
Exploring Practical Limitations of Joint Routing

and Scheduling for TSN with ILP

Jonathan Falk, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems

University of Stuttgart

Stuttgart, Germany

Email: {jonathan.falk,frank.duerr,kurt.rothermel}@ipvs.uni-stuttgart.de

Published in proceedings of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2018) Hakodate,
Japan, Hakodate, Japan, August 29-31, 2018, http://dx.doi.org/10.1109/RTCSA.2018.00025

c© 2018 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Abstract—IEEE 802.1Q networks with extensions for time-
sensitive networking aim to enable converged networks. Con-
verged networks support hard-real time communication services
in addition to the currently supported services classes. Real-time
communication in these networks requires routes and schedules
for the real-time transmissions. We present a formulation in
the integer linear programming (ILP) framework which models
the joint routing and scheduling problem for flows of periodic
real-time transmissions in converged TSN networks. In the joint
routing and scheduling problem, both routes and schedules for
real-time transmissions are computed in one step, i.e. we do
not schedule over predefined routes. We explore the practical
limitations of this approach by evaluating the runtime of problem
instances with widely varying parameters with a state-of-the-art
ILP solver. The observed solver runtimes indicate the qualitative
impact of the number of real-time flows, the size of the network,
the transmission frequency of real-time transmissions, and the
network topology.

I. INTRODUCTION

The realization of envisioned cyber-physical systems (CPS)

for Industry 4.0, Smart Grids and Internet of Things depends

heavily on real-time capable communication networks. In

many cases, the design of such real-time networks relies on

deterministic medium access in combination with a suitable

scheduling and resource reservation mechanism to ensure

communication with deterministic delay bounds.

The popular Ethernet standard [1] in switched, full-duplex

operation complying to IEEE 802.1Q [2] was traditionally

lacking in mechanisms to ensure real-time capabilities in

case of existing cross-traffic. Currently, the Time-Sensitive

Networking (TSN) Task Group is working on extensions to the

IEEE 802.1Q standard to solve this problem. One of these ex-

tensions is a time-triggered gating mechanism in the switches

standardized in IEEE 802.1Qbv [3]. The gating mechanism

consists of three major components: a) gates, b) gate control

lists, and c) gate drivers. The gates exist per output-port queue

per switch and are either “open” or “closed”. Frames from the

associated output queue are eligible for transmission if the gate

is open, and prohibited to be selected for transmission if the

gate is closed. The gate control list functions as a schedule

for the gate driver, and can be configured per output port.

The gate driver iterates over the entries in the gate control

list, and changes the states of the gates at the specified time.

Consequently, this gating mechanisms allows to enforce cyclic

transmission schedules.

Network equipment vendors often stress that the TSN

efforts and especially the gating mechanism enable converged

networks. The term “converged network” describes the idea of

employing one unified Ethernet network at an industrial site,

which not only carries the usual business / office data but also

replaces traditional proprietary real-time networks, possibly

improving vertical business integration. In this scenario, the

gating mechanism can be used to separate the office data

which is non-real-time traffic, and is generated whenever a

business interaction requires it, from the real-time data which

we assume to be transmitted isochronously. Real-time data

can, e.g., be generated and consumed by distributed control

applications where sensor data and control messages have

to be exchanged via the network. If the gating mechanism

blocks the transmission of non-real-time data when a real-time

transmission is expected, real-time data can be transmitted

separately and unaffected from non-real-time transmissions.

There remains a problem to solve, though, and a NP-hard

one at that: We have to ensure, that real-time transmissions

do not interfere with other real-time transmissions. There are

two basic methods to achieve this, namely spatial isolation

and temporal isolation. Spatial isolation assigns transmis-

sions to disjoint network resources (switch queues, links)

to prohibit interference. Spatial isolation leads to a routing

problem. Temporal isolation assigns transmissions to disjoint

time slots, and leads to a scheduling problem. For real-

time communication with very low latency, temporal isolation

requires time-synchronization of network elements which can

be achieved by synchronization protocols such as PTP [4]

or IEEE 802.1AS [5]. Either spatial isolation or temporal

isolation can in theory be used alone to enable real-time in

Ethernet, but there is one significant drawback: the maximally

achievable network utilization is very low due to the restriction

to disjoint routes or network-wide schedules. The low network

utilization can be alleviated by combining the two methods to

a joint routing and scheduling problem.

There are many ways, how one can attempt to solve the joint

routing and scheduling problem. One can either try to design

a “customized” algorithm, which exploits as much knowledge

about the problem (i.e. communication patterns, heuristics for

common use-cases, etc.) as possible. In this case, the difficulty



lies not only in showing the correctness of the algorithm,

but also in implementing it efficiently. Alternatively, one may

express the problem in a generic formal framework such as

(integer) linear programming (ILP), SAT, SMT and then use

an off-the-shelf solver. In this case, the hope is (provided it is

even possible to map the problem at hand to such a generic

framework) that many years of research and development

of these generic frameworks and solvers make the solving

process fast enough. In this paper, we investigate the latter

approach and use integer linear programming. Integer linear

programming is a well-established, mature approach which can

in theory be used to solve all problems that can be modeled

with integer decision variables, where the objective function

is a linear function of the decision variable, and the decision

variables are constrained by a set of linear inequalities.

Our first contribution is to provide an ILP formulation

of the joint routing and scheduling problem for arbitrary

isochronous communication with zero-queuing. If a feasible

solution exists, the routes and schedules can be used to

configure IEEE 802.1Qbv-compliant Ethernet networks. Even

though the boundaries of the problem sizes that can be tackled

by state-of-the-art computers with state-of-the-art ILP solvers

are continuously extended either by new hardware or by new

optimizations, it is still possible to end up with ILP problem

instances that take several days or even weeks to solve.

Therefore our second contribution are extensive evaluations

of a large variety of problem instances of the joint routing

and scheduling problem to explore the scalability of ILP-based

formulations.

The remainder of the paper is structured as follows: We

give a short overview over existing approaches for solving

the joint routing and scheduling problem in communication

networks in Section II. We describe our system model and the

problem in Section III, and subsequently derive and explain

the ILP formulation in Section IV. In Section V, we describe

our evaluation scenarios and setup, and evaluate the solver

runtime. Finally, we discuss the results and open questions in

Section VI.

II. RELATED WORK

While there are many approaches for solving only the

scheduling problem for periodic real-time transmissions where

routes are computed before searching for schedules [6]–[11],

there exists fewer work on the joint-routing and scheduling

problem.

In [12], the authors present an approach for scheduling of

periodic transmissions in SDN networks. which they extend

in [13] to support dynamic addition or removal of flows. They

provide ILP-formulations for the scheduling problem for sets

of predefined routes, and they also provide an ILP-formulation

to determine the routes and schedules jointly. Their approach is

limited to uniform transmission lengths, a network-wide base-

period, and does not use the gating mechanism, since sched-

ules are network-wide. The ILP formulation which we present

supports arbitrary length of reservations for transmissions,

arbitrary periods of transmissions, and per-port schedules for

TSN gates.

