
Weak βη-Normalization and
Normalization by Evaluation for System F

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Abstract. A general version of the fundamental theorem for System F
is presented which can be instantiated to obtain proofs of weak β- and
βη-normalization and normalization by evaluation.

1 Introduction and Related Work

Dependently typed lambda-calculi have been successfully used as proof languages
in proof assistants like Agda [Nor07], Coq [INR07], LEGO [Pol94], and NuPrl
[Ct86]. Since types may depend on values in these type theories, checking equality
of types, which is crucial for type and, thus, proof checking, is non-trivial for these
languages, and undecidable in the general case. In extensional type theories, such
as the one underlying NuPrl, extensional, hence undecidable, type equality has
been kept with the consequence that type checking is undecidable and requires
user interaction. In intensional type theories, which are the basis of Agda, Coq,
and LEGO, type equality has been restricted to a decidable fragment, called
definitional equality, hence, type checking is decidable. However, the choice of
this fragment strongly influences the comfort in using these systems: the more
equal types are recognized as equal automatically, the fewer equality proofs the
user has to construct manually.

Definitional equality encompasses at least computational equality, i. e., β,
expanding of definitions, and recursion, and exactly like that it is currently
implemented in Coq. However, there are suggestions to strengthen definitional
equality by rewriting rules [Bla05,CWC07] and decision procedures [BJS07]. On
another line, it is strongly desirable to include η, which does not fit well under the
rewriting paradigm. For incorporating η, normalization-by-evaluation has proven
to be successful. Besides being explored for simple types [BS91,Dan99,ADHS01]
it has been extended to polymorphic types [AHS96] and predicative dependent
type theories [ACD07]. Still open is its application to impredicative type theories
such as the Calculus of Constructions (CoC), probably due to the difficult meta
theory of CoC. Our long term goal is to formulate a verified normalization-by-
evaluation (NbE) algorithm for impredicative type theories. This work is an
important step towards this goal: we construct a generic model for System F
whose instances are soundness and completeness proofs for NbE.

Altenkirch, Hofmann, and Streicher [AHS96] already developed an NbE al-
gorithm for System F and proved it correct. However, their work concerns only

a combinatory (λ-free) version of System F. Moreover, they construct an in-
ternal model of System F in category theory; their work is only accessible to
experts in categories, and the structure of the algorithm is a bit lost among the
category-related technical details. They provide an SML-implementation of the
algorithm in the appendix, but it is not formally related to the mathematical
algorithm in the main text. In an unpublished article [AHS97] they later extend
their result to full System F (with λ-abstraction). Deep knowledge of category
theory is a preliminary also for this paper, in the words of the authors, a “certain
acquaintance with categories of presheaves” is assumed.

In this article, we try to give a more conventional presentation of NbE for
System F, presuming only basic knowledge of λ-calculus and System F, domain
theory, and inductive definitions in set theory. This way, we hope to make NbE
for System F accessible to a wider audience, and to pave the way for an adaption
of NbE to impredicative dependent type theories.

Overview. In Sec. 2, we introduce syntax and typing and computation rules for
System F. A generic type interpretation is given in Sec. 3, and a generic formu-
lation of the fundamental theorem for System F in Sec. 4. It is then instantiated
to yield weak normalization proofs for β (Sec. 5) and βη (Sec. 6). As main re-
sults we obtain soundness and completeness of an NbE algorithm for System F
in Sec. 7.

2 Church-style System F

In this section, we briefly recapitulate the syntax and static and dynamic se-
mantics of System F. A more gentle introduction to System F can be found in
Pierce’s book [Pie02, Ch. 23].

Syntax. Type variables X and term variables x are drawn from two distinct,
countable supplies TyVar and Var.

Ty 3 A, B,C ::= X | A → B | ∀XA types
Tm 3 r, s, t ::= x | λx :A. t | r s | ΛXt | r A terms
Cxt 3 Γ,∆ ::= ¦ | Γ, x :A typing contexts

We say context Γ ′ extends Γ , written Γ ′ ≤ Γ , if Γ ′(x) = Γ (x) for all x ∈ dom(Γ).
For instance, assuming y 6∈ dom(Γ), we have (Γ, y :A) ≤ Γ , but not the other way
round. Extending a context extends the set of terms typeable in that context;
this theorem is called weakening.

Remark 1. The direction of ≤ is chosen to be compatible with subtyping. There,
we let Γ ′ ≤ Γ if Γ ′(x) ≤ Γ (x) for all x ∈ dom(Γ). Then Γ ` t : A, Γ ′ ≤ Γ , and
A ≤ A′ imply Γ ′ ` t : A′ (contravariance!).

