language-independent module communication.

Figure 3 shows essential controllets and their logical inter-
dependencies. The SwitchAdapter (SA) wraps an OF-enabled
switch in an instance which is running locally on the switch,
integrating it to the framework. An OF switch connects to
an SA instance as it would normally connect to a controller.
From the perspective of the switch, its SA is its controller.
From the perspective of any other controllet, an SA instance
represents an OF switch.

State controllets acquire data plane state by passively re-
acting on subscribed events or active probing. For instance,
the SwitchRegistry registers all available switches through sub-
scriptions on changes of their representing SwitchAdapters,
whereas the LinkDiscovery controllet detects switch to switch
links by subscribing to LLDP (Link-Layer Discovery Proto-
col [19]) data plane events and proactively injecting LLDP
packets over the SA instances into the data plane. The
Topology controllet subscribes to both, SwitchRegistry and
LinkDiscovery events, such that eventually it holds complete
topology knowledge, excluding end hosts, which are man-
aged by the Device controllet. Topology information can
be actively queried by controllets using req/rep. Topology
changes are published through events, allowing for passive
synchronization, of controllet-local caches.

Another module class provides control feedback to the
data plane and thus closes the network control loop. For
instance, Forwarding and SimpleForwarding controllets sub-
scribe to PACKET_IN data plane events and process them
by installing forwarding rules or forwarding the underlying
packet to its destination switchport via a PACKET_OUT.

5.2.1 Event Space – Topics Mapping
Due to the lack of usable high performance content-based

pub/sub middleware implementations, we use ZMQ’s topic-
based pub/sub implementation instead. We map the event
space of both, data plane events (from SA) and control plane
events (other controllets), to topics employing a hierarchical
topic scheme which allows for fine-grained subscriptions. In
the following, we describe the mapping, while illustrating its
usage on the example of a SwitchAdapter.
Each controllet defines two sets of topics:

1) Set TO defines which message types (topics) a control-
let is able to process, i.e., which data plane events it wants
to receive from the message bus. This set is mapped to
corresponding subscriptions for event filtering. Note, that

Integration
State
Control

DeviceTopology

Statistics LinkDiscoverySwitchRegistry

SimpleForwardingForwardingARP

SwitchAdapter

Figure 3. Dependency graph for essential controllets.

technically, ZMQ maps pub/sub to unicast TCP, where fil-
tering is applied on the publisher side, such that unnecessary
control traffic is avoided.

2) Set FROM defines the topics published by the controllet,
i.e., events disseminated to the bus. Other controllets can
subscribe to these advertised topics.

Topic definition is strictly hierarchical. The first hierarchy
layer defines the type of declaration (TO or FROM). The sec-
ond layer comprises the identity of the controllet. All upper
layers contain structure of controllet-type specific content.
Attributes are encoded as a bit-sequence, with a specific
length associated to each hierarchy layer, at a specific loca-
tion within the topic-hierarchy. Wildcard matching (“?”) is
supported.

For the SA, as shown in Listing 1, the semantics are as
follows: Listens to Events (TO): The SA will receive any
incoming message of these topics and forward it to the switch,
such that, for instance, controllets can have flows installed
by firing a FLOW_MOD event. Publishes Events (FROM): any OF
message the SA receives from the switch is published using a
corresponding topic within this set of topics.

Listing 1. Excerpt of the SwitchAdapter topic-hierarchy.

TO=0x01
SWITCHADAPTER=0x0000
SWITCH INSTANCE=0x????????????????
OPENFLOW=0x00
FEATURES REQUEST=0x05
PACKETOUT=0x0D
FLOWMOD=0x0E

FROM=0x02
SWITCHADAPTER=0x0000
OPENFLOW=0x00
FEATURES REPLY=0x06
PACKET IN=0x0A
LB GROUP=0x?? de f au l t=0x00
IPv4=0x0800
TCP=0x06
UDP=0x11

ARP=0x0806
PORT STATUS=0x0C
FLOWMOD=0x0E

5.2.2 Partitioning & Load Balancing
Note, that hierarchy layers are not tied to a fixed represen-

tation of the underlying event space, e.g., SA topics are not
restricted to directly reflect OF-matching fields. Artificial
hierarchy layers may be freely introduced between any layers.
For instance, to enable load-balancing of PACKET_IN messages,
the SA artificially discriminates PACKET_INs by introducing
an additional 1-Byte topic hierarchy layer (LB_GROUP) and
disseminating such events in a round-robin fashion to the
set of groups. Controllets participating in load balancing
subscribe to a specific LB_GROUP, whereas controllets that
want to receive all PACKET_INs apply a wildcard subscrip-
tion on the LB_GROUP layer. This mechanism can also be



used for partitioning along the network topology where, for
instance, Topology controllets refine their subscriptions to
certain groups. Technically, we declare topic definitions in
a structured format in dedicated files for language-agnostic
access and ease of use.