In [14], a 0-1 ILP formulation is presented for the joint

message routing and scheduling problem which builds on an

existing model of automotive communication networks. The

authors do not consider the end-to-end delay of messages

for the routing decision, and employ a binary coding which

directly relates the granularity of the schedules to the number

of variables. The ILP formulation in [14] is targeted at a very

specific use-case, since the authors aim to utilize their ILP as

component in a multi-objective optimization for automotive

communication networks. This is noticeable, e.g., in the choice

of variables and encoding. Since we aim for more generic

application scenarios, we do not have to restrict ourselves to

purely binary variables.

In [15], the authors independently developed an ILP for-

mulation for the joint routing and scheduling problem. The

ILP in [15] allows queuing, but per-switch reordering of

messages belonging to different flows is not constrained. Thus,

the solutions of the ILP in [15] are not guaranteed to be

directly applicable to TSN networks in all cases. With our

zero-queuing approach, we can guarantee FIFO-queuing for

all parameters. Only three network topologies with a vertex

degree of maximally three are used for the evaluations in [15]

which are focused on the schedulability and optimality of the

computed schedules.

III. PROBLEM STATEMENT AND SYSTEM MODEL

In this section, we will describe our system model and state

the problem which we will solve with the ILP in Section IV.

A. System model

We assume a set of applications shall operate in a given,

shared (“converged”) network. Real-time applications require

periodic transmissions with hard real-time guarantees (i.e. an

end-to-end-delay lower than a threshold, and bounded jitter)

from one source host to another sink host. The repeated

real-time transmissions along the path from source to sink

are called “flow”. All real-time transmissions belonging to a

specific flow shall be routed along the same path. Transmission

periods can be chosen individually per flow, but have to be

finite integer values. We assume that real-time flows need not

be synchronized to wall-clock time, nor to other flows.

We model the network topology as a directed graph

G(V,E). The vertices in V correspond to identical network

elements (switches). Edges in E correspond to an output

port plus the attached link of a switch. We assume all edges

have identical properties. The transmissions of the real-time

applications “originate” (are inserted into the network) at the

origin vertex. Equivalently, real-time transmissions are “des-

tined” for a specific destination vertex in the graph, where they

are removed from the network. Real-time transmissions have

to reach the destination vertex within real-time application-

specific delay-bounds. “Origin” and “destination” vertices

correspond to the ingress / egress switches where the source

host and sink host are attached. Real-time transmissions are



defined by the duration during which they occupy an edge, not

by the length of the transmission in data units. Each switch can

forward transmissions from incoming edges to any outgoing

edge. All effects that add to the per-hop delay in networks

(i.e. delays for processing, transmission, and propagation) are

reduced to a single constant delay D that is applied when a

real-time transmission traverses a vertex (cf. Figure 1).

vivi−1 vi+1ep en

ts,i−1

ts,i−1 + dtrans

te,i−1

ts,i−1 + dprop.

ts,i

ts,i + dprop.

D

dproc

t

Fig. 1. Relating reservations and switch schedules.

As illustrated in Figure 1, D can be intuitively interpreted as

the time between the start of the real-time transmission on edge

ep and the start of the real-time transmission on the next edge

en adjacent to ep. For example, in a switched Ethernet network

with store-and-forward architecture, D = dtrans + dprop + dproc,

where dtrans is the transmission delay for one frame, dprop is

the propagation delay for one edge, and dproc is the internal

processing delay of the switches. Note, that this requires either

uniform frame sizes for all real-time applications. Alterna-

tively, dtrans has to be set to the maximal size of frames

transmitted by real-time applications. In this case, a frame with

smaller frame size (and associated dproc,i) would idle in the

switch for dproc,max − dproc,i time units. Heterogeneous frame

sizes and switches could be incorporated by splitting D in

a flow-specific transmission delay part and a vertex specific

delay part. By describing the delay and transmissions via time

units (abstract integer numbers, that can be mapped to SI units

depending on the scenario), we abstract from the underlying

network implementation.

B. Problem

We search for a configuration (routing and scheduling)

under which all real-time applications can work properly in the

network. The problem will be formulated in Section IV as an

ILP: Given a network, and a set of real-time applications with

given transmission source and transmission destination, as well

as transmission periods, durations of transmissions and end-to-

end latency bounds for transmissions (end-to-end deadlines),

return routes and schedules for “all” flows, (if existing) which

satisfy the following requirements:

• A valid route is a connected sequence of directed edges

from origination vertex to destination vertex that crosses

every vertex only once (loop-free).

• At every point in time on every edge can be at most one

real-time transmission.

• Every transmission has to reach its destination vertex

within the flow-specific end-to-end deadline.

• At every vertex, a transmission can only be transmitted

on an outgoing edge, if all other transmissions which

have arrived earlier at the same vertex, and which have

to be transmitted on the same outgoing edge have been

transmitted before (FIFO property).

• Every real-time transmission is immediately forwarded

(only experiencing the aforementioned constant delay).

In fact, the last two requirements (FIFO and immediate for-

warding of transmissions ) are targeted at a specific config-

uration of TSN-capable switches, where 1 queue per output

port is exclusively used for real-time transmissions, and every

incoming real-time transmission always encounters this queue

empty (zero-queuing). With zero-queuing, the lowest possible

end-to-end delay is achieved along a route, which we think

is a favorable property for real-time transmissions, and it

ensures the FIFO property, too. This also means, that the

sole function of the end-to-end deadline of transmissions is

to restrict the route length. The gating mechanism is used in

this configuration to open the gate of the “real-time” queue as

soon as the first frame of a real-time transmission has been

received while shutting the gates of all queues containing non-

real-time traffic until all frames of the real-time transmission

have been transmitted (temporal isolation).

Note, that the way we stated the problem, the solution can

not just only be mapped to Ethernet networks with support for

gating but to any network with output-queued ports without

reordering, a deterministic MAC, and either no unsynchro-

nized cross-traffic (cf. TSSDN [12]) or mechanisms to block

unsynchronized cross-traffic during real-time transmissions.

IV. INTEGER LINEAR PROGRAM

A. Notation

We use calligraphic letters (e.g., V, E ,F) to denote sets,

uppercase bold letters for matrices. and lowercase bold letters

for vectors. If we want to express in an expression that an

index i ∈ I may have any possible value from its domain,

we use ∗ as a wild card character. We assume a mapping

enumV : graph vertex → v exists, which assigns an index

v ∈ N to every vertex of the graph. Similarly, we assume a

mapping enumE : graph edge → e exists, which assigns an

index e ∈ N to every edge in the graph. A directed edge with

index e which departs at vertex with index vs and enters vertex

with index vt is denoted as e = (vs, vt).

B. ILP formulation

In this section, we formulate the problem as an Integer

Linear Program. We will use logical operators for conditional

constraints (if) and alternative constraints (or) that are not part

of the standard or canonical forms of ILPs. The if-operator is

used in expression such as

if (lin. constraint 1) then (lin. constraint 2)

where the linear constraint 2 only has to be satisfied, if linear

constraint 1 is satisfied. The or-operator is used in expressions

such as

(lin. contraint 1 or lin. constraint 2),



where only one of the constraints needs to apply. Both of

these can be transformed into a set of linear (in-)equalities by

the “big M”-technique if the involved variables are bounded

(which they are in our problem) to get the ILP in standard

or canonical form. Using the aforementioned operators not

only results in better readability, but state of the art solvers

such as CPLEX and Gurobi support indicator constraints [16]

to handle these operators without encountering the numerical

problems that can occur when using the “big M”-technique.