A substitution σ is a map from type variables to type expressions and from
term variables to term expressions. We write Aσ, tσ for the simultaneous ex-
ecution of substitution σ in A, t. As usual, FV(t) denotes the set of free type
and term variables of t, and FV(A) the set of free type variables of A. Let
FV(Γ) =

⋃{FV(A) | (x :A) ∈ Γ}.

2

Typing (static semantics) Γ ` t : A.

Γ ` x : Γ (x)
Γ, x :A ` t : B

Γ ` λx :A. t : A → B

Γ ` r : A → B Γ ` s : A

Γ ` r s : B

Γ ` t : A

Γ ` ΛXt : ∀XA
X 6∈ FV(Γ)

Γ ` t : ∀XA

Γ ` tB : A[B/X]

Operational (dynamic) semantics. One step βη-reduction is the closure of the
following axioms under all term constructors:

(λx :A. t) s −→βη t[s/x] λx :A. t x −→βη t if x 6∈ FV(t)
(ΛXt)A −→βη t[A/X] ΛX. t X −→βη t if X 6∈ FV(t)

We denote its reflexive-transitive closure by −→∗
βη and its reflexive-transitive-

symmetric closure by =βη.
In the following metatheory of System F, we denote the dependent set-

theoretic function space by (x ∈ S) → T (x) which is an abbreviation for
{f ∈ S → ⋃

x∈S T (x) | f(x) ∈ T (x) for all x ∈ S}.

3 Type Interpretation by Kripke Relations

We seek an interpretation of System F’s types which is general enough to account
for different normalization results. In particular, we are interested in normaliza-
tion by evaluation, which exists in different flavors. To name a few, Berger and
Schwichtenberg [BS91] interpret simple types as set-theoretical function spaces
over the base type of term families, Filinski [Fil99] uses continuous function
spaces instead, and Altenkirch, Hofmann, and Streicher [AHS96] construct a
glueing model of System F types. We choose Abel, Coquand, and Dybjer’s ap-
proach of contextual reification [ACD08], where types are modelled as applicative
structures with variables, and reification, i. e., converting semantic objects back
to syntax, is context- and type-sensitive. This means that we need to interpret
types as Kripke relations, i.e., relations indexed by contexts.

Kripke relations. Given a poset (S,⊆), we say F is Kripke if F ∈ Cxt → S and
antitone, i.e., Γ ′ ≤ Γ implies F (Γ) ⊆ F (Γ ′). We usually write FΓ for F (Γ).

We say D is an applicative System F structure, if DA is Kripke for each A ∈ Ty
and for all A,B ∈ Ty, X ∈ TyVar and Γ ∈ Cxt there exist operations

appA,B
Γ ∈ DA→B

Γ → DA
Γ → DB

Γ ,

AppX.A
Γ ∈ D∀XA

Γ → (B ∈ Ty) → D
A[B/X]
Γ .

These operations need to be independent of type and context indices, i. e.,
appA,B

Γ (f, d) = appA′,B′

Γ ′ (f, d) if f ∈ DA→B
Γ ∩DA′→B′

Γ ′ and d ∈ DA
Γ ∩DA′

Γ ′ , and sim-
ilar for App. Thus, we can introduce an overloaded notation · for application
by f · d := app(f, d) and d ·B := App(d,B).

3

Examples for applicative System F structures are TmA
Γ := {t | Γ ` t : A}, as

well as TmA
Γ /=βη.

Let D, D̂ be applicative System F structures. We define the set of Kripke
relations of type A by

A ∈ KA ⇐⇒ AΓ ⊆ DA
Γ × D̂A

Γ for all Γ and A is Kripke.

We use the letters A,B, C for elements of KA. We write Γ ` d ∼ d′ ∈ A for
(d, d′) ∈ AΓ . KA forms a complete lattice with ⊆, ∩, and ∪ defined pointwise.

A Kripke relation A is a Kripke PER (partial equivalence relation) if AΓ

is symmetric and transitive for any context Γ , i.e., Γ ` d ∼ d′ ∈ A implies
Γ ` d′ ∼ d ∈ A and Γ ` d1 ∼ d2 ∈ A and Γ ` d2 ∼ d3 ∈ A imply
Γ ` d1 ∼ d3 ∈ A.

Constructing Kripke relations. In predicative type theories, such as Martin-
Löf Type Theory, one can construct semantical types inductively, i. e., from
below [ACD07], without reference to syntax. For impredicative systems, like
System F or the Calculus of Constructions, this is not possible. Instead, for each
type constructor one has to define a matching operation in the interpretation
domain of types, in our case, K, and then define the interpretation of a type by
induction on syntax, e. g., the size of the type expression [GLT89, Sec. 14.2] or its
derivation of wellfoundedness [Str91]. In the following, we provide the necessary
constructions to interpret function type and universal type.