5.3 Integration schemes for LDPEP
For implementing LDPEP, different integration schemes

exist:
To maintain the full modularization and to fully reuse

controllets code, a set of controllets implementing LDPEP can
be identified, like in the distributed case, but being run locally
on the switch, instead of being physically distributed. While
highly scalable, communication over the message bus, e.g., for
querying topology data in case of the AFC (c.f., §4.2.1), incurs
higher latency, compared to, e.g., direct memory access in case
of a single-process integration. Although TCP connection
over the local loopback interface is highly optimized in recent
Linux kernels, micro-benchmarks [25] executed on our testbed
and switch4 indicate higher throughput and lower latency
when using inter-process communication (IPC) mechanisms.

When focusing on latency, LDPEP should be implemented
by a fully integrated, monolithic controllet which is however
still connected to the message bus in order to leverage the
global view and central coordination, as explained for the
AFC. Furthermore, we see great performance potential for
tighter coupling to the underlying switch hardware. Ide-
ally, local logic would be pushed down to the data plane
hardware, which is unrealistic for the case of ASICs, due
to their fixed hardware design and restricted access. Net-
work processors (NPUs) or FPGA based switching fabrics
offer greater accessibility and flexibility. Most promising
considering practicability, but least promising considering
performance potential, is an integration into the OpenFlow
Agent running on a switch’s control plane.

In supporting all integration schemes, our architecture
offers great flexibility to network operators who have to
compromise between performance and implementation ef-
forts, based on the expected load. We have implemented the
schemes modularized (ZSDN-TCP, ZSDN-IPC ) and fully
integrated (ZSDN-AFC ) and compare them in the following.

6. EVALUATION
In this section we present the evaluation of our proposed

distributed SDN controller architecture, consisting of a raw
performance comparison, an analysis of the scalability of
our approach, as well as results from the deployment on our
white-box networking switch.

6.1 Raw Controller Performance
In our first evaluation, we compared the raw performance

of ZSDN with other popular controllers, lacking distribution
support.

We used cbench [36] for measuring controller throughput
and latency. Cbench emulates switch behavior by sending
OF_PACKET_INs (triggers) to the connected controller. To
measure throughput, cbench sends triggers as fast as possi-
ble and averages over the number of received OF_FLOW_MOD

and OF_PACKET_OUT from the controller. To prevent double-
counting, we modified the controllers to send only one re-
sponse, PKT_OUT, as the result of their processing. For se-
quential throughput, cbench waits for a response to a sent
4http://goo.gl/tOaTKw , http://goo.gl/eHVMnQ

µK

OpenFlow
Channel

local TCP:
loopback

remote TCP:
switched 1GbE

Hi

CMj

µK

CMj+1

µK ...

Hi+3

MESSAGE BUS (TCP/IPC)

SA

cbench
Hi+1

µK

Hi+2

Figure 4. Evaluation setup of control plane (testbed) for
raw controller performance evaluation (§6.1) and scalability
evaluation (§6.2).

trigger, before sending the subsequent trigger. Thus, sequen-
tial throughput depicts inverse controller processing latency.
We had 1 switch with 100.000 connected end hosts being
emulated by cbench. Cbench and the controllers were run
on a testbed consisting of 12 nodes (Intel Xeon E3-1245v2
@ 3.40GHz, 4 physical cores, 16GB RAM) interconnected
through a 1Gbps switched Ethernet network.

To investigate the implication of controller locality, we
differentiate between cbench, i.e., the switch, and the con-
troller running on the same node (local ; OpenFlow channel:
TCP loopback interface) or on different nodes (remote; OF
Channel: TCP over switched Ethernet), as illustrated in
Figure 4.