Also, state-of-the-art ILP modeling environments such as

zimpl [17], GAMS, AMPL or OPL support modeling problems

with these extended operators, and perform the required trans-

formations to a set of linear inequalities that can be processed

by the ILP solvers.

With that being said, we next derive graph related parame-

ters and flow related parameters that we use for the formulation

of the joint routing and scheduling problem. Graph related

parameters are given in Table I.

TABLE I
ILP PARAMETERS DERIVED FROM GRAPH.

E = {0, 1, 2, . . .} ⊂ N set of edges
V = {0, 1, 2, . . .} ⊂ N set of vertices

AEE ∈ {0, 1}|E|×|E| sparse edge-edge adjacency matrix

BV E ∈ {−1, 0, 1}|V|×|E| sparse vertex-edge incidence matrix
D ∈ N time it takes for crossing over a vertex

The value of an element of the edge-edge adjacency matrix

AEE in row ep ∈ E and column en ∈ E is given by

AEE [ep][en] =

{

1, if ep = (∗, v) and en = (v, ∗)

0, otherwise
. (1)

That means, if the edge (with index) ep enters a vertex

v ∈ V , and the edge en departs from the same vertex v, then

AEE [ep][en] contains the value 1. The value of an element

of the vertex-edge incidence matrix BV E in row v ∈ V and

column e ∈ V is given by

BV E [v][e] =











1, if e = (v, ∗)

−1, if e = (∗, v)

0, otherwise

. (2)

That means, BV E [v][e] = 1 if the edge e departs from vertex

with index v, and BV E [v][e] = −1 if the edge e enters vertex

v. We assume that for most scenarios deg(v) ≪ |V|. In this

case, storing only non-zero entries of BV E and AEE is more

efficient.

The flow related parameters and their meanings are given

in Table II. Since ILPs support no modulo-operation in the

constraints, we define the hyper-cycle, that is the period of

length h with which the reservation pattern repeats from a

global point of view. We use h in the scheduling constraints to

ensure interference-free transmission time in all transmission

periods.

After introducing the ILP parameters, we introduce the

variables for the ILP. Our ILP formulation follows a “con-

structive” approach where we can read the solution for the

TABLE II
ILP PARAMETERS DERIVED FROM FLOW PROPERTIES.

F ⊂ N set of flow indices

oF ∈ V|F| vector of flow origins: oF [f ] = v, iff flow f ∈ F
starts at vertex v ∈ V

dF ∈ V|F| vector of flow destinations: dF [f ] = v, iff flow f ∈
F ends at vertex v ∈ V

pF ∈ N
|F| vector of flow period: pF [f ] = pf , iff flow f ∈ F

has a period of pf ∈ N

rF ∈ N
|F| vector of required transmission durations of flows

per period: rF [f ] = rf , iff flow f ∈ F needs a
reservation of rf ∈ N

lF ∈ N
|F| vector of maximally allowed end-to-end deadline for

flows: lF [f ] = tf , iff flow f ∈ F has a maximal
end-to-end deadline of tf ∈ N

h = lcm(pF) least common multiple of all individual flow periods

joint routing and scheduling problem directly from the ILP

solution. Consequently, we introduce a set of binary decision

variables u ∈ {0, 1}|F|×|V| with the interpretation

u[f ][e] =

{

1 → flow f uses edge e

0 → flow f does not use edge e
(3)

from which we can derive the routes of the flows after having

solved the ILP. Analogously, we introduce a set of bounded

variables

t ∈ N
|F|×|V| with 0 ≤ t[f ][∗] ≤ pF [f ]− rF [f ] (4)

where the value t[f ][e] after solving the ILP is equal to the

point in time (modulo the flow period) from which on edge e
is reserved for transmission of flow f , if u[f ][e] = 1.

t[f ][e]

t[f ][e] + rF [f ] pF [f ]
t = 0

pF [f ]− rF [f ]

Fig. 2. Upper bound on t[f ][∗] from Equation 4: Reserved time has to finish
within period.

Setting the upper bound to pF [f ] − rF [f ] (illustrated in

Figure 2) ensures that on every link used by flow f the

reserved time slot ends before the next transmission period

starts. From the values of t[∗][e] we can easily construct the

schedule per edge, i.e. the output port schedule.

In this paper, any feasible solution for the joint routing and

scheduling of the flows is acceptable. Therefore, we intro-

duce a “placeholder” objective function min q on a bounded,

“dummy” variable q that can be replaced in the future with

“real” optimization objectives (e.g. distribution of reservations

on edges).

We proceed to explain the constraints, that encode the

requirements for a transmission pattern that separates trans-

missions in time (via scheduling) as well as in space (via

routing). These constraints can be categorized in three groups:

1) constraints, which ensure per-edge compliance of reserved



time slots, 2) constraints, which ensure loop-free routing from

flow origin to flow destination, and 3) constraints, which link

the routing and scheduling constraints.

1) Scheduling Constraints: The first scheduling constraint

ensures that the reserved time slots of any flows using a

particular edge do never overlap, and is given by

∀f1 ∈ F , f2 ∈ F : f1 6= f2, e ∈ E :

∀a ∈ A, b ∈ B :

if (u[f1][e] + u[f2][e] ≥ 2) then (5)

(t[f1][e] + a · pF [f1] ≥ tF [f2][e] + b · pF [f2] + rF [f2]
(6)

or t[f2][e] + b · pF [f2] ≥ tF [f1][e] + a · pF [f1] + rF [f1])
(7)

with

A =

{

a ∈ N : 0 ≤ a ≤
h

pF [f1]

}

, (8)

B =

{

b ∈ N : 0 ≤ b ≤
h

pF [f2]

}

. (9)

It is not sufficient to restrict the starting times of the reserva-

tions such that they do not overlap in one single period, e.g.,

see Figure 3, where the collision occurs in the 3rd period (from

the perspective of flow f1), respectively, the 2nd period (from

the perspective of flow f2). Instead, we have to prohibit that

any overlap occurs for all future periods. For this purpose, we

introduce auxiliary sets A and B, where a · pF [f1][e] denotes

the start of the ath period of flow f1, and b ·pF [f1][e] denotes

the start of the bth period of flow f1, respectively, in the hyper-

cycle.

0 · pF [f1][e]
1 · pF [f1][e]

2 · pF [f1][e]
3 · pF [f1][e]

0 · pF [f2][e] 1 · pF [f2][e] 2 · pF [f2][e]

Fig. 3. Scheduling Constraint from Inequality 6 and Inequality 7: Reserved
time slots of flow f1 in iteration 2 overlaps with reserved time slot of flow
f2 in iteration 1 with respect to the hyper-cycle.

We check that for all combinations of a ∈ A and b ∈ B
no overlap occurs. Note, that we need the or-conjunction that

links the constraints in Inequality 6 and Inequality 7 since

either the reservation of flow f1 starts after the reservation of

flow f2 has ended, or vice versa.

