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1 Introduction

In the appendix of [4] and in a paper by C. Huneke in [2] one can find two ba-
sic theorems on integrally closed ideals in two-dimensional regular local rings.
Firstly that the product of integrally closed ideals is again integrally closed.
Secondly that every integrally closed ideal factors uniquely into a product of
simple integrally closed ideals. In this thesis we present an approach to the case
of monomial ideals in k[x, y]. In Section 3 we determine all integrally closed
monomial ideals and show that there is a one-to-one correspondence with as-
cending chains of positive rational numbers. Section 4 describes powers of cer-
tain ideals in integral domains, which in the case of two-dimensional polynomial
rings has some connection to integrally closed domains.

2 Background

We begin this section by stating some wellknown properties of integral closure
of an ideal. The reader may consult [1]. In Subsections 2.2 and 2.3 we continue
with the special case of monomial ideals; we have used some ideas from [3].

2.1 Integral closure of ideals

An element x ∈ R is said to be integral over I , if x satisfies an equation

xd + a1x
d−1 + · · · + ad−1x + ad = 0 (2.1)

where aj ∈ Ij . The integral closure of I , denoted by Ī , is defined as the set of
all elements in R which are integral over I . Integral closure of an ideal can also
be defined using the well known definition of integral closure of a ring.

Proposition 2.1. Let x ∈ R, I ⊂ R and R[It] = R ⊕ It ⊕ I2t2 ⊕ ... ⊂ R[t] be

the Rees ring with respect to I. Then x ∈ Ī if and only if xt ∈ R[It].

Proof. Let x ∈ Ī and consider an equation of integral dependence (1.1) of x over
I . Multiplying it by td, the resulting equation is

(xt)d + (a1t)(xt)d−1 + · · · + (ad−1t
d−1)(xt) + (adt

d) = 0, (2.2)

where (ajt
j) ∈ Ijtj ⊂ R[It]. That is, xt ∈ R[t] is integral over R[It].

On the other hand, if xt ∈ R[It], then xt satisfies an equation (xt)d +
r1(xt)d−1 + · · · + rd−1(xt) + rd = 0 where rj ∈ R[It]. Now R[t] is graded in
the usual way and R[It] is a graded subring of it, so the equation of integral
dependence of xt can be split into its homogeneous parts. Taking the part
of degree d we get a homogeneous equation that looks like the one in (1.2).
Cancelling td we get x ∈ Ī .

Corollary 2.2. Let I ∈ R, then the integral closure Ī is an ideal. Moreover, Ī
has the same radical as I.
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Proof. Let x, y ∈ Ī and r ∈ R. Multiplying (1.1) with rd we have (rx)d +
(a1r)(rx)d−1 + · · · + (ad−1r

d−1)(xr) + (adr
d) = 0, an equation of integral de-

pendence of rx over I. Thus rx ∈ Ī . Since the set R[It] forms a subring of R[t]
we also have x, y ∈ Ī ⇔ xt, yt ∈ R[It] ⇒ xt+ yt = (x+ y)t ∈ R[It] ⇔ x+ y ∈ Ī .
This makes Ī to an ideal.

The inclusion rad I ⊆ rad Ī follows from I ⊆ Ī . Next, let x ∈ rad Ī , then
xl ∈ Ī for some positive integer l, say (xl)d +a1(x

l)d−1 + · · ·+ad−1(x
l)+ad = 0.

Clearly, xld ∈ I and hence x ∈ rad I. Thus, rad I = rad Ī .

Saying that J is integral over I means simply that each element belonging
to J is integral over I .

Corollary 2.3. Let I, J, K ⊂ R be ideals such that J is integral over I and

K is integral over J . Then K is integral over I.

Proof. If J is integral over I, then Jt ⊂ R[Jt] is integral over R[It]. The ring R
is obviously integral over R[It]. Thus, the ring R[Jt], which is generated by R
and Jt, is integral over R[It]. It follows also that the ring R[Kt] is integral over
R[Jt], and therefore integral over R[It]. That is, K is integral over I.

2.2 Integral closure of monomial ideals

Throughout the paper it will be tacitly understood that I = 〈mi〉 ⊂ k[X ] =
k[x1, . . . , xn] means an ideal generated by monomials, a monomial ideal.

Definition 2.4. A power product in k[X ] is an element Xa = xa1

1 · · ·xan
n . All

the power products in a polynomial ring form a basis for it over k. Thus, every
polynomial p ∈ k[X ] can be written as p =

∑

ciX
ai where all the Xai are

different; if ci 6= 0 then we say that ciX
ai is a monomial in p (or that Xai is a

power product in p).