Kripke relations are closed under arbitrary intersections. Further construc-
tions on Kripke relations are function space and type abstraction:

→ ∈ KA → KB → KA→B

(A → B)Γ = {(f, f ′) ∈ DA→B
Γ × D̂A→B

Γ | for all d, d′, Γ ′ ≤ Γ,
Γ ′ ` d ∼ d′ ∈ A implies Γ ′ ` f · d ∼ f ′ · d′ ∈ B}

(.)X.B ∈ (A ∈ Ty) → KB[A/X] → K∀XB

(A.B)X.B
Γ = {(d, d′) ∈ D∀XA

Γ × D̂∀XA
Γ | Γ ` d ·A ∼ d′ ·A ∈ B}

The function space A → B is monotone (covariant) in B and antitone (con-
travariant) in A. The type abstraction operator (A.B)X.B is monotone in B. In
the following, we drop the superscript X.B

Lemma 1. If A,B are Kripke PERs, so are A → B and A.B.

Interpretation space. Depending on what result one wants to harvest from a
model construction for System F, one has to impose restrictions on the interpre-
tation domain of types. For example, in a Tait-style proof of strong normalization
using saturated sets, one requires each semantical type to be below the set S of
strongly normalizing terms and above the set N of neutral strongly normalizing
terms. Vaux [Vau04] found an abstraction of (N ,S) which he called stable pair.
In the following, we present a further generalization which allows the restriction
to be dependent on a syntactical type.

4

Definition 1 (Interpretation space). An interpretation space consists of two
Kripke relations A ⊆ A ∈ KA for each type A such that the following conditions
hold.

k-fun-e A → B ⊆ A → B

k-fun-i A → B ⊆ A → B

k-all-e ∀Y A ⊆ B.A[B/Y] for any B

k-all-i X.A[X/Y] ⊆ ∀Y A for a new X

We write A ° A (pronounced A realizes A) if A ⊆ A ⊆ A.

A trivial, not type-sensitive interpretation space is AΓ = N and AΓ = S. In this
case, A ° A just means A is saturated. An analogy of A ° A can be found in
Matthes’ proof of strong normalization of System F [Mat98, Sec. 9.1.2] where it
means A is A-saturated. More examples of interpretation spaces can be found
in this article.

In the following, we assume an interpretation space. We now introduce the
last construction on semantical types, quantification, which is relative to an
interpretation space. If F(B) ∈ KB → KA[B/X] for all B ∈ Ty, we let

⋂
F =

⋂
{B.F(B,B) | B ° B} ∈ K∀XA.

Intersection is restricted to realizable semantical types. This has an analogue
in other normalization proofs of System F, e. g., Girard [GLT89, Ch. 14] re-
stricts quantification to reducibility candidates. The type constructions preserve
realizability, thanks to the conditions imposed by Def. 1.

Lemma 2 (Realizability of type constructions).

1. If A ° A and B ° B then A → B ° A → B.
2. If A[B/Y] ° F(B,B) for all B ° B, then ∀Y A °

⋂F .

Proof. Directly, using the postulates on C and C.

1. First, we have A → B ⊆ A → B by k-fun-e, and since A ⊆ A and B ⊆ B
we obtain by contravariance of the function space A → B ⊆ A → B.
Secondly, since A ⊆ A and B ⊆ B, contravariance yields A → B ⊆ A →
B ⊆ A → B by k-fun-i.

2. First, for any B ° B we have A[B/Y] ⊆ F(B,B), thus by monotonicity
of the abstraction operator, B.A[B/Y] ⊆ B.F(B,B). By k-all-e it follows
∀Y A ⊆ B.F(B,B), and since B,B were arbitrary, ∀Y A ⊆ ⋂F .
Secondly, let X be a new type variable. We have X ° X, hence, A[X/Y] °
F(X, X) which implies F(X, X) ⊆ A[X/Y]. Thus,

⋂F ⊆ X.F(X, X) ⊆
X.A[X/Y] ⊆ ∀Y A by k-all-i.

5

Type interpretation can now be defined mechanically, mapping the syntactic
type constructors to the semantic ones. Let σ be a syntactical type substitution
and ρ(X) ∈ Kσ(X) for all type variables X, which we write ρ ∈ Kσ. We define
[[A]]ρ ∈ KAσ by the following equations.

[[X]]ρ = ρ(X)
[[A → B]]ρ = [[A]]ρ → [[B]]ρ

[[∀XA]]ρ =
⋂

((B ∈ Ty) 7→ (B ∈ KB) 7→ [[A]]ρ[X 7→B])

Note that ρ[X 7→ B] ∈ Kσ[X 7→B] in the last line.

Lemma 3. If ρ(X) is a Kripke PER for all X, so is [[A]]ρ.

