Database Summarization and Publishing in Wireless
Environments

Anshul Gandhi and R.K. Ghosh

Indian Institute of Technology, Kanpur - 208 016, India
{ganshul, rkgl}@cse.iitk.ac.in

Abstract. Data dissemination in a mobile computing environment typically uses
push based data delivery model. Processing queries under this scenario is chal-
lenging because we need to organize the broadcast data to efficiently process
queries of an average mobile client. In this paper, we adopt the learning tech-
nique from [2]] in order to learn the patterns of queries of the average mobile user.
We then propose a method to create various summary databases from the main
database available at server side, on the basis of these query patterns.

1 Introduction

In this paper we view query processing as the fundamental element for data require-
ments in broadcast channel from an average client’s prospective. A client will be inter-
ested in some data items for which he/she would like to place a demand. So in trying
to learn the data demands of an average client, the approach should be to analyze the
pattern of queries originating from client devices. These patterns can be stored in a com-
pressed trie like data structure much like the ones used in location prediction of mobile
devices using subscriber mobility patterns [1,[2]. We, therefore, adopt the above tech-
nique for learning query patterns. We then form and analyse the Entity-Relationship
graph (E-R graph) related to these queries by extracting the database attributes from
them. Next we find a spanning subgraph of the E-R graph which can be used to construct
the summary database by selecting appropriate database attributes and corresponding
relationships from the main database at the server side. The server then intermixes sum-
mary data with an index before pushing it on broadcast channel which facilitates energy
efficient retrieval by the mobile hosts.

2 Current Prediction Techniques

Two techniques, namely, LeZi update [[1] and active LeZi [2] both based on Lempel-Zvi
data compression algorithm [3]] have been used in prediction of the location of a mobile
node by learning its mobility pattern. We model the query prediction as an instance for
the Active LeZi predictor with almost no overheads. The readers interested to know
more about active LeZi may refer to the original paper [2]. In the database scenario, we
keep track of queries received from various clients and record these in the trie.

Let the incoming queries be g1, qa, . .., g at some time ¢t. Every query makes ref-
erences to a certain set of attributes from a database. We assume that the required set

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 342-348] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Database Summarization and Publishing in Wireless Environments 343

of attributes can be extracted from the query. Once this set is available, every query
will be identified with its attribute set and this distinct set of such attributes will be
relabeled as g1, qo, ..., etc. This solves the issue of converting a query into a single
element as required by Active LeZi. We then apply the Active LeZi technique to the
input Q = {q1,92,...,qx}, with g; , i € {1,2,...,k}, belonging to a domain of ele-
ments D. Note that here D is simply the powerset of all attributes in the given database.
By looking at the output probability values from the Active LeZi scheme, we can pick
the query with the highest probability and use this as our prediction for the next query
(attribute-wise).

Despite its ease of implementation and simplicity, Active LeZi have some drawbacks
when used as a query predictor which are revealed when we take a closer look at a query
sequence. There is no concept of aging in active LeZi. Aging captures spatio-temporal
locality. As the queries keep coming, they change trends. In other words, the query
patterns change with time and/or location. If aging is not included, such patterns can
never be captured.

3 Augmented Active LeZi

At the client side, there are two pieces of information that we plan to make use of,
namely the location of the user and time at which the query has been sent. The client
simply uses mobile device id or mobile cell id for the location. For the timestamp, a
standardized clock for that region can be used. Hence, without much overhead in terms
of uplink bandwidth, this extra information can be obtained from the client. We now
have to change our trie accordingly.

From the Active LeZi, we see that the nodes simply contain the frequency of that
particular pattern. We now change this node to include a pointer to a linked-list. Each
node of this linked-list would be a 3-tuple with the following components: (i) the cell
node id or the zone id, (ii) the date, and (iii) the time. No particular sorting within
the linked list is required. Hence, as a new query comes in, we simply increment the
frequency in the corresponding trie node and create a new node in the attached linked-
list with information from the client. The trie would now look like the one shown in
figure T (a).

Since aging is to be used for improving predictions, there is no need to run a check
on aging at the server unless there is a need to predict; and also, we only need to check
aging for those nodes of the trie that get affected by the input query. Consider a trie at
time t; and suppose that we are interested in finding the probability of the next query
being ¢;. Then simply check aging for all those nodes in the trie that participate in
computation of the cumulative probability value for ¢;. We must, however, remove the
aged entries before using the node for calculating the probability for g;.