Each cbench run is averaging over 60 seconds on each of
the 12 nodes (local) and 120 seconds on each of the 6 node
pairs (remote), totaling in the aggregation of 12 minutes of
observation time for each experiment. Here, individual runs
on the nodes are completely independent of each other.

We evaluated the following control platforms: (1) ZSDN-
TCP/IPC: modular controller framework using single-
instance controllets (logical, not physical distribution) with
message bus communication using the ZMQ transport mech-
anism: TCP (loopback) or IPC (UNIX domain sockets); (2)
ZSDN-AFC: the Autonomous Forwarding controllet, as intro-
duced in §4.2.1, fully integrated (single process, c.f. §5.3); (3)
NOX (verity) [16, 39]: an early academic C++ implementa-
tion, popular for its performance; (4) ONOS [27]: Java-based,
carrier-grade; (5) Floodlight [5]: Java-based, production-
grade; (6) Ryu [34]: Python-based, popular for support of
recent OF versions;

Figure 5 shows the results of the controller comparison,
where error bars depict the standard deviation. Regarding
throughput (local), NOX performs best with ≈ 369 ± 1.7
messages per millisecond (msg/ms). The LDPEP of ZSDN-
AFC results in similar figures with ≈ 260± 0.8 msg/ms. Due
to an identified memory inefficiency in the OF library used
in ZSDN, we even expect to reach NOX performance.

The performance penalty of distribution shows to be bear-
able: distributed ZSDN throughput is about 53% of ZSDN-
AFC (≈ 138 ± 28 msg/ms), mainly dedicated to message
passing. Note, that here, we ran only one instance of each con-
trollet, thus measuring only the costs of distribution, not its
benefits, which we measure in the next section. Interestingly,
ZSDN throughput decreases by 1/3 when using IPC instead of
TCP. This contradicts expectations risen through the micro-
benchmarks [25], where UNIX domain socket throughput was
reported to be about 20% higher than TCP on these nodes.
While Floodlight is close to ZSDN-IPC, ONOS performs



0

100

200

300

0

20

40

60

T
hroughput

S
equential T

hroughput

ZSDN-TCP

ZSDN-IPC

ZSDN-AFC
NOX

ONOS
Floodlight

Ryu

Controller

av
g.

 th
ro

ug
hp

ut
 [m

sg
/m

s]
SA locality

local

remote

Figure 5. Raw controller performance: comparison of
throughput and sequential throughput (inverse latency) for
ZSDN and other popular controllers, drilled down by switch-
controller locality (local/remote).

slightly better. The Python-based controller Ryu is far off
with ≈0.8 msg/ms. Overall, throughput penalties for remote
OF connection are moderate.

For latency, however, remote latency is increased drastically
compared to local latency with factors of 2 (ZSDN-TCP) to 6
(ZSDN-AFC). This is a strong argument for local processing,
especially for the integrated LDPEP mode. On the other
hand, when using modularized controllets, the penalty for
running SAs remotely, e.g., for migration or inaccessible
control planes as discussed in §4.2.5, is bearable.

We are aware that such high throughput would not
stem from realistic scenarios considering a small number
of switches, however the results provide valuable insights in
determining the upper performance bound, e.g., in case of
aggregated load from a large number of switches, e.g., in the
case of reactive ARP handling.

6.2 Controllet Distribution
To investigate the benefits of distribution, we distribute

the most compute-intensive controllets SwitchAdapter (SA)
and SimpleForwarding (SF) to dedicated nodes, while running
the other controllets on a common node as illustrated in
Figure 4. Note, that more compute-intense processing, such
as deep packet inspection, would much more benefit from
distribution and replication. Furthermore, we replicate the
SF with a varying replication factor of n and distribute the
instances to dedicated nodes. The SA distributes the total
load evenly to these instances (c.f. §5.2.2). For the moment,
we keep the replication factor of SAs (k) constant at 1, i.e.,
using a single SA instance. We additionally vary the number
of switches cbench emulates (s). For each switch connection,
the SA spawns 4 threads, dedicated to that connection.

