
Adaptive, Model-driven Autoscaling for Cloud Applications

Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, Li Zhang
IBM Research

Abstract
Applications with a dynamic workload demand need
access to a flexible infrastructure to meet performance
guarantees and minimize resource costs. While cloud
computing provides the elasticity to scale the infrastruc-
ture on demand, cloud service providers lack control and
visibility of user space applications, making it difficult to
accurately scale the underlying infrastructure. Thus, the
burden of scaling falls on the user.
In this paper, we propose a new cloud service, Depend-
able Compute Cloud (DC2), that automatically scales the
infrastructure to meet the user-specified performance re-
quirements. DC2 employs Kalman filtering to automati-
cally learn the (possibly changing) system parameters for
each application, allowing it to proactively scale the in-
frastructure to meet performance guarantees. DC2 is de-
signed for the cloud - it is application-agnostic and does
not require any offline application profiling or bench-
marking. Our implementation results on OpenStack us-
ing a multi-tier application under a range of workload
traces demonstrate the robustness and superiority of DC2
over existing rule-based approaches.

1 Introduction
With the advent of cloud computing, many application
owners have started moving their deployments into the
cloud. Cloud computing offers many benefits over tradi-
tional physical deployments including lower infrastruc-
ture costs and elastic resource allocation. These benefits
are especially advantageous for applications with a dy-
namic workload demand. Such applications can be de-
ployed in the cloud based on the current demand, and
the deployment can be scaled dynamically in response to
changing workload demand.
While cloud computing is a very promising option for ap-
plication owners, it is not easy to take full advantage of
the benefits of the cloud. Specifically, while cloud com-
puting offers flexible resource allocation, it is up to the
customer (application owner) to leverage the flexible in-
frastructure. That is, the user must decide when and how
to scale the application deployment to meet the changing
workload demand.
Dynamically sizing a deployment is challenging for
many reasons (see, for example, the recent survey pa-
per [15]). From the perspective of the user, who is also
the application owner, some of the specific hurdles that
complicate the dynamic sizing of the application are: (i)

Requires expert knowledge about the dynamics of the ap-
plication, including the service requirements of the appli-
cation at each tier, and (ii) Requires sophisticated mod-
eling expertise to determine when and how to resize the
deployment. For small and medium businesses (SMB),
which comprise the targeted customer base for many
cloud service providers (CSPs) [8,24], these hurdles are
non-trivial to overcome. SMB users would much rather
contract a cloud service that manages their dynamic siz-
ing than invest in employing a team of experts. The pur-
pose of this research is to provide this exact service -
an application-agnostic cloud offering that will automat-
ically, and dynamically, resize user applications to meet
performance requirements in a cost-effective manner.
Many CSPs today offer monitoring services to users (not
necessarily for free) for tracking resource usage. While
such monitoring services provide valuable information,
the user still requires expert knowledge about the appli-
cation and the performance modeling expertise to con-
vert the monitored information into scaling actions.
Some CSPs also offer rule-based triggers to help users
scale their applications. These rule-based triggers allow
the users to specify some conditions on the monitored
metrics which, when met, will trigger a pre-defined scal-
ing action. Even with the help of rule-based triggers,
however, the burden of determining the threshold condi-
tions for the metrics still rests with the user. For example,
in order to use a CPU utilization based trigger for scal-
ing, the user must determine the CPU threshold at which
to trigger scale-up and scale-down, and the number of
instances to scale-up and scale-down.
Note that CSPs cannot gather all the necessary
application-level statistics without intruding into the
user-space application. Given the lack of control and vis-
ibility into the application, CSPs cannot leverage most
of the existing work (see, for example, [7,25,26]) on dy-
namic scaling of applications since these works typically
require access to the application for measurement and
profiling purposes. Further, most of the existing work
is not application-agnostic, which is a requirement for a
practical cloud service. A detailed discussion of the re-
lated work can be found in Section 5
We propose a completely automated cloud service, De-
pendable Compute Cloud (DC2), that proactively and
dynamically scales the application deployment based on
user-specified performance requirements. DC2 leverages
resource-level and application-level statistics to infer the