2) Routing Constraints: The routing constraint

∀f ∈ F :
∑

e∈E

BV E [oF [f ]] [e] · u[f ][e] = −1 (10)

achieves that one departing edge from the vertex where flow

f originates is used. Likewise, the constraint

∀f ∈ F :
∑

e∈E

BV E [dF [f ]] [e] · u[f ][e] = 1 (11)

enforces that one incoming edge at the destination vertex of

flow f is used. The constraint

∀f ∈ F :
∑

BV E [v][e]=1

BV E [v][e] · u[f ][e]

= −
∑

BV E [v][e]=−1

BV E [v][e] · u[f ][e] (12)

with v ∈ V\{oF [f ],dF [f ]}, e ∈ E (13)

restricts the number of ingoing edges used by flow f to the

number of outgoing edges used by flow f at each vertex. In

combination with the constraints in Equality 10 and Equal-

ity 11, the assignment of u[f ][∗] has to be such, that a loop

free path from flow origin vertex to flow destination vertex is

created.

3) Constraints Linking Routing and Scheduling Con-

straints: So far, the routing and scheduling constraints restrict

either the values of u, or the values of t. The constraint given

by

∀ep ∈ E , ∀en ∈ E : ep 6= en andAEE [ep][en] = 1, ∀f ∈ F :

if(u[f ][ep] + u[f ][en] ≥ 2) then (14)

(t[f ][en] = t[f ][ep] +D (15)

or t[f ][en] + pF [f ] = t[f ][ep] +D) (16)

specifies that the reserved time slot on the outgoing edge en
at a vertex v on the path of a flow f is shifted by D compared

to the incoming edge ep on the path (cf. Figure 4). There are

v

+D

ep en

Fig. 4. The constraints from Equality 14-16 relate the reservations along the
edges of the path of flow f .

two different cases, how to determine the reservation on the

upstream edge en. In variant 1 (cf. Figure 5), the reservation on

the incoming edge en is early enough, so that the reservation

on the outgoing edge is in the same period on both edges.

t = 0 pF [f ]

t[f ][ep]
t[f ][en] = t[f ][ep] +D

Fig. 5. Illustration of the constraint from Equality 15 where the reservation
on the departing edge en is shifted by D compared to the reservation on
the incoming edge ep at vertex v. The position of the reservations relative
to the start and end of the period are the same from the perspectives of the
respective edges and from a global perspective.

Variant 2 (cf. Figure 6) can occur the reservation on the

incoming edge ep is “too close” to the end of the period

on edge ep. Then the transmission in the reserved time slot

on the incoming edge ep in the period with number n will

be continued on the outgoing edge en in the next period



with number n + 1. From an edge local perspective, the

corresponding reservation on the outgoing edge en therefore

is earlier in the period compared to the reservation on the

incoming edge ep.

t = 0 pF [f ]

t[f ][ep]

t[f ][en] t[f ][ep] + pF [f ] +D

Fig. 6. Illustration of the constraint from Equality 16 where the periodicity of
the reservation has to be accounted for. The position of the reservations relative
to the start and end of the period from the perspectives of the respective
edges are filled in gray. The striped area right of pF [f ] is the position of the
reservation on en from a global perspective.

To incorporate upper bounds on the per-flow end-to-end

delay, we introduce the constraint

∀f ∈
∑

e∈E

D · u[f ][e] ≤ lF [f ]. (17)

This constraint limits the number of edges in the path of a

flow f by limiting the “delay” that can be accumulated along

the edges.

C. Complexity

The joint routing and scheduling problem is NP-complete.

We sketch the proof by reducing Bin-Packing [18] to the joint

routing and scheduling problem. For any given Bin-Packing

instance b with B ∈ N, finite set U (∀u ∈ U : s(u) ∈ N), and

K ∈ N we create a special instance j of the joint routing and

scheduling problem. The network of j consists of start node

vo and destination node vd, K intermediate nodes vi and 2K
directed edges (vo, vi) and (vi, vd) with i ∈ {1 . . .K} and

w.l.o.g. D = 1, For each u ∈ U there is a flow in j from vo
to vd with reservation s(u) and transmission period B. Iff j
has a solution, then U can be partitioned into K disjoint sets

U1,U2, . . . ,UK s.t. ∀Ui :
∑

u∈Ui
s(u) ≤ B.

V. EVALUATION

In this section, we will evaluate the performance of the

ILP formulation introduced in Section IV by solving synthetic

joint routing and scheduling problem instances. A problem

instance consists of a graph and a set of flows defined by their

parameters (flow endpoints, transmission period, transmission

duration and end-to-end deadline). The evaluation setup (in-

cluding how we generate the joint routing and scheduling

problem instances) is explained, before we evaluate the solving

performance.

A. Problem Generation

We generate the joint routing and scheduling problem

instances in a two-step process. Firstly, we generate a (random)

graph. The graph generation is parameterized by the number

of vertices and the graph model (line, ring, scale-free, ran-

dom). Those network models are of practical relevance (line

graphs, ring graphs), and belong to fundamentally different

classes of topologies (random scale-free graphs (Barabási-

Albert network model), and random graphs (Erdős-Rényi

network model)). Secondly, we generate a set of flows.

We use graph generators provided by the Python graph-tool

[19] library to generate graphs according to the mentioned

network models. For all topologies, we define the number

of vertices |V|, whereas the number of edges |E| depends

on the graph model. Networks with a line or ring topology

are often found in industrial scenarios, and the number of

routes is strictly limited. The network topologies following

the Barabási-Albert model [20], [21] have scale-free, power-

law distributed vertex connectivity with a tail of the degree

distribution given by Pk ∝ k−(3+0.99). In these “tree-like

looking” graphs (cf. Figure 7), there exists only one route

between any two vertices, since in the iterative generation

process in each step a new vertex is connected to one existing

vertex depending on the vertex degree of the existing vertex.

Fig. 7. Example of a scale-free graph with |V| = 36.

The graph-generator we use for network topologies con-

forming to the G(V,E) Erdős-Rényi model does not guarantee

to produce a connected random graph . If the graph is parti-

tioned, we proceed with the largest component. Since networks

with this topology are most likely meshed, determining the

number of routes is not trivial anymore.

The graph generators produce undirected graphs, which we

post-process by replacing each undirected edge by 2 directed

edges: a forward edge, as well as a backward edge, to account

for the duplex properties of the targeted Ethernet networks.

Besides this, the remaining network-related parameters are

derived from a 1Gbit s−1 Ethernet network. For 1Gbit s−1

Ethernet networks, it is a reasonable choice to set 1 time-

unit in the ILP-formulation to 1 µs. The transmission delay

for “reasonably-sized” frames in Gigabit Ethernet is given

by dtrans = 368B/1GB s−1 = 2.944 µs. Regarding the

applications, we consider a “reasonably-sized” frame to be

big enough to hold several timestamps and numerical values

(i.e. sensor-data). To compute the propagation delay, we set

the link length to 10m. The propagation delay is given by

dprop = 10m/
(

2
3 · clight

)

= 0.05 µs. A propagation speed of
2
3 · clight is in the range of what CAT6-cables provide. The

processing delay of the switches is chosen as dproc = 5 µs.
This processing delay can be expected from state-of-the-art

Ethernet switches (c.f. measurements in [22]). Consequently,

the value of D which we use in our evaluations is set to

D = 8 µs ≈ dtrans + dprop + dproc.
After creating the network topology, we create the sets

of parameters for the flows for which we want to compute



the routes and schedules in the network. For each flow f in

the set, the index of origin vertex oF [f ] and the index of

the destination vertex dF [f ] is created by picking 2 values

from the set of vertex indices V with uniform probability. We

assume real-time applications to request reservations based on

the time it takes to transmit the application specific number

of packets / frames. Thus, rF is equal to a multiple of ttrans in

our evaluations. To be more exact, for the reservation rF [f ]
of each flow f , we randomly draw one value from {3, 6, 9}
with uniform probability. For pF , the transmission frequencies

are in the range from 125Hz = 1 transmission/8000 µs to

50 kHz = 1 transmission/50 µs. The end-to-end delay is set

depending on the network topology to lF = a · D + 1
with a ∈ {1, . . . , |V|}. If not stated differently, we use

lF = |V| · D + 1, which allows every vertex to be traversed

once.