Remark 2.5. Any monomial ideal I in k[X ], where k is a field, is of course an
ideal generated by power products. Let now p be a polynomial belonging to
a monomial ideal 〈Xa1 , . . . , Xaq〉, then p = r1X

a1 + · · · + rqX
aq , where each

ri ∈ k[X ]. It is easy to see that every power product in p is a monomial
multiplied by some Xai . Thus, every monomial in p must belong to I.

We continue with a lemma necessary for showing one basic property of in-
tegral closure of monomial ideals.

Lemma 2.6. Let R = k[X ], I ⊂ R an ideal and m1, . . . , mq, where q ≥ 2, a

set of different power products such that

ms1

1 ∈ Is1−r1〈m2, m3, . . . , mq〉
r1

ms2

2 ∈ Is2−r2〈m1, m3, . . . , mq〉
r2

...

msq

q ∈ Isq−rq 〈m1, m2, . . . , mq−1〉
rq

(2.3)
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for some integers 0 ≤ ri ≤ si, si > 0. Then mli
i ∈ I li for 1 ≤ i ≤ q and for

some li > 0.

Proof. We use induction on q. Let q = 2. After raising m1 to the power s2 and
using the condition on ms2

2 we get:

ms1s2

1 ∈ I(s1−r1)s2mr1s2

2 ⊆ I(s1−r1)s2(Is2−r2〈m1〉
r2)r1 = Is1s2−r1r2〈mr1r2

1 〉

ms1s2−r1r2

1 ∈ Is1s2−r1r2 .

Doing the same for m2 shows that the lemma is valid for q = 2.
Let q ≥ 3. Consider the first and last relation in (2.3). By “factoring out”

the necessary monomial respectively they can be written as

ms1

1 ∈ Is1−r1〈m2, m3, . . . , mq−1〉
r1−r′

1m
r′

1
q ,

msq

q ∈ Isq−rq 〈m2, m3, . . . , mq−1〉
rq−r′

qm
r′

q

1 .

Then we consider m
s1sq

1 and rewrite it using the relation for m
sq

q :

(ms1

1 )sq ∈ Is1sq−r1sq+r′

1sq−r′

1rq 〈m2, . . . , mq−1〉
r1sq−r′

1sq+r′

1rq−r′

1r′

qm
r′

1r′

q

1 .

Hence, for some integers 0 ≤ R1 ≤ S1 ≤ s1sq, where S1 > 0, we have mS1

1 ∈
IS1−R1〈m2, . . . , mq−1〉

R1 .
Repeating the procedure for each pair mi and mq , where 2 ≤ i ≤ q − 1 we

eliminate mq from the relations for m1, . . . , mq−1 and the induction hypothesis
yields the result for these monomials. The choice of mq to be eliminated from
the relations is arbitrary, which finishes the proof.

Proposition 2.7. Let R = k[X ] and I ⊂ R be a monomial ideal. Then the

integral closure Ī is also a monomial ideal.

In fact, Ī = 〈m | ml ∈ I l for some l > 0〉.

Proof. Let m ∈ Ī , i.e. md + a1m
d−1 + · · · + ad−1m + ad = 0, aj ∈ Ij . Then

md = nlm
d−l for some 1 ≤ l ≤ d and a monomial nj ∈ Ij (cf. Remark 2.5).

Thus, ml ∈ I l.
Next, let p = m1 + · · · + mq ∈ Ī , where q ≥ 2 and m1, . . . , mq are the

monomials in some p. Let

(m1 + · · · + mq)
d + a1(m1 + · · · + mq)

d−1 + · · · + ad−1(m1 + · · · + mq) + ad =

= md
1 + · · · + md

q + · · · + ad = 0

(2.4)

be an equation of integral dependence for p. From (2.4) we see that md
1 =

n
∏q

i=1 mti

i = mt1
1 · n

∏

i6=1 mti

i where d > t1 and where n is either a monomial

belonging to Id−
�

ti or n ∈ k. Thus md−t1
1 = n

∏

i6=1 mti

i . In the same way
we obtain similar relations for m2, . . . , mq . The conditions for m1, . . . , mq in
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Lemma 2.6 are then fulfilled and we have that mli
i ∈ I li for some li, whence

mi ∈ Ī . This proves that Ī is monomial.
We have at the same time proved the inclusion ⊆ in the second part of our

proposition. The other inclusion is clear and we are done.