1

Figure 1: System architecture for DC2.

underlying system parameters of the application(s), and
determines the required scaling actions to meet the per-
formance goals in a cost-effective manner. A detailed
discussion of our approach is presented in Section 2,
along with details of our implementation.
At the heart of DC2 lies the modeling and execution en-
gine that internalizes the monitored statistics and infers
the necessary system parameters. While this engine can
employ any grey-box or black-box modeling approach,
in this paper we use Kalman filtering to infer the sys-
tem parameters. Kalman filtering is a robust feedback
control algorithm that combines monitoring information
with a user-specified system model to create accurate
estimations of the system state. In this paper we em-
ploy Kalman filtering by specifying a generic queueing-
theoretic model (details of our modeling engine can be
found in Section 3). Fortunately, since Kalman filtering
leverages monitored statistics to come up with estima-
tions, the underlying system model need not be accurate,
as is often the case when using queueing theory (or any
other mathematical modeling technique) to model com-
plex systems.
We evaluate DC2 via implementation on OpenStack. We
employ the three-tier bidding benchmark, RUBiS, as the
user application and experiment with various workload
traces. Our results demonstrate that DC2 successfully
scales the application in response to changing workload
demand without any user input and without any offline
profiling. Importantly, we compare with existing rule-
based triggers and show that DC2 is superior to such ap-
proaches. A detailed evaluation of our DC2 implementa-
tion is presented in Section 4.

2 Implementation
Figure 1 shows the proposed system architecture for the
DC2 service environment. The Application Owner (cus-
tomer) is responsible for providing the initial deployment
model consisting of the multi-tier topology for the ap-
plication (in the form of a graph or a configuration file)

and the performance SLA requirements. The Applica-
tion Deployer customizes the image for deployment and
ties up the endpoints for the application during installa-
tion and configuration. We leverage Chef [18] to auto-
mate the installation of software on VMs during boot.
We use OpenStack [17] as the underlying scalable cloud
operating system. The VMs for the application are cre-
ated on an OpenStack managed private cloud deploy-
ment on SoftLayer [23]. The CloudPool component in
Figure 1 is a logical entity that models the application
and issues the directives (such as VM scale up/down) re-
quired to maintain the performance SLA for the appli-
cation. The Monitoring Agent is responsible for retriev-
ing the resource-level metrics from the hypervisor and
the application-level metrics from the application. The
Modeling + Optimization Engine (described in detail in
Section 3) takes as input the monitored metrics and out-
puts a list of directives indicating the addition or removal
of VMs, migration of VMs, or a change in the resources
allocated to VMs. These directives are passed on to the
Policy-based Execution Engine that issues commands to
OpenStack API, that in turn performs the scaling.

2.1 Application
We use the open source multi-tier application, RU-
BiS [2], for our experiments. RUBiS is an auction site
prototype modeled after eBay.com supporting different
classes of web requests such as bid, browse, buy, etc. Our
RUBiS implementation employs Apache as the frontend
web server, Tomcat as the Java servlets container, and
MySQL as the backend database. In our experiments we
focus on scaling the Tomcat application tier. We employ
RUBiS’s benchmarking tool to generate load by defining
sessions consisting of a sequence of requests. The think
time between requests is exponentially distributed with a
mean of 1 second. We fix the number of clients for each
experiment and vary the load by dynamically changing
the composition of the workload mix.

2.2 Experimental setup
We employ multiple hypervisors with 8 CPU cores and 8
GB of memory each. The Apache and MySQL tiers are
each hosted on a 4 CPU VM. The Tomcat application
tier is hosted on multiple 2 CPU VMs. The provisioning
time for a new Tomcat VM is about 30-40 seconds. Once
the new VM is online, our automated scripts configure
the JDBC with the IP address of the MySQL database
and update the load balancer on Apache web server to
include the new Tomcat VM.

