
EASY: Efficient Segment Assignment Strategy

for Reducing Tail Latencies in Pinot

Seyyed Ahmad Javadi, Harsh Gupta, Robin Manhas, Shweta Sahu, Anshul Gandhi

PACE Lab, Department of Computer Science, Stony Brook University

{sjavadi,hagupta,rmanhas,shsahu,anshul}@cs.stonybrook.edu

Abstract—Customer facing online services, such as LinkedIn
and Uber, rely on scalable and low-latency data stores to maintain
acceptable query tail latencies. An important challenge for
managing the performance of these systems is the assignment of
newly created data segments to data nodes to balance load. Given
the rate at which these services are accessed (thus generating new
data), the segment assignment problem is particularly important.
This paper presents EASY, an efficient segment assignment strat-
egy that leverages analytical modeling to predict the future load
induced by data segments, thus allowing for long-term balancing
of load across data nodes. Our implementation and evaluation of
EASY on Pinot shows that we can significantly reduce query tail
latencies in the presence of dynamically generated data segments.

Keywords—segment assignment strategy, tail latency, Pinot

I. INTRODUCTION

Large-scale and real-time Online Analytical Processing

(OLAP) is a major requirement for customer facing compa-

nies. A popular distributed near-realtime OLAP solution is

Pinot [13], that is extensively used at LinkedIn and Uber for

serving user queries (such as the Profile View functionality of

LinkedIn) and for internal analysis.

Pinot leverages a simple architecture where every table is

divided into data “segments” distributed among worker nodes.

Every segment typically contains information for a period of

time (e.g., one hour or one day). An incoming query from a

client to Pinot is run simultaneously across workers hosting

the target segments. The end-to-end response time of a query

in Pinot depends on the longest query latency among target

workers, as all individual (per-worker) results need to be

integrated by the broker node(s) before sending the response

back to the client.

In such distributed data store systems, the Segment Assign-

ment Strategy (SAS) has a significant impact on query latency.

SAS dictates the placement of new segments on worker nodes;

new segments are created dynamically as time passes. Naive

SAS such as round-robin can result in hotspots, severely

impacting query tail latencies (see Section IV).

Existing SAS in production systems often employ a de-

centralized and scalable utility function (or cost function)

approach whereby each server is assigned a cost that can be

easily computed; incoming segments are then assigned to the

lowest cost server, whose cost is then updated. While popular

open source OLAP solutions such as Pinot and Druid [17]

have their own cost-based SAS, these default strategies have

their shortcomings. The Pinot SAS aims to balance the number

of segments across workers. Our experimental results show

that this SAS leads to unbalanced load and high tail latencies.

Druid implements a more advanced SAS by taking the time

range of segments into account. However, as we show in

Section IV, there is much scope for improvement, especially

when there are multiple tables in the data store.

We propose a new load-aware SAS, EASY (Efficient seg-

ment Assignment StrategY), that outperforms existing SAS

solutions in terms of load distribution among workers and,

importantly, in terms of query tail latency. EASY works by

first passively computing the server load created by segments

as queries operate on them. Then, EASY models this segment

load and predicts, at run time, the future load induced by

a segment during its remaining (finite) lifetime. This task is

complicated by the fact that load depends critically on the age

of a segment; we find that, as time passes, the popularity and

load contribution of a segment decreases non-linearly.

We implement EASY on top of Pinot and experimentally

evaluate our SAS using a custom LinkedIn-like data and query

set (guided by the first author’s understanding of LinkedIn’s

Pinot system while he was interning there); we open source

all our implementation and code [11]. Our results show that

EASY significantly improves the load balance among worker

nodes, reducing query tail latencies by up to 6–21% when

compared to the default SAS of Pinot and Druid. Importantly,

EASY requires few changes and creates negligible overhead.

In summary, the contributions of this paper are:

• We present a novel and efficient load-aware SAS for Pinot.

• We design and implement a realistic data set and benchmark

for evaluating Pinot, and open source it [11].

• We implement our SAS on Pinot (publicly available [11]),

and experimentally evaluate it by comparing with the default

SAS of Pinot and Druid.

II. BACKGROUND AND PRIOR WORK

This section provides an overview of Pinot, and then dis-

cusses important prior work on SAS to put our work in context.