Lemma 4 (Substitution). [[A[B/X]]]ρ = [[A]]ρ[X 7→[[B]]ρ].

If ρ ∈ Kσ, we let σ ° ρ if σ(X) ° ρ(X) for all type variables X. It is now easy
to show that types realize their own interpretations.

Theorem 1 (Type interpretation is realizable). If σ ° ρ then Aσ ° [[A]]ρ.

4 Fundamental Lemma

A general model of System F can be given by interpreting terms in an applicative
System F structure D and types as PERs over D. The fundamental theorem does
not rely on types being PERs, thus, we can easily take Kripke relations instead.

Fix some context ∆. Let η map type variables to syntactical types and term
variables to elements of D such that η ∈ DΓ

∆, meaning η(x) ∈ DB
∆ for all (x :B) ∈

Γ . Let t ∈ TmA
Γ . We stipulate the existence of an evaluation function LtMη ∈ DA

∆

with the following properties.

den-var LxMη = η(x)
den-fun-e Lr sMη = LrMη · LsMη
den-all-e Lr AMη = LrMη ·Aη
den-fun-i Lλx :A. tMη · d = LtMη[x 7→d] if d ∈ DA

∆

den-all-i LΛXtMη ·A = LtMη[X 7→A]

We call (D, · , L M) a syntactical applicative System F structure (cf. Barendregt
[Bar84, 5.3.1]).

Now we are ready to show the fundamental theorem. Let (D̂, · , L M′) be
another syntactical applicative System F structure. For η ∈ DΓ

∆, η′ ∈ D̂Γ
∆ we

define

∆ ` η ∼ η′ ∈ [[Γ]]ρ ⇐⇒ ∆ ` η(x) ∼ η′(x) ∈ [[Γ (x)]]ρ for all x ∈ dom(Γ).

Theorem 2 (Validity of typing). Let η ° ρ and both η ¹ TyVar = η′ ¹ TyVar
and ∆ ` η ∼ η′ ∈ [[Γ]]ρ. If Γ ` t : A then ∆ ` LtMη ∼ LtM′η′ ∈ [[A]]ρ.

6

Proof. By induction on Γ ` t : A. Interesting are the System F specific cases.

Case
Γ ` t : A

Γ ` ΛXt : ∀XA
X 6∈ FV(Γ)

B ° B assumption
η[X 7→ B] ° ρ[X 7→ B] =: ρ′ by def.
∆ ` η[X 7→ B] ∼ η′[X 7→ B] ∈ [[Γ]]ρ = [[Γ]]ρ′ since X 6∈ FV(Γ)

∆ ` LtMη[X 7→B] ∼ LtM′η′[X 7→B] ∈ [[A]]ρ′ by ind. hyp.

∆ ` LΛXtMη ·B ∼ LΛXtM′η′ ·B ∈ [[A]]ρ′ den-all-i

∆ ` LΛXtMη ∼ LΛXtM′η′ ∈ B.[[A]]ρ′ by def.

∆ ` LΛXtMη ∼ LΛXtM′η′ ∈ [[∀XA]]ρ since B ° B arbitrary

Case
Γ ` t : ∀XA

Γ ` t B : A[B/X]

∆ ` LtMη ∼ LtM′η′ ∈
⋂

(X 7→ [[A]]ρ[X 7→X]) by ind.hyp.

Bη ° [[B]]ρ by Thm. 1

∆ ` LtMη ·Bη ∼ LtM′η′ ·Bη ∈ [[A]]ρ[X 7→[[B]]ρ] by instantiation

∆ ` LtBMη ∼ LtBM′η′ ∈ [[A]]ρ[X 7→[[B]]ρ] den-all-e

∆ ` LtBMη ∼ LtBM′η′ ∈ [[A[B/X]]]ρ Substitution

5 Weak β-Normalization

From our general fundamental theorem we can recover a proof of β-normalization
for System F. In this case, we construct an untyped interpretation space of dis-
crete Kripke relations which ignores types and contexts. The following develop-
ment is standard, we show here only that it fits into the abstractions we have
chosen in sections 3 and 4.

Let r denote the β-equivalence class of r. Let DA
Γ = D̂A

Γ = Tm/=β for all
Γ, A, with application defined by r ·s = r s and r ·A = r A. Evaluation is defined
by LtMσ = tσ.

Lemma 5. Application and evaluation are well-defined and (D, · , L M) forms
a syntactical applicative System F structure.

7

Neutral terms are given by the grammar n ::= x | n s | nA. The interpretation
space for β-normalization is untyped, i. e., we set

AΓ = WΓ := {(t, t) | t has a β-normal form }
AΓ = NΓ := {(n, n) | n has a β-normal form }

for all types A. To show that these settings really constitute an interpretation
space is a standard exercise.