In the Active LeZi, we make use of all orders to calculate the probability for a pre-
diction. We use the frequencies in the trie to get the final value. Using our linked list,
we can calculate the average value of the time at which that particular node is accessed.
Once we have the average value, we can compare it with the value of the current time
and based on the deviation between the two, we can either add or subtract a factor from
the total probability value. One can also choose to multiply the deviation value with

344 A. Gandhi and R.K. Ghosh

‘Augmented —+—
"ActiveLezi’ -

Q0

() 2
o)
=@
=<
o)
@
[
Cumulative accuracy %
3 8

g e

A [17/4/06| 10
A [17/4/06| 10
B [21/4/06| 20

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Number of queries

Fig. 1. Trie resulting from Augmented Active LeZi and comparison of Augmented Active LeZi
with Active LeZi

the probability obtained from Active LeZi if the time factor is very significant for the
database usage. In general, we can say that the probability function in the Augmented
Active LeZi would be a function of the probability function used in the Active LeZi and
the deviation between the average and observed values.

We tested augmented active LeZi for a simulated input data and compared its perfor-
mance against active LeZi. Our test data was a set of 100 queries. From figure[Tl(b), it is
clear that the augmented predictor, which uses the hour of arrival of query to improve its
prediction, outperforms the active LeZi by around 5% in our simulation. Since Active
LeZi itself registers a success rate in the range of 80% in our case, the apparently small
5% increase in accuracy of prediction is indeed very significant. Though this simluation
is in no way conclusive, it does show that there are cases where the Augmented Active
LeZi will outdo the Active LeZi, especially if the incoming pattern tends to change its
trends over time.

4 Constructing Summary Databases

4.1 Density of Prediction and Database Hierarchies

With the probability values at hand, we can now decide to use the highest-probability
query to construct our database or we could decide to include more than one query
into our summary database. We shall denote this number of queries by the parameter
density. Note that higher the density, the larger would be the size of our database, which
is not a very favourable requirement. But as the density goes up, so is the chance that the
incoming query shall be answered by using the information contained in the summary
database.

A prediction process is associated with an inherent chance of failure. In our case, a
failure is exhibited when the client’s query is not answered by the summary database.
If the failure has resulted because of the low density value, then we can create another
summary database which would now contain lower valued predictions which ccould
answer the incoming query.

Database Summarization and Publishing in Wireless Environments 345

Fig. 2. E-R diagram corresponding to the example in section 4.2 and its tabular form

Assume that the predicted queries are sorted by decreasing cumulative probability
values as P = {p1, p2, ..., pr} such that the set P contains all possible predictions
(including the ones with zero probability). Say density = 3. Then, our summary database
would answer queries p1, p2 and ps. Let us assume that the incoming query is not in
exact match with the predicted pattern and it corresponds to ps. What we can do to
avoid the loss of query is to create a second level of summary database which would
have the power to answer queries p4, ps and pg. Note however that this level is at a
lower priority than the first summary database. To tackle this issue, we could publish
this level less number of times than compared to level 1. In fact, no matter how many
such levels we have, we can publish them with a frequency which would be in a reverse
ratio of their priorities.

4.2 Using E-R Modeling

We wish to ensure that we consider only those queries that are valid and reject those
which are not. We also wish to do this as early as possible before updating the trie
with the query. By using the E-R model corresponding to the database, we can model
this issue in a different manner. Consider the E-R model shown in figure [2] and the
corresponding tabular form of an arbitrary database which appears alongside.

Let the required attributes corresponding to an incoming query be the ones that are
shaded in figure 2l namely, a1, b1, b3 and co. Call these attributes as the set S. To ensure
validity, all that is needed is to check whether there is a marked path between the re-
quired edges. A *marked path’ is a path that includes only those edges that are marked.
Note that the E-R model is treated implicitly as a graph where the entities, relations and
attributes are nodes and the edges are the edges of the graph. The outline of a simple
algorithm to mark the edges is provided below.

i. For all selected attributes, mark the edge connecting them to their parent
entities.

ii. For an edge connecting a relation R to an entity FE, mark it if the
attributes of E included in R belong to S.