A. Background on Pinot

Pinot is a distributed near-realtime OLAP (On-Line An-

alytical Processing) data store that is used at LinkedIn for

various user-facing functions and internal analysis. Pinot has

been open source since 2015 and is currently being used by

other companies such as Uber. Pinot is designed to be able



Broker

Queries

Historical

Workers

Realtime

Workers

Controller

Kafka

Hadoop 

(Generate 

Index)

Consume 

Realtime 

Data

Historical 

Data

Push To 

Hadoop

Pinot Online 

Serving

Fig. 1. Overview of Pinot’s architecture.

to process 100 Million SQL-like queries for 100 Billions of

records in 10s of ms latency. While this paper focuses on

Pinot, our proposed techniques can be applied to other OLAP

systems as well.

Figure 1 illustrates the Pinot architecture including the three

main components: (1) controller, (2) broker, and (3) worker

nodes. The controller is responsible for cluster-wide coordi-

nation and segment assignment to worker nodes (SAS). The

broker (or brokers) receives queries from clients, distributes

them among workers, and integrates the results from the

workers and sends the final result back to clients; the end-

to-end query response time can be obtained at the broker.

The worker nodes host data segments and respond to query

sub-requests that originate from the broker. Query logs are

maintained at workers.

Pinot processes recent data (e.g, a few days old) using

Realtime Workers and older data (may overlap with realtime

data) using Historical Workers, as shown in Figure 1. Realtime

data is pushed to Historical Workers as time passes (e.g., daily)

or when a given number of records have been ingested; the

data is pushed via Kafka and HDFS. In this paper we focus

on Historical Workers, that store the bulk of the data.

Historical Workers store data in the form of a pre-built index

called segment; every table has its own segments. Segments

store contiguous data for a given time range; there is a row of

data columns for each time interval within the range. Every

segment thus has an associated start time and end time for its

data (in the Time column). Note that there may be a table-

specific expiry time that dictates how long segments should

be retained by Historical Workers. Once the expiry time, say

3 months, elapses, the associated segments are deleted.

B. Prior work

We now discuss important prior work on SAS; other related

works are discussed in Section V. We implement EASY on top

of Pinot by modifying Pinot’s SAS. The default SAS for Pinot

balances the number of segments across workers. By contrast,

EASY aims to minimize query tail latencies by reducing the

load imbalance between workers; we show in Section IV that

EASY significantly outperforms the default Pinot SAS.

The closest systems to Pinot are Druid [17] and Click-

House [1]. Druid’s SAS [17] is similar to EASY, except that

Druid’s cost function depends only on the time range of a

segment and not its load. As we show in Section IV, EASY

outperforms Druid by specifically taking segment load into

account. ClickHouse [1] is also an OLAP system but does not

Broker

Queries

Historical WorkerController

EASY API

Historical Worker

Historical Worker

...

EASY SAS

EASY API

EASY APIResponses

Fig. 2. EASY’s solution architecture. Components we add are shaded in red.

employ time-ranged segments, like Pinot. Data is distributed

over workers based on weights that must be manually assigned

by cluster administrators.

Getafix [8] uses a modified bin packing approach to dis-

tribute incoming segments across workers based on their

popularity. The authors define segment popularity in terms of

access count of the segment, and popularity is aged exponen-

tially. Likewise, Copeland et al. [2] distribute data segments

to worker nodes so as to balance the access frequency of

resident data objects. Furtado [7] proposes a data placement

schema based on hash-partitioning to favor most frequently

accessed keys for a relational database. BlowFish [9] maintains

a request queue per segment and uses queue length as an

estimator of segment load; this queue length information is

then used to distribute segments across servers. However, the

access frequency or outstanding requests for a segment may

not directly correlate with the segment load. For example,

a less popular segment may still contribute significantly to

server load because of its size or its structure (e.g., number of

columns). By contrast, EASY models popularity based on its

estimated load, which is a more direct indicator of the cost of

a segment than its access frequency.

III. SYSTEM DESIGN AND IMPLEMENTATION

We now present the design of EASY, followed by the cost

function for SAS, and finally the implementation details of

EASY on Pinot.

A. Solution architecture

Figure 2 shows the solution architecture of EASY; the

components that make up EASY are shown in red. Since

SAS is managed by the controller, we implement our EASY

SAS in the controller; the mathematical details of our SAS

are presented in the next subsection. When a new segment is

generated, the controller sends a request to all workers. Each

worker, in turn, computes its cost function and returns the

value to the controller via an API call. The controller then

picks the r workers that have the smallest cost values, and

places r replicas of the incoming segment on these workers. r
is a user-specified value; we set r = 1 in our implementation.