2.3 Monitoring agent
We use virt-top (part of the libvirt [1] package) to col-
lect VM CPU utilization statistics from each hypervisor
periodically. For the application-level metrics, we peri-
odically analyze the request URLs directed at the RU-

2

BiS application to compute the request rate and response
time. Note that the user can choose to provide these met-
rics to us directly (for example, using a REST call). The
monitoring interval is set to 10s. The collected statistics
are then provided as input to the modeling engine.

2.4 Execution engine
The execution engine is primarily responsible for issuing
commands for VM scaling based on the scaling direc-
tives received from the modeling engine. For robustness,
the execution engine issues the VM scaling commands
to OpenStack only after two successive scaling directives
from the modeling engine. The execution engine is also
responsible for placing the new VMs on specific hypervi-
sors. We use host aggregates (which are essentially log-
ical cloud partitions) to place the Apache and MySQL
VMs on one hypervisor and Tomcat VMs on a different
set of hypervisors.

3 Modeling
The modeling engine lies at the heart of our DC2 ap-
proach. We use a queueing-network model to approxi-
mate our multi-tier cloud application. However, since we
cannot access the user application to derive the parame-
ters of our model, we use a Kalman filtering technique to
infer these unobservable parameters. We now describe
our queueing model and Kalman filtering technique, fol-
lowed by an analysis of our modeling engine, and finally,
an explanation of how our modeling engine determines
the required scaling actions for SLA compliance.

3.1 Queueing-network model
Figure 2 shows a queueing-network model of a generic
three-tier system with each tier representing a collection
of homogeneous servers. We assume that the load at each
tier is distributed uniformly across all the servers in that
tier. The system is driven by a workload consisting of i
distinct request classes, each class being characterized by
its arrival rate, λi, and end-to-end response time, Ri. Let
n j be the number of servers at tier j. With homogeneous
servers and perfect load-balancing, the arrival rate of re-
quests at any server in tier j is λi j := λi/n j. Since servers
at a tier are identical, for ease of analysis, we model each
tier as a single representative server. With some abuse
of terminology, we refer to the representative server at
tier j as tier j. Let u j ∈ [0,1) be the utilization of tier
j. The background utilization of tier j is denoted by u0 j,
and models the resource utilization due to other jobs (not
related to our workload) running on that tier. The end-to-
end network latency for a class i request is denoted by di.
Let Si j(≥ 0) denote the average service time of a class i
request at tier j. Assuming we have Poisson arrivals and
a processor-sharing policy at each server, the stationary
distribution of the queueing network is known to have a

Figure 2: Queueing model for our system.

product-form [28], for any general distribution of service
time at servers. Under the product-form assumption, we
have the following analytical results from queueing the-
ory:

u j = u0 j +∑
i

λi jSi j, ∀ j (1)

Ri = di +∑
j

Si j

1−u j
, ∀i (2)

While u j, Ri and λi, ∀i, j, can be monitored easily
and are thus observable, the parameters Si j, u0 j, and di
are non-trivial to measure and are thus unobservable.
While existing work on auto-scaling (see, for example,
[25,26]) typically obtains these values by directly ac-
cessing or modifying the application software (for ex-
ample, by parsing the log files at each tier), our proposed
application-agnostic cloud service cannot encroach the
user’s application space. Instead, we employ a parameter
estimation technique, Kalman filtering (see Section 3.2
below), to derive estimates for the unobservable param-
eters. Further, since the system parameters can dynami-
cally change during runtime, we employ the Kalman fil-
ter as an on-line parameter estimator to continually adapt
our parameter estimates.
It is important to note that while the product-form is
shown to be a reasonable assumption for tiered web ser-
vices [5], we only use it as an approximation for our com-
plex system. By employing the Kalman filter to lever-
age the actual monitored values, we minimize our de-
pendence on the approximation.