346 A. Gandhi and R.K. Ghosh

Fig. 3. Example

As an example consider the execution of above algorithm over the E-R graph shown
in figure 2l After step 1, edges 1, 6, 8 and 12 gets marked in figure 2l Regarding step 2,
we look at the attributes in the tabular form of R. Since R is connected to F, it must
have attributes of E in its tabular form. If all these attributes belong to S, then the edge
connecting R to F gets marked. So, after executing of step 2 over E-R graph of figure[2]
edges 4, 5, 9 and 10 get marked. We, therefore, find that we have a marked path {1, 4,
5,6,8,9, 10, 12} which touches all the attributes in S.

We can use the following steps to ensure validity of the query once the marking is
done.

i. Remove all unmarked edges.

ii. Check whether we have a connected component of the remaining graph that
connects all the nodes in S.

iii. If yes, return VALID; else return INVALID.

4.3 Construction Steps

After ensuring the validity of the query, our next task is to decode the queries back
into their attribute requirements for the database construction. We shall collect all these
attributes for each selected query into a set .S. We now scan all the tables of the database
and mark all those attributes of the database which belong to .S. The algorithm is provide
below.

initialize S:= null;
initialize D:= input database;
for (i < 0, i < density, i++) do
for each attribute x required by p(i) do
S := SU{x}
endfor
endfor
for each table T in database do
for each attribute y of table T do
if y belong to S mark y
endif
endfor
endfor
remove all unmarked components from D
for each table T in D do
for every table T in D such that (TNT' = null)
return D.

Database Summarization and Publishing in Wireless Environments 347

At this point, just by looking at the marked entries of the database, we can see what
the desired output database would be like. It would be a collection of sub-tables of the
original database. That is, if we delete all the unmarked attributes, then the remainder
of the database would be our summary database.

Consider the following tabular schema in figure 3la) for an input database. Here,
the x’s are attribute names (not necessarily distinct). Say our predictor marks attributes
%11, %14, 31 and x32. Our output would then be as shown in figure 3(b). Further, say
x31 and x4 are actually from the same domain. That is, they share the same attribute
name. We shall use the normal convention that if the attribute names are the same in
a database, then these attributes belong to the same domain. We shall now save space
by joining these two columns by using a join function call. We can simply modify the
existing variants of the JOIN call to serve our purpose.

We require our JOIN to join the two tables that share any common attribute. The first
common attribute found is selected and the JOIN is performed. Say, x3; is a subset of
x14. Then we would like to join T1 and T3 in such a way that no tuples are lost. We
can use null values for the empty components of the tuples. Also, if x3; and x14 are
disjoint, then we would simply have the output as one single table that would have as
many tuples as there are in T1 and T3 combined and each tuple would be a 3-tuple in
this case. One for 11, one for x14 /231 and one for x32. In most cases, we would be
saving considerable space by this method. However in cases where disjoint columns are
operated on using JOIN, no space saving is achieved.

The extended algorithm including the JOIN appears below.

remove all unmarked components from D;
for each table T in D do
for every table T’ in D such that (TNT’=null) do
join T and T'; delete T’
endfor
endfor
return D;

The resulting database for the previous case would be: T1 X171 X14/X31 X32

5 Conclusions

In this paper, we developed an idea to connect query prediction with the active LeZi
predictor. We then proposed some augmentations to the active LeZi which has added
advantages of aging and localizing the temporal behaviour of queries. We then gave
a construction of summary databases for the mobile environment. Summary databases
can be used to minimize the amount of data transfers over the network. As indicated at
the beginning, the motivation behind this work was to reduce the size of data transmis-
sion on the broadcast channel. By reducing the size of data transmission we not only
achieve better utilization bandwidth but also a substantial reduction in time for data
transmission over wireless broadcast channel.

348 A. Gandhi and R.K. Ghosh

References

1. BHATTACHARYA, A., AND DAS, S. K. Lezi-update: An information-theoretic framework for
personal mobility tracking in pcs networks. Wireless Networks 8 (2002), 121-135.

2. GOPALRATNAM, K., AND COOK, D. J. Active lezi: An incremental parsing algorithm for se-
quential prediction. In Proceedings of the Florida Artificial Intelligence Research Symposium
(2003).

3. Z1v, J., AND LEMPEL, A. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24,5 (1978), 530-536.

	Introduction
	Current Prediction Techniques
	Augmented Active LeZi
	Constructing Summary Databases
	Density of Prediction and Database Hierarchies
	Using E-R Modeling
	Construction Steps

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