B. Setup

We generate the problem instances for our evaluations with

our own Python implementation which relies on the graph-

tool library. Our Python code is preprocessing the problem

instances, such that they can be digested by the ILP modeling

tool. The ILP modeling tool “compiles” the description of the

ILP in the respective modeling language and the parameters

of a specific problem instance and writes the ILP to a text file

in LP-format. Next, this .lp-file is given to the solver which

writes the ILP solution (if it exists) to another text file We

want to stress, that while all the “data plumbing” is done

with our Python tool, we consider only the time of solving

process for the respective ILP. The solver is invoked via the

vendor-provided binary and the ILP is passed as an .lp-file.

We parse the runtime of the solver from the CPLEX log files

after executing the solver. This way, we can prepare and post-

process the results on different machines without affecting

the measurements. For the measurements in this paper, we

used the Linux version of IBM ILOG CPLEX Optimization

Studio 12.8.0 [23], with OPL as our modeling language

(using oplrun to convert it to .mps and .lp) and CPLEX as

solver. The “compilation” and solving of the problem instances

were performed on a 4-socket compute node equipped with

four Intel Xeon E7-4850 v4 CPUs with a nominal clock

speed of 2.1GHz and a total amount of RAM of 1.057TB.

The operating system of the compute node is Linux with

kernel version 4.15.15. Even though our compute node can

be considered “high-end” with regards to the specifications,

we do not expect this to impede the qualitative applicability

of our results due to slower machines.

C. Results

We evaluate the effects of various problem properties (graph

size, number of flows, topology, transmission frequency, and

end-to-end deadline) on the runtime of the solver in the

following part.

1) Influence of the Graph Size: From the ILP constraints,

it is expected that the number of vertices should influence

the runtime of the solver, since the number of constraints

depends (via BV E and AEE) on the size of the graph. We

want explore the quantitative relation of solver runtime and

graph size, therefore we created sets of problem instances with

varying number of vertices, a fixed number of flows |F| = 7,

and transmission periods pF [f ] ∈ {1000, 2000, 4000, 8000}.

In Figure 8 and Figure 9, we depict the runtimes for these

problem instances. For the problem instances in Figure 8, the

solving process always completed within the runtime limit

30min that was set for the solver. For Figure 9 the runtime

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# vertices

10−1

100

101

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

topology

Line

Ring

Scale-Free

Random

Fig. 8. Box plot of solver runtimes for problem instances with varying number
of vertices, fixed |F| = 7, transmission periods ∈ {1000, 2000, 4000, 8000}
and runtime limit of 30min.

limit for the solver was set to 60min. As can be seen in

Table IV, there are a few cases for the random topology, where

the solving process did not finish within the time limit.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

# vertices

101

102

103

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

topology

Line

Ring

Scale-Free

Random

Fig. 9. Box plot of solver runtimes for problem instances with varying number
of vertices; parameters are the same in Figure 8, except for number of vertices,
and the runtime limit is set to 60min.

For reference and further comparison, we provide the ag-

gregated runtime results and the number of experiments for

all measurements with varying number of vertices in Table III

and Table IV.



TABLE III
VARYING NUMBER OF VERTICES, |F| = 7, TRANSMISSION PERIODS

∈ {50, 100, 200, 400, 800} AND ∈ {1000, 2000, 4000, 8000}, AND

RUNTIME LIMIT OF 30min.

Line Ring Scale-Free Random
mean std fin infs tot mean std fin infs tot mean std fin infs tot mean std fin infs tot

Vertices

5 1.09 0.52 20 0 20 3.74 2.40 20 0 20 1.37 0.82 20 0 20 2.89 3.15 18 0 18
6 1.58 0.91 20 0 20 5.62 3.21 20 0 20 1.87 1.16 20 0 20 4.82 2.56 24 0 24
7 2.10 0.96 20 0 20 6.37 2.82 20 0 20 2.38 1.38 20 0 20 4.66 4.78 10 0 10
8 2.40 1.53 20 0 20 7.10 4.69 20 0 20 2.66 1.12 20 0 20 10.16 4.33 23 0 23
9 3.72 1.86 20 0 20 8.81 3.91 20 0 20 3.53 1.60 20 0 20 13.39 6.41 25 0 25
10 4.09 2.68 20 0 20 11.18 5.04 20 0 20 3.67 2.04 20 0 20 10.85 6.49 33 0 33
11 4.36 1.77 20 0 20 12.00 6.78 20 0 20 5.10 3.56 20 0 20 12.87 7.44 18 0 18
12 4.86 2.74 20 2 20 13.92 7.20 20 0 20 5.82 2.52 20 0 20 19.09 7.09 19 0 19
13 6.15 3.31 20 0 20 14.22 6.80 20 0 20 6.22 2.64 20 0 20 17.96 7.64 18 0 18
14 7.15 3.70 20 1 20 18.03 9.64 20 0 20 7.42 3.77 20 0 20 25.28 10.42 30 0 30
15 8.47 4.03 20 3 20 17.84 6.93 20 1 20 11.16 6.37 20 0 20 20.61 12.17 24 0 24
16 8.60 3.44 20 1 20 16.30 7.11 20 1 20 8.78 4.06 20 0 20 28.18 15.47 19 1 20
17 10.54 5.02 20 3 20 20.48 9.67 20 1 20 11.65 5.37 20 0 20 29.97 20.96 7 0 7
18 9.07 4.16 20 1 20 22.73 8.69 20 1 20 12.89 9.04 20 0 20 40.43 13.94 20 0 20
19 12.27 6.75 20 2 20 21.89 8.50 20 2 20 13.89 9.79 20 0 20 173.72 359.83 12 0 12
20 14.14 7.91 20 5 20 23.02 8.43 20 1 20 12.48 8.11 20 0 20 222.44 421.66 6 0 6

Each table contains the average runtime (column “mean”),

and the standard deviation of the the runtimes (column “std”).

The columns labeled “fin” contain the number of problem in-

stances, where the solver finished in time, i.e. either the solver

found a solution or declared infeasibility of the problem within

the allowed time limit. The columns labeled “infs” contain

the number of problem instances, which were infeasible, i.e.

where no solution exists. The remaining columns labeled “tot”

contains the total number of problem instances that the solver

attempted to solve. Subtracting the number of finished problem

instances from the number of total problem instances yields

the number of unsolved problem instances.

TABLE IV
VARYING NUMBER OF VERTICES, |F| = 7, TRANSMISSION PERIODS

∈ {1000, 2000, 4000, 8000}, AND RUNTIME LIMIT OF 60min.