3.2 Kalman filtering
For a three-class, three-tier system (i.e., i = j = 3),
let z := (u1,u2,u3,R1,R2,R3)

T = h(x) and x =
(u01,u02,u03,d1,d2,d3,S11,S21,S31,S12,S22,S32,S13,S23,S33)

T .
Note that z is a 6-dimensional vector whereas x is a
15-dimensional vector. The problem is to determine the
unobservable parameters x from measured values of z
and λ = (λ1,λ2,λ3).
We use Kalman filtering to estimate the unobservable pa-
rameters (for a detailed explanation of Kalman filters, we
refer the reader to [22]). The dynamic evolution of sys-
tem parameters can be described through the following

3

Kalman filtering equations [22]:

System State x(t) = F(t)x(t−1)+w(t),

Measurement Model z(t) = H(t)x(t)+v(t),

where F(t) is the state transition model and H(t) is
the observation model mapping the true state space into
the observed state space. In our case, F(t),∀t, is the
identity matrix. The variables w(t) ∼ N (0,Q(t)) and
v(t) ∼N (0,R(t)) are process noise and measurement
noise which are assumed to be zero-mean, multi-variate
Normal distributions with covariance matrices Q(t) and
R(t) respectively. The matrices Q(t) and R(t) are
not directly measurable but can be tuned via best prac-
tices [14].
Since the measurement model z is a non-linear function
of the system state x (see Eqns. (1) and (2)), we use the
Extended Kalman filer [22] with H(t) =

[
∂h
∂x

]
x(t)

, which

for our model is a 6×15 matrix with H(t)i j =
[

∂hi
∂xj

]
x(t)

.

Since x(t) is not known at time t, we estimate it by x̂(t|t−
1), which is the a priori estimate of x(t) given all the
history up to time t−1. The state of the filter is described
by two variables x̂(t|t) and P(t|t), where x̂(t|t) is the a
posteriori estimate of state at time t and P(t|t) is the a
posteriori error covariance matrix which is a measure of
the estimated accuracy of the system state.
The Kalman filter has two phases: Predict and Update.
In the predict phase, a priori estimates of state and error
matrix are calculated. In the update phase, these esti-
mates are refined using the current observation to get a
posteriori estimates of state and error matrix. The filter
model for the predict and update phases for our 3-class,
3-tier model is given by:
Predict:

x̂(t|t−1) = F(t)x̂(t−1|t−1)
P(t|t−1) = F(t)P(t−1|t−1)FT (t)+Q(t)

Update:
y(t) = z(t)−h(x̂(t|t−1))

H(t) =

[
∂h
∂x

]
x̂(t|t−1)

S(t) = H(t)P(t|t−1)HT (t)+R(t)

K(t) = P(t|t−1)HT (t)S−1(t)

x̂(t|t) = x̂(t|t−1)+K(t)y(t)
P(t|t) = (I−K(t)H(t))P(t|t−1)

We employ the above filter model by seeding our initial
estimate of x̂(t|t−1) and P(t|t−1) with random values,
then applying the Update equations by monitoring z(t) to
get x̂(t|t) and P(t|t), and finally using the Predict values
to arrive at the estimated x̂(t|t − 1) and P(t|t − 1). We
continue this process iteratively at each 10 second moni-
toring interval to derive new system state estimates.

Figure 3: Accuracy and convergence of our Kalman fil-
tering technique when employed in our experiments.

3.3 Performance analysis
The Kalman filtering technique described above gives us
estimates of the unobservable system parameters Si j, u0 j,
and di. We then use these estimates, along with Eqns. (1)
and (2), to predict the future values of u j and Ri. Figure 3
demonstrates our Kalman filtering technique in action.
The solid line with crosses shows the monitored values of
response time for a specific class of requests in our three-
tier application (see Section 2 for details of our applica-
tion setup). Here, the monitoring interval is 10 seconds.
The dashed line with circles shows our estimated values
for the predicted response time based on our Kalman fil-
tering technique. It initially takes about a minute for our
estimates to converge. After convergence, our estimated
values are in very good agreement with the monitored
values, thus validating our technique and highlighting
its accuracy. Since we leverage the current monitored
values of z and λ , our estimated system parameters can
adapt to changes in the application. In order to demon-
strate this ability, we trigger a change in our workload
at about the 10-minute mark (shown in Figure 3) which
causes the response time to increase. The change in the
workload causes a change in the service time of the re-
quests. Our Kalman filter detects this change based on
the monitored values, and quickly adapts (in about 2 min-
utes) its estimates to converge to the new system state.

