
UIE: User-centric Interference Estimation for Cloud Applications

Seyyed Ahmad Javadi, Sagar Mehra, Bharath Kumar Reddy Vangoor, Anshul Gandhi
Computer Science Department, Stony Brook University
{sjavadi, smehra, bvangoor, anshul}@cs.stonybrook.edu

Abstract—Interference is one of the key deterrents to cloud
adoption, and is known to cause severe degradation in appli-
cation performance, costing service providers in lost revenues.
In this paper, we present UIE, a user-centric approach to
detecting and, importantly, estimating the degree of interference
experienced by user applications in the cloud. UIE employs
queueing theory to model the impact of resource contention on
application performance. By leveraging UIE, users can estimate
the true amount of resources, including CPU, network, and I/O,
allocated to their application at any given time, without any
assistance from the cloud provider or hypervisor.

I. INTRODUCTION

Cloud computing provides economical and elastic re-
sources, such as VMs or storage, to users for their software
deployment needs; the low resource cost is realized via
multi-tenancy, which allows for physical resources to be
shared among several users via virtualization. Unfortunately,
multi-tenancy results in undesirable performance effects, the
most severe of which is interference, which is caused by lack
of effective performance isolation among users of colocated
resources. Interference can result in significant performance
degradation, increasing application response times by factors
of 5-20X as suggested by prior work [1]–[3].

Existing work on addressing performance interference
typically focuses on hypervisor-centric solutions. However,
in public clouds, the cloud provider (who can monitor
the hypervisors) does not communicate with users and
is oblivious of user application requirements. Ideally, the
solution should allow cloud users to detect and estimate
the degree of interference experienced by their applications
without requiring any assistance from the cloud provider or
the colocated application owners.

Analyzing interference from a user’s perspective is chal-
lenging because of the user’s lack of visibility into colocated
user applications [4]. Note that while detecting interference
from within the VM is possible [1], [3], [5], it is much more
difficult to estimate the degree of interference, which can be
defined as the resource utilization of all the colocated VMs.
This is especially true for non-CPU resources, such as disk
I/O and network bandwidth, that are shared, not necessarily
equally, among all colocated applications.

In this paper, we propose a user-centric technique, UIE,
to estimate the degree of interference by inferring the
utilization of resources due to colocated applications. UIE
provides accurate estimations of per-device interference,

including CPU, and the more challenging I/O and net-
work, without requiring any additional instrumentation or
information about colocated applications. UIE achieves this
goal by monitoring application performance over time and
developing analytical models that estimate actual resource
allocation of the application. This information can then be
exploited by the user to either proactively migrate their VMs
or to initiate scale-out to avoid imminent SLO violations.

We evaluate UIE by accurately estimating the degree of
interference for two popular cloud applications: (i) web
servers (Apache [6]), and (ii) data processing (YARN). Our
experimental results on an OpenStack cluster show that UIE
can estimate interference with less than 10% error.

II. EXPERIMENTAL SETUP

We use an OpenStack Icehouse-based private cloud with
three Dell C6100 physical machines, referred to PMs (each
with two 6-core CPUs and 24 GB memory), as our experi-
mental setup. All PMs are connected to a network switch via
a 1Gb Ethernet cable. Our experiments reveal that the max-
imum achievable bandwidth is about 931 Mb/sec (we flood
the network using a simple load generator and measure the
peak observed bandwidth under various request rates). For
disk, we use the dd linux tool to benchmark I/O bandwidth.
Our experiments reveal that the maximum achievable write
bandwidth for our PMs is about 140MB/sec.

We launch several VMs on this setup to deploy our appli-
cations. Unless otherwise specified, each VM has 4 vCPUs,
8GB memory, and 80GB disk space. We use Apache web
server [6] and YARN (Hadoop2) as our target applications
for performance interference.

III. PERFORMANCE INTERFERENCE

We now analyze interference using the experimental setup
described above. We use benchmarks, referred to as bg
(background), to create interference for our primary appli-
cations, Apache and YARN, referred to as fg (foreground).