2.3 Graphical representation

A monomial ideal I in n variables can be visualized graphically, by representing
the set of exponents of power products in I as lattice points in Rn. Such a
representation will be essential for all the results we are going to present.

Definition 2.8. Let Xa = xa1

1 · · ·xan
n be a power product in R = k[X ], then

we set log Xa = a. Given a monomial ideal I we define the semigroup ideal

log I = {log m | m ∈ I, m a power product}.

In this language Proposition 2.7 says that log Ī = {a ∈ Nn | al ∈ log (I l)
for some l > 0}. Further we get to a nice description of the integral closure,
stated below. Notice that we do not need to use generators of I neither in the
proposition nor in the proof.

First we recall the definition of a convex hull of a set S, which is conv(S) =
{λ1a1+ · · ·+λqaq |ai ∈ S }, where all λi ∈ R≥0 and

∑q

i=0 λi = 1. If all λi ∈ Q≥0

then the convex hull is called rational and is denoted by convQ.

Proposition 2.9. Let I ⊂ k[X ] be a monomial ideal. Then the integral closure

Ī is generated by monomials whose exponents are lattice points in the rational

convex hull of log I. That is,

log Ī = convQ(log I) ∩ Nn.

Proof. Let a ∈ convQ(logI)∩Nn. Then a =
∑q

i=1 λiai, where all ai ∈ logI, λi ∈
Q≥0 and

∑q

i=1 λi = 1. Since there is an integer l > 0 such that lλi ∈ Nn for
all i, we obtain (Xa)l = (X

�
λiai)l = (Xa1)lλ1 · · · (Xaq)lλq ∈ I l. Thus Xa ∈ Ī ,

that is, a ∈ log Ī .
On the other hand, for any b ∈ log Ī there is an integer l such that bl =

b1 + · · · + bl where every bi (not necessarily different) belongs to log I (cf.

Proposition 2.7). Thus, b =
∑l

i=1
1
l
bi and it follows that b ∈ convQ(log I).

3 Integrally closed monomial ideals in two vari-

ables

In this section we will determine all integrally closed monomial ideals in the
ring k[x, y] using the graphical interpretation described previously. We will also
show how they can be factorized into simple ones.

It follows directly from Proposition 2.9 that principal monomial ideals are
integrally closed.
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Lemma 3.1. Let J ⊂ k[x, y] be a non-principal monomial ideal and assume

that J = mI where m is a power product and I is a monomial ideal. Then J is

integrally closed if and only if I is integrally closed.

Proof. It is clear that convQ(log I) = log(m) + convQ(log J) which gives the
result.

We recall that a monomial ideal I ⊂ k[x, y] is 〈x, y〉-primary if and only if
there are positive integers A and B such that xA and yB belong to I . If mI = J
is a non-principal monomial ideal and where m is the greatest common divisor
for the generators of J , then I is 〈x, y〉-primary. Thus, we can limit our subject
of interest to 〈x, y〉-primary monomial ideals when we study integrally closed
monomial ideals in k[x, y].

3.1 Necessary conditions for integral closedness

We can always write an ideal as I = 〈yB0 , . . . , xAiyBi , . . . , xAq 〉, where Ai <
Ai+1 and Bi > Bi+1. These generators form a minimal generating set for I .
Henceforth it will be understood that the 〈x, y〉-primary monomial ideals we are
considering are always written in such a way.

The semigroup ideal logI is then {(0, B0), . . . , (Ai, Bi), . . . , (Aq , 0)}+N2 and
can be graphically interpreted as the lattice points on and above the staircase
depicted below. A pair of consecutive generators xAiyBi and xAi+1yBi+1 will
make a step having breadth Ai+1 − Ai and height Bi − Bi+1.

x

y

tB0

t

t

(Ai, Bi)
t

t

Aq

We know that the lattice points in conv({(Ai, Bi)
q
i=0}) generate Ī . In or-

der to find some necessary condition on a monomial ideal to be integrally
closed we look at the convex hull of two consecutive exponents, conv({(Ai, Bi),
(Ai+1, Bi+1)} + N2), particularly this area contains the triangle with vertices
(Ai, Bi), (Ai+1, Bi) and (Ai+1, Bi+1). In an integrally closed ideal there must
not be any lattice points in this triangle. It is obvious that this is the case if
and only if either Ai+1 − Ai = 1 or Bi − Bi+1 = 1. Thus, in an integrally
closed monomial ideal every generator (except for the last one) is followed by a
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generator that has either a power of x which is increased by one or a power of
y which is decreased by one.