3.4 Scaling directives
The estimated values of the system state are used to com-
pute the required scaling actions for DC2. Specifically,
given the response time SLA, we use Eqns. (1) and (2) to
determine the minimum n j required to ensure SLA com-
pliance. Note that λi j = λi/n j in Eqn. (1). We demon-
strate the auto-scaling abilities of the Kalman filtering-
based DC2 approach in Section 4.

4 Evaluation
We now evaluate our DC2 scaling policy in various
settings using the RUBiS application. We use traces
from the WITS traffic archive [29] and the WorldCup98
dataset from the Internet Traffic Archive (ITA) [11] to
drive our load generator. The WITS archive contains a
large collection of recent internet traces from ISPs and
University networks. The WorldCup98 dataset contains

4

(a) Bursty trace (source:WITS [29]) (b) Rampdown trace (source:ITA [11]) (c) Hill trace (source:WITS [29])

Figure 4: Traces (normalized) used for our experiments.

3 months worth of requests made to the 1998 World Cup
Web site. We scaled the traces to fit our deployment. The
normalized traces are shown in Figure 4. The workload
we use for evaluation is a mix of different RUBiS request
classes that together stress the application tier more than
the other tiers.
In our experiments, we focus on the response time of
browse requests since customers often base their web ex-
perience based on how long it takes to browse through
online catalogues. We want the response time for the
browse requests to be less than 40ms, on average, for ev-
ery 10s monitoring interval. Note that this goal is much
more challenging than requiring the response time be
less than 40ms over the entire length of the experiment.
We set the response time SLA for all other classes to be
100ms. The secondary goal is to minimize the number
of application tier VMs employed during the experiment.
We consider the following two metrics: V, the percent-
age of time that the response time SLA was violated, and
K, the average number of application tier VMs used dur-
ing the experiment. For each experiment, we compare
DC2 with the following class of policies:
THRES(x,y) is a family of rule-based provisioning poli-
cies that adds one application VM when the average ap-
plication tier utilization exceeds y% for successive inter-
vals and removes one application VM when the average
utilization falls below x% for successive intervals. In
practice, it suffices to consider two successive intervals
for the scaling decisions, just as in the case of DC2.

4.1 Comparison of different policies
Figure 5(a) shows our experimental results for DC2 un-
der the Bursty trace. The figure shows the monitored
(black solid line) and estimated (green line with dots) re-
sponse time under DC2, along with the response time
SLA (dashed line). We only show the response time for
the browse requests. We see that the monitored response
time under DC2 is below the SLA throughout the exper-
iment. The up and down triangles represent the points
in time when a scale-up and scale-down action was trig-
gered, respectively. As mentioned in Section 2, a scaling
is triggered based on two successive recommendations
from the Kalman filter. Observe that the estimated re-
sponse time is typically in agreement with the monitored

response time. This indicates the accuracy of our Kalman
filtering technique. However, there is a difference be-
tween the estimated and monitored response time for the
first few intervals. This is because it takes some time
for the Kalman filter to calibrate its model based on the
monitored data, as discussed in Section 3.
Using the THRES(x,y) policy in practice is tricky since
it requires finding the right values for x and y. To find
the optimal THRES policy, we start with x = 20% and
y =70%, and then iterate via trial-and-error till we find
the optimal values. Our results indicate that y = 60%
results in the lowest K with V = 0. We then experi-
ment with different x values with y = 60%. Based on our
results, we conclude that THRES(30,60) is the optimal
THRES policy for the Bursty trace.
Table 1 shows the performance of different policies for
the Bursty trace. While both DC2 and THRES(30,60)
result in zero SLA violations and low resource consump-
tion, THRES requires a lot of experimentation and cali-
bration to achieve the desired performance.