Let ηid be the identity map on term and type variables, and let ρid(X) = N
for all X ∈ TyVar. Clearly, ηid ° ρid.

Lemma 6 (Identity environment). Γ ` ηid ∼ ηid ∈ [[Γ]]ρid
.

Theorem 3 (Weak β-normalization of System F). If Γ ` t : A then t has
a β-normal form.

Proof. By the fundamental theorem Γ ` LtMηid
∼ LtMηid

∈ [[A]]ρid
which implies

Γ ` t ∼ t ∈ W, hence, t has a β-normal form.

6 Weak βη-Normalization

In this section, we instantiate Thm. 2 to prove weak βη-normalization for Sys-
tem F. In particular, we show that each well-typed term has a η-long β-normal
form. In this, we will require the Kripke aspect of our type interpretation, since
being η-long for open terms can only be defined in the presence of a typing
context.

Let now r denote the βη-equivalence class of r and set DA
Γ = D̂A

Γ = Tm/=βη.
Again, D, with application and evaluation defined as in the last section, consti-
tutes a syntactical applicative System F structure.

Long normal forms are characterized by the two mutually defined judgments

Γ ` t ⇑ A t is a long normal form of type A
Γ ` t ⇓ A t is a neutral long normal form of type A

given by the following rules:

Γ ` x ⇓ Γ (x)
Γ ` r ⇓ A → B Γ ` s ⇑ A

Γ ` r s ⇓ B

Γ ` r ⇓ ∀XA

Γ ` rB ⇓ A[B/X]

Γ ` r ⇓ X

Γ ` r ⇑ X

Γ, x :A ` t ⇑ B

Γ ` λx :A. t ⇑ A → B

Γ ` t ⇑ A

Γ ` ΛXt ⇑ ∀XA
X 6∈ FV(Γ)

From the model construction of System F we want to harvest that each well-
typed term has a η-long β-normal form. Thus, we define an interpretation space
by setting

Γ ` d ∼ d′ ∈ A ⇐⇒ exists r with d = d′ = r and Γ ` r ⇑ A,
Γ ` d ∼ d′ ∈ A ⇐⇒ exists r with d = d′ = r and Γ ` r ⇓ A.

8

Lemma 7 (Weakening). A, A ∈ KA.

Indeed, A and A span an interpretation space, which we will prove in detail in
the following.

Lemma 8 (Interpretation space).

k-fun-e A → B ⊆ A → B

k-fun-i A → B ⊆ A → B

k-all-e ∀XA ⊆ B.A[B/X]

k-all-i X.A[X/Y] ⊆ ∀Y A for a new X

Proof. k-fun-e A → B ⊆ A → B

Γ ` f ∼ f ′ ∈ A → B by hyp.
f = f ′ = r and Γ ` r ⇓ A → B by def.

Γ ′ ≤ Γ and Γ ′ ` d ∼ d′ ∈ A assumption
d = d′ = s and Γ ′ ` s ⇑ A by def.
f · d = f ′ · d′ = r s def. of application
Γ ′ ` r s ⇓ B rule, Lemma 7
Γ ′ ` f · d ∼ f ′ · d′ ∈ B by def.

Γ ` f ∼ f ′ ∈ A → B since Γ ′, d, d′ arb.

k-fun-i A → B ⊆ A → B

Γ ` r ∼ r′ ∈ A → B by hyp.
Γ, x :A ` x ⇓ A rule
Γ, x :A ` x ∼ x ∈ A by def.

Γ, x :A ` r · x ∼ r′ · x ∈ B by def. →
r x = r′ x = t and Γ, x :A ` t ⇑ B by def.

r = λx :A. r x = r′ = λx :A. r′ x = λx :A. t η

Γ ` λx :A. t ⇑ A → B rule

Γ ` r ∼ r′ ∈ A → B by def.

9

k-all-e ∀XA ⊆ B.A[B/X]

Γ ` d ∼ d′ ∈ ∀XA assumption
d = d′ = r and Γ ` r ⇓ ∀XA by def.

d ·B = d′ ·B = r B and Γ ` r B ⇓ A[B/X] rule, app.
Γ ` d ·B ∼ d′ ·B ∈ A[B/X] by def.

Γ ` d ∼ d′ ∈ B.A[B/X] by def. B.A

k-all-i X.A[X/Y] ⊆ ∀Y A for a new X.

Γ ` r ∼ r′ ∈ X.A[X/Y] assumption

Γ ` r ·X ∼ r′ ·X ∈ A[X/Y] by def. X.A
r X = r′X = t and Γ ` t ⇑ A[X/Y] by def.

r = ΛX. r X = r′ = ΛX. r′X = ΛXt η

X 6∈ FV(Γ) since X new
Γ ` ΛXt ⇑ ∀X. A[X/Y] = ∀Y A rule

Γ ` r ∼ r′ ∈ ∀Y A by def.