Assume that the condition above is fulfilled for each pair of consecutive
generators. Assume further that Ai+1 − Ai ≥ 2 and Bj − Bj+1 ≥ 2 for some
i ≤ j, where i is the greatest index and j is the smallest index such that the
situation occurs.

x

y

t

t

d

@
@

@
@

@
@

@@

Ai Aj+1

Bi

Bj+1

The diagonal line in the figure begins at the point (Ai+1 −2, Bi) and ends at
(Aj+1, Bj − 2). Clearly, the lattice points in the area above and to the right of
the line belong to the integral closure, particularly the point (Aj+1 − 1, Bj − 1).
Thus, the corresponding power product xAj+1−1yBj−1 will always appear in Ī ,
which means that under these conditions the ideal cannot be integrally closed.

We have shown that in an integrally closed ideal we have always the following
situation: if the power of x increases by at least two somewhere among the
generators, then the power of y must decrease only by one among the following
generators. (If some step has breadth at least two, then the following steps
must have height one only.) Thus, a necessary condition for a monomial ideal
to be integrally closed is that the generating set consists of two parts, where the
powers of x increase by one in the first part and the powers of y decrease by one
in the second part. We formulate our reasoning algebraically in a proposition.

Proposition 3.2. Let I ⊂ k[x, y] be an integrally closed 〈x, y〉-primary mono-

mial ideal. Then this ideal can be written as

I = 〈ys+B0 , . . . , xiys+Bi , . . . , xrys, . . . , xr+Aj ys−j , . . . , xr+As〉,

where Bi > Bi+1 and Ai < Ai+1, or as

I =
〈

ys〈xiyBi〉ri=0, x
r〈xAj , ys−j〉sj=0

〉

,

where in addition Br = 0 = A0.

Actually, ideals of the form described above can be factorized in a very
convenient way. Notice that not all such ideals are integrally closed. Hence, the
factorization proposition that follows is valid more generally and not only for
integrally closed ideals.
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Proposition 3.3. Let I = 〈xiyBi〉0≤i≤r where Bi > Bi+1 and Br = 0, and

J = 〈xAj ys−j〉0≤j≤s where Ai < Ai+1 and A0 = 0. Then IJ = ysI + xrJ .

Moreover, the product IJ is integrally closed if and only if I and J are both

integrally closed.

Graphically the ideal I is a staircase where each step has breadth one, while
all the steps in J have height one. The statement of the proposition is that the
product of I and J is the staircase I followed by J .

x

y

B0

I

r

s

J

As

s + B0

t
IJ

r + As

Proof. The part ysI + xrJ ⊆ IJ is clear.

Next we will show that any power product xi+Aj yBi+s−j , that generates IJ ,
must belong to either ysI or xrJ .

In case i + j ≤ r we have the following inequalities (easily derived from the
conditions on Aj and Bi):

{

Aj ≥ j
Bi − j ≥ Bi+j

or:

{

i + Aj ≥ i + j
Bi + s − j ≥ s + Bi+j

.

That is, xi+Aj yBi+s−j ∈ ysI .
On the other hand, if i + j ≥ r then we have:

{

Aj − (r − i) ≥ Aj−(r−i)

Bi ≥ r − i
or:

{

i + Aj ≥ r + Ai+j−r

Bi + s − j ≥ s − (i + j − r)
.

Thus, xi+Aj yBi+s−j ∈ xrJ .

Finally, the second statement of the proposition follows clearly from the
figure.
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According to Proposition 3.3 it will be enough to consider monomial ideals,
in which the powers of y decrease by one, in order to determine monomial ideals
that are integrally closed.

3.2 Simple integrally closed monomial ideals and factor-

ization

Let Ar > r be positive integers and let I = 〈yr, xA1yr−1, . . . , xAr−1y, xAr〉 =
〈xAiyr−i〉0≤i≤r, A0 = 0, be a monomial ideal. We start looking at such ideals in
which all the points in logI lie on or above the line from (0, r) to (Ar, 0). Such an
ideal is integrally closed if and only if the set of all integer points on and above
this line is equal to log I . We illustrate by an example where I = 〈y6, . . . , x14〉.

x

y

t6
d

d

d

d

d

t

14

Hence, I = 〈y6, x3y5, x5y4, x7y3, x10y2, x12y, x14〉. Note that the staircase
corresponding to I consists of two smaller identical staircases I1 = 〈y3, x3y2, x5y, x7〉

and I = I
GCD (14,6)
1 . As we will see further on that is not a coincidence.