4.2 Comparison under different traces
We now consider the Hill trace and the Rampdown
trace. Figures 5(b) and 5(c) show our experimental re-
sults for DC2 under these traces. We again see that the
(monitored) response time under DC2 is below the SLA
throughout the experiment for both traces. It is impor-
tant to note that we do not change our DC2 algorithm
between experiments. DC2 automatically adapts (based
on the Kalman filtering technique discussed in Section 3)
to the different traces and takes corrective actions to en-
sure that the SLA is not violated.
Unfortunately, the THRES(30,60) policy is no longer op-
timal for the Hill or Rampdown traces. For the Hill trace,
we find that THRES(30,50) is optimal. This is because
the Hill trace exhibits a steep rise in load, requiring more
aggressive scaleup. For the Rampdown trace, we find
that THRES(40,60) is optimal. This is because the Ram-
pdown traces exhibits a gradually lowering request rate,
allowing for more aggressive scaledown. Not using the
right THRES policy for each trace can result in expen-
sive SLA violations or increased resource consumption
(see Table 1). We thus conclude that DC2 is more robust
to changes in arrival patterns than THRES.

5

(a) DC2 under Bursty trace (b) DC2 under Hill trace (c) DC2 under Rampdown trace

Figure 5: Performance of DC2 for all traces.

Trace Bursty Hill Rampdown
PPPPPPPPPolicy

Metric V K V K V K

THRES(30,60) 0% 2.50 6.66% 2.56 0% 6.00
THRES(30,50) 0% 2.79 1.21% 2.72 0% 6.00
THRES(40,60) 2.02% 2.19 15.87% 2.13 0% 4.62

DC2 0% 2.50 0% 2.44 0% 4.76
Table 1: Comparison of policies for all traces. For each
trace, the optimal policies’ values are displayed in bold.

5 Related Work
Auto-scaling approaches: Prediction models [6,20,21]
use historical data to predict future demand and proac-
tively allocate resources. In most cases, however, some
information about the application is required to convert
predicted demand into resource requirements. Control-
theoretic techniques [6,7,9,13] react to the current sys-
tem state and adjust the resource allocation accordingly.
However, these approaches typically rely on system pro-
filing to convert the system state into scaling actions.
Queueing-based models [19,25,26] also require infor-
mation about the application to make informed scaling
decisions. Black-box models do not require informa-
tion about the application, and instead leverage statistical
techniques [16] or machine learning [4] to infer system
parameters. DC2 uses a grey-box approach by modeling
the system as a queueing network, and then leverages
Kalman filtering to infer the parameters of the queue-
ing model. Grey-box approaches typically require less
time to converge and infer the system state as opposed to
black-box models.
Kalman filtering approaches: An Extended Kalman
filter (EKF) based approach was proposed in [31,33]
where the system was modeled using a queueing net-
work. The authors in [14] study a three-class, single-
tier system and conduct an extensive experimental eval-
uation of EKF. Recently, [32] applied the EKF approach
to track resource usage for a three-class, two-tier system.
In this work, we generalize EKF to a three-class, three-
tier system, and specifically use EKF for auto-scaling,
as opposed to the above works that focus on modeling
and offline analysis. The authors in [12] use Kalman fil-

tering for allocating CPU resources to VMs by modeling
the application performance as a function of CPU utiliza-
tion. Our work leverages application-level metrics in ad-
dition to resource usage metrics, and employs queueing-
theoretic models to capture the interaction between the
resources, application load, and performance.
Rule-based approaches: Auto-scaling features are now
offered by almost every major CSP including Amazon
(AWS) [3], VMware [27], Windows Azure [30], and
Google [10]. However, to the best of our knowledge, ex-
isting CSP-offered auto-scaling solutions are rule-based
and typically require the user to specify the threshold val-
ues on the resource usage (e.g., CPU, memory, storage).
Further, such rule-based approaches have to be tuned to
the specific demand pattern for best results, as demon-
strated by the THRES policy in Section 4. By contrast,
DC2 does not require the user to specify scaling rules.