A. Apache Performance

We focus on network and CPU contention for the Apache
setup, as those are the typical bottlenecks for Apache [7].

Network contention: For the Apache setup, we host a 1MB
html file at a VM, VMfg , running Apache, on host PM1.
This file is retrieved via an httperf [8] client running on a
different VM (and on a different PM, PM2). PM1 is used as

1



0 2 4 6 8 10

x 10
7

0

500

1000

1500

2000

2500

bg load (bytes/sec) →  

C
o

n
n

e
c
ti
o

n
 t

im
e

 (
m

s
e

c
s
) 

→
  

 

 

fg rate:10
fg rate:20
fg rate:30
fg rate:40
fg rate:50

(a) Apache performance under network in-
terference (using 1MB file).

0 20 40 60 80 100
0

50

100

150

200

250

bg load (CPU %) → 

C
o
n
n
e
c
ti
o
n
 t
im

e
 (

m
s
e
c
s
) 

→
  

(b) Apache performance under CPU inter-
ference.

0 2 4 6 8 10

x 10
7

0

200

400

600

800

bg load (bytes/sec) →

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
) 

→

 

 

Reduce task
Map task

(c) Terasort (YARN) performance under
disk I/O interference.

Figure 1: Impact of interference on application performance.

the target physical machine which will experience resource
contention. To create interference, we again use the httperf
benchmark. Another VM, VMbg , also on PM1, hosts several
files of different sizes. These are retrieved by another httperf
client outside of PM1 (specifically, on a VM on PM3). This
client floods the link connecting PM1 to the network by
sending a given rate of http requests to download html files
from VMbg on PM1. We monitor the connection time as
seen by httperf for VMfg . Connection time here is defined
as the time between sending the http request from httperf
and receiving the requested web page, in full, from VMfg .

Figure 1a shows the observed fg connection time (for
VMfg) as a function of generated bg load, for a 1MB
download file size and different fg request rates. The bg load
on VMbg (x-axis) is controlled via the bg request rate for a
1MB file. The results indicate that the fg connection time is
not much affected by interference at low resource contention.
However, once the contention is high, connection time rises
rapidly. Results are qualitatively similar when the bg file size
is changed to 2MB and 3MB. The rapid rise in connection
time is to be expected as there is a finite available bandwidth
(931 Mb/sec) that is being shared by VMfg and VMbg .

CPU contention: For CPU contention, we change VMfg

(on PM1) to now have only 2 vCPUs. To create sufficient
bg CPU interference, considering the fact that our PMs have
12 physical cores, we launch 3 bg VMs on PM1, each of
which has 4 vCPUs. The stress-ng tool [9] is used to create
CPU load on these bg VMs. Note that, along with VMfg ,
PM1 is now hosting VMs that require 14 vCPUs on its 12
physical cores.

Figure 1b shows the observed average fg connection
time as a function of bg CPU usage, averaged across all
three co-hosted bg VMs. In our setup, since the fg Apache
is not performing any significant compute or processing
operations, the connection time does not increase much with
bg load, up to 80%. However, after this point, there is a steep
increase in the connection time due to limited CPU resources
(and oversubscription of these resources).

B. YARN Performance

We now study resource contention for the YARN setup.
For YARN, our experiments reveal that network usage is
transient, and not as significant as disk I/O and CPU usage.
We thus focus on disk I/O and CPU interference.

Disk I/O contention: To evaluate disk I/O contention in
YARN, we launch 3 VMs on PM1: slave-1, slave-2, and
VMbg . The Master VM is launched on a different PM
(PM2). As the fg application, we launch Terasort (from the
HiBench suite) using a 5GB input data set, which results in
42 Map tasks and 5 reduce tasks. To create I/O contention,
the VMbg uses stress-ng [9] to create 4 processes that
continually write data to the (shared) disks. Each PM has 2
physical disks, set up in a RAID 1 configuration, and the
replication factor of HDFS is set to 1.