In general, the values Ai are easily obtained from Ai = diAr

r
e, where dze

means the least integer that is greater or equal to z. Moreover, if GCD(A, B) = d
then there are d− 1 points in log I that will appear on the convex line (besides
the two end points). Those points divide the staircase corresponding to I into d
identical staircases. To classify integrally closed monomial ideals it is sufficient
to examine the ideals where Ar and r are relatively prime. It is obvious that
there is only one integrally closed monomial ideal, corresponding to a given
rational number Ar

r
, determined in such a way. Those ideals are all special cases

of a greater class of monomial ideals that are simple, i.e. cannot be written as
a product of two proper monomial ideals.

Proposition 3.4. Let I = 〈xAiyr−i〉0≤i≤r ⊂ k[x, y] where Ai > iAr

r
for 1 ≤

i ≤ r − 1. Then I is simple as a monomial ideal.

Proof. Assume that I is a product of two monomial ideals I1 and I2, then

I1 = 〈yi, . . . , xa〉 and I2 = 〈yr−i, . . . , xAr−a〉 where 1 ≤ i ≤ r − 1.
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Since the power product xayr−i ∈ I we must have a ≥ Ai. The condition
on Ai gives in turn

Ar − a ≤ Ar − Ai < Ar − i
Ar

r
= Ar(

r − i

r
). (3.1)

On the other hand, as xAr−ayi ∈ I then

Ar − a ≥ Ar−i > (r − i)
Ar

r
= Ar(

r − i

r
). (3.2)

Since (3.1) and (3.2) contradict each other, the assumption was wrong.

Definition 3.5. Let a and b be a positive integers, such that GCD (a, b) = 1.
Then there is unique simple integrally closed monomial ideal in k[x, y] possessing
xa and yb in its minimal generating set. This ideal is called an (a, b)-block or a
block ideal. Moreover, the ideal is the least integrally closed ideal in this class.

In the case when a > b the steps in the staircase corresponding to an (a, b)-
block have all height one. If a < b then the steps have breadth one.

Proposition 3.6. Let I be a (a, b)-block and J a (c, d)-block. Assume further

that a
b
≤ c

d
. Then IJ = ydI + xaJ .

The meaning of the proposition is that the product of two block ideals, will
look like the ideal corresponding to the least rational number followed by the
other ideal. Note further that IJ is the least integrally closed monomial ideal
containing yb+d, xayd and xa+c. We are going to prove the case when a

b
and

c
d

are both greater than one. For two rational numbers both less than one the
proof is similar. The case with a rational number less than one and another
greater than one is a special case of Proposition 3.3.

Example 3.7. Let I = 〈y3, x2y2, x4y, x5〉 be a (5, 3)-block and J = 〈y5, x3y4,
x5y3, x8y2, x10y, x12〉 a (12, 5)-block. Then IJ = 〈y8, x2y7, x4y6, x5y5, x8y4,
x10y3, x13y2, x15y, x17〉 = y5I + x5J .

x

y

8

3
I

5

5

J

12 17

t

IJ
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Proof. First we rewrite the proposition in a way that will simplify our reasoning.
Let I = 〈xAiyr−i〉0≤i≤r where Ai = diAr

r
e, and J = 〈xCj ys−j〉0≤j≤s where

Cj = dj Cs

s
e. Moreover, let Ar

r
≤ Cs

s
. Then our claim is that IJ = ysI + xArJ .

Clearly ysI + xArJ ∈ IJ .

The ideal IJ is generated by power products on the form

xAi+Cjyr+s−i−j =

{

xAi+Cj yr−i−j · ys if i + j ≤ r,
xAr · xAi+Cj−Aryr+s−i−j if i + j ≥ r.

We will use the following inequalities: dz1e+ dz2e ≥ dz1 + z2e ≥ dz1e+ dz1e− 1,
and that dz1 + z2e = dz1e+ dz1e−1 when z1 + z2 are integers but z1, z2 are not.

In the first case we have

Ai + Cj ≥ Ai + Aj = di
Ar

r
e + dj

Ar

r
e ≥ d(i + j)

Ar

r
e = Ai+j ,

so that xAi+Cj yr−i−j = xmxAi+j yr−(i+j) ∈ I for some m ≥ 0.
In the second case

Ai + Cj − Ar ≥ Ai − Ar + d(r − i)
Cs

s
e + d(i + j − r)

Cs

s
e − 1 ≥

≥ di
Ar

r
e + d(r − i)

Ar

r
e − 1 − Ar + d(i + j − r)

Cs

s
e = Ci+j−r ,

whence xAi+Cj−Aryr+s−i−j = xnxCi+j−r ys−(i+j−r) ∈ J for some n ≥ 0.
In any case xAi+Cj yr+s−i−j ∈ ysI + xArJ .