To facilitate the computation of the cost function, each

worker logs the total cpu time spent, cpu timeQ, and the

total number of rows scanned, row scanQ, by each query Q.

Note that Q will likely span multiple segments; we thus also

log a list of segments scanned by Q. However, we do not log



segment-level information, such as segment-level cpu time and

rows scanned, as this information logging requires significant

overhead and may be computationally infeasible. Instead,

we estimate segment-level information from cpu timeQ and

row scanQ, as discussed next.

B. EASY’s cost function

Recall that Pinot selects the lowest cost worker nodes for

each incoming segment. The default cost function in Pinot

simply assigns one unit of cost for each segment in a worker

node, thus assigning an incoming segment to the r workers

with the lowest number of segments. Unfortunately, this cost

function does not take into account the server load that each

segment contributes and may contribute in the future. The

cost function for EASY is specifically designed to efficiently

address this shortcoming.

High-level idea. The high-level idea behind EASY’s cost

function is to estimate the server load that each segment

will induce during its remaining lifetime. The server load

contribution of a segment is challenging to compute as it

depends on several factors, including (i) the popularity of

the segment, (ii) the size of the segment (number of rows),

(iii) the query mix that typically targets the segment and

its relative complexity, and (iv) the structure of the segment

(number of columns and their content). Worse, predicting the

load that a segment may contribute to in the future requires an

understanding of how induced load changes with time. Clearly,

modeling all of these factors will require significant time and

effort, leading to inefficient SAS design.

Instead, EASY simply models the total server load con-

tribution of a segment of a given table based on previously

observed data. Specifically, we compute the total cpu time

spent by all queries actively scanning a segment, and use this

as a proxy for load contribution. We find that this cpu time

per segment per query decreases with the age of a segment,

possibly because of caching. We thus also model this decaying

trend of cpu time as a function of the segment age (difference

between current time and segment start time).

To enable predictions of future load that a segment may

induce, we learn the cpu time per row as a function of segment

age for a typical segment of each table. Then, for any segment

of a table, we predict its cpu time contribution based on its

number of rows during its entire lifetime as it ages (since

segments expire after some expiry time).

Our approach differs from existing approaches since we

predict the future load induced by any segment. Further, we

model the actual load induced by a segment as opposed to

only modeling its popularity or frequency of access, which

are not accurate enough estimators of load (see Section IV).

1) Passive model training: EASY passively computes its

estimates of load per segment based on the measured load

induced by incoming queries on existing segments. Further, to

account for changes in workload, EASY periodically updates

its estimates in each interval (one hour, in our implementation).

Computing cpu time per segment. As discussed in Sec-

tion III-A, we track the total cpu time of each query Q, say

cpu timeQ, at each worker. To determine the contribution of

individual segments to this cpu time, we also keep a track of

the segments, and the specific time range within the segments,

that each query scans. Let SQ be the set of segments scanned

by query Q, and let ts be the time range, in hours, of segment

s ∈ SQ that Q scans (obtained via the WHERE clause of Q).

In our implementation of Pinot, each segment represents one

day, and so the fraction of segment s that is scanned by Q is

fs = ts/24. We now estimate the number of rows of s scanned

by Q (not directly available via Pinot) as fs × row counts,

where row counts is the total number of rows in segment

s and is already known to Pinot. Finally, we estimate the

contribution of segment s ∈ SQ to cpu timeQ as:

cpu timesQ = cpu timeQ ×
fs × row counts∑

x∈SQ
fx × row countx

(1)

The total cpu time contribution of s based on all queries

observed in the past interval is then estimated as:

cpu times =
∑

observed Q

cpu timesQ (2)

Computing row scan per segment. We use a similar approach

to estimate the number of rows scanned for segment s by all

queries in the past interval as:

row scan
s
=

∑

observed Q

row scanQ × fs × row counts∑
x∈SQ

fx × row countx
, (3)

where row scanQ (logged by EASY) is the total number of

rows, across all segments, scanned by query Q.