Line Ring Scale-Free Random
mean std fin infs tot mean std fin infs tot mean std fin infs tot mean std fin infs tot

Vertices

21 11.88 5.10 10 0 10 24.47 5.67 10 0 10 13.16 5.74 10 0 10 41.93 16.31 12 0 12
22 11.84 6.32 10 0 10 29.31 14.83 10 0 10 19.09 5.37 10 0 10 62.66 20.97 8 0 8
23 13.81 3.83 10 0 10 23.97 7.74 10 0 10 15.01 7.25 10 0 10 64.87 29.10 7 0 7
24 15.70 8.27 10 0 10 24.02 6.03 10 0 10 15.68 7.86 10 0 10 102.07 70.18 15 0 15
25 16.72 5.64 10 0 10 31.57 6.42 10 0 10 12.94 5.74 10 0 10 94.52 88.72 13 0 13
26 16.59 5.24 10 0 10 27.50 14.98 10 0 10 15.04 6.79 10 0 10 52.22 25.84 10 0 11
27 17.38 7.09 10 0 10 35.31 7.13 10 0 10 23.08 10.05 10 0 10 80.31 72.07 10 0 10
28 15.70 10.20 10 0 10 39.21 24.98 10 0 10 24.13 11.18 10 0 10 258.12 434.34 8 0 8
29 19.04 7.63 10 0 10 35.95 9.02 10 0 10 20.39 9.24 10 0 10 109.70 22.44 4 0 4
30 24.79 7.77 10 0 10 45.12 15.22 10 0 10 20.99 12.23 10 0 10 339.23 409.29 9 0 9
31 17.12 5.39 10 0 10 38.67 10.35 10 0 10 28.87 11.78 10 0 10 238.52 312.44 10 0 10
32 22.10 8.99 10 0 10 46.43 16.13 10 0 10 22.67 12.87 10 0 10 138.26 35.99 9 0 9
33 24.99 11.63 10 0 10 55.61 22.75 10 0 10 30.29 13.91 10 0 10 313.89 238.65 7 0 7
34 23.48 9.38 10 0 10 53.57 20.63 10 0 10 27.49 14.50 10 0 10 145.48 77.56 6 0 7
35 24.59 7.53 10 0 10 55.90 17.79 10 0 10 33.87 12.15 10 0 10 267.12 198.14 7 0 8
36 26.03 10.95 10 0 10 64.76 42.79 10 0 10 44.53 8.51 10 0 10 361.76 426.08 3 0 4

The measurements with varying number of vertices show

that an increasing size of the graph makes the problem more

difficult irregardless of the topology. This is no surprise, since

the larger graph induces overall more constraints which the

solver has to satisfy. Additionally, in a larger graph with

random placement of the flow origins and destinations, the

routes for the flows can be longer which increases the number

of edges where the scheduling constraints have to be applied.

2) Influence of the Number of Flows: In Figure 10 and

Figure 11, the runtimes for problem instances with a varying

number of flows, a fixed number of vertices |V| = 8, and again

low transmission frequencies with the transmission periods

pF [f ] drawn from {1000, 2000, 4000, 8000} are depicted. The

runtime limit for the problem instances depicted in Figure 10

was set to 30min, but the solving process was always com-

pleted within the given time limit.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

# flows

10−1

100

101

102

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

topology

Line

Ring

Scale-Free

Random

Fig. 10. Box plot of solver runtimes for problem instances with varying
number of flows, fixed number of vertices |V| = 8, transmission periods
∈ {1000, 2000, 4000, 8000}, runtime limit is set to 30min.

The runtime limit for the problem instances depicted in

Figure 11 was set to 60min. As can be seen from Table VI,

there are two problem instances with random topology that

could not be finished before the timeout (21 flows and 30

flows).

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

# flows

102

103

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

topology

Line

Ring

Scale-Free

Random

Fig. 11. Box plot of solver runtimes for problem instances with varying
number of flows; parameters are the same as in Figure 10 except for the
number of flows, and the runtime limit is set to 60min.

The aggregated data for measurements with varying number

of flows are given in Table V and Table VI.

In Figure 12, we applied a non-linear least squares fit of

the solver runtimes for the problem instances in Table V to

the monomial xm ·10b using the Levenberg-Marquardt method

and plotted the resulting function. However, if we also fit to

the runtime of problem instances with runtime limit of 60min,



5 10 15 20 25 30

# flows

10−1

100

101

102

103

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

Line xˆ 3.13*1E-2.19, std m=0.20, std b=0.23

Ring xˆ 3.25*1E-1.93, std m=0.20, std b=0.23

Scale-free xˆ 2.44*1E-1.45, std m=0.17, std b=0.19

Random xˆ 3.52*1E-2.10, std m=0.23, std b=0.26

Fig. 12. Fitting of results from Table V to monomial xm · 10b. The fitted
functions reflect the separation of the topologies visible in Figure 10 and
Figure 11.

the degree of the monomial rose to ≈ 4, what confirms

the non-polynomial scaling behavior of the joint routing and

scheduling problem. The same behavior is exhibited by the

runtimes of problem instances with varying vertex number.

TABLE V
VARYING NUMBER OF FLOWS, |V| = 8, TRANSMISSION PERIODS

∈ {50, 100, 200, 400, 800} AND ∈ {1000, 2000, 4000, 8000}, AND

RUNTIME LIMIT OF 30min.

Line Ring Scale-Free Random
mean std fin infs tot mean std fin infs tot mean std fin infs tot mean std fin infs tot

Flows

2 0.03 0.02 20 0 20 0.06 0.05 20 0 20 0.04 0.05 20 0 20 0.12 0.12 20 0 20
3 0.16 0.20 20 0 20 0.45 0.67 20 0 20 0.13 0.17 20 0 20 0.45 0.52 20 0 20
4 0.45 0.42 20 0 20 1.40 0.87 20 0 20 0.31 0.25 20 0 20 1.71 1.46 20 0 20
5 1.27 0.69 20 0 20 2.84 1.63 20 0 20 1.26 0.96 20 0 20 4.54 2.27 20 0 20
6 2.42 1.30 20 0 20 5.15 3.08 20 0 20 2.05 1.37 20 0 20 6.25 3.94 20 0 20
7 2.86 1.64 20 0 20 7.79 3.21 20 0 20 3.48 2.27 20 0 20 10.13 3.49 20 0 20
8 3.76 1.33 20 0 20 10.95 7.09 20 0 20 5.50 4.01 20 0 20 14.07 4.95 20 0 20
9 6.58 2.65 20 0 20 17.15 8.31 20 0 20 7.26 4.26 20 0 20 20.52 9.23 20 0 20
10 7.14 3.57 20 1 20 22.10 9.11 20 0 20 9.68 3.95 20 0 20 27.24 13.70 20 0 20
11 13.55 6.51 20 0 20 26.27 10.48 20 0 20 11.45 3.62 20 0 20 32.17 8.47 20 0 20
12 16.26 5.22 20 0 20 32.01 11.93 20 0 20 15.41 6.97 20 0 20 54.92 27.61 20 0 20
13 17.72 8.52 20 0 20 49.17 22.29 20 0 20 24.54 15.08 20 0 20 58.74 22.29 20 0 20
14 23.48 10.98 20 1 20 65.04 32.15 20 0 20 20.02 6.16 20 0 20 86.00 51.25 20 0 20
15 31.75 15.69 20 0 20 77.01 34.15 20 0 20 25.21 10.60 20 0 20 112.84 51.85 20 0 20

TABLE VI
VARYING NUMBER OF FLOWS, |V| = 8, TRANSMISSION PERIODS

∈ {1000, 2000, 4000, 8000}, AND RUNTIME LIMIT OF 60min.