We use the last proposition to state the main result of this thesis. By assign-
ing to a (ak, bk)-block a rational number ak

bk
we get a one-to-one correspondence

between ascending chains of positive rational numbers and integrally closed
monomial ideals in two variables.

Theorem 3.8. Let (Ik)1≤k≤n ⊂ k[x, y] be a sequence of (ak, bk)-blocks such

that ak

bk
≤ ak+1

bk+1
. Then the product is an integrally closed ideal

n
∏

k=1

Ik =

n
∑

k=1

(

x
� k−1

k′=1
ak′ y

�
n
k′=k+1

bk′

)

Ik. (3.3)

Conversely, any integrally closed monomial ideal can be written uniquely as

a product of block ideals.

Proof. We use induction on n. The statement is valid for n = 2 according to
Proposition 3.6. Assume that the statement is true for some n ≥ 2. Then

n+1
∏

k=1

Ik = (

n
∏

k=1

Ik) · In+1 =

(

n
∑

k=1

x
� k−1

k′=1
ak′ y

� n

k′=k+1
bk′ Ik

)

· In+1 =
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n
∑

k=1

x
� k−1

k′=1
ak′ y

�
n
k′=k+1

bk′

(

ybn+1Ik + xakIn+1

)

=

n
∑

k=1

x
� k−1

k′=1
ak′y

� n+1

k′=k+1
bk′ Ik +

n−1
∑

k=1

x
�

k
k′=1

ak′ y
� n

k′=k+1
bk′ In+1 +x

�
n
k′=1

ak′ In+1 =

n+1
∑

k=1

(x
� k−1

k′=1
ak′ y

� n

k′=k+1
bk′ )Ik +

n−1
∑

k=1

x
� k

k′=1
ak′ y

� n

k′=k+1
bk′ In+1.

What is left to prove is that the second part in the last row is contained in
the first part, which is (3.3) for n + 1. For each 1 ≤ k ≤ n− 1 we can rewrite a
term in the second part as follows:

x
� k

k′=1
ak′ y

� n

k′=k+1
bk′ 〈ybn+1 , . . . , xan+1〉 =

〈x
� k

k′=1
ak′y

� n+1

k′=k+1
bk′ , . . . , x(

� k

k′=1
ak′ )+an+1y

� n

k′=k+1
bk′ 〉,

(3.4)

and compare it with the term corresponding to k + 1 in the right hand side in
(3.3)

x
�

k
k′=1

ak′y
� n+1

k′=k+2
bk′ 〈ybk+1 , . . . , xak+1〉 =

〈x
� k

k′=1
ak′ y

� n+1

k′=k+1
bk′ , . . . , x

� k+1

k′=1
ak′ y

� n+1

k′=k+2
bk′ 〉.

(3.5)

The graphical comparison is depicted below.

x

y

∑n+1
k′=k+1 bk′

∑k
k′=1 ak′

bk+1

ak+1

s

s

Ik+1

an+1

bn+1

ss

In+1

We see that (3.4) is fully contained in (3.5) and possibly the following terms.
This proves the first part of the theorem.

Let I = 〈yb, . . . , xa〉 be an integrally closed monomial ideal. Let (a1, b−b1) ∈
log I be the point such that there are no other points belonging to log I below
or on the line between (0, b) and (a1, b − b1). Then for k ≥ 1 let (a1 + · · · +
ak+1, b − b1 − · · · − bk+1) ∈ log I be the point that satisfies the same condition
but for the line between (a1 + · · ·+ak, b− b1−· · ·− bk) and (a1 + · · ·+ak+1, b−
b1 − · · · − bk+1). Determined in such a way and since I is integrally closed, we
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must have GCD (ak, bk) = 1. The corresponding (ak, bk)-blocks are unique and
their product, as described in the first part of the theorem, must be equal to
I .

Example 3.9. Consider the integrally closed ideal I = 〈y11, xy10, x2y9, x3y7,
x5y6, x6y5, x8y4, x9y3, x13y2, x17y, x20〉.