6 Conclusion
In this paper we present the design and implementa-
tion of a new cloud service, Dependable Compute Cloud
(DC2), that automatically scales user applications in a
cost-effective manner to provide performance guaran-
tees. Since cloud service providers (CSPs) do not have
complete control and visibility of a user’s cloud deploy-
ment, we designed DC2 to be application-agnostic. In
particular, unlike most of the existing auto-scaling re-
search, DC2 does not require any offline profiling or
application benchmarking. Instead, DC2 employs a
Kalman filtering technique in combination with a queue-
ing theoretic model to proactively determine the right
scaling actions for an application deployed in the cloud.
An overarching goal behind the conception of DC2 is to
make a case for a CSP-offered auto-scaling service that is
superior to existing rule-based offerings. Since the cloud
is marketed as a platform designed for all levels of ten-
ants, we believe that users who do not have expert knowl-
edge in performance modeling and system optimization
should be able to easily scale their applications. Existing
auto-scaling research has ignored this segment of users.
We hope that DC2 motivates further research in the area
of easy-to-use, application-agnostic auto-scaling.

6

References

[1] libvirt virtualization API. http://libvirt.org.
[2] RUBiS: Rice University Bidding System. http:

//rubis.ow2.org.
[3] AMAZON INC. Amazon Auto Scaling. http://

aws.amazon.com/autoscaling.
[4] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:

Resource-efficient and QoS-aware Cluster Man-
agement. In Proceedings of the 19th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (Salt Lake
City, UT, USA, 2014), pp. 127–144.

[5] DUBE, P., YU, H., ZHANG, L., AND MOREIRA,
J. Performance evaluation of a commercial applica-
tion, trade, in scale-out environments. In Proceed-
ings of the 15th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and
Telecommunication Systems (2007), pp. 252–259.

[6] GANDHI, A., CHEN, Y., GMACH, D., ARLITT,
M., AND MARWAH, M. Minimizing Data Center
SLA Violations and Power Consumption via Hy-
brid Resource Provisioning. In Proceedings of the
2011 International Green Computing Conference
(Orlando, FL, USA, 2011), pp. 49–56.

[7] GANDHI, A., HARCHOL-BALTER, M., RAGHU-
NATHAN, R., AND KOZUCH, M. AutoScale: Dy-
namic, Robust Capacity Management for Multi-
Tier Data Centers. Transactions on Computer Sys-
tems 30 (2012).

[8] GARTNER, INC. Gartner’s Advice for CSPs Be-
coming Cloud Service Providers. https://www.

gartner.com/doc/2155315, 2012.
[9] GHANBARI, H., SIMMONS, B., LITOIU, M.,

BARNA, C., AND ISZLAI, G. Optimal Autoscaling
in a IaaS Cloud. In Proceedings of the 9th Interna-
tional Conference on Autonomic Computing (San
Jose, CA, USA, 2012), pp. 173–178.

[10] GOOGLE CLOUD PLATFORM. Auto Scal-
ing on the Google Cloud Platform. http:

//cloud.google.com/resources/articles/

auto-scaling-on-the-google-cloud-platform.
[11] ITA. The Internet Traffic Archives: WorldCup98.

http://ita.ee.lbl.gov/html/contrib/

WorldCup.html.
[12] KALYVIANAKI, E., CHARALAMBOUS, T., AND

HAND, S. Self-adaptive and Self-configured CPU
Resource Provisioning for Virtualized Servers Us-
ing Kalman Filters. In Proceedings of the 6th In-
ternational Conference on Autonomic Computing
(Barcelona, Spain, 2009), pp. 117–126.

[13] KRIOUKOV, A., MOHAN, P., ALSPAUGH, S.,
KEYS, L., CULLER, D., AND KATZ, R. Nap-
SAC: Design and implementation of a power-

proportional web cluster. In Proceedings of the 1st
ACM SIGCOMM Workshop on Green Networking
(New Delhi, India, 2010), pp. 15–22.

