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Abstract

Deep learning models are often trained on data which is sen-
sitive to the people whose data has been used. In order to
handle this , Private Aggregation of teacher ensembles or
PATE is an effective framework using which one can pub-
lish deep learning models with privacy guarantees about the
data used. PATE framework involves training of teacher mod-
els on disjoint subsets of data. The predictions of student
dataset given by teacher models are then used to train stu-
dent model with privacy guarantees. The consensus among
teachers while making predictions about the student set im-
pacts the overall privacy guarantees and the efficiency of the
student model. In order to improve this consensus, we per-
form analysis around data partitioning among teacher mod-
els. We suggest a more effective yet simple strategy to divide
datapoints among teacher models. We show our strategy im-
proves privacy guarantees as well as efficiency of the student
model

Introduction
Differential privacy introduced by (Dwork et al. 2006)
is a mathematical framework which is used widely to
benchmark privacy for algorithms on statistical databases.
Through differential privacy, we can train machine learn-
ing models with privacy guarantees about our dataset. In-
tuitively, through differential privacy, a model should learn
about the population as a whole and not individual data-
points. Differential privacy has become a standard for pri-
vacy and is being used for in both academia and indus-
try.(Myers and Nelson Novemeber 2016)

Private Aggregation of teachers(PATE) (Hamm, Cao, and
Belkin 2016; Papernot et al. 2016) is a framework which has
been proven to achieve private learning by carefully aggre-
gating training of several machine learning models. PATE
framework uses differential privacy techniques to prove its
privacy guarantees. In PATE framework, teacher models are
trained on disjoint datasets and are used to supervise learn-
ing of a student model in a privacy-preserving manner. Only
the student model is published for the outside world and the
teacher models are kept private. Notably, PATE framework
is agnostic to learning algorithm and thus can be used in lot
of applications.

In our work, we study the effect of data partitioning in
the PATE framework using multiple strategies. We suggest a
Guided PATE framework , wherein we suggest a k-Medoids
based data partitioning technique and show its effectiveness
with respect to privacy baselines and accuracy of student
model.

Prelimnary
Differential Privacy
Differential privacy (Dwork et al. 2006) is a mathematical
framework which is used to preserve privacy of individu-
als in algorithms trained on statistical databases. Intuitively,
differential privacy ensures that the change in output distri-
bution of algorithm is minimal when few data points are re-
placed or removed. This disallows a user to find out if a par-
ticular datapoint is used for training the algorithm or not. It
has become a golden standard for privacy for both industry
and academia.
ε-differential privacy A randomized mechanism M over

a set of databases D, satisfies (ε, δ) - differential privacy if
for any two adjacent databases d, d‘εD, with only one differ-
ent sample, and for any subset of output S R, the following
inequality holds:

Pr[M(d) ε S] ≤ eεPr[M(d) ε S] + δ (1)

δ denotes the error in privacy and δ = 0 in pure differential
privacy. It is the probability that privacy loss is not bounded
by ε and its optimal value is less than 1

|d| .
Differential privacy is robust to post-processing i.e any

randomized mapping of differentially private algorithms is
differentially private. Composability is another important as-
pect of differential privacy which allows combining mul-
tiple differentially private mechanisms into one. In other
words, the composition of k differentially private mecha-
nisms where each of them is (ε, δ) - differential private
would make the overall mechanism (kε, kδ) - differential
private.

As compared to classical strong composition techniques,
Moment Accountant(Abadi et al. 2016) technique provides
stronger bound on privacy loss. Its basic idea is to accumu-
late the privacy expenditure by framing the privacy loss as a



random variable and using its moment-generating functions
to understand it’s distribution

PATE

Private Aggregation of Teacher Ensembles(PATE)(Hamm,
Cao, and Belkin 2016; Papernot et al. 2016) takes use of
moment accountant mechanism to track the privacy cost in a
knowledge transfer task. In this framework, teacher models
are trained on disjoint subsets and each of these models is
made to predict labels for student queries. These predictions
are aggregated into a single prediction after carefully adding
random noise sampled from Laplacian or Gaussian distribu-
tions to the predictions. If most of the teachers agreed on the
same class, adding noise to the vote counts will not change
the class with maximum votes. However, if two classes have
a similar number of votes the final class selection among
those two depends on the random noise. The intuition be-
hind this if the consensus among teacher models is high on a
particular label, it is not revealing anything about a particular
teacher model or data used to train that model. The student
model is then trained on the aggregated student labels and is
then published for the outside world to use. PATE algorithm
stays independent of the learning algorithm used to train the
teacher models or the student model.

Methodology

In our method, we build upon the intuition that a better con-
sensus among teacher models on student queries would lead
to better training of student model and less privacy loss. We
add another layer to PATE algorithm for splitting data in a
more goal-driven manner.