The points constructed in the way described in the second part of the poof of
our theorem are: (0, 11), (3, 7), (6, 5), (9, 3) and (20, 0). Thus I = I1I2I3I4 where
I1 = 〈y4, xy3, x2y2, x3〉, I2 = 〈y2, x2y, x3〉 = I3 and I4 = 〈y3, x4y2, x8y, x11〉.

x

y

t

t

t

t

s

4 Powers of ideals

In the last chapter we could see that the lth power of an integrally closed
monomial ideal looks like the staircase, corresponding to the ideal, repeated l
times. In a way this result can be extended to certain kinds of ideals in an
integral domain. There are two different cases.

4.1 Dividing generators I

Let R be an integral domain and F (R) its field of fractions. Considering α, β ∈
F (R) we say that α divides β, α | β, if there is p ∈ R such that α · p = β.

Proposition 4.1. Let R be an integral domain and I = 〈r0, . . . , rq〉 an ideal in

R, where r0 ∈ R and ri = ri−1αi = r0(α1 · · ·αi) with αi ∈ F (R) and αi−1|αi

13



for 1 ≤ i ≤ q. Then for any nonnegative integer l we have

I l = 〈 rl
0 , rl−1

0 r1, . . . , r0r
l−1
1 ,

rl
1 , rl−1

1 r2, . . . , r1r
l−1
2 ,

...

rl
q−1, r

l−1
q−1rq , . . . , rq−1r

l−1
q , rl

q〉 =

= 〈 rl−t
i rt

i+1 ; 0 ≤ i ≤ q − 1 and 0 ≤ t ≤ l〉.

(4.1)

Proof. We get immediately that 〈 rl−t
i rt

i+1〉 ⊆ I l.
To show the other inclusion we need the following remark.

Remark 4.2. Pick some ri and ri′ with i < i′, then the product riri′ = (ri+1/αi+1)·
ri′−1αi′ = ri+1ri′−1(αi′/αi+1). Since αi+1 | αi′ we have ri+1ri′−1 | riri′ . In the
language of ideals this means 〈riri′〉 ⊆ 〈ri+1ri′−1〉.

We know that I l is generated by the elements rl0
0 · · · r

lq
q , where

∑q

i=0 li = l.
Then, if l0 ≤ lq, the ideal I l lies in the ideal in which one of the generators

is replaced by the element rl1+l0
1 · · · r

lq−1+l0
q−1 r

lq−l0
q (or by r

l0−lq
0 r

l1+lq
1 · · · r

lq−1+lq
q−1

if l0 ≥ lq). Repeating the procedure of replacements for this generator we can
eventually “replace” it by rl

i or rl−t
i rt

i+1 for some i and t. Doing the same for all

the other generators, we see that I l ⊆ 〈 rl−t
i rt

i+1〉. This finishes the proof.

Remark 4.3. It is easily seen that I l itself satisfies the conditions on I in the
proposition.

We apply the conditions in the proposition on R = k[x, y] and I an 〈x, y〉-
primary monomial ideal. Let I = 〈m0, . . . , mq〉 where m0 = yb is the power
product with highest y-exponent, while αi = xai

ybi
where ai ≤ ai+1, bi ≥ bi+1 and

∑q

i=1 bi = b. Then we can rewrite m0 = yb1+···+bq , mi = xa1+···+aiybi+1+···+bq

for 1 ≤ i ≤ q − 1 and mq = xa1+···+aq . These ideals can be factorized in a very
simple way.

Proposition 4.4. Let R = k[x, y] and I = 〈m0, . . . , mq〉 be a monomial ideal

where mi’s satisfy the conditions on generators in Proposition 4.1. Further,

we may assume that m0 = yb and αi = xai

ybi
where ai ≤ ai+1, bi ≥ bi+1 and

∑q

i=1 bi = b. Then

I =

q
∏

i=1

〈xai , ybi〉. (4.2)

Proof. Obviously m0, mq and mi = xa1+...+aiybi+1+...+bq ∈
∏q

i=1〈x
ai , ybi〉.

Conversely, the right hand side of (4.2) is generated by elements of the
following type, xai1

+...+air ybj1
+...+bjs where r + s = q, which are divisible by

the element xa1+...+arybr+1+...+bq belonging to I , and we are done.
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We continue with how powers of I look like. Considering I as a staircase and
going down-wards, its steps are increasing in breadth and decreasing in height.
The lth power makes a staircase where the first step in I is repeated l times
followed by the second repeated l times and so on.

x

y

t

t

t

I

I3

4.2 Dividing generators II.

We state a proposition similar to Proposition 4.1 but for another kind of ideals.