Load modeling as a function of age. We now model the

load induced by any segment based on its age; this will allow

us to online predict the future load created by a segment in

Section III-B2. To enable load prediction for any segment size,

we normalize cpu times by row scans; we refer to this as:

normalized cpu time: the total cpu time per scanned row of

segment s incurred by all queries in the last interval.

Likewise, we normalize row scans by row counts to get:

normalized row scan: the total rows scanned per row con-

tained in segment s by all queries in the last interval.

Figure 3 shows our empirical results for normalized

cpu time and row scan for three different Pinot tables (see

Section IV-A for details on our experimental setup). We see

that both values decrease non-linearly with segment age; the

decrease for row scan is to be expected as segment popularity

drops with time (older segments are queried less frequently

compared to newer segments).

To enable efficient predictions for new segments, we model

the empirical observations. Given that popularity for segments

is Zipf distributed, we fit the empirical values as c0 + c1/x
α,

where c0 and c1 are coefficients to be learned and α is a

parameter. Our regression results for these models are shown

as dotted lines in Figure 3 along with the modeled equations;

we find that setting c0 = 0 does not significantly affect

the modeling accuracy for normalized cpu time, and so we

simplify this model accordingly. The regression fit is very



Segment age (days) →

0 30 60 90

N
o
rm

a
liz

e
d
 c

p
u
 t
im

e
 (

n
s
e
c
) 
→

0

0.01

0.02

0.03

0.04
Empirical - ProfileView

Empirical - JobApply

Empirical - ArticleRead

Modeled

g(x) ≈ 0.013 x-0.3

g(x) ≈ 0.014 x-0.4

g(x) ≈ 0.109 x-0.4

(a) Normalized cpu time as a function of segment age.

Segment age (in days) →

0 30 60 90

N
o
rm

a
liz

e
d
 r

o
w

 s
c
a
n
 →

0

10

20

30
Empirical - ProfileView

Empirical - JobApply

Empirical - ArticleRead

Modeled

h(x) ≈ 29.86 - 3.24 x
0.5

h(x) ≈ 18.52 - 3.93 x
0.3

h(x) ≈ 9.24 - 3.95 x
0.2

(b) Normalized row scan as a function of segment age.

Fig. 3. Empirical and modeled estimates for normalized cpu time and row scan for segments of three different tables. Also shown are the regression fit
model equations for each case. The mean modeling error is less than 5% for cpu time and less than 3% for row scan for all tables.

close to the empirical observations, thus the dotted lines

coincide with the solid (empirical) lines in the figure. The

modeling error for cpu time (g(x) in Figure 3(a)) is 3.24%,

4.11%, and 2.75% for ProfileView, JobApply, and ArticleRead

tables, respectively. The modeling error for row scan (h(x)

in Figure 3(b)) is 2.94%, 1.16%, and 0.97% for ProfileView,

JobApply, and ArticleRead tables, respectively.

2) Online load prediction: To predict the future load in-

duced by a segment, EASY leverages the above described

models of g() and h(), and integrates the predicted load

over the remaining lifetime of the segment. In particular, at

time t, for a segment s with segment start time starts and

row counts total rows, EASY predicts its future load as:

loads(t) = row counts ×

∫ expiry

t−starts

g(x) h(x) dx, (4)

where t − starts is the age of s and expiry (3 months in

our implementation) is the expiration duration of s. Note that

g(x)×h(x) represents total cpu time per row of segment s, and

thus multiplying this quantity with row counts gives us the

total cpu time for segment s; integrating over the remaining

lifetime gives us the predicted load induced by s.

Since our accurate models for normalized cpu time, g(x) =
a · xα, and row scan, h(x) = b+ c · xβ , are relatively easy to

express (where a, b, c, α, and β are regression coefficients, as

shown in Figure 3), we can obtain Eq. (4) in closed-form as:

loads(t) = row counts ·

(

ab

(α+ 1)

(

expiryα+1
− (t− starts)

α+1
)

+
ac

(α+ β + 1)

(

expiryα+β+1
− (t− starts)

α+β+1
)

)

(5)

Given this closed-form expression, computing the segment

load under EASY is computationally efficient; hence the name

EASY (Efficient segment Assignment StrategY).

3) Putting it all together: We are now ready to define our

cost function. For a worker w with current set of segments Sw

at time t, the EASY cost is:

cost(w, t) =
∑
s∈Sw

loads(t) (6)

Finally, for an incoming segment at time t, EASY selects

the r workers with lowest cost(w, t) for placement.