The results are shown in Figure 6. Even for n = 1 (no
replication) we achieve 15% higher throughput by placing
the SF instance on a dedicated node. However, the single SF
instance constitutes a bottleneck: with increasing n, through-
put increases, as expected. We do not see a linear increase,
since the SA maxes out 1 thread (per-core performance) and
is not able to fire drastically more data plane events which the
SF instances could process. If we increase s, the throughput
increases almost linearly until the (single) SA maxes out (per-
CPU performance (all cores)) at s = 3. Having n > 3 does
not further improve performance, such that the overall peak

160

180

200

220

240

260

280

2

4

6

8

10

12

T
hroughput

S
equential T

hroughput

1 2 3 4
#SF replicas (n)

av
g.

 th
or

ug
hp

ut
 [m

sg
/m

s]

SA locality local remote

#switches (s) 1 2 3

Figure 6. Scalability evaluation (scale-out): modular ZSDN
controller with varying number of SimpleForwarding instances
and varying number of connecting switches.

performance is reached with s=3, n=3 at ≈ 280±16 msg/ms.
Note, that when maxing out, results vary much, such that,
e.g., throughput seems to drop, as shown in the graph. We
repeated the test while scaling-up, i.e., using more powerful
nodes (Xeon E5-1650v3 @ 3.50GHz, 6 physical cores), where
throughput peaks at s=5, n=5 with ≈ 670± 20 msg/ms.

For n = 1, latency increases by about 22% due to the
physical separation of SA and SFM and thus one additional
hop over the control plane network. In contrast to remote,
for local, latency increases with increasing s, since SA and
cbench are running on the same host, thus sharing an in-
creasingly loaded CPU, slowing down cbench’s production of
emulated data plane events and SA’s distribution pace. With
increasing n, local latency increases as well, due to increased
splitting and merging efforts of events to be disseminated to
the message bus and reactions received over the bus. Remote
latency follows the same trend, but only slightly increases
with increasing n since the impact on latency of the OF
TCP connection over the network instead of the loopback
interface is the dominating factor. In more realistic scenarios
with lower event rates but higher packet sizes, this effect is
expected to be of much lesser extent.

When using the full distribution capabilities in replicating
both, SF and SA, i.e., increasing n as well as k, and keeping
n/k balanced, we verified linear scalability, as expected. De-
pending on the efficiency of group communication, which is
very efficient in ZMQ due to filtering right at the publisher,
network saturation limits scalability. For scenarios with such
high event rates however, it is reasonable to employ 10GbE or
higher on the control plane, counteracting network capacity
bottlenecks.

6.3 Performance on White-box Networking
Switch Hardware

In our last evaluation, we compare the controller perfor-
mance on real switch hardware. To this end, we deployed
ZSDN-IPC, ZSDN-AFC, and NOX on our 10GbE white-box
networking switch, Edge-Core AS5712-54X, featuring an x86
Atom Rangeley CPU with 4 cores at 2.4 GHz, 8 GB RAM
(DDR3), and 8 GB Flash memory. Note, that we have added
NOX as a baseline. Although not entirely comparable due
to differences in the implementation of packet processing of
NOX and ZSDN-AFC (both written in C++), code review



of NOX revealed that the implementation is in fact suffi-
ciently similar to allow for a reasonable comparison. The
setup is depicted in Figure 7. For the experiments, we were
running Pica8 PicOS 2.8 which is running the Open vSwitch
OF switch implementation (OVS) with custom drivers to
access the underlying hardware switching ASIC. In the data
plane, we connect an end host with two 10GbE links to the
switch. We use separate network namespaces to isolate the
host interfaces, while sharing a common clock. We send
packets to the other interface where we measure the through-
put of received packets. For measuring latency, we attach
sequence numbers to the packets payload, and upon recep-
tion on the second interface, reflect them back to the first
interface, where we capture both, packet ingress and egress,
matching their sequence numbers and determine the round
trip latency through their capture timestamps. Here, we
send with a rate of 20pps and capture for 240s, resulting in
a sample size N = 4800 packets.

As for the throughput results, we observe throttling
due to excessive OVS daemon load: for sending rates ≥
20kpps, we measure receive rates of 8.5kpps for ZSDN and
6.5kpps for NOX, while the OVS daemon consumes 200%
CPU, leaving a very limited share for ZSDN/NOX. This is in
line with observations we have made earlier: the OVS daemon
heavily limits the CP-DP bandwidth. Even when installing
flow rules that send traffic to the controller, throughput
is limited to about 60Mbps. Modern hardware switches,
though OF-capable, are still optimized for traditional DP
forwarding, where DP-to-CP traffic is deliberately limited
implementing a security mechanism, e.g., to prevent excessive
traffic threatening CP operation.