Figure 1c shows the average Map and Reduce task com-
pletion times for Terasort as a function of the bg load.
We control the bg load on VMbg by varying the data
write rate for the stress-ng benchmark. The results indicate
that the fg performance (completion times, in the case of
YARN) is significantly affected by resource contention at
the disk. Recall, from Section II, that the maximum disk
I/O bandwidth is about 140 MB/sec, which is being shared
by VMfg and VMbg .

CPU contention: For CPU contention, we launch 7 VMs
on PM1: slave-1 and 6 bg VMs. All of the PM1 VMs are
configured with 4 vCPUs, 4GB memory, and 80GB disk,
to allow CPU overcommit without violating the memory
overcommit values set in OpenStack. As the fg application,
we launch Kmeans (from the HiBench suite) using a roughly
4GB input data set, which results in 31 Map tasks and 1
reduce task. To create CPU contention, all 6 bg VMs use
stress-ng [9] to create CPU load on PM1. Along with slave-
1, PM1 is now hosting VMs that require 28 vCPUs on its
12 (oversubscribed) physical cores.

Our experimental results (omitted due to lack of space)
show that the average Map and Reduce task completion
times for Kmeans increase as a function of the average bg
CPU usage.

2



IV. UIE
Our experimental results in the previous section show that

interference can severely impact performance, often in a
non-linear manner, as illustrated by the steeply rising fg con-
nection/completion times at high bg loads. The motivation
behind our UIE approach is to accurately predict this per-
formance degradation without observing the bg application.

The key idea behind UIE is to model interference using
concepts from queueing theory. Interference is essentially
the result of contention at the shared physical resource.
Queueing theory is well suited to model performance in
such shared environments. Unfortunately, in this user-centric
scenario, we do not know the value of all the system
parameters, such as bg load. In order to apply performance
modeling in such environments, we employ inference tech-
niques, specifically multiple linear regression, to estimate
the model parameters based on online observations.

A. Performance modeling
Consider the Apache experimental results for network

contention in Section III-A. Here, the total network band-
width, say Btotal, is being shared among the fg and bg
applications. The fg and bg bandwidth requirements, Bfg
and Bbg , respectively, can be expressed as the product
of request rate and file (download) size. That is, Bfg =
fgrequest rate × fgfile size, and Bbg = bgrequest rate ×
bgfile size. Queueing theory [10] suggests that the mean
connection time, T , in this case is inversely proportional
to (1− (Bfg +Bbg)/Btotal)

α, for some parameter α. In the
case of exponential job sizes, α = 1, but α can take higher
values for other distributions and service disciplines [10].
Based on this approximation, we model connection time as:

T = θ0 +
θ1(

1− Bfg + Bbg

Btotal

) +
θ2(

1− Bfg + Bbg

Btotal

)2 , (1)

where the θ variables are coefficients. We find that using two
exponent terms (with coefficients θ1 and θ2), along with an
intercept term (with coefficient θ0), suffices for modeling
performance. Note that Btotal in Eq. (1) is a constant that
depends on the network configuration. Bfg and T can be
measured by the fg user. Bbg , unfortunately, cannot be
measured by the fg user as it depends on the bg application,
which cannot be observed. Most of the prior work on
interference detection assumes that the bg application and its
behavior can be measured. From the fg user’s perspective,
this is infeasible. Thus, the challenge now is to determine
the θ coefficients without assuming knowledge of Bbg .