C. Implementing EASY on Pinot

We implement EASY in Java for integration with Pinot

(also written in Java). On the controller side, we implement

EASY SAS with ∼200 lines of code. On the worker side,

we implement the EASY RESTless API and Pinot logging

extensions with ∼500 lines of code. The API is used to

compute the cost(w, t) function at each worker w and return

the value to the controller. We record cpu time for each

query via java.lang.management.ThreadMXBean; we verified

the correctness of our cpu time implementation with engineer-

ing staff at LinkedIn (when the first author was interning at

LinkedIn). We also expose the list of segments being targeted

by a query in the final log. The overhead of EASY is negligible

in practice, especially since we integrate our logging efforts

with the efficient LogFactory class used by LinkedIn in their

production Pinot implementation. For reference, we have open

sourced our EASY-equipped Pinot implementation [11].

IV. EVALUATION

We first describe our experimental setup and evaluation

methodology, and then present our evaluation results compar-

ing EASY to Pinot SAS and Druid SAS.

A. Experimental setup

We use 7 servers for our experiments, with 1 controller, 2

brokers, and 4 worker nodes. All servers are identical with 4

cores (Intel Xeon CPU E3-1231) and 16GB of memory (of

which 12GB is assigned to Pinot Java processes). Servers are

connected through 1GB network links.

Data store. The data on worker nodes is divided into tables,

and each table has its own segments; each segment is made

up of rows and columns, with each row corresponding to

information for a given time period. To mimic the LinkedIn

functionality, we create the following (self-explanatory) tables:

ProfileView, JobApply, and ArticleRead. The total number of

rows for ProfileView, JobApply, and ArticleRead are around

2.7M, 1.8M, and 0.9M, respectively. Each table has several

columns; for example, ProfileView has columns: Time, View-

erProfileId, ViewerWorkPlace, WereProfilesConnected, etc.

Workload and benchmark. We implement a query generator

benchmark for Pinot based on our tables. For each table,

we create several relevant queries. An example query for the

ProfileView table is “SELECT * FROM ProfileView WHERE



9
9
%

ile
 l
a
te

n
c
y
, 
T

9
9
 (

m
s
) 
→

0

400

800

1200

σ = 5K σ = 15K σ = 25K

BalanceNum

Spread

EASY

Fig. 4. Boxplot illustrating the T99 for different SAS as a function of in-
creasing standard deviation of segment size (σ). For σ = 5K, 15K, and 25K,
EASY reduces T99 by 1%, 5%, and 6% when compared to BalanceNum and
by 1%, 4%, and 5% when compared to Spread.

ViewStartTime > t1 AND ViewStartTime < t2”, where t1 and

t2 are (randomized) query parameters. Every query requests

data from a table with time range length (based on WHERE

clause) being Zipf distributed and end time being the wall

clock time when the query is issued.

Our benchmark is implemented in ∼2000 lines of code and

schema files. The table and query design is guided by our

understanding of the Pinot system used by LinkedIn (based on

the first author’s internship at LinkedIn). All implementation

details, including code, tables, and queries, have been open

sourced for reference [11].

B. Evaluation methodology

Metrics. We evaluate SAS in terms of two metrics:

(i) T99: 99%ile query tail latency as seen by the broker(s), a

metric that LinkedIn uses internally [10]; and

(ii) CPUσ: standard deviation of the CPU usage across

workers, a metric we aim to minimize to, in turn, reduce T99.

Baselines. We compare EASY with the following SAS:

(i) BalanceNum: This default Pinot SAS aims to balance the

number of segments across workers. An incoming segment is

assigned to the worker with the least number of segments.

(ii) Spread: This is the Druid SAS in use at Metamarkets

which aims to avoid hotspots by spreading apart segments that

are closer in time as they are likely to be queried together [5].

For segments X and Y , Spread defines:

cost(X,Y ) =

∫ x1

x0

∫ y1

y0

e−λ|x−y| dx dy, (7)

where [x0, x1) and [y0, y1) is the time range of X and Y ,

respectively, and λ is the decay rate. For an incoming segment

X , Spread selects the worker k which results in minimum∑
y∈Sk

cost(X,Y ), where Sk is the set of segments on k. The

intuition behind this cost function is to place X at a worker

that does not contain too many segments which are likely to

be queried together with X (have neighboring time ranges) to

minimize contention.