Proposition 4.5. Let R be an integral domain and I = 〈s0, . . . , sq〉 be an ideal

in R, where s0 ∈ R and si = si−1βi = s0(β1 · · ·βi) with βi ∈ F (R) and βi |βi−1

for 1 ≤ i ≤ q. Then for any nonnegative integer l we have

I l = 〈 sl
0 , sl−1

0 s1 , . . . , sl−1
0 sq−1 ,

sl−1
0 sq, s

l−2
0 s1sq, . . . , s

l−2
0 sq−1sq,

...

s0s
l−1
q , s1s

l−1
q , . . . , sq−1s

l−1
q , sl

q〉 =

(4.3)

= 〈 sl−t
0 sis

t−1
q ; 0 ≤ i ≤ q and 1 ≤ t ≤ l〉.

Proof. Clearly, 〈 sl−t
0 sis

t−1
q 〉 ⊆ I l.

For proving the other inclusion, we notice at first that for any si and si′ with
1 ≤ i ≤ i′ ≤ q − 1 we have that the product sisi′ = (si−1βi) · (si′+1/βi′+1) =
si−1si′+1(βi/βi′+1). This means 〈sisi′〉 ⊆ 〈si−1si′+1〉, since βi′+1 | βi′ | βi. Fur-
ther, for any generator in I l we can therefore apply the following procedure: as

long as
∑q−1

i=1 li ≥ 2 in a generator sl0
0 · · · s

lj
j · · · s

lj′

j′ · · · s
lq
q , we can replace it by
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the element sl0
0 · · · sj−1s

lj−1
j · · · s

lj′−1

j′ sj′+1 · · · s
lq
q . Repeating the procedure until

∑q−1
i=1 li ≤ 1, we see that I l ⊆ 〈 sl−t

0 sis
t−1
q 〉.

When R = k[x, y] and I monomial, we see that, in accordance with the case
described in Subsection 4.1, we may express the ideal as I = 〈m0, . . . , mq〉 where
m0 = yb and βi = xai

ybi
with ai ≥ ai+1 and bi ≤ bi+1. Its steps are decreasing

in breadth and increasing in height. The lth power is the whole staircase I
repeated l times.

x

y

t

t

t

I

I2

From the figure we see directly that I l does not generally fulfill the conditions
on I . Furthermore, a monomial ideal of such type cannot be written as a product
of two monomial ideals. We state that fact in a proposition.

Proposition 4.6. Let I = 〈yb1+···+bq , . . . , xa1+···+aiybi+1+···+bq , . . . , xa1+···+aq 〉 ⊂
k[x, y] where ai ≥ ai+1 and bi ≤ bi+1 with strict inequality occures at least once.

Then I is simple as monomial ideal.

x

y

ai

bi
ai+1

bi+1

Proof. Assume that strict inequality occurs for some index among exponents of
y.

If I is a product of two monomial ideals J1 and J2, then

16



J1 = 〈yb′ , . . . , xa′

〉, where b′ + b′′ = b1 + · · · + bq and

J2 = 〈yb′′ , . . . , xa′′

〉, where a′ + a′′ = a1 + · · · + aq.

For each b′ < b1+· · ·+bq that we may choose, there exists some 1 ≤ i ≤ q−1
such that bi+1 + · · · + bq ≤ b′ < bi + · · · + bq (we do not let 0 ≤ b′ < bq since it

would automatically give a′′ ≥ a1 + · · · + aq , in order to have xa′′

yb′ ∈ I , and
a′ < 0 therefore). This condition implies on one hand that b1 + · · · + bi−1 <
b′′ ≤ b1 + · · · + bi, on the other hand that a′′ ≥ a1 + · · · + ai in order to have
xa′′

yb′ ∈ I which implies in turn that a′ ≤ ai+1 + · · · + aq.

Let us now consider the power product xa′

yb′′ ∈ J1J2. We have b′′ ≤
b1 + · · ·+ bi < bq−i+1 + · · ·+ bq, since we assumed strict inequality somewhere,

and hence a′ ≥ a1 + · · ·+aq−i+1 so that xa′

yb′′ ∈ I . Together with the previous
condition on a′ that we got, we have

a1 + · · · + aq−i+1 ≤ a′ ≤ ai+1 + · · · + aq ,

which is a contradiction because the number of terms on the left is greater than
on the right and ai ≥ ai+1. Thus, the assumption that I could be a product of
two monomial ideals was false.
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