B. Inference
Interference in cloud environments is usually dynamic in

nature. Thus, if we observe the fg performance over a long
time interval, there will be instances where the bg load is
low. We leverage this notion, which was also observed in
prior work [1], to obtain (T,Bfg) pairs which correspond

fg load (bytes/sec) → ×107

0 2 4 6 8 10

T
im

e
 (

m
ill

is
e
c
o
n
d
s
) 
→

0

50

100

150

200

Observed

Modeled

Figure 2: Regression modeling for Apache performance with
no bg load. Modeling error is about 6%.
to low Bbg values. Our results in Section III show that
when the bg load is low, the impact on fg performance is
negligible; we thus set Bbg = 0 for these cases. We now use
these collected (T,Bfg) pairs and perform multiple linear
regression on Eq. (1) with Bbg = 0 to determine the θ
coefficient values. Figure 2 shows our regression results. We
see that our estimated connection time, T , values (dashed red
line) accurately track the observed (solid blue line) values.
The modeling error on training data is about 6%; regression
coefficients are θ0 = 20.3, θ1 = 13.2, and θ2 ≈ 0.

C. Interference estimation
We now employ UIE to estimate interference (Bbg) using

our performance model. Based on the observed connection
time, T , and the monitored fg load, Bfg , we solve Eq. (1)
to determine bg load, Bbg , by substituting for Btotal and
the θ coefficient values obtained from the above regression
analysis. UIE uses this approach to estimate bg load for
all the experiments in Section III, as discussed below. Note
that training data used in Section IV-B is different from the
experimental test data discussed below.

D. Results
Apache network contention: The estimation (or test) error
for UIE under Apache’s network contention experiments
(Figure 1a) is an impressively low 5.4%. This is illustrated
in Figure 3 which plots the actual and estimated bg load
for the experiments in Figure 1a. Since interference does
not impact Apache’s performance at low loads, we consider
UIE’s estimation error for those data points where the impact
of bg load is non-negligible; this corresponds to roughly 50%
of the data (around 315 experiments) in Figure 1a.

Experiment number →

0 50 100 150 200 250 300

b
g
 l
o
a
d
 (

b
y
te

s
/s

e
c
) 
→

×10
7

0

5

10
Actual

UIE

Figure 3: Estimated bg load using UIE for the data in
Figure 1a. Estimation error is about 5.4%.

3



Application Interference Modeling Accuracy
Apache Network 94.0%
Apache CPU 91.1%

YARN (Terasort Map) disk I/O 91.9%
YARN (Terasort Reduce) disk I/O 94.9%

YARN (Kmeans Map) CPU 94.9%
YARN (Kmeans Reduce) CPU 95.0%

Table I: Modeling accuracy for all applications.
It is interesting to note, from Figure 3, that the difference

in actual and estimated bg load is lower for higher bg loads.
This can be explained as follows. Looking at the two curves
in Figure 2, we see that a constant change in the y-value, say
∆y, corresponds to a much smaller change in the x-value,
say ∆x, at higher loads than it does at lower loads. This
is because of the increasing nature of the connection time
curves. Fortunately, this behavior results in high estimation
accuracy for the regime where bg load, or interference, is
high. This is often the regime that practitioners are interested
in, as it causes the most severe performance degradation.
Apache CPU contention: UIE can be applied to the case
of Apache CPU contention (Figure 1b) in a similar manner.
For CPU contention, we use cpu % as the load unit instead
of bytes/sec. Thus, Eq. (1) now takes the form:

T = θ0 +
θ1(

1− CPUfg + CPUbg

100

) +
θ2(

1− CPUfg + CPUbg

100

)2
, (2)

where CPUfg and CPUbg are average CPU usage percent-
ages in the range [0, 100]. Note that CPUfg + CPUbg < 100
as these correspond to VMs on the same PM. The modeling
error in this case is 8.9% (listed in Table I).
YARN disk I/O contention: We employ the same non-linear
relationship as in Eq. (1) to model disk I/O interference for
the Map and Reduce tasks under YARN. The modeling error
for Terasort experiments (Figure 1c) is 8.1% and 5.1% for
Map and Reduce task completion times, respectively.
YARN CPU contention: Using the same non-linear re-
lationship as in Eq. (2) to model CPU interference, the
modeling error for Kmeans experiments is 5.1% and 5.0%
for Map and Reduce task completion times, respectively.