C. Results

We illustrate evaluation results under various scenarios.

In each case, we use normalized cpu time and row scan

information about segments from the past interval (one hour)

to guide the SAS, as described in Section III-B.

BalanceNum Spread EASY9
9
%

ile
 l
a
te

n
c
y
, 
T

9
9
 (

m
s
) 
→

0

500

1000

1500

Fig. 5. Boxplot illustrating the T99 under different SAS for the scenario
where a worker node is added. EASY reduces T99 by 21.55% and 1.61%
when compared to BalanceNum and Spread, respectively.

SAS for different segment size variability. We first consider a

scenario where 90 segments (for 90 days of data) are assigned

to four worker nodes via the specified SAS. We then run our

benchmark and generate queries over these 90 segments for the

next 30 minutes. This experiment uses the ProfileView table;

segment sizes (row count) are Normally distributed with mean

µ = 30K and varying standard deviation, σ.

Figure 4 shows the boxplot (including median and first and

third quartiles) for our experimental results for T99 under Bal-

anceNum, Spread, and EASY. We find that EASY reduces T99

moderately by around 1-6% when compared to BalanceNum

and Spread. The improvement is larger for higher variability

in segment sizes. This is to be expected as BalanceNum and

Spread do not explicitly take segment size into account, while

EASY implicitly takes the segment size into account when

learning the load contributions of segments (see Section III-B).

SAS when adding workers. We next consider the more

challenging scenario where a new worker node is added to

scale capacity and accommodate new segments. Specifically,

we start with three worker nodes which are assigned 60

segments via their SAS. Then, a fourth worker node is added

and 30 new segments are assigned (across all workers). We

monitor query latencies from this point onwards for the next 30

minutes. This experiment uses the ProfileView table; segment

sizes are Normally distributed with µ = 30K and σ = 1K.

Figure 5 shows our experimental results for T99 under

BalanceNum, Spread, and EASY. We find that EASY reduces

T99 by 21.55% and 1.61% when compared to BalanceNum

and Spread, respectively. Likewise, EASY improves query

throughput (not shown) by 13.38% and 1.04% when com-

pared to BalanceNum and Spread, respectively. Finally, EASY

reduces CPUσ by 18.38% and 3.51% when compared to

BalanceNum and Spread, respectively.

The above results show that the improvement afforded

by EASY over BalanceNum is significant. This is because

BalanceNum assigns most of the 30 new segments to the

fourth (empty) worker node, resulting in a hotspot as newer

segments are queried more often. By contrast, both EASY and

Spread take recency of segments into account, thus providing

better load balancing.

SAS with multiple tables. We now experiment with seg-

ments from all three tables (see Section IV-A). We assign

28 segments (for the month of February) for each table to



BalanceNum Spread EASY

9
9
%

ile
 l
a
te

n
c
y
, 
T

9
9
 (

m
s
) 
→

0

500

1000

Fig. 6. Boxplot illustrating the T99 under different SAS for the case of
multiple tables. EASY reduces T99 by 4.93% and 6.33% when compared to
BalanceNum and Spread, respectively.

4 workers; assignment follows the specified SAS. We assign

segments chronologically – segments for a given day for all

tables, and then segments for the next day for all tables.

BalanceNum tries to balance the number of segments for

each table across workers. Spread considers segments from all

tables on a worker node, but assigns a higher cost in Eq. (7)

(by a factor 2×) if a pair of segments belong to the same

table as they are then more likely to be queried together [5].

EASY does not use a pair-wise cost function (as in Spread),

and easily extends to the case of multiple tables by considering

segments from all tables on a worker (s ∈ Sw in Eq. (6) can

be from any table) when computing the cost for a worker.

Figure 6 shows our experimental results for T99. This time,

EASY reduces T99 by 4.93% and 6.33% when compared

to BalanceNum and Spread, respectively. These results show

that EASY affords moderate improvements over Spread as

well. Spread performs poorly in this case as it does not take

into account the relative difference in the load contributed by

segments of different tables. That is, segments of different

tables with the same age are treated equally, even though they

may induce different loads on the workers due to differences

in their structure and content as well as incoming query rate

and pattern. By contrast, EASY learns these differences over

time and thus treats segments from different tables differently.