Line Ring Scale-Free Random
mean std fin infs tot mean std fin infs tot mean std fin infs tot mean std fin infs tot

Flows

16 31.84 6.68 10 0 10 76.63 21.54 10 0 10 32.99 7.47 10 0 10 104.51 14.60 10 0 10
17 39.08 8.08 10 0 10 103.94 41.51 10 0 10 44.40 12.22 10 0 10 120.71 45.96 10 0 10
18 44.60 10.57 10 0 10 126.88 67.88 10 0 10 47.88 8.20 10 0 10 149.06 36.33 10 0 10
19 49.25 10.30 10 0 10 152.60 68.84 10 0 10 57.01 12.11 10 0 10 179.70 41.53 10 0 10
20 58.21 11.47 10 0 10 191.83 33.25 10 0 10 61.51 16.95 10 0 10 241.87 71.28 10 0 10
21 70.53 15.92 10 0 10 185.89 22.57 10 0 10 62.11 16.91 10 0 10 254.20 141.58 9 0 10
22 87.40 13.19 10 0 10 232.19 40.95 10 0 10 101.42 16.14 10 0 10 370.90 170.34 10 0 10
23 86.84 20.50 10 0 10 247.50 69.91 10 0 10 106.02 22.26 10 0 10 400.43 307.67 10 0 10
24 111.76 26.96 10 0 10 334.76 91.93 10 0 10 119.64 22.37 10 0 10 420.31 202.31 10 0 10
25 116.74 19.19 10 0 10 428.97 224.16 10 0 10 149.12 27.43 10 0 10 449.60 152.85 10 0 10
26 147.02 25.24 10 0 10 354.06 68.11 10 0 10 148.77 30.43 10 0 10 643.39 237.89 10 0 10
27 169.85 25.60 10 0 10 502.09 165.25 10 0 10 203.17 34.09 10 0 10 543.48 134.24 10 0 10
28 196.12 36.78 10 0 10 432.13 92.62 10 0 10 206.94 22.74 10 0 10 937.55 378.95 10 0 10
29 223.86 51.63 10 0 10 564.75 141.50 10 0 10 221.54 40.19 10 0 10 1020.50 356.87 10 0 10
30 245.73 61.84 10 0 10 776.78 269.99 10 0 10 283.55 63.72 10 0 10 1056.51 303.14 9 0 10

3) Influence of the Topology: In Figure 11 (and to a lesser

degree in the other box plots) it is visible, that the runtime

for ring and random topology is higher than that of the

remaining topologies, and the runtime of problem instances

with random topology exceeds those of the ring topology. In

Figure 13, we show how the average dimension of the ILP

(number of constraints and variables) behaves for the problem

instances from from Table V and Table VI. Interestingly, even

10 20 30

0.00

0.25

0.50

0.75

1.00

1.25

1.50

#
e
le

m
e
n
ts

1e6

Line: Constraints

Line: Variables

10 20 30

0.0

0.5

1.0

1.5

1e6

Ring: Constraints

Ring: Variables

10 20 30

# flows

0.00

0.25

0.50

0.75

1.00

1.25

1.50

#
e
le

m
e
n
ts

1e6

Scale-Free: Constraints

Scale-Free: Variables

10 20 30

# flows

0.0

0.5

1.0

1.5

2.0

1e6

Random: Constraints

Random: Variables

Fig. 13. Average number of ILP constraints and ILP variables for problem
instances with varying number of flows from Table V and Table VI.

though only problem instances with random topology result

in noticeably (up to 1/4) larger ILPs, than the remaining

topologies, problem instances with ring topology take clearly

more time to solve in all measurements than those with line

and scale-free topology. This indicates, that more routing

options increase the solver runtime, since in line and scale-

free topologies only one route exists.

4) Influence of the Transmission Frequency: The frequency

of the transmissions (the inverse of the period pF ) is different

in character from the previously investigated aspects, since it

does not influence the number of the constraints, but only the

values in the constraints.

In Figure 14, we examine how the frequencies of the trans-

missions influences the runtime of the solver if the number of

vertices is varied. The dashed lines in Figure 14 are the average

runtimes for the problem instances with low transmission

frequencies (LF), where the transmission period was drawn

from pF [f ] ∈ {1000, 2000, 4000, 8000}. These are same

problem instances for which the solver runtime was depicted in

detail in Figure 8. For the solid lines in Figure 14, we created

the same amount of problem instances again with almost

the same parameters (|F| = 7, runtime limit of 30min),

except we choose considerably higher transmission frequen-

cies (HF), where the transmission period was drawn from

pF [f ] ∈ {50, 100, 200, 400, 800}, and average the observed

runtimes. In our measurements, solving the problem instances

with higher transmission frequencies takes increasingly more

time with increasing number of vertices.

There are few exceptions for line and scale-free graphs

for low number of vertices visible in Figure 14 which may

be introduced by the random placement of the origin and



5 10 15 20
0

5

10

15

20

s
o

lv
e

r
ru

n
ti
m

e
(s

e
c
)

Line HF

Line LF

5 10 15 20

5

10

15

20

25

30 Ring HF

Ring LF

5 10 15 20

# vertices

0

5

10

15

20

s
o

lv
e

r
ru

n
ti
m

e
(s

e
c
)

Scale-Free HF

Scale-Free LF

5 10 15 20

# vertices

0

200

400

600

800

1000
Random HF

Random LF

Fig. 14. Comparison of runtimes for problem instances with vary-
ing number of vertices, |F| = 7, transmission periods for HF ∈
{50, 100, 200, 400, 800}, and for LF ∈ {1000, 2000, 4000, 8000}, and
runtime limit of 30min.

destination vertices. Striking is the steep rise of the runtime

in HF problem instances with random topology for 19 and

20 vertices, where runtimes up to more than 1000 s were

observed. These outliers underline the NP-hard character of the

problem, where particular “difficult” problem instances require

exorbitant more runtime to solve than the average case.

2.5 5.0 7.5 10.0 12.5 15.0

0

10

20

30

40

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

Line HF

Line LF

2.5 5.0 7.5 10.0 12.5 15.0

0

20

40

60

80

100
Ring HF

Ring LF

2.5 5.0 7.5 10.0 12.5 15.0

# flows

0

10

20

30

s
o
lv

e
r

ru
n
ti
m

e
(s

e
c
)

Scale-free HF

Scale-free LF

2.5 5.0 7.5 10.0 12.5 15.0

# flows

0

50

100

150
Random HF

Random LF

Fig. 15. Comparison of runtimes for problem instances with varying number
of flows, |V| = 8, transmission periods for HF ∈ {50, 100, 200, 400, 800},
and for LF ∈ {1000, 2000, 4000, 8000}, and runtime limit of 30min.

With the same approach we assess the effect of the trans-

mission frequencies if the number of flows is varied. Again,

the dashed line in Figure 15 shows the average runtimes for

problem instances with low transmission frequencies (pF [f ] ∈
{1000, 2000, 4000, 8000}), which were presented in Figure 10.