Figure 8 shows the results of the latency measurement.
For switch-local controllers, ZSDN-AFC performs best with
≈ 1080± 112µs average latency, comparable to NOX with
≈ 1163± 95µs, while the costs for module decoupling over
the message bus of ZSDN-IPC result in ≈ 2021 ± 151µs,
clearly showing the preference on the full integration scheme
of ZSDN-AFC which still profits fully from centralized view
and coordination. For remote controllers that run on one
of the testbed nodes described above, the TCP connection
over the 1GbE network instead of the loopback interface,
considerably increases latency by factors of about 2, 1.88 and
1.56 for ZSDN-AFC, NOX and ZSDN-IPC, respectively.

The observed deviation could be identified to stem mostly
from the OVS daemon.

µ-Kernel
AS5712-54X

C
P

D
P

Sender Intf.

PKT_IN PKT_OUTopen vSwitch

pip0

PCI-E

OF:
TCP
(rem/loc.)

TCP/
IPC

Le
ar

ni
ng

 
S

w
itc

h

Hi
Network Namespace 1 Network Namespace 2

CAPTURE CAPTURE
Reflector Intf.

PKT_OUT PKT_IN

MSG
BUS

Figure 7. Evaluation setup of data plane for controller per-
formance evaluation on white-box networking switch hard-
ware (§6.3).

NOX

ZSDN-AFC

ZSDN-IPC

NOX

ZSDN-AFC

ZSDN-IPC

local
rem

ote

1000 1500 2000 2500 3000 3500 4000 4500
avg. data plane RTT (latency) [µs]

C
on

tr
ol

le
r

Figure 8. Evaluation on a white-box networking hardware
switch: comparison of end-to-end (data plane) latencies
(RTT) of modular ZSDN, integrated ZSDN-AFC, and NOX,
drilled down by switch-controller locality.

7. ROADMAP TO A HIGHLY SCALABLE
HOLISTIC SYSTEM CONTROL PLANE

We would like to discuss how to further improve and lever-
age the presented concept of event-driven distributed network
control.

Our distributed SDN controller is based on content-based
filtering of events, in particular, the filtering of data plane
events based on header field matching. In larger networks,
event notifications might arrive at a high rate, which makes
content-based message filtering by the message bus challeng-
ing. In our prototype, we used a high-performance topic-
based messaging system (ZeroMQ) as a workaround by map-
ping match fields onto a topic hierarchy. However, such a
topic mapping also comes with inherent problems. In par-
ticular, the discretization of the event space incurs lack of
expressiveness. Also, attributes have to be specified according
to the order given by the topic hierarchy. Irrelevant hier-
archy levels can be wildcarded, however, efficient wildcard
topic matching at high event rates is hard to implement in
software.

To solve this problem, we observe that content-based data
plane event filtering is conceptually similar to matching
header fields during packet forwarding by switches in the
data plane. Hardware switches achieve line-rate forward-
ing performance in the data plane through special hardware
(TCAM) supporting also wildcard matching efficiently. So
one interesting question is, could we utilize similar hardware
for implementing an SDN message bus appliance supporting
content-based event filtering and routing to subscribing con-
trollets? Similar appliances have already been used in other
domains like service-oriented architectures, in speeding-up
XML processing [31].

As a second extension, we can further leverage the pub-
lish/subscribe paradigm to build a holistic distributed system
controller not limited to controlling the network elements but
to include virtual network functions, end systems (includ-
ing virtual machines), applications (e.g., client and server
processes on the application layer), etc. In other words, we
can extend the network control plane to a holistic system
control plane implemented by a set of distributed controllets,
which communicate indirectly through events including not
only simple and complex data plane events but any event
relevant for controlling and managing the holistic system. As
a simple example, consider the migration of a virtual ma-
chine (VM), which might also require the migration of virtual



network functions like firewalls, and the adaptation of routes
for chaining services. Using event-based communication, we
can trigger actions to implement an event-triggered workflow
defining the sequence of actions necessary to migrate the
VM. For instance, as soon as the VM has been suspended
by a VM controllet, an event could be fired that triggers
the migration of network functions, which then trigger the
adaptation of routes in the network through further events.
This way, complex system management workflows can be
implemented in a decentralized fashion.