Usually, the combined dataset for all teacher models is
uniformly divided among teachers for their models for train-
ing. This, however, is not an optimal approach for getting the
best student model. Intuitively, if the disjoint teacher sub-
sets have diverse and representative datapoints, individual
teacher models would be trained more efficiently, and that
will lead to a better consensus among teachers on student
queries. Our method is based on this observation.

In our method, we train a model on the combined dataset
and generate features using that model for every datapoint.
The features are then clustered using k-Medoids cluster-
ing approach. This gives us clusters of datapoints where
each cluster contains datapoints which are similar to other
datapoints in the cluster. The datapoints are now added to
teacher subsets from every cluster sequentially. The data-
points added this way to subset would be from every cluster
and would be different from each other. Thus, teacher sub-
sets formed this way would have diverse and representative
datapoints for every class. In 1 we illustrate on your algo-
rithm for data partition.

Algorithm 1 Data partitioning using Guided PATE
1: Generate features for all datapoints using model trained

on complete dataset S
2: Cluster these features into C clusters
3: Initialize T lists for each storing datapoints of teacher

model
4: for cluster in C
5: teacher = 0
6: for datapoint in cluster
7: Add datapoint to T[teacher]
8: if teacher = NumofTeachers then
9: teacher = 0

Experimental Results

We show our results on MNIST and CIFAR-100 dataset. Till
now, there has been no work on evaluating data partitioning
in PATE framework. Therefore, we compare our results with
following data partitioning techniques.

1.) Random sampling Randomly dividing datapoints
among teacher models

2.) Sampling based on classes. In this baseline, we divide
datapoints corresponding to every class in equal proportions
among all teacher models

We use a generic 4-layer classification network in our ex-
periments though PATE algorithm is agnostic of training al-
gorithm used. To evaluate our privacy we use implementa-
tion of moment accountant’s method in PySyft framework.

The MNIST and CIFAR-100 dataset contains 60k train-
ing images in train set and 10k images in test set. We’ve
used 128 as batch size, δ =10−5 ,noise epsilon ε = 0.1,
n teachers=100, and used laplacian noise in aggregation of
label votes. The test set is divided in 9:1 ratio for training
student model and reporting test accuracy respectively. Note,
the labels used for reporting test accuracy are actual labels
and not predicted through teacher models. In our approach
we use number of clusters as 100 for both datasets. We ob-
serve that there is not much change in performance when
number of clusters are in the range of 50-200 but the perfor-
mance drops if the number of clusters is increased beyond
that.

In , we report (ε, δ) - differential privacy guarantees pro-
vided for MNIST dataset as well as their corresponding test
accuracies. It can be seen that our model showing higher
consensus gives better accuracy for student model in both
cases of the number of queries. The privacy loss achieved
is also 0.2-0.3 lower than the usual case. This shows the ef-
ficiency of using a more sophisticated method for splitting
data among teacher models.



Dataset Queries Non-Private
Baseline

PATE (Ran-
dom)

PATE(Equal
class split)

Guided
PATE

MNIST ε 100 - 1.84 1.71 1.58
MNIST ε 250 - 2.14 1.99 1.82
MNIST Test Acc. 93.2 81.2 85.2 89.2
CIFAR-100 ε 100 - 5.64 5.2 4.96
CIFAR-100 ε 250 - 7.38 7.1 6.94
CIFAR-100 Test Acc. 88.4 76.3 78.8 82.3

Table 1: Comparing ε (privacy loss) and test accuracy in
original PATE framework(Papernot et al. 2016) and with our
modifications when n teachers=100 and δ = 10−5 and noise
epsilon ε = 0.1

In order to validate our strategy, we also calculate the vari-
ance in the predictions of student model. We observe that the
variance is directly proportional to the ε value. In the case of
MNIST dataset, with a random data partitioning variance is
1.45 in the predictions of student model but it falls to 1.07
in our Guided PATE strategy.

Conclusion
Through this paper, the main objective was to show the ef-
fect of data partitioning in PATE framework. Given the sen-
sitive data of users shared on social media platforms, us-
ing such privacy algorithms becomes essential. PATE frame-
work is agnostic to training algorithm for both student and
teacher model and thus can be used in deep learning-based
tasks.

We also demonstrated our Guided PATE framework
through a machine learning perspective. Using clustering,
we performed data splitting in a more efficient manner lead-
ing to better student model and less privacy loss. However,
the technique can further be improved by using active learn-
ing techniques to improve the splitting of data among stu-
dent models. We look forward to further improving the effi-
ciency of PATE framework from both privacy and machine
learning perspective.
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