The rest is just an application of the fundamental theorem. Recall that ηid

is the identity map, and let this time ρid(X) = X for all X ∈ TyVar. Again,
ηid ° ρid, and Γ ` ηid ∼ ηid ∈ [[Γ]]ρid

.

Theorem 4 (Weak βη-normalization of System F). If Γ ` t : A then t
β-reduces η-expands to a long normal form t′.

Proof. Clearly, A ° [[A]]ρid
. By Thm. 2, Γ ` LtMηid

∼ LtMηid
∈ [[A]]ρid

, meaning
t =βη t′ with Γ ` t′ ⇑ A. We conclude by Church-Rosser for β-reduction η-
expansion [Jay91].

7 Normalization by Evaluation

In this section we now define a normalization function which maps exactly the
βη-equal terms of the same type to the same η-long β-normal form. To this end,
we define judgmental βη-equality Γ ` t = t′ : A and the function nf(Γ ` t : A)
such that it is

1. complete for judgmental equality, i. e., Γ ` t = t′ : A implies nf(Γ ` t :A) ≡
nf(Γ ` t′ :A), and

2. sound, i. e., if Γ ` t : A then Γ ` t = nf(Γ ` t :A) : A.

10

7.1 Judgmental Equality

Judgmental βη-equality Γ ` t = t′ : A is defined inductively by the following
axiom, plus congruence rules and equivalence rules (reflexivity, symmetry, and
transitivity).

Γ, x :A ` t : B Γ ` s : A

Γ ` (λx :A. t) s = t[s/x] : B

Γ ` t : A → B

Γ ` λx :A. t x = t : A → B
x 6∈ FV(t)

Γ ` t : A X 6∈ FV(Γ)
Γ ` (ΛXt)B = t[B/X] : A[B/X]

Γ ` t : ∀XA

Γ ` ΛX. t X = t : ∀XA
X 6∈ FV(t)

A fundamental theorem for judgmental equality is of course not valid for arbi-
trary Kripke relations, it can only be shown for Kripke PERs, since symmetry
and transitivity have to be modeled. Also, to model the above equations, the
evaluation function must satisfy additional laws:

den-subst Lt[s/x]Mη = LtMη[x7→LsMη] if Γ, x :A ` t : B and Γ ` s : A
den-ty-subst Lt[A/X]Mη = LtMη[X 7→Aη] if Γ ` t : B and X 6∈ FV(Γ)
den-irr LtMη = LtMη′ if η(x) = η′(x) for all x ∈ FV(t)

If these laws are satisfied, (D, · , L M) is called a syntactical combinatorial Sys-
tem F algebra (cf. [ACD07]).

For the following theorem, consider an interpretation space of Kripke-PERs
over a syntactical combinatorial algebra.

Theorem 5 (Validity of equality). Let σ ° ρ and ∆ ` η ∼ η′ ∈ [[Γ]]ρ. If
Γ ` t = t′ : A then ∆ ` LtMη ∼ Lt′Mη′ ∈ [[A]]ρ.

Proof. By induction on Γ ` t = t′ : A.

7.2 The normalization algorithm

Normalization by evaluation consist of two steps: first, evaluate the term in the
identity environment, obtaining a semantic object, and then, reify the semantic
object back to syntax, yielding a long normal form.

Evaluation. For the evaluation we need a combinatorial algebra Val with com-
putable application and evaluation and with variables. One possibility is to let
Val be the solution of the recursive domain equation:

Val = ((Var × (Val ∪ Ty)<ω) + [Val → Val] + (Ty → Val))⊥.

Then a semantic object d ∈ Val is either a neutral object e of the shape e ::= x |
e d | e A, a continuous function f ∈ [Val → Val] on semantic objects, a function
F ∈ Ty → Val from types to semantic objects, or undefined, ⊥.

Let DA
Γ = Val for all Γ, A. Application is defined by

e · d = e d
f · d = f(d)

e ·A = eA
F ·A = F (A),

11

yielding ⊥ in all other cases, and evaluation by den-var,den-fun-e,den-all-e
and

Lλx :A. tMη(d) = LtMη[x 7→d]

LΛXtMη(A) = LtMη[X 7→A].

It is easy to check that (D, · , L M) forms a syntactical combinatorial System F
algebra.

Reification converts semantic objects back to expressions. Functions are reified
by applying them to fresh variables. This is of course only possible if Val contains
the variables.

We adapt contextual reification [ACD08] to System F and define inductively
the mutual judgements

Γ ` d ↘ t ⇑ A d reifies to t at type A,
Γ ` d ↘ t ⇓ A d reifies to t, inferring type A.