8. RELATED WORK
Many early approaches, including Onix [22], propose to

externalize state storage, which incurs additional latency for
lookups. In Onix, switches and controller instances are tightly
coupled. While Onix limits the shared view onto network
state information, HyperFlow [40], as our approach, holisti-
cally propagates all kinds of data plane events. HyperFlow
also facilitates pub/sub to propagate events, event classifica-
tion is however limited to three topics, whereas our approach
leverages content-based filtering (mapped to a topic hierarchy
in our preliminary implementation) to allow for fine-grained
subscriptions. Furthermore, HyperFlow exclusively relies on
passive synchronization of the locally cached network wide
view, while our approach offers maximum flexibility allowing
both, local caches for fast access as well as access to highly
consistent centralized storage.

DevoFlow [12] is the first SDN approach to allow for local
decision making on the switch, however mandating changes of
the switching ASIC. Kandoo [17] proposes a two-layered con-
troller hierarchy with a root controller maintaining network-
wide state, and local controllers possibly running directly
on switching hardware, only handling local events where no
global knowledge is required. While this scheme allows for
offloading of simple local logic, local controllers do not hold
any state data, neither do they interact with each other at
all. Our approach is not limited to such a strict hierarchical
scheme and does not rely on a root controller instance, thus
offering superior flexibility.

While these approaches exhibit a static switch-controller
assignment, ElastiCon [13] allows for a dynamic switch to
controller instance mapping. By periodic monitoring of con-
troller load, the number of instances and the mapping is
adapted for effective load-balancing. Since switches are still
tightly coupled to an instance, the authors introduce a switch
migration protocol. A similar problem is addressed in [23, 2].
The decoupling of switch and controller offered by our ap-
proach eliminates the need for complex and costly migration
mechanisms.

More recent approaches improve on failure tolerance in
control distribution. Beehive [44] models control applications
as centralized asynchronous message handlers featuring and
thus focusing on application partitioning, exclusive handling
of messages among a set of controllers, as well as consistent
replication of control state information. Logical message
propagation is dictated by map-functions that determine to
which set of applications a specific message is to be sent to.
Message passing is not addressed in detail. Furthermore,
each Beehive controller instance contains all application logic
in contrast to our highly modular approach. Another work,
Ravana [21], focuses on controller fault-tolerance. Ravana
subsumes event dissemination from switches, their processing
by a controller, and the resulting execution of controller

commands at the switches in a transaction and guarantees
that control messages are processed transactionally with
exactly-once semantics. Message propagation and actual
distribution schemes are not addressed.

Fibbing [41] exerts centralized control over routers that
implement a legacy, non-SDN, control plane running fully
decentralized routing algorithms, such as OSPF and IS-IS.
The forwarding behavior of routers, i.e., their forwarding in-
formation base, is manipulated as to achieve desired network
behavior by faking input messages to the distributed routing
algorithms. Although being congruent in the notion of cen-
tralized control, unlike in our approach, Fibbing’s control is
solely indirect and thus inherently limited.

P4 (Programming Protocol-independent Packet Processors)
[6] specifies a high-level language for network programming
that is not tied to fixed packet header definitions. The P4
compiler maps generic control programs to specific hardware
or software platforms of target switches. Thus, P4 is able to
fully exploit the capabilities of individual switch hardware,
e.g., ASIC, NPU, or FPGA. However, switches in P4 do not
take control decisions but merely execute control logic that
has been compiled down from a high-level description, i.e.,
deploying control decisions instead of distributing decision
making. Furthermore, P4 does not address the question
where its compiler is actually executed, overall showing that
control plane distribution is not considered.

9. SUMMARY
In this paper we presented a novel architecture for a highly

flexible distributed SDN controller based on a message bus for
communication and a micro-kernel design. Network control
logic is split into control modules, called controllets, which
can be freely distributed. Controllets communicate through
the message bus and are decoupled from switches and other
controllets using the publish/subscribe paradigm. The micro-
kernel design only requires controllets to implement a small
set of functions to connect to the message bus and participate
in publish/subscribe communication. Consequently, control-
lets are extremely light-weight and can also be executed
directly on white-box switches to enable fully distributed
network control even without external SDN controller—a
new level of flexibility in control plane distribution that so far
is not possible with standard SDN controllers. Our evalua-
tions showed the practicality of our architecture for both, full
distribution as well as the integration of controllets for fast
local processing of data plane events, while still benefiting
from global view and centralized coordination.