V. RELATED WORK
Casale et al. [5] propose a user-centric technique to detect

CPU contention by analyzing the CPU steal metric (time
spent waiting for the hypervisor). However, this technique
only considers CPU-level interference. IC2 [3] employs de-
cision trees using VM-level statistics to detect interference.
IC2 focuses only on cache-intensive interference, and the
decision tree classifier requires a substantial amount of time
(nearly 30 hours) for offline training. CPI2 [11] employs
statistical approaches to analyze an application’s cycles per
instruction (CPI) metric in order to detect and mitigate
processor resources interference. However, recent work [1],
[2] has shown that CPI is not always a good metric for inter-
ference detection as it is representative of throughput and not
latency. CRE [1] makes use of collaborative filtering to de-
tect interference in web services by monitoring the response

times. While CRE can accurately detect interference in most
cases, it does not estimate the amount of interference. By
contrast, UIE detects and estimates interference.

VI. CONCLUSION

We presented UIE, a user-centric approach for not only
detecting, but also estimating, the amount of interference
experienced by cloud applications. The fact that UIE is
user-centric allows users to analyze interference and take
actions without requiring any assistance from the hypervisor.
UIE accurately detects the amount of physical resources,
including network and I/O bandwidth, and CPU, allocated
to a user application, thus supporting several classes of ap-
plications including network-intensive web services and I/O-
intensive data processing frameworks. UIE is the first step
in our eventual goal of providing interference-aware SLO
compliance for cloud applications. As next steps, we will
leverage UIE to provide performance management to cloud-
deployed applications in interference-ridden environments.

ACKNOWLEDGMENT

This research was supported by NSF CSR Grant 1464151.

REFERENCES

[1] Y. Amannejad, D. Krishnamurthy, and B. Far, “Detecting
Performance Interference in Cloud-based Web Services,” in
Proceedings of IFIP/IEEE International Symposium on Inte-
grated Network Management, 2015, pp. 423–431.

[2] J. Mukherjee, D. Krishnamurthy, and J. Rolia, “Resource
Contention Detection in Virtualized Environments,” IEEE
Transactions on Network and Service Management, vol. 12,
no. 2, pp. 217–231, 2015.

[3] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma,
“Mitigating Interference in Cloud Services by Middleware
Reconfiguration,” in Proceedings of the 15th International
Middleware Conference, 2014, pp. 277–288.

[4] A. Gandhi, P. Dube, A. Karve, A. Kochut, and H. Ellanti,
“The Unobservability Problem in Clouds,” in Proceedings
of the 2015 IEEE International Conference on Cloud and
Autonomic Computing, Cambridge, MA, USA, 2015.

[5] G. Casale, C. Ragusa, and P. Parpas, “A Feasibility Study of
Host-level Contention Detection by Guest Virtual Machines,”
in Proceedings of the 5th International Conference on Cloud
Computing Technology and Science, 2013, pp. 152–157.

[6] “The Apache HTTP Server Project,” See
http://httpd.apache.org.

[7] Y. Hu, A. Nanda, and Q. Yang, “Measurement, Analysis and
Performance Improvement of the Apache Web Server,” in
Proceedings of the 18th International Performance, Comput-
ing and Communications Conference, Scottsdale, AZ, USA,
1999, pp. 261–267.

[8] D. Mosberger and T. Jin, “httperf—A Tool for Measuring
Web Server Performance,” ACM Sigmetrics: Performance
Evaluation Review, vol. 26, pp. 31–37, 1998.

[9] “Stress-ng,” http://kernel.ubuntu.com/ cking/stress-ng.
[10] M. Harchol-Balter, Performance Modeling and Design of

Computer Systems. Cambridge University Press, 2013.
[11] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,

and J. Wilkes, “CPI2: CPU Performance Isolation for Shared
Compute Clusters,” in Proceedings of the 8th ACM European
Conference on Computer Systems, 2013, pp. 379–391.

4