These judgements enrich the corresponding judgements for long normal forms
by the semantic object d to be reified to term t. As a consequence, the output t
is trivially in long normal form.

Γ ` x ↘ x ⇓ Γ (x)

Γ ` e ↘ r ⇓ A → B Γ ` d ↘ s ⇑ A

Γ ` e d ↘ r s ⇓ B

Γ ` e ↘ r ⇓ ∀XA

Γ ` eB ↘ r B ⇓ A[B/X]

Γ ` e ↘ r ⇓ X

Γ ` e ↘ r ⇑ X

Γ, x :A ` f · x ↘ t ⇑ B

Γ ` f ↘ λx :A. t ⇑ A → B

Γ ` F ·X ↘ t ⇑ A

Γ ` F ↘ ΛXt ⇑ ∀XA
X 6∈ FV(Γ).

These rules can be interpreted computationally by considering them clauses of
a logic program. Both judgements take Γ and d as input and return t. In the
type-directed mode ⇑, type A is input, and in the inference mode ⇓, type A
is output. It is easy to check that the associated logic program is well-moded
[DW88]. Termination, however, will follow from the fundamental theorem.

Lemma 9 (Weakening). Let Γ ′ ≤ Γ .

1. If Γ ` e ↘ r ⇓ A then Γ ′ ` e ↘ r ⇓ A.
2. If Γ ` d ↘ t ⇑ A then Γ ′ ` d ↘ t ⇑ A.

7.3 Completeness of NbE

We obtain completeness (and termination) of the normalization function as in-
stance of the fundamental theorem for judgmental equality. Let an interpretation
space be defined by

Γ ` d ∼ d′ ∈ A ⇐⇒ exists t with Γ ` d ↘ t ⇑ A and Γ ` d′ ↘ t ⇑ A,
Γ ` d ∼ d′ ∈ A ⇐⇒ exists t with Γ ` d ↘ t ⇓ A and Γ ` d′ ↘ t ⇓ A.

12

Lemma 10 (Interpretation space). A, A form an interpretation space of
Kripke PERs.

Proof. Analogous to Lemma 8.

Theorem 6 (Completeness of NbE). If Γ ` t = t′ : A then Γ ` LtMηid
↘

r ⇑ A and Γ ` Lt′Mηid
↘ r ⇑ A for some long normal form r.

Proof. Since Γ ` ηid ∼ ηid ∈ [[Γ]]ρid
, by Thm. 5 Γ ` LtMηid

∼ Lt′Mηid
∈ A.

The normalization function nf(Γ ` t : A) can now be defined to yield the t′

such that Γ ` LtMηid
↘ t′ ⇑ A.

7.4 Soundness of NbE

Soundness (and termination) of the normalization function is a consequence of
the fundamental theorem for typing, applied to a Kripke relation between seman-
tics and syntax. With D defined as above, we set D̂A

Γ = TmA
Γ /(Γ ` = : A),

i.e., terms modulo judgmental equality, which forms a syntactical applicative
System F structure by virtue of

appA,B(r, s) = r s

AppX.A(r, B) = r A
LtMσ = tσ

Note that the typed applicative structure is crucial here, on untyped terms mod-
ulo judgmental equality one cannot define a total application operation. We let

Γ ` d ∼ t ∈ A ⇐⇒ exists t′ with Γ ` d ↘ t′ ⇑ A and Γ ` t = t′ : A,
Γ ` d ∼ t ∈ A ⇐⇒ exists t′ with Γ ` d ↘ t′ ⇓ A and Γ ` t = t′ : A.

Lemma 11 (Interpretation space). A,A form an interpretation space.

Theorem 7 (Soundness of NbE). If Γ ` t : A then Γ ` LtMηid
↘ t′ ⇑ A and

Γ ` t = t′ : A.

Proof. For all (x : B) ∈ Γ , it holds that Γ ` x ∼ x ∈ B, hence, Γ ` ηid(x) ∼
ηid(x) ∈ [[B]]ρid

, thus, Γ ` ηid ∼ ηid ∈ [[Γ]]ρid
. By Thm. 2, Γ ` LtMηid

∼ t ∈ [[A]]ρid
.

We conclude by [[A]]ρid
⊆ A.

Summarizing this section, we have obtained a βη-normalization function for
System F which is complete and sound for judgmental equality. We have crucially
used that the fundamental theorem for typing is not restricted to PER semantics
but has been formulated for Kripke relations between two different applicative
System F structures.

13

8 Conclusion

We have introduced the concept of type interpretation space and proven generic
fundamental theorems for typing and judgmental equality in System F. As in-
stances, we obtained proofs of weak normalization for β and βη, and proofs of
soundness and completeness for a normalization-by-evaluation algorithm based
on contextual reification.