We also identified future research directions like hardware-
assisted processing of data plane events to further increase
the scalability of content-based event filtering in the control
plane, or the event-driven execution of system management
workflows in a holistic system control plane embracing the
network control plane.

10. ACKNOWLEDGMENTS
We would like to thank the students involved in the imple-

mentation of the ZeroSDN project, especially Jonas Grunert
and Andre Kutzleb. A full list of contributors can be found in
[47]. We would also like to thank the autonomous reviewers
for their valuable feedback.



11. REFERENCES
[1] N. L. M. v. Adrichem, B. J. v. Asten, and F. A.

Kuipers. Fast Recovery in Software-Defined Networks.
In 2014 Third European Workshop on Software Defined
Networks, pages 61–66, Sept. 2014.

[2] A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer.
Towards a dynamic SDN virtualization layer: Control
path migration protocol. In 2015 11th International
Conference on Network and Service Management
(CNSM), pages 354–359, Nov. 2015.

[3] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: Programming Platform-independent
Stateful Openflow Applications Inside the Switch.
SIGCOMM Comput. Commun. Rev., 44(2):44–51, Apr.
2014.

[4] R. Bifulco, J. Boite, M. Bouet, and F. Schneider.
Improving SDN with InSPired Switches. In Proceedings
of the Symposium on SDN Research, SOSR ’16, pages
11:1–11:12, New York, NY, USA, 2016. ACM.

[5] Big Switch Networks. Floodlight: An Open SDN
Controller.
http://www.projectfloodlight.org/floodlight/. [Online].

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
Protocol-independent Packet Processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, July 2014.

[7] Broadcom. BroadView: Analytics-Driven Dynamic
Path Optimization. https://www.broadcom.com/
collateral/tb/BroadView-TB301-RDS.pdf. [Online].

[8] Broadcom. Github Repository: OF-DPA.
https://github.com/Broadcom-Switch/of-dpa. [Online].

[9] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A
Distributed and Robust SDN Control Plane for
Transactional Network Updates. In Proceedings of
INFOCOM’15), Apr. 2015.

[10] C. Cascone, L. Pollini, D. Sanvito, and A. Capone.
Traffic Management Applications for Stateful SDN
Data Plane. In 2015 Fourth European Workshop on
Software Defined Networks, pages 85–90, Sept. 2015.

[11] D. Chappell. Enterprise service bus. ” O’Reilly Media,
Inc.”, 2004.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes,
P. Yalagandula, P. Sharma, and S. Banerjee. DevoFlow:
Scaling Flow Management for High-performance
Networks. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 254–265, New York,
NY, USA, 2011. ACM.

[13] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and
R. Kompella. ElastiCon: An Elastic Distributed Sdn
Controller. In Proceedings of the Tenth ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, ANCS ’14, pages 17–28, New
York, NY, USA, 2014. ACM.

[14] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Comput. Surv., 35(2):114–131, June 2003.

[15] Google Inc. Protocol Buffers.
https://developers.google.com/protocol-buffers/.
[Online].

[16] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an

Operating System for Networks. SIGCOMM Comput.
Commun. Rev., 38(3):105–110, July 2008.

[17] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A
Framework for Efficient and Scalable Offloading of
Control Applications. In Proceedings of the First
Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12, pages 19–24, New York, NY, USA, 2012.
ACM.

[18] Hewlett Packard Enterprise. HP Switch Software
OpenFlow v1.3 Administrator Guide nl K/KA/KB/WB
15.18. http://h20566.www2.hpe.com/hpsc/doc/public/
display?docId=c04777809, Dec. 2016. [Online].

[19] IEEE 802.1AB: Local and Metropolitan Area Network
Standards. Station and MAC-Discovery. IEEE Std.,
2005. [Online].

[20] iMatix Corporation. ZeroMQ: Distributed Messaging.
http://zeromq.org/. [Online].

[21] N. Katta, H. Zhang, M. Freedman, and J. Rexford.
Ravana: Controller Fault-tolerance in Software-defined
Networking. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research,
SOSR ’15, pages 4:1–4:12, New York, NY, USA, 2015.
ACM.

