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I. INTRODUCTION

The growing need for data processing and analytics
(DPA) has resulted in the development of a broad set of tools
specifically tailored for data analysis, such as Hadoop and
Spark. Cloud service providers, recognizing this emerging
trend, have started incorporating DPA in their cloud offer-
ings, for example, Elastic MapReduce from Amazon.

Cloud users are typically interested in minimizing their
resource rental costs while completing their jobs in the
necessary time frame (execution time SLA). Unfortunately,
this is a very difficult task for several reasons: (1) The
performance of DPA applications depends on many internal
and external parameters (for example, Ganglia provides
200+ metrics for monitoring Hadoop), and these relation-
ships are usually complex and workload-dependent; (2) The
dynamic, shared nature of cloud computing often results in
unpredictable application performance due to, for instance,
node failures and resource contention; (3) DPA applications
are typically composed of multiple stages, each of which
requires different resource allocations. Efficient utilization
of resources would require the ability to dynamically scale
the deployment while the job is in progress, and the expertise
to determine the required scaling for SLA compliance.

Prior research does not completely address the above
challenges. While there has been recent work [1], [2] on
performance modeling of DPA applications, such models
are not well suited for dynamic scaling. Recent work [3],
[4] on dynamic management of DPA applications focuses on
redistributing existing resources without addressing dynamic
scaling for SLA compliance. There has also been recent
work on autoscaling in cloud environments [5], [6]; however,
these works focus on transactional (non-DPA) workloads.

In this paper, we focus specifically on enabling au-
toscaling for DPA applications on Hadoop. We first derive
simple yet powerful performance models for various DPA
workloads in Section II. Our models only focus on important
system parameters, providing very good accuracy (typically
less than 5% error) without being overly complex. We then
leverage these models in Section III to decide the scaling
actions needed to meet the execution time SLAs under a
range of scenarios, including node failures. Our implemen-
tation results on an OpenStack-deployed cloud environment
demonstrate the efficacy of our autoscaling solution.
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II. MODELING

We employ a model-driven approach to autoscaling. Our
modeling methodology involves profiling a Hadoop work-
load under various scenarios, such as varying job and cluster
configurations, and then using regression to build simple,
descriptive models of execution time as a function of, among
others, resource allocation.

Based on the characteristics of Hadoop and its job exe-
cution, we model job execution time, T}, (in secs), as a
function of input data size, D (in MB), number of Map
and Reduce tasks, M and R, number of Map and Reduce
configured cores, N,,,. and N,.., and the number of Map and
Reduce slots per core, n,,s and n,s. We then use training
data to fit our generic models to specific workloads.
Workloads: We employ three different Hadoop workloads
for our experiments: WordCount (dominated by the Map
stage, CPU-bound), TeraSort (CPU-bound Map stage and an
I/0-bound Reduce stage), and Kmeans (multi-job workload,
composed of multiple CPU-bound Iteration jobs and a single
I/0O-bound Classification job).

Performance Models: We separately model the Map stage
execution time, 7,5, and the Reduce stage execution time,
T,s. Note that T}, = T + 155 Due to lack of space, we
omit the model derivations and present the final models.
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The min term above accounts for the corner cases where M
is less than N,,.. The M/R term accounts for the overhead
of data movement in the Shuffle phase.
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(a) Scaling up capacity for TeraSort.

(b) Scaling down capacity for Kmeans.

(c) Scaling for failure recovery for WordCount.

Figure 1. Implementation results illustrating our autoscaling approach for various use cases and workloads. In all cases, we successfully meet the SLA.

The execution time for Kmeans depends on the number
of Kmeans clusters (K.), which is an input parameter. Since
the above models do not account for such parameters, we
directly model execution time as a function of input data
size, D, number of Kmeans clusters (K.), and number of
Map cores, N,,.. We model job execution time of the two
Kmeans phases (Iteration and Classification) separately. In
our experiments, we find that the execution time of the (non-
overlapping portion of) Reduce stage in the two phases of
Kmeans is negligible (in fact, the Classification phase is
Map-only). We thus ignore the Reduce stage execution time.

Iteration Tjop = (2.1K. + 0.04K72 + 0.1K.D) /Npe
Classification  Tjop = (2.4Kc + 0.05K + 0.2K.D) /Npc

Observe that Kmeans execution time has a quadratic de-
pendence on K., and also depends on K. x D.
Validation: The regression models obtained above exhibit
a good fit, with R? (goodness of fit coefficient) values
above 0.97. For validation, we employ the above models
to estimate T}, for test data, which is different (in terms
of job and/or cluster configuration) from training data. Our
modeling error over test data is less than 10%, with an
average error of about 4%.

III. EVALUATION

We now leverage the above workload-specific models for
autoscaling resources needed by a given job to meet its
execution time SLA. For each experiment, we first illustrate
performance using the default approach, Base, that does
not scale capacity. We then repeat the experiment and, to
highlight our solution, dynamically invoke our approach,
AutoScaling, while the job is in progress.

Experimental Setup: We set up Hadoop (version 1.2.1)
with 1 Master node VM and multiple 1-core 4GB memory
Slave node VMs (with 1 slot/node) on an OpenStack man-
aged private cloud deployment with multiple 8-core 64GB
memory hypervisors. To add a new Slave node, we boot a
new VM using a pre-loaded Hadoop image, and then start
the TaskTracker and DataNode services on it. To remove a
Slave node, we simply update the exclude list on the Master.
The Master then migrates the HDFS data, if any, from this
node. After this migration, the node can be turned off.

Experimental Results: Fig. 1 shows our experimental re-
sults for all workloads under different scenarios. We monitor

job progress via Hadoop logs. Since autoscaling is invoked
while the job is in progress, we set D as the remaining
amount of data to be processed (estimated via Hadoop
progress logs). Fig. 1(a) illustrates the scenario where we
scale up capacity just after execution of the Map stage to en-
sure that the SLA is met for TeraSort. Fig. 1(b) illustrates the
scenario where we scale down capacity between different job
phases of Kmeans to save on rental costs (or resource usage)
while ensuring SLA compliance. Lastly, Fig. 1(c) illustrates
the interesting case of performance recovery following a
node failure for WordCount. The loss in performance is
detected via progress logs, which results in invocation of
our autoscaling solution that adds the required capacity to
meet the SLA. The stall in progress (flat lines around the
1000s mark) is due to re-execution of lost tasks resulting
from node failures. Note that, in all cases, Base does not
meet the SLA whereas AutoScaling does.

IV. CONCLUSION

In this paper, we present our solution for agile autoscaling
of cloud-deployed DPA clusters that relies on our novel,
workload-specific performance models. We hope that our
solution promotes efficient cloud analytics, enabling the
availability of systems-of-insights to a broader audience.
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