Further work. We seek to extend this work to type theories with non-trivial
equality on the type level, like System Fω and the Calculus of Constructions.

Acknowledgments. This work was carried out during a visit to Frédéric Blanqui
and Cody Roux at LORIA, Nancy, France, financed by the Bayerisch-Französi-
sches Hochschulzentrum. My gratitude extends also to Thierry Coquand and
Peter Dybjer for discussions on the topic, and to Ralph Matthes, Cody Roux,
and the anonymous referees for their suggestions which helped to improve this
paper.

References

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evalu-
ation for Martin-Löf Type Theory with typed equality judgements. In Proc.
of the 22nd IEEE Symp. on Logic in Computer Science (LICS 2007), pages
3–12. IEEE Computer Soc. Press, 2007.

[ACD08] Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic
βη-conversion test for Martin-Löf type theory. volume 5133 of Lect. Notes
in Comput. Sci., pages 29–56. Springer-Verlag, 2008.

[ADHS01] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott.
Normalization by evaluation for typed lambda calculus with coproducts. In
Proc. of the 16th IEEE Symp. on Logic in Computer Science (LICS 2001),
pages 303–310. IEEE Computer Soc. Press, 2001.

[AHS96] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-
free normalisation for a polymorphic system. In Proc. of the 11th IEEE
Symp. on Logic in Computer Science (LICS’96), pages 98–106. IEEE Com-
puter Soc. Press, 1996.

[AHS97] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher.
Reduction-free normalisation for System F. Available from
http://www.cs.nott.ac.uk/~txa/publ/f97.pdf, 1997.

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, Amsterdam, 1984.

[BJS07] Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. Building
decision procedures in the Calculus of Inductive Constructions. In Jacques
Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21th
Int. Wksh., CSL 2007, 16th Annual Conf. of the EACSL, volume 4646 of
Lect. Notes in Comput. Sci., pages 328–342. Springer-Verlag, 2007.

[Bla05] Frédéric Blanqui. Definitions by rewriting in the calculus of constructions.
Mathematical Structures in Computer Science, 15(1):37–92, 2005.

14

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse to the evaluation
functional for typed λ-calculus. In Proc. of the 6th IEEE Symp. on Logic in
Computer Science (LICS’91), pages 203–211. IEEE Computer Soc. Press,
1991.

[Ct86] Robert Constable and team. Implementing Mathematics with the Nuprl
Proof Development System. Prentice Hall, 1986.

[CWC07] Jacek Chrzaszcz and Daria Walukiewicz-Chrzaszcz. Towards rewriting in
Coq. In Hubert Comon-Lundh, Claude Kirchner, and Hélène Kirchner, ed-
itors, Rewriting, Computation and Proof, Essays Dedicated to Jean-Pierre
Jouannaud on the Occasion of His 60th Birthday, volume 4600 of Lect. Notes
in Comput. Sci., pages 113–131. Springer-Verlag, 2007.

[Dan99] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Torben Æ.
Mogensen, and Peter Thiemann, editors, Partial Evaluation – Practice and
Theory, DIKU 1998 International Summer School, Copenhagen, Denmark,
June 29 - July 10, 1998, volume 1706 of Lect. Notes in Comput. Sci., pages
367–411. Springer-Verlag, 1999.

[DW88] Saumya K. Debray and David S. Warren. Automatic mode inference for
logic programs. Journal of Logic Programming, 5:207–229, 1988.

[Fil99] Andrzej Filinski. A semantic account of type-directed partial evaluation. In
Gopalan Nadathur, editor, Proc. of the Int. Conf. on Principles and Prac-
tice of Declarative Programming, PPDP’99, volume 1702 of Lect. Notes in
Comput. Sci., pages 378–395. Springer-Verlag, 1999.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

[INR07] INRIA. The Coq Proof Assistant, Version 8.1. INRIA, 2007.
http://coq.inria.fr/.

[Jay91] Barry Jay. Long βη normal forms and confluence. Technical Report ECS-
LFCS-91-183, University of Edinburgh, 1991.

[Mat98] Ralph Matthes. Extensions of System F by Iteration and Primitive Re-
cursion on Monotone Inductive Types. PhD thesis, Ludwig-Maximilians-
University, May 1998.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden, September 2007.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[Pol94] Randy Pollack. The Theory of LEGO. PhD thesis, University of Edinburgh,

1994.
[Str91] Thomas Streicher. Semantics of Type Theory. Progress in Theoretical Com-

puter Science. Birkhaeuser Verlag, Basel, 1991.
[Vau04] Lionel Vaux. A type system with implicit types. English version of his

mémoire de mâıtrise, June 2004.

15