The solid line in Figure 15 are the average runtimes for an

equally sized set of problem instances with higher transmission

frequencies (pF [f ] ∈ {50, 100, 200, 400, 800})

The same pattern already observed in Figure 14 can be seen

again in Figure 15: the solver requires increasingly more time

to finish problem instances with higher transmission frequen-

cies compared to problem instances with lower transmission

frequencies. Consequently, the transmission frequencies have

measurable effects on the time needed for solving a prob-

lem instance. Since the range of the reservations is fixed

(rF ∈ {3, 6, 9}), while the period of the transmissions was

varied, we effectively changed the fraction of the transmission

period that is reserved. That might explain the observations,

since —all transmission periods are harmonic— with higher

fraction of reservations per cycle there are less possibilities to

interleave the reservations of different flows.

VI. CONCLUSION AND FUTURE WORK

Joint routing and scheduling problem instances with the

number of flows, respectively, the number of vertices in the

double digit range result in ILPs with millions of constraints

and variables which despite the NP-hardness of the problem

can often be solved within reasonable time (seconds to hours)

with state-of-the-art equipment. In our evaluations, we made

the following three main observations: Firstly, the solver

runtime is much more sensitive to an increase in the number of

flows than to an increase of the graph size. In our evaluations,

additional flows increase the dimension (number of variables

and number of constraints) more than increasing the graph

size which is one reason for this behavior. Secondly, the solver

runtime is influenced by how much of the transmission period

is occupied by the transmission, since it is harder to interleave

transmissions if larger parts of the transmission periods are

already reserved. Thirdly, the graph topology does impact

the solver runtime strongly. In our measurements the solver

runtime depended massively on how many paths exist between

any two nodes, which can be interpreted such that additional

routing decisions slow down the solving process, and not

simply on the vertex degree.

Besides the development of heuristics, the ILP formulation

itself can be extended in future work: The currently “unused”

objective function of the ILP can influence the distribution of

the reservations on the edges, e.g., to load all edges equally,

to minimize end-to-end-latency, to minimize shared switches,

to optimize the solution for specific scenarios. Considering

artifacts of real-world networks (i.e. synchronization errors,

non-constant delays induced by operating conditions or design

choices in the switch design) in the ILP, e.g., by expanding the

required reservation per transmission depending on the (hop-

count) distance from the origin vertex has practical relevance.

And with these imperfections, it will be more complicated to

preserve transmission order in switches with FIFO queuing,

and even more complicated to allow queuing in multiple FIFO

queues and the resulting (limited) reordering of transmissions.

Finally, an additional degree of freedom can be gained by

allowing for dynamic routing, i.e. different transmissions of

an application are forwarded along different paths depending

on the current time.



ACKNOWLEDGMENT

This work was supported by the German Research Foun-

dation (DFG) under the research grant “Integrated Controller

Design Methods and Communication Services for Networked

Control Systems (NCS)” (RO 1086/20-1).

REFERENCES

[1] LAN/MAN Standards Committee, “IEEE Standard for Ethernet,” IEEE

Std 802.3-2015 (Revision of IEEE Std 802.3-2012), no. IEEE Std 802.3-
2015 (Revision of IEEE Std 802.3-2012), pp. 1–4017, Mar. 2016.

[2] LAN/MAN Standards Committee of the IEEE Computer Society, “IEEE
Std 802.1QTM - 2014 - IEEE Standard for Local and metropolitan area
networks— Bridges and Bridged Networks,” Dec. 2014.

[3] IEEE Computer Society, “IEEE Standard for Local and metropolitan
area networks – Bridges and Bridged Networks - Amendment 25:
Enhancements for Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amend-

ment to IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015,

IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp.
1–57, Mar. 2016.

[4] IEEE Instrumentation and Measurement Society, “IEEE Standard for a
Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems,” IEEE Std 1588-2008 (Revision of IEEE Std 1588-

2002), pp. 1–300, Jul. 2008.
[5] IEEE Computer Society, “IEEE Standard for Local and Metropolitan

Area Networks - Timing and Synchronization for Time-Sensitive Appli-
cations in Bridged Local Area Networks,” IEEE Std 802.1AS-2011, pp.
1–292, Mar. 2011.

[6] W. Steiner, “An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-hop Networks,” in 2010 31st IEEE Real-Time Systems

Symposium, Nov. 2010, pp. 375–384.
[7] ——, “Synthesis of Static Communication Schedules for Mixed-

Criticality Systems,” in 2011 14th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing

Workshops, Mar. 2011, pp. 11–18.
[8] F. Dürr and N. G. Nayak, “No-wait Packet Scheduling for IEEE Time-

sensitive Networks (TSN),” in Proceedings of the 24th International

Conference on Real-Time Networks and Systems, ser. RTNS ’16, 2016,
pp. 203–212.

[9] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
Real-Time Communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in Proceedings of the 24th International Conference on Real-

Time Networks and Systems, ser. RTNS ’16, 2016, pp. 183–192.
[10] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design

optimisation of cyber-physical distributed systems using IEEE time-
sensitive networks,” IET Cyber-Physical Systems: Theory Applications,
vol. 1, no. 1, pp. 86–94, 2016.

[11] F. Pozo, G. Rodriguez-Navas, W. Steiner, and H. Hansson, “Period-
Aware Segmented Synthesis of Schedules for Multi-hop Time-Triggered
Networks,” in 2016 IEEE 22nd International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), Aug.
2016, pp. 170–175.

[12] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive Software-
defined Network (TSSDN) for Real-time Applications,” in Proceedings

of the 24th International Conference on Real-Time Networks and Sys-

tems, ser. RTNS ’16, 2016, pp. 193–202.
[13] ——, “Incremental Flow Scheduling and Routing in Time-Sensitive

Software-Defined Networks,” IEEE Transactions on Industrial Informat-

ics, vol. 14, no. 5, pp. 2066–2075, May 2018.
[14] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, “Optimizing Mes-

sage Routing and Scheduling in Automotive Mixed-Criticality Time-
Triggered Networks,” in Proceedings of the 54th Annual Design Au-

tomation Conference 2017, ser. DAC ’17, 2017, pp. 48:1–48:6.
[15] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and

G. Mühl, “ILP-based Joint Routing and Scheduling for Time-triggered
Networks,” in Proceedings of the 25th International Conference on Real-

Time Networks and Systems, ser. RTNS ’17, 2017, pp. 8–17.
[16] P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-

Gómez, and D. Salvagnin, “On handling indicator constraints in mixed
integer programming,” Computational Optimization and Applications,
vol. 65, no. 3, pp. 545–566, Dec. 2016.

[17] T. Koch, “Rapid Mathematical Programming,” Ph.D. dissertation, Tech-
nische Universität Berlin, 2004.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability, ser. a
guide to the theory of NP-completeness. New York, NY: Freeman,
1979.

[19] T. P. Peixoto, “The graph-tool python library,” May 2017.
[20] Price Derek De Solla, “A general theory of bibliometric and other

cumulative advantage processes,” Journal of the American Society for

Information Science, vol. 27, no. 5, pp. 292–306, Mar. 2007.
[21] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random

Networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.
[22] F. Dürr and T. Kohler, “Comparing the forwarding latency of OpenFlow

hardware and software switches,” Institute of Parallel and Distributed
Systems, University of Stuttgart, Stuttgart, Tech. Rep. TR 2014/04, 2014.

[23] IBM, “IBM ILOG CPLEX Optimization Studio — IBM,”
https://www.ibm.com/products/ilog-cplex-optimization-studio.