[22] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale
Production Networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[23] A. Krishnamurthy, S. P. Chandrabose, and
A. Gember-Jacobson. Pratyaastha: An Efficient Elastic
Distributed SDN Control Plane. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 133–138, New York,
NY, USA, 2014. ACM.

[24] nanomsg Documentation. Differences between nanomsg
and ZeroMQ.
http://nanomsg.org/documentation-zeromq.html, Jan.
2017.

[25] NetOS group, University of Cambridge Computer
Laboratory. ipc-bench results database.
http://www.cl.cam.ac.uk/netos/projects/ipc-bench,
Oct. 2016.

[26] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. PortLand: A Scalable Fault-tolerant
Layer 2 Data Center Network Fabric. In Proceedings of
the ACM SIGCOMM 2009 Conference on Data
Communication, SIGCOMM ’09, pages 39–50, New
York, NY, USA, 2009. ACM.

[27] ON.LAB - ONOS. ONOS - A new carrier-grade SDN
network operating system designed for high availability,
performance, scale-out. http://onosproject.org/.
[Online].

[28] Open Networking Foundation. OpenFlow Switch
Specification. https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-switch-v1.3.4.pdf. [Online].

[29] OpenDaylight Foundation. OpenDaylight: Open Source
SDN Platform. https://www.opendaylight.org/.



[Online].

[30] OSGi Alliance. OSGi: Open Services Gateway
initiative. https://www.osgi.org/. [Online].

[31] D. Pasetto, H. Franke, K. Schleupen, D. Maze,
H. Penner, H. Achilles, C. Crawford, and M. Purcell.
Design and Implementation of a Network Centric
Appliance Platform. In 2012 Brazilian Symposium on
Computing System Engineering (SBESC), pages
204–207, Nov. 2012.

[32] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The Design and
Implementation of Open vSwitch. pages 117–130, 2015.

[33] O. C. Project. Github Repository: SAI (Switch
Abstraction Interface).
https://github.com/opencomputeproject/SAI. [Online].

[34] Ryu SDN Framework Community. Ryu:
Component-based Software Defined Networking
Framework. https://osrg.github.io/ryu/. [Online].

[35] S. Schmid and J. Suomela. Exploiting Locality in
Distributed SDN Control. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 121–126, New
York, NY, USA, 2013. ACM.

[36] R. Sherwood and K.-K. Yap. Cbench: an Open-Flow
Controller Benchmarker.
http://www.openflow.org/wk/index.php/Oflops.
[Online].

[37] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle,
S. Stuart, and A. Vahdat. Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google’s
Datacenter Network. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data

Communication, SIGCOMM ’15, pages 183–197, New
York, NY, USA, 2015. ACM.

[38] D. Thaler and C. Hopps. Multipath Issues in Unicast
and Multicast Next-Hop Selection. RFC 2991, RFC
Editor, November 2000.

[39] The NOX Controller. Github Repository: NOX
Network Control Platform.
https://github.com/noxrepo/nox. [Online].

[40] A. Tootoonchian and Y. Ganjali. Hyperflow: a
distributed control plane for openflow. In Proceedings of
the 2010 internet network management conference on
Research on enterprise networking, pages 3–3. USENIX
Association, 2010.

[41] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford.
Central Control Over Distributed Routing. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM
’15, pages 43–56, New York, NY, USA, 2015. ACM.

[42] VMWare Inc. Open vSwitch – An Open Virtual Switch
(Nicira Extensions). https://git.io/vgTKL. [Online].

[43] J. Yang, Z. Zhou, T. Benson, X. Yang, X. Wu, and
C. Hu. Focus: Function offloading from a controller to
utilize switch power. 2016.

[44] S. H. Yeganeh and Y. Ganjali. Beehive: Simple
distributed programming in software-defined networks.
In Proceedings of the Second ACM Symposium on SDN
Research (SOSR ’16), Santa Clara, CA, Mar. 2016.

[45] ZSDN. Github Repository: Java Module Framework.
https://github.com/zeroSDN/JMF. [Online].

[46] ZSDN. Github Repository: Zero Module Framework.
https://github.com/zeroSDN/ZMF. [Online].

[47] ZSDN. Github Repository: Zero Software Defined
Networking; Distributed Software Defined Networking
(SDN) Controller. https://github.com/zeroSDN.
[Online].