V. RELATED WORK

We now discuss related work apart from those already

discussed in Section II-B. Curino et al. [3] propose a resource

estimation technique to better consolidate multiple online data

processing workloads on physical servers. However, they do

not take the time range of data into account, which is an

important factor in accurately estimating segment load.

Wong et al. [16] consider the subset of segments required

to service a relational database query, and use this information

to consolidate segments onto servers. However, under Pinot,

since segments are created over time, the subset of segments

required by a query changes dynamically.

Ozmen et al. [12] address the problem of generating an opti-

mized layout for a given set of database objects by formulating

it as a non-linear program. The resulting layout both balances

load and avoids interference. By contrast, EASY’s approach

is much more efficient and only relies on load and popularity

estimates, which can be easily obtained.

Pinot partitions data based on timestamps as queries are

expected to apply to a particular range of time. This is not the

case for general OLAP where all dimensions may have equal

importance. VOLAP [4] migrates data shards among OLAP

workers to reduce load imbalance.

There are also related works that address the problem of

tenant placement in Database-as-a-Service deployments (e.g.,

STeP [15] and Pythia [6]) or placement of different databases

across servers (e.g., Schaffner et al. [14]). While similar, the

SAS problem is distinguished by the concept of time-ranged

segments which complicates the load distribution challenges.

VI. CONCLUSION

We present EASY, an efficient SAS (Segment Assign-

ment Strategy) for OLAP systems, such as Pinot [13] and

Druid [17]. The key idea in EASY is to model the cpu time

contribution of each segment, and leverage this modeling to

predict the future load induced by segments of a server. Ex-

perimental results show that SAS based on our accurate model

predictions provides significantly lower query tail latencies

when compared to the SAS of Pinot and Druid.

ACKNOWLEDGEMENTS

This work was supported by NSF CNS grants 1617046,

1622832, 1717588, 1730128, and 1750109.

REFERENCES

[1] ClickHouse — Open Source Distributed Column-oriented DBMS. https:
//clickhouse.yandex.

[2] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data Placement
in Bubba. In SIGMOD’88, pages 99–108, 1988.

[3] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan. Workload-
aware Database Monitoring and Consolidation. In SIGMOD’11, pages
313–324, 2011.

[4] F. Dehne, D. Robillard, A. Rau-Chaplin, and N. Burke. VOLAP: A
Scalable Distributed System for Real-time OLAP with High Velocity
Data. In IEEE Cluster’16, pages 354–363, 2016.

[5] Distributing Data in Druid at Petabyte Scale. https://metamarkets.com/
2016/distributing-data-in-druid-at-petabyte-scale.

[6] A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi, and X. Yan.
Characterizing Tenant Behavior for Placement and Crisis Mitigation in
Multitenant DBMSs. In SIGMOD’13, pages 517–528, 2013.

[7] P. Furtado. Experimental Evidence on Partitioning in Parallel Data
Warehouses. In DOLAP’04, pages 23–30, 2004.

[8] M. Ghosh, L. Xu, X. Qian, T. Kao, I. Gupta, and H. Gupta. Getafix:
Workload-aware Distributed Interactive Analytics. Technical report,
University of Illinois Urbana-Champaign, 2016.

[9] A. Khandelwal, R. Agarwal, and I. Stoica. BlowFish: Dynamic Storage-
Performance Tradeoff in Data Stores. In NSDI’16, pages 485–500, 2016.

[10] Who Moved My 99th Percentile Latency? https://engineering.linkedin.
com/performance/who-moved-my-99th-percentile-latency.

[11] PACELab/pinot. https://github.com/PACELab/pinot.
[12] O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Workload-aware

Storage Layout for Database Systems. In SIGMOD’10, pages 939–950,
2010.

[13] Pinot — A Realtime Distributed OLAP Datastore. https://github.com/
linkedin/pinot.

[14] J. Schaffner, D. Jacobs, T. Kraska, and H. Plattner. The Multi-Tenant
Data Placement Problem. In DBKDA’12, 2012.

[15] R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and
D. DeWitt. STeP: Scalable Tenant Placement for Managing Database-
as-a-Service Deployments. In SOCC’16, pages 388–400, 2016.

[16] E. Wong and R. H. Katz. Distributing a Database for Parallelism. In
SIGMOD’83, pages 23–29, 1983.

[17] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli.
Druid: A Real-time Analytical Data Store. In SIGMOD’14, pages 157–
168, 2014.