[14] KUMAR, D., TANTAWI, A., AND ZHANG, L. Esti-
mating model parameters of adaptive software sys-
tems in real-time. In Run-time Models for Self-
managing Systems and Applications, D. Ardagna
and L. Zhang, Eds., Autonomic Systems. Springer
Basel, 2010, pp. 45–71.

[15] LORIDO-BOTRÁN, T., MIGUEL-ALONSO, J.,
AND LOZANO, J. A. Auto-scaling Techniques
for Elastic Applications in Cloud Environments.
Tech. Rep. EHU-KAT-IK-09-12, University of the
Basque Country, 2012.

[16] NGUYEN, H., SHEN, Z., GU, X., SUBBIAH, S.,
AND WILKES, J. AGILE: Elastic Distributed Re-
source Scaling for Infrastructure-as-a-Service. In
Proceedings of the 10th International Conference
on Autonomic Computing (San Jose, CA, USA,
2013), pp. 69–82.

[17] OPENSTACK.ORG. OpenStack Open Source Cloud
Computing Software. http://www.openstack.

org.
[18] OPSCODE INC. Chef. http://www.opscode.

com/chef.
[19] PACIFICI, G., SPREITZER, M., TANTAWI, A.,

AND YOUSSEF, A. Performance management
for cluster-based web services. Selected Areas in
Communications, IEEE Journal on 23, 12 (2005),
2333–2343.

[20] ROY, N., DUBEY, A., AND GOKHALE, A. Ef-
ficient Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting. In IEEE Inter-
national Conference on Cloud Computing (2011),
pp. 500–507.

[21] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES,
J. CloudScale: Elastic resource scaling for multi-
tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (Cascais,
Portugal, 2011), pp. 1–14.

[22] SIMON, D. Optimal State Estimation: Kalman, H
Infinity, and Nonlinear Approaches. John Wiley &
Sons, 2006.

[23] SOFTLAYER TECHNOLOGIES, INC. http://

www.softlayer.com.
[24] SP HOME RUN INC. Cloud Service

Provider (CSP) and Inbound Market-
ing. http://www.sphomerun.com/

cloud-service-provider-csp, 2013.
[25] URGAONKAR, B., AND CHANDRA, A. Dynamic

Provisioning of Multi-tier Internet Applications.
In Proceedings of the 2nd International Confer-
ence on Automatic Computing (Seattle, WA, USA,
2005), pp. 217–228.

7

[26] URGAONKAR, B., PACIFICI, G., SHENOY, P.,
SPREITZER, M., AND TANTAWI, A. An analyti-
cal model for multi-tier internet services and its ap-
plications. In Proceedings of the 2005 ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Systems (Banff,
Alberta, Canada, 2005), pp. 291–302.

[27] VMWARE, INC. VMware vFabric AppInsight.
http://pubs.vmware.com/appinsight-5/

index.jsp.
[28] WALRAND, J. An Introduction to Queueing Net-

works. Prentice Hall, 1988.
[29] WAND NETWORK RESEARCH GROUP. WITS:

Waikato Internet Traffic Storage. http://www.

wand.net.nz/wits/index.php.
[30] WINDOWSAZURE. How to Scale an Appli-

cation. http://www.windowsazure.com/

en-us/manage/services/cloud-services/

how-to-scale-a-cloud-service.
[31] WOODSIDE, M., ZHENG, T., AND LITOIU, M.

Service system resource management based on a
tracked layered performance model. In Proceed-
ings of the 2006 IEEE International Conference
on Autonomic Computing (Washington, DC, USA,
2006), IEEE Computer Society, pp. 175–184.

[32] ZHANG, L., MENG, X., MENG, S., AND TAN, J.
K-scope: Online performance tracking for dynamic
cloud applications. In Proceedings of the 10th In-
ternational Conference on Autonomic Computing
(2013), pp. 29–32.

[33] ZHENG, T., WOODSIDE, M., AND LITOIU, M.
Performance model estimation and tracking using
optimal filters. Software Engineering, IEEE Trans-
actions on 34, 3 (2008), 391–406.